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Abstract

A multi-layered exploratory look at the use of secondary structure elements in ribonucleic

acid (RNA) gene finding is performed. Individual structural element metrics are analyzed

for their ability to act as structural RNA gene signals. Additionally, each structural element

is analyzed for its ability to detect structural RNA gene sequences by training and testing

classifiers which utilize the structural element’s metrics to classify candidate RNA sequences.

Finally, groups of structural elements are examined, by voting the prediction results of the

individual structural element classifiers together to determine if a candidate sequence is a

structural RNA gene. The tests reveal that the external loop, structure, stemloop, hairpin

loop, and tail structural elements produce significant signals for structural RNA genes. Many

groups of structural elements were found to have potential but particularly the stemloop and

hairpin loop structural element combination stood out for its practicality and strong results.

iii



To my family, for being family.
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“Medicine makes people ill, mathematics makes

them sad, and theology makes them sinful.”

— Luther, Martin (1483-1546)
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Chapter 1

Introduction

Structural ribonucleic acid (RNA) gene finding is essentially a search problem—finding a

needle in a haystack. The needle is represented by the structural RNA gene (SRNAG),

and the genome, excluding the SRNAG regions, is represented by the hay. Unfortunately,

when SRNAG finding is viewed at the nucleotide sequence level, the needles and hay appear

similar because the sequences of SRNAGs are not highly conserved across evolution [44, 50].

So perhaps a better analogy for the problem of SRNAG finding would be finding a needle

produced by one manufacturer in a stack of needles produced by another manufacturer.

This problem is further complicated by the fact that there are many SRNAGs within a

genome changing the goal of the search problem to the more general task of finding as

many of these genes as possible while keeping the number of false positives to a minimum.

Likewise, there are many different families of SRNAGs, often with very different properties.

Even within each family the properties of these SRNAGs can vary significantly and yet

genes from all these RNA families need to be located. In the analogy, this is represented

by a blurring of the target needles’ specifications so that there is a general idea of what a

target needle might be like, yet no specific characteristics to search for. In a similar way,

the properties of the background genome are a product of evolutionary forces which often

leads to significant variation in properties. These concepts transform the haystack analogy

further, so that there are a set of manufacturers whose needles need to be located in a pile

of needles produced by other needle manufacturers while all the needles have some variance

from their specified properties.

At the onset this problem looks daunting, as by simply observing the needles there

is no accurate way to distinguish between the two sets of manufacturers. Fortunately, in

1
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the analogy, individual manufacturers produce needles in distinctive ways, applying different

forces and processes to mold and form them. These differences in the manufacturing process

can help determine properties of needles which can be exploited to distinguish a needle

produced by one manufacturer from that of another. In the same way evolutionary forces

driving the formation and preservation of SRNAGs differs from the evolutionary pressure

on the genome’s non-SRNAG regions. Hopefully, these differences can be used to exploit

underlying properties of SRNAGs which are useful in SRNAG finding.

SRNAGs utilize their molecular shape to provide functionality in the cell. If the shape

of these molecules is altered, the SRNAG may not be able to carry out its role in the cell

which can lead to the loss of a cellular function or even cell death. For this reason the shape

of SRNAGs is highly conserved across evolution. Since non-gene genome sections have no

direct relationship with cellular functionality, there is little evolutionary pressure placed on

these regions of the genome and hence the RNA structures produced by non-SRNAG regions

will tend to have different properties than regions holding functioning SRNAGs. Discovery

and exploitation of the metric distribution differences caused by evolutionary pressure in

SRNAG and non-SRNAG regions of the genome is a key component of SRNAG finding.

Solving the RNA gene finding problem is key for the advancement of several biologi-

cal research areas, as RNA gene finding is aimed to discover and exploit sequence features

unique to RNA genes using computational techniques. The computational techniques may

provide a statistically significant means to distinguish the RNA genes from the protein cod-

ing and non-coding sections of a genome [39]. With the advancement of genome sequencing

technology came a wealth of data for biologists to analyze. Part of that analysis process

involves annotating the different regions of the genomes. A statistically significant method

of distinguishing SRNAGs from the rest of the genome is a feasible way to help annotate

these genomes, as it can indicate areas of the genome which are likely to be SRNAGs, allow-

ing researchers to focus their time verifying the most probable candidate genes. Likewise,

there is a feeling within the biology research community that there are potentially a large

number of undiscovered RNA genes, making a high accuracy RNA gene finder immensely

valuable to the scientific community, just as protein gene finders have already been [50, 9].

It is possible to discover structural RNAs through biochemical processes, but these meth-

ods are slow, costly, and often ineffective [50]. Furthermore, since SRNAGs are some of the

building blocks in the cell, accurate SRNAG annotation gives biology researchers more cel-

lular components to work with, opening the door to experimental monitoring of expression
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levels, functional assay by deletion or mutagenesis, structural and functional analysis, and

identification of interaction partners [9, 39].

There are several goals of this thesis, the first is to propose and test a novel SRNAG

finding method which exploits a collection of structural information, derived from folding a

given RNA sequence, as a distinguishing signal for SRNAGs. This SRNAG finding method

will not only act a proof of concept showing the ability to use specific structural elements for

SRNAG finding, but will allow allow the exploration of which structural elements are useful

for SRNAG finding, which is the second goal of this thesis. The third goal involves figuring

out which properties of the structural elements allow them to produce strong SRNAG finding

signals. In addition to which specific structural elements can be used to produce strong

SRNAG finding signals, the fourth goal of this research is to determine which groups of

structural elements work well together to produce a strong SRNAG finding signal. Achieving

this forth goal is done using a configurable voting system to combine the results of several

structural element models to build a multi-structural element SRNAG prediction system.

In order to achieve these objectives this thesis is broken down into several chapters. The

Introduction chapter defines the problem of SRNAG gene finding, provides motivation for

solving it, and briefly covers some of the key biological concepts used in this thesis. Chapter 2

discusses previous methods for SRNAG finding and compares them to the SRNAG finding

approach taken in this thesis. This novel approach to SRNAG finding is developed in

Chapter 3, where each step in the classification process is discussed in detail. The Methods

chapter describes the two experiments used to test the SRNAG finder. One experiment deals

with testing the classification system under favorable conditions, while the other tests the

classifier in harsh conditions. Chapter 5 presents the results and analysis of the experiments

described in Chapter 4. Finally the last chapter gives a conclusion and discusses the future

direction of this research. To provide additional background information, Appendix A gives

some basic statistical definitions, Appendix B introduces the theory behind support vector

machines from a high level, geometric perspective, Appendix C provides information on

nucleotide shuffling, and Appendix D supplies an explanation as to why protein finding

methods are not suitable for RNA gene finding. The last appendix, Appendix E, tabulates

most of the results discussed in this thesis.
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1.1 Different Types of RNA Gene Finding

There are many different methods available for RNA gene finding. The choice of technique

depends on the data available in the gene finding problem and the range of different types

of genes attempting to be discovered. Typically, RNA gene finding methods are split into

two categories: homology based and ab-initio prediction methods. Although there are

many different homology based approaches to RNA gene finding, typically they exploit

similarities in evolutionary related sequences to create signals for RNA genes [39]. For

example, although RNA gene sequences are less conserved across evolution than protein

genes, because RNA gene structures are conserved the RNA gene sequences do display

certain conservation characteristics [39, 7]. If the pairing of certain nucleotides is critical

to a structural RNA gene’s function, then there will be a tendency for these nucleotides to

undergo correlated mutations. Homology gene finding methods can exploit theses correlated

mutations to produce a RNA gene signal. When ab-initio RNA gene finding methods are

used, no sequence annotation or external sequences are required other than the genome

sequence to be searched. This restriction makes ab-initio RNA gene finding much more

difficult than homology based approaches and is “more or less an unsolved problem” [39].

The SRNAG finding method presented in this thesis attempts to solve the ab-initio SRNAG

gene finding problem, hence the rest of this document does not deal with homology RNA

gene finding techniques.

1.2 RNA and DNA

While RNA molecules are the focus of this thesis, they are best described alongside the

better known deoxyribonucleic acid (DNA), as they are closely related molecules. RNA, like

DNA, are nucleic acids, macromolecules composed of polymers of monomeric nucleotides [7].

Nucleotides are comprised of three elements: a nitrogenous base, a five-carbon sugar, and

a phosphate group [7, 44]. Both DNA and RNA link the 5-carbon sugar of one nucleotide

to the phosphate of the next nucleotide in an alternating pattern through a shared oxygen

atom to form the backbone of the nucleic acid chain [7]. These bonds to the shared oxygen

atom attach the phosphate group to the carbon at the 3’ end of the sugar and to the carbon

at the 5’ end of the sugar, giving the sequence directionality [44, 7]. By convention the 5’

terminus refers to the start of the sequence and the 3’ terminus refers to the end of the
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sequence [44, 7]. In DNA this backbone uses pentose sugars, while in RNA ribose sugars

are used [7]. Furthermore, although DNA and RNA share the nitrogenous bases Adenine

(A), Cytosine (C), and Guanine (G), they have one base that differs [7]; DNA uses the

base Thymine (T), while RNA uses the base Uracil (U) [7]. Certain nitrogenous bases can

bond to each other through base pairing, allowing DNA and RNA strands to have complex

yet well defined interactions [44]. In general, these interactions follow Watson-Crick base

pairing rules where GC, AT, and AU can bond; however less frequently non-Watson-Crick

base pairing can happen where GU bonds form [7, 44]. These base pairing interactions are

due to intermolecular hydrogen bonds, where three hydrogen bonds link GC, while only two

hydrogen bonds link AT and AU [7, 44]. The fact that GC base pairs have three hydrogen

bonds while AT and AU base pairs only have two hydrogen bonds helps make the pairs more

stable [44, 73]. Likewise, G and C base stacking energies contribute more to the stability

of the molecules than T, A, and U bases [73]. The increased stability of GC pairs over

the other pairing configurations result in DNA and RNA sequence tending to have higher

GC content, as higher concentration of GC content allows for stabler molecules1 [52, 73].

Finally, another difference between DNA and RNA is that DNA is composed of two chains

of deoxyribonucleotides bound to each other through base pairing interactions, while RNA

is typically a single chain of ribonucleotides, although this single strand has the ability to

fold back on itself through base pairing interactions to form double stranded sections. It is

this folding through base pairing which enables structural RNAs to form specific molecular

shapes, allowing them to be functional molecules within the cell.

1.3 Genomes and Transcription

Both DNA and RNA use patterns of nucleotide bases to encode genetic information. Genetic

information is a term describing the set of instructions needed by the cell to build cellular

components such as proteins and functional RNAs. Although DNA is typically viewed as

the long-term storage molecule of the cell, it is known that in some retroviruses, RNA

takes on this role, making up the virus’s genome [44]. Typically, genomes are comprised

of several chromosomes, which in turn are comprised of DNA molecules [44, 7]. For the

purposes of this thesis, a genome is considered simply as a single sequence given by the

1As GC content increase AT or AU content necessarily decrease.
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alphabet A,T,C,G, containing some regions which are transcribed2 into RNA. The regions

of the genome which are not transcribed are known as non-coding (NC) regions [44]. It is

important to note that even after a RNA strand is transcribed it still may undergo various

post processing steps. These extra steps are especially common in eukaryotes3 and include

the processing events of end-modification, splicing, cutting, and chemical modification [7].

Because these events modify the RNA transcript, the sequence of the final RNA molecule

may be different than the genomic sequence it was copied from, which means that the

genomic information that is being used to fold or find structural RNA genes may at times

not accurately reflect the final structural RNA molecule. Post transcription modification

(PTM) is an important consideration in the task of SRNAG finding as typically the genome

sequence is searched without consideration for PTM, yet it is possible that PTM changes

the sequence of the resulting RNA enough that the gene finder does not detect the genome

sequence. For a SRNAG finder to consider PTMs it would add considerable complexity to

an already challenging problem, so this thesis does not deal with this added complexity.

1.4 Classes of RNAs

Although the product of transcription is always an RNA sequence4, there are many classes of

RNAs. The breakdown of RNA categories is shown in Figure 1.1. If the RNA transcribed is

later translated into a protein it is termed messenger RNA (mRNA) and is part of the class of

coding RNAs, as its primary purpose is to transport information from the genome [7]. Non-

coding (ncRNA), also known as functional RNAs (fRNA), are not translated but conduct

their biological role as RNA sequences [39]. Within this class of ncRNAs there is a subclass

of structural RNAs which are RNA transcripts that gain their cellular role by folding into

tertiary structures [7, 39, 44]. These tertiary structures can catalyze chemical reactions or

play other biological roles in the cell in a way analogous to protein activity [44]. Within

the structural RNA class there is transfer RNA (tRNA), ribosomal RNA (rRNA), small

nuclear RNA (snRNA) [44], small nucleolar RNA (snoRNA), ribonuclease P (RNase P),

transfer-messenger-RNA (TmRNA), and signal recognition particle RNA (SRP RNA) [7].

2Transcription is the process by which a complementary RNA sequence is created using a DNA tem-
plate [44, 7].

3Eukaryotes are cells which contain a nucleus to hold their genetic material, as apposed to prokaryotes
where the genetic material is suspended in the cytoplasm [7]

4RNA molecules are typically less than a few thousand nucleotides in length [7].
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All RNA
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Figure 1.1: RNA Hierarchy. Repoduction of figure in [7].

tRNA, the first type of RNA gene discovered [39], are small molecules, around 80 –

120 nucleotides in length, characterized by their cloverleaf shape. The unique shape of

the tRNA molecule provides an active site to bind specific amino acids and an anticodon

region, allowing it to interface with a RNA sequence at specific locations so that it can

perform its role of transporting the next amino acids to a growing polypeptide chain in

the process of translation. rRNA also plays a role in translation, where it acts as the

catalytic component of ribosomes. Ribosomes are responsible for binding to mRNA and

carrying out protein synthesis. There are several different types of rRNA, including 5S

rRNA, 5.8S rRNA, 16S rRNA, 18S rRNA, 23S rRNA, and 28S rRNA. Likewise, snRNA

are small RNA molecules involved in RNA splicing, transcription factors, RNA polymerases

II, and telomere regulation processes. Within the class of snRNA exists snoRNA, which

play a role in RNA biogenesis and facilitate chemical modification of rRNA, tRNA, and

other snRNAs. All snRNAs are located in the nucleus of eukaryotic cells. RNase P is a

ribozyme responsible for cleaving RNA in the cell, and TmRNA with a three fold purpose

rescues stalled ribosomes, tags incomplete polypeptides, and promotes aberrant mRNA for

degradation. Finally, SRP RNA is a protein-RNA complex that detects and moves specific

proteins across the endoplasmic reticulum (ER).

It is important to note that there are other functional RNAs that may not exploit their

structure to accomplish their cellular role, but instead solely make use of their primary
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sequence [44]. Examples of functional RNAs include microRNA (miRNA), which play a

role in gene expression regulation and small interfering RNA (siRNA), which play a role in

the RNA interference pathway.

Although SRNAG finders have been described which are able to locate only a single type

of RNA gene, many are general SRNAG finders and are able to locate a number of different

RNA gene types. There are advantages and disadvantages with both types of RNA gene

finders. A general finder only has to be run once to annotate many different RNA gene

types, while many different specific SRNAG finders would have to be run to fully annotate

the SRNAGs in a genome, likely a time consuming task. However, specific SRNAG finders,

often of a simpler design, will run faster than a general SRNAG finder. Likewise due to their

focused approach, a specific SRNAG finder may be able to locate the specific RNA genes

with higher accuracy, while due to its more flexible construction a general SRNAG finder

may be able to locate previously undiscovered gene classes, as it will tend to consider trends

among most SRNAGs instead of considering only specific features of a certain type of RNA

molecule. This thesis focuses on a general approach to SRNAG finding, where seven classes

of structural RNAs are considered: tRNA, 5S rRNA, 16S rRNA, 23S rRNA, RNase P, SRP

RNA, and TmRNA. These structural RNAs cover the variety of structural RNAs while still

having large collections of known examples to use for training and testing purposes.

1.5 Sequence, Structure, Function, and Thermodynamic

Models

A fundamental theme in modern biology is the idea that the function of a molecule is derived

from its structure which in turn is derived from the molecular sequence [7, 44]. SRNAGs

are no exception to this theme, where the structure of the RNA molecule is directly dictated

by the sequence of its gene’s nucleotide bases [7, 44]. This sequence-structure relationship

which determines how the RNA molecule folds is driven largely by thermodynamics. Hence

the RNA structure prediction problem is often approximated as a thermodynamics problem

in which the RNA sequence represents a thermodynamic system under certain tempera-

ture and pressure constraints [77]. Within this thermodynamic system, the base pairing

configuration which results in a RNA structure with the highest energy loss5 is deemed a

5In the terms of Gibbs free energy, this is the lowest overall energy stored by the RNA molecule system.
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highly stable structure and in turn a highly probable configuration for the RNA molecule to

naturally reside. Dynamic programming algorithms, like those found in the popular RNA

secondary structure prediction software MFOLD [77] and RNAfold in the Vienna RNA

Package, can numerically find this minimum free energy configuration in a running time of

O(n3), where n is the length of the sequence folded and the energy model is assumed to be

a constant time calculation. It should be made clear that these thermodynamic RNA sec-

ondary structure prediction models are only approximate and the real secondary structure

of the RNA sequence may vary, often substantially, from the predicted structure [44]. This

relationship between the sequence, structure, and function is what the SRNAG finder will

exploit in this thesis. Since the structure of structural RNA molecules provides a function

that is related to their structure, the structure-function relationship can be exploited by

searching for specific structure properties as the structures of SRNAGs will tend to be pre-

served across evolution. As already mentioned, while the structure of SRNAGs is preserved

across evolution, the sequence is not; however, the sequence-structure relationship can be

utilized by modeling regions of the genome as thermodynamic systems and folding them

to obtain their secondary structure. In this way, the genome nucleotide sequences can be

evaluated by determining their structure through folding and then measuring properties of

the structure for the classification engine to utilize.

1.6 RNA Structural Elements

As mentioned in the previous section the SRNAG finder presented in this thesis will collect

data from the secondary structures of folded RNA sequences. This section defines RNA

secondary structure and builds a vocabulary of components which comprise the secondary

structures.

The primary structure of RNA is given simply by its sequence, while the secondary

structure of RNA deals with planar base pairing interactions between antiparallel segments

of the sequence [70]. Tertiary RNA structure deals with interactions between either two

helices, two unpaired regions, or one unpaired region and a double stranded helix [70].

These tertiary interactions often break the planar nature of secondary structure forcing a

three-dimensional representation of the molecule. Interactions between multiple folded RNA

molecules or protein molecules and RNA molecules is known as quaternary structure. This

thesis focuses on RNA structures no higher than secondary structure as secondary structure
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prediction has efficient, polynomial running time algorithms, while finding stable tertiary

structures is known to be NP-hard [76], making it impractical for RNA gene finding.

For the purposes of this thesis several definitions of RNA structural elements are needed.

Pictorial representations of the structural elements can be found in Fig. 1.3 and Fig. 1.4,

and a summary of the descriptions can be found in Table 1.1. The most basic of all structural

elements is the unpaired element, which is simply any region of unpaired bases. Comple-

mentary to the unpaired element is the stack which is defined as any uninterrupted sequence

of double stranded RNA.

Stem

Hairpin
Loop

Figure 1.2: Basic Stemloop.

If a stacking region closes an unpaired region, this forms a basic stemloop (see Figure 1.2).

The loop component of the stemloop is called the hairpin loop, while the stack component

is known as the stem. It is not required for the stem to be completely paired, as it may

contain some unpaired elements. A stem, with unpaired nucleotides on both sides of the

double stranded region are internal loops; however, if unpaired nucleotides only interrupt

on one side of the stem, the structural element is a bulge. For the purposes of this thesis

when referring to a collection of both bulges and internal loops, the term loop will be used.

A multiloop is a structural element from which three or more stems protrude with the

possibility of unpaired elements between the stems spacing them apart. These unpaired

regions between the protruding stems are known as joints. In each RNA structure, there is

always one special multiloop-like component called the external loop. This structure contains

both ends of the nucleotide sequence and contains one or more stems branching off from it.

If the RNA strand ends are unpaired, these unpaired regions are defined as tails. In this

thesis when referring to a collection of unpaired regions in a multiloop or external loop, that

is, tails and joints, the term joint-tail is used and when referring to both multiloops and

external loops, the term junction is used, because these structures typically are a junction

for multiple branches protruding from them.
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Hairpin Loop

Hairpin Loop

Hairpin Loop
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Loop
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Figure 1.3: RNA Structural Elements A. This figure depicts a RNA secondary structure
with labeled structural elements.



CHAPTER 1. INTRODUCTION 12

Stemloop

Stem

Bridge

Unpaired

Joint

Tail Joint-Tail

Figure 1.4: RNA Structural Elements B. This figure depicts a RNA secondary structure
with labeled structural elements.
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Structure Description

Stack Any uninterrupted sequence of double stranded RNA.

Unpaired Any unpaired region.

Bulge Any unpaired region interrupting a stack on only one side
of the double stranded region.

Internal Loop Any unpaired region interrupting a stack on both sides of
the double stranded region.

Loop Either an internal loop or a bulge.

Stem Any double stranded region composed of at least one stack
and any number of internal loops and bulges.

Stemloop Any sequence region which has folded back on itself to pro-
duce a stem and a hairpin loop.

Hairpin Loop Any loop created directly due to a sequence folding back on
itself.

Bridge Any stem which joins two junction elements.

Tail Any unpaired region at the ends of the nucleotide sequence.

External loop The only structural element containing the ends of the nu-
cleotide sequence, with one or more stems protruding from
it.

Multiloop Any region other than an external loop in which three or
more stems protrude.

Junction Either an external loop or a multiloop.

Joint Any unpaired region in a junction between protruding stems.

Joint-Tail Either a tail or a joint.

Structure Entire structure, composed of all sub-components.

Table 1.1: Structural Element Descriptions. Each of the structural elements investigated in
this thesis are listed along with their description.

Larger RNA gene structures often have several junctions connected by a stem-like com-

ponent. This structural element which connects junction elements is identified as a bridge.

Finally the whole structure, made up of all the different structural components is likewise

classed a structural element and is known as the structure. The relationship between the

structural elements is shown in Figure 1.5.

1.7 Chapter Review

This chapter introduces the problem of SRNAG finding and provides the motivation behind

solving it. Additionally, the goals and direction of the thesis are presented. The basic
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Structure
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Figure 1.5: Structural Element Hierarchy. Solid lines indicate a has-a relationship and
dashed lines show a is-a relationship between the structural elements.
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biochemistry of RNA and DNA and the roles of these molecules in the cell is discussed and

RNA secondary structure elements are defined. The next chapter deals with the historical

approaches to the SRNAG finding problem and discusses the novel method presented in this

thesis.



Chapter 2

Background

As evident by the many classes of RNA gene prediction discussed in the previous chapter, a

large set of diverse researchers have tackled the problem of RNA gene finding. This chapter

outlines the history of ab-initio RNA gene finding from its conception to the current state

of the art methods. All the RNA gene finding methods presented rely on some unique

property, such as free energy, base composition, motifs, or structural patterns, of SRNAG

regions which can be used as a signal to distinguish SRNAG regions from NC and coding

regions of the genome. These historical gene finding methods are then contrasted with the

method introduced in this thesis.

2.1 History of ab-initio RNA gene finders

Staden pioneered RNA gene finding by developing the first RNA gene finder in 1980 [58]. He

was motivated by the realization that as the large number of sequencing projects underway

came to completion the need to search these sequences for tRNA gene regions quickly and

accurately would grow to a point where biologists could no longer effectively approach the

problem by visually scanning the DNA sequence [58]. Staden utilized the knowledge that

tRNA secondary structures conform to the shape of a cloverleaf pattern and the fact that

their sequences typically contain certain bases at specific locations in their structure. This

conservation of structure was exploited by developing a computer program which would

search a DNA sequence for these common features and display the prospective tRNA genes

to the users in both one and two dimensional forms [58, 21]. The authors reported that

the method was successfully applied to locate tRNAs in mitochondria DNA, noting that

16
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mitochondria tRNAs differ in several aspects to previously studied tRNAs although still

retaining the key structural elements needed by the program [58, 21, 4].

While Staden exploited a conserved structure pattern to search for tRNAs, Maizel’s

group, in 1988, attempted to show that a generic RNA gene finder could be built based on

using secondary structure free energy as a statistically significant metric for distinguishing

SRNAG regions from NC regions [12, 31, 29]. The group demonstrated this claim by using

a Monte Carlo method to show that observed minimum free energy of a gene region is

lower than expected by chance and showed the statistical significance of the Monte Carlo

simulation with a z-score calculation (see Appendix A.1.1), where the difference between

the observed minimum free energy of a region and the average minimum free energy of a

population of the shuffled sequences, with the same length and nucleotide composition, but

different nucleotide order, is divided by the standard deviation of that shuffled sequence

population’s minimum free energy [31]. In order to calculate the free energy along the

Genome

Windows

5’ 3’

Figure 2.1: Sliding Window Scheme. This figure is based on Figure 2.1 in [44].

genome, Maizel’s group use a fixed length window which was slid along the genome sequence

to select successive genome regions for folding (see Figure 2.1), using a modified vectorized

version of MFOLD1 [31]. Once the authors had calculated the z-score from these sequence

segments and the observed free energy, the z-scores were plotted allowing researchers to

visually detect SRNAG regions where the z-score dipped significantly. Using this vectorized

version of the folding algorithm the authors were able to reduce the complexity of the

algorithm to O(n3), where n is the number of nucleotides in the genome. It is important

to understand that n could be potentially very large and even with the vectorized version

of the folding algorithm running on a Cray X-MP 24 supercomputer, the proposed method

could not handle a window size of greater than 200 nucleotide bases or a genomic sequence

greater than 1000 bases in a practical time [12, 44].

In a subsequent paper Maizel’s group describes how they tackle the running time issue

1The dynamic programming algorithm proposed by Zucker.
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by reducing the processing requirements of the Monte Carlo simulation by using a regres-

sion model to predict the mean and standard deviation of the minimum free energy of a

population of random sequences with a given mononucleotide content. In short, they first

used a regression model to determine the relationship between length and mononucleotide

content value by computing the free energy mean and standard deviation for different length

sequences for three groups of random sequences each consisting of the same mononucleotide

content2 [12]. Then they used this energy-length relationship to create a regression model

to predict how the free energy will change as GC content increases given a length by using

a least-squares fit on the free energy mean and standard deviation computed from increas-

ing GC content populations. The resulting relationship allows for a length and nucleotide

content to be used to predict the average and standard deviation of the free energy of a

sample population with those characteristics [12]. With this equation in hand, the previous

SRNAG finding method described by these researchers can calculate an estimation for the

mean and standard deviation of a window’s free energy, instead of having to compute it [12].

This new method was reported to be able to recognize SRNAG regions as effectively as the

first method but it took only 70 seconds to calculate what the previous method did in 150

hours [12, 44]. Although the new method improved the computational efficiency greatly, it

still did not address the O(n3) running time due to the folding process [12, 44].

These two studies claimed to show that the observed free energy values for a region

were at least three standard deviation units less than the average free energy values for

the shuffled sequences and the predicted RNA genes were “consistent with the empirical

result from analysis using ribonuclease and cobra venom nuclease digestions” and hence free

energy is a useful metric in SRNAG finding [31, 12]. However, the methods presented in these

papers were met with some criticism because even with the reduced complexity of the second

algorithm the computational steps required makes Mazial’s group’s method impractical to

use with longer segment lengths and because the longest subsequences tend to be the best

thermodynamically it is difficult to identify “meaningful high-scoring subsequence unless

one repeats the search with multiple different fixed-length window sizes” [50].

Rivas and Eddy disputed the usefulness of free energy as a SRNAG finding metric

basing their dispute on three test methods for RNA gene prediction [50]. The first method

was a reimplementation of the method proposed by Maizel’s group using a thermodynamic

2Group 1: A: 42%, C: 6%, G: 20%, U: 32% Group 2: A: 18%, C: 18%, G: 50%, U: 14% Group 3: A: 6%,
C: 42%, G: 30%, U: 22%
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model to produce a signal, the second method used a stochastic (probabilistic) context free

grammar (SCFG) to produce a signal, and the third method simply used base composition

as a signal.

The implementation of the SCFG closely mimicked the rules used in the MFOLD ther-

modynamic model except the thermodynamic scores were replaced with probabilities [50].

The SCFG used a log-odds scoring system which causes the score of a subsequence to get

worse as the subsequence becomes longer, in effect acting as a “local alignment” and al-

lowing high scoring subsequences to be identified under a maximum target length, w [50].

This property of the SCFG method contrasts the thermodynamic energy method where, as

previously discussed, the longest subsequence tended to be the best scoring one and hence in

order to have a fair comparison between several different length subsequences the algorithm

must be run several times with different window sizes [50]. Since the SCFG is a trained

model, it permits the inclusion of statistical biases which are not represented in the current

RNA thermodynamic models [50]. The time complexity of this SCFG algorithm is O(Lw2)

to process a genome of length L with a maximum sized subsequence w being evaluated [50].

The authors tested the SCFG method on several genomes of different average GC content

and found that there was “a strong correlation between the strength of a tRNA hit and the

difference in GC base composition between the tRNA and the background base composition

of the given organism” [50]. This evidence that the difference in GC content is the real

signal that their SCFG was using led the authors to develop another SCFG that did not use

structural information but only base composition to generate a RNA gene signal. This new

SCFG produced results “remarkably similar” to the results obtained using the structural

information as well [50]. In order to support their observation that the signal produced by

structural information is greatly overshadowed by the signal produced by base composition,

two experiments were devised.

First they tested whether the two structural algorithms (thermodynamic and structural

SCFG) could distinguish a real RNA gene from a shuffled one. The results of this experi-

ment showed that the base composition model retained its scoring shape after the shuffle,

providing evidence that the base composition remained intact over the shuffling; however,

the structural algorithms also retained their hits showing that the scoring of these structural

models is mainly due to base composition [50]. It should also be noted that as the shuffled

region was extended past the gene region “the shuffled sequence scores tend to smear out”
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as the base composition is changed [50]. The next test was to determine whether the sec-

ondary structure “contributes a significant component to the score” [50]. In this experiment

they embedded a real RNA gene into a random sequence of the same base composition and

attempted to locate the gene using the different gene finders [50]. The results showed that in

most examples the embedded RNA genes were not found which indicates that the secondary

structure signal is not strong enough to distinguish a real RNA from background signals of

the same base composition [50]. It should be noted that after coming to the conclusion that

MFE was not a statistically significant signal for RNA gene finding, Rivas’ group shifted

their focus away from ab-initio RNA gene finding and concentrated their efforts on homology

RNA gene finding [52].

Workman and Krogh pointed out that since Zuker’s algorithm for folding RNA and

calculating minimum free energies relies on the stabilizing terms of stacked bases, only

random RNA with the same dinucleotide frequency can be used to draw any valid conclusions

when comparing MFEs [71]. Clote et al. used this fact to refute Rivas’ group’s claim that

secondary structure is not a significant signal for RNA gene finding citing, that Rivas’ group

had performed mononucleotide shuffling in their experiments, making them invalid [14].

Clote demonstrated the significance of secondary structure in RNA finding with a new

method which made use of RNAfold in the Vienna RNA Package to find the minimum free

energy of a sequence and used a dinucleotide shuffler for generating the random population of

sequences needed in calculating the average and standard deviation free energy values [14].

In addition, Clote modified the z-score formula in a novel way, creating what he called

an “asymptotic z-score”, having the property of providing “an asymptotic limit for the

mean and standard deviation of minimum free energy per nucleotide for random RNA”. In

another improvement, Clote created a free energy asymptotic mean and standard deviation

lookup table for a “complete set of dinucleotide frequencies”3, which provided a significant

speed-up when processing large genomes [14]. Even with the use of this lookup table the

running time of their algorithm is O(NL2), where N is the size of the window and L is

the length of the genome [14]. The paper reports that these asymptotic z-scores produced

a “higher signal to noise ratio” than classical z-scores, but notes that the researchers are

unclear of what causes this difference [14]. They tested the algorithm on several RNAs4,

3Up to two decimal places [14].
4tRNAs, type III hammerhead ribozymes, SECIS sequences, srpRNAs, snRNAs, U1 small nucleotide

particle, U2 small nucleotide particle, mRNA
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showing that SRNAGs have “significantly lower folding energy than random RNA of the

same dinucleotide frequency” [14].

Carter et al. took a more inclusive approach to RNA gene finding using base composition,

transition frequency, and sequence motifs, in addition to MFE as signals for their RNA gene

finder, RNAGENiE [9]. Basing their hypothesis on the idea that the evolutionary forces

that create diversity in NC genome regions will also create a characteristically different

distribution set for features of SRNAG regions, the researchers proposed searching for fRNAs

based on a variety of possible characteristic signals [9]. From a high level standpoint the

authors constructed their fRNA gene finder by using machine learning techniques to extract

signal data from known fRNA gene regions and NC regions and applied the “learned rules”

to predict the location of novel fRNAs in unannotated regions of the genome [9].

The training dataset was constructed by selecting genome regions of known fRNAs and

NC regions, as the authors felt that using randomized RNA sequences for the negative

training set would not represent the distribution of features in real genomes with enough

accuracy [9]. Any duplicate rRNA and tRNA sequences were removed from the training

set to control bias5 and each sequence left in the training set was partitioned into windows

of 80 nucleotides in length6 overlapping by 40 nucleotides7 [9]. After some initial tests this

training set was altered because the database of NC regions was around 80 times larger than

that of the RNA genes. This is a problem when training a neural network (NN), where the

size of the positive and negative training sets should be similar, so the large NC training

set was partitioned into several smaller sets having a size similar to that of the RNA gene

training set [9]. This partitioning resulted in five datasets, which allowed five different NNs

and SVMs to be trained independently, enabling cross checking between the various models

for agreement of a decision, helping reduce the number of false positives [9].

The researchers trained both a NN and a SVM model on the feature set collected from

the training data [9]. The back-propagation, feed forward type NNs had a single input for

each feature in the dataset, a single hidden layer, and two output nodes (see Figure 2.2).

One output node to indicate whether the given window’s features are from a RNA gene

region and the other to indicate if the features are predicted to be from a NC region [9].

5This left a training set consisting of 8400 fRNA nucleotides and 675322 NC nucleotides [9].
6This size was picked as it roughly corresponds to the size of tRNAs [9].
7Resulting in 7705 ncRNA windows and 188 unique fRNA windows consisting of 38.3% 23S rRNAs, 26.6%

miscellaneous small RNAs, 20.2% 16S rRNAs, 13.3% tRNAs, and 1.6% 5S rRNAs [9].
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Figure 2.2: RNAGENiE’s Neural Network. This figure is based on Figure 1 in [9].
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Input for the SVM was simply the feature set data [9]. These input features included

mononucleotide base composition8, dinucleotide base composition9, free energy of the folded

window sequence, and the motifs: UNCG, GNRA, CUYG, AAR, CUAG10 [9]. Although the

computational complexity of the method is not reported in the paper, the major component

of this complexity is most likely due to the free energy calculations for each window.

Using a jackknife testing procedure11 the composition inputs on the neural network

produced a prediction accuracy of greater than 85% and the motif inputs alone produced

an accuracy of over 81% [9]. When all 20 inputs were tested by the jackknife procedure,

the model resulted in a prediction accuracy over 92% [9]. These tests showed that not only

the method was working, but also that both the motif inputs and the composition inputs

were contributing to the prediction score [9]. Even with both groups of inputs contributing,

the researchers found a correlation between the successfulness of their gene finder and the

average GC content of the genome; however, as seen in a number of outliers, this correlation

did not always hold true [9]. For the various bacteria genomes tested, the reported accuracy

ranged between greater than 88% to just under 100% [9]. This accuracy is exceptional,

especially considering the researchers tested some genomes with a ratio between structural

genes GC content and genome background GC content of around 1:1, showing once again

that RNAGENiE was not simply using base composition for RNA gene finding. The tests

with the SVM models produced results which were similar but “somewhat less accurate”

than the neural network results [9]. In addition to the success reported in the paper it has

been shown that some of the hits that were taken to be false positives have been identified

as RNA genes in unrelated laboratory experiments [44].

In Kirt Noël’s thesis Examining Stem-Loops as a Sequence Signal for Identifying Struc-

tural RNA Genes, a RNA gene finding algorithm, named Wave, is developed which in-

tended to rely on the statistical significance of various quantifiable properties of stemloops

located in the genomic code to distinguish SRNAGs from the NC and protein coding re-

gions [45, 44, 46]. The system used an ad hoc algorithm for scanning a genome and detecting

sequence regions that could potentially form SRNAGs stemloops [44]. Since Noël noted that

8%A, %T, %G, and %C
9%AA, %AT, %AG, %AC, %TA, etc.

10N, any (A, T, G, or C); R, purine (G or A); Y, pyrimidine (C or U)
11Removing one training example, retraining the model, and testing the new model on the previously re-

moved example, then repeating this process for each example in the training set, and averaging the prediction
results [9].
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stemloops are the most important structural element in SRNAGs, analogous to the protein

secondary structure α-helices and β-sheets, he hypothesized that stemloops formed by the

genomic sequence will tend to be longer and more frequent in the SRNAG coding regions [44].

Based on this hypothesis, Noël developed a SRNAG finding method using the size, shape,

and relative location of the detected stemloops to compose a signal for SRNAGs [44].

Although the stemloop finding algorithm described in [44] has the potential to find all

possible theoretical stemloops in a genome sequence, allowing for bulges and internal loops,

Noël used it to report only the largest possible non-overlapping stemloops in the genome

which did not violate any of the constraint parameters12 [44]. When this algorithm was

tested on the E. coli ssu rRNA gene, the algorithm only found 19 out of the 32 stemloops

in the secondary structure computed using dynamic programming and of these 19 only 9

stemloops were in the correct location [44]. This poor accuracy is most likely caused by

the stemloop finder both allowing for internal loops and bulges and finding only the largest

stemloops. Unlike the previous methods discussed, this method did not make use of free

energy as a metric and hence even with the stemloop finding step, the algorithm only has

a computational complexity of O(n2) in the worst case scenario [44]. Noël reported that

in practice the Wave algorithm had a running time of O(n) determined through stopwatch

runtime evaluation [44].

Center Spacing

Foot-to-Foot Spacing

Figure 2.3: Center Spacing and Foot-to-Foot Spacing. This figure is based on Figure 4.2
and Figure 4.3 in [44].

Once found, the stemloop was processed to extract the metrics. These metrics included

12Hairpin loop size, minimum hairpin loop closure, maximum bulge size, maximum internal loop size,
minimum bulge or internal loop closure, minimum GC base pair content, maximum GU base pair content,
overall minimum number of base pairs [44]
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span13, center point spacing (CS)14, foot to foot spacing (FS)15, and number of base pairs

(bps)16 [44]. In addition to these atomic metrics Noël combined, through scaling, the CS

and bps metrics and FS, and bps metrics to create two composite metrics [44].

These six metrics were then tested for their ability to distinguish tRNA and rRNA from

coding and NC regions of genomes of differing background GC content. Noël found that the

FS, span, and bps metric values at some GC content levels were not useful in distinguishing

the SRNAG parts of the genome from the NC and coding parts. However, the CS metric

showed some success by remaining distinguishable across the GC content spectrum, yet

when the GC content between the genome and RNA genes is roughly equal, even this signal

becomes very weak [44]. Likewise, the combined metrics showed little effect in amplifying

the signals of their components [44]. Overall, the stemloop metrics showed success predicting

RNA genes in genomes of high average AT content, but when applied to genomes of high

GC content many false positives were reported [44]. These results indicate that the success

of the gene finder relied heavily, although indirectly, on base composition for its RNA gene

finding signal.

2.2 A Novel Method

Although many of these methods for ab-initio SRNAG finding produced good results in

genomes of high AT content, most of them resulted in a high number of false positives in

genomes of high GC content. A high number of false positives makes such methods imprac-

tical as research tools because with such uncertainty regarding any prediction, researchers

can not trust the tool for their analysis and it is inefficient and costly for biologists to exper-

imentally validate a large number of prediction claims when many of them are not actually

RNA genes. Likewise all the ab initio SRNAG finders described in the previous section,

except for Noël’s method using stemloops and Rivas and Eddy’s method using only base

composition, have running times of at least O(Lw2) where L is the length of the genome

and w is the window size.

This thesis sets the ground work in order to address both of these issues. The method

13The number of nucleotides which comprise the stemloop.
14The average distance from top of the loop on one stemloop to its neighbours (see Figure 2.3).
15The average distance from the bottom of the base of a stemloop to each of its neighbours (see Figure 2.3).
16The number of bond pairs found in the stemloop structure.
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presented in this thesis explores many new metrics hopefully some of which can act as new

signals for SRNAG regions and since this method focuses on the extraction of these metrics

from specific structural elements the running time of the ab initio RNA gene finding is

hoped to be addressed by removing the need to fold candidate sequences. So while this

novel method is aimed at predicting SRNAG regions with high specificity, it is also an

exploratory tool geared to lay the foundations for future SRNAG finders.

Although substantially different, Noël’s thesis work inspired many aspects of this thesis.

Noël’s concept of using structural element analysis for signal metrics is expanded. Only

stemloops were analyzed in Noël’s thesis and this was done using Wave to locate the RNA

genes. As noted previously, although Wave had a low running time, the algorithm did not

have a high accuracy in locating stemloops in the annotated genomes tested, which may

have affected the ability for the stemloops to act as a RNA gene signal. In this thesis,

stemloops will be evaluated again for their ability to act as a signal for RNA gene discov-

ery; however unlike Noël’s work, a number of other structural elements (structure, hairpins,

bulges, multiloops, stems, stacks, external loops, internal loops, tails, joints, unpaired, junc-

tions, joint-tails, bridges, and loops) will be tested as well. To rectify the problem of Wave

not accurately being able to find stemloops and possibly influencing the results of Noël’s

experiments, a scheme of folding consecutive windows will be used to guarantee that the

metrics analyzed reflect the theoretical RNA gene secondary structure as closely as currently

possible. It should be clear that although a folding window scheme is used in this thesis,

the purpose is only to be able to easily and accurately locate the secondary structure ele-

ments for analysis. Once the secondary structure elements’ ability as a gene finding signal

has been verified, algorithms can be created, similar to Wave, which can attempt to locate

the structural element in the genome without the need for folding a window. Moving in

this direction, where individual elements are located instead of windows folded, is beneficial

for two main reasons. First, sliding window schemes are unable to adapt to RNA genes

of different sizes, while structural element analysis is not limited to selecting specific sized

windows, allowing for a high diversity of genes and their lengths to be discovered. Second,

as previously discussed, doing metric analysis from a folded sliding window has at best a

running time of O(L ∗w2), where w is the window size, and L is the length of the window,

while it is possible for individual structural elements to be detected with enough accuracy

in a running time lower than this, as demonstrated in the O(n2) running time of Wave. Al-

though beneficial, the development of Wave like algorithms for locating secondary structure
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elements in genomes is not pursued in this thesis due to time and efficiency17 constraints.

While Noël’s work inspired the use of structural elements for signal data, the classification

method used by Carter’s group in RNAGENiE inspired the use of machine learning for

metric analysis. Carter’s use of NNs and SVMs allowed for the effective use of multiple

metrics in the classification of RNA genes; likewise, this thesis uses SVMs to analyze multiple

metrics. While RNAGENiE used motif metrics, composition metrics, and free energy for

classification, the method presented in this thesis does not utilize any motif metrics, but

does make use of composition and free energy along with many other metrics not used by

RNAGENiE. The primary reason motif data was not used is simply that the focus of this

project is on the use of structural elements for RNA gene finding, but future versions of

the SRNAG finder could use them as an additional metric in conjunction to the metrics

chosen for this thesis. Carter found the NNs performed better than SVMs for RNA gene

finding, however, SVMs are used exclusively in this project for classification for three reasons.

First, SVMs always find a global optimal model due to the geometric, numerical methods

used, while NNs trained with back-propagation usually only converge to a local optimal

solution [8, 53]. Second, the classification feature set in this project is large and unlike

NNs where in order to control model complexity the feature set size needs to be small,

SVMs automatically select their model size through the selection of support vectors [53].

Third, the development of SVMs has been based on sound theory with experimentation

to verify their effectiveness, while NN development followed a more “heuristic” path from

experimentation and testing [63].

Likewise, since the work of Chen, Le, and Clote demonstrate the importance of MFE,

dinucleotide composition, and mononucleotide composition to RNA gene finding, such met-

rics are included in the feature set of analyzed properties of the purposed method.

In brief, this thesis presents a method which trains a classification system based on SVMs

for the detection of SRNAGs. A database composed positive SRNAG sequence examples

and negative dinucleotide shuffled RNA sequence examples is used to train a sophisticated

voting network of SVMs, which attempts to classify metrics derived from many different

RNA secondary structure elements. These secondary structure elements are collected by first

folding the RNA sequence and then parsing out the individual structures and substructures.

Then many properties of these structural elements are measured and recorded. This metric

17There is no need to develop algorithms to find some of the tested structural elements that do not play
a significant role SRNAG detection.
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data is passed to the support vector machines to train a classification engine. Once the

classifiers in the voting network are trained, this classification system is applied to classify

the metric data collected though a similar process as the training process. A much more

detailed explanation of the methodology used is provided in Chapter 3 and Chapter 4.

2.3 Chapter Review

This chapter described several important ab-initio RNA gene finding methods, detailing

the drawbacks and benefits of each method. Through [31, 12, 50, 14], it has been seen

that in order to be a useful and statistically sound RNA detection signal, the free energy

z-scores must be calculated against populations generated with dinucleotide shuffling. Par-

ticularly [50, 9, 44] noted the importance of base composition in RNA gene regions and the

need to test RNA gene finding methods either against a simple base composition signal or

in genomes where the difference between the background GC content and the GC content

of the RNA genes is low. Out of all the RNA gene finding methods discussed RNAGENiE

appeared to be the most successful method, predicting many classes of RNA genes with

high accuracy and a relatively low false positive rate. Finally, a brief description of the

RNA gene discovery method introduced in this thesis was given, contrasting it to methods

described in this chapter.



Chapter 3

Building a SRNAG Classifier

At the heart of the RNA gene discovery method proposed in this thesis is the extraction

of the RNA structural features to be used as a signal to distinguish RNA gene regions.

There are three main steps involved in this extraction process: folding the RNA sequence

into its secondary structure, parsing out the individual structural elements, and extracting

the structural features by measuring specific properties of the RNA structural element. To

utilize the structural element metrics in SRNAG finding, a model is built, which will attempt

to label the metrics as coming from a SRNAG or not. These models will be both built and

tested using the extracted metrics, the process of which is explained in detail in Chapter 4.

This chapter deals with the three steps of the metric extraction process and explains the

steps needed to use SVMs to classify RNA gene sequences.

3.1 Folding

In order to extract the structural features from RNA, the RNA sequences need to be folded

into their MFE secondary structures. As stated before, secondary structures are used in

this project because efficient algorithms exist for determining these structures using dy-

namic programming, allowing for the many sequence windows of a genome to be folded in

a reasonable amount of time. The RNAfold software from the Vienna RNA Package1 is

utilized to conduct this folding process.

Treating the folding process as a black box, the system works as shown in Figure 3.1.

1http://www.tbi.univie.ac.at/RNA/

29
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First the RNA sequences are piped into the RNAfold software in Multiple Fasta format, with

each sequence header having a unique ID for tracking it through the rest of the gene finding

system. RNAfold uses its dynamic programming algorithm to fold the RNA sequence into

its secondary structure, which is then written to a file in Multiple Fasta Dot-Bracket for-

mat. This file format contains all the sequence header information and the same nucleotide

sequence that the input Fasta file had, and also includes the structure of the sequence ex-

pressed in dot bracket form. Dot bracket notation was introduced by Hofacker et al. and

uses matching parenthesis to indicate bonds and dots to denote free bases [26].

Known native SRNAG structures could be used for the classifier training process instead

of folded RNA sequences. Native structures are easily accessible and could be handled in

much the same way as the folded structures. Likewise, they would allow for more realistic

secondary structure metric data to be collected. However, native structures can only be

used in the collection of training data and folding would still need to be used for the testing

data collection process. This difference in the method for data collection could lead to

different data distributions between the training and testing sets, causing a SVM trained

on the training set to perform poorly on the tested set. So for consistency in the data

collection process folding is used to generate the secondary structures in both the training

and testing phases ensuring the distributions learned by the SVM will be exploitable by the

test dataset.

3.2 Parsing

As discussed in the previous section, the folding process produces a structure in dot bracket

notation aligned with the nucleotide sequence. In order to locate the structural elements in

the structure, a recursive function is used with an execution path that mimics a RNA sec-

ondary structure tree graph (see Figure 3.2). Its most basic inception, seen in Algorithm 1,

moves from the beginning of the structure sequence to the end, recursing each time an open

parenthesis is found and backtracks from a current recursion when a closing parenthesis is

found. In line 5 when a recursive call ends, it updates the current symbol pointer, i, to the

next symbol location, allowing the algorithm to handle external loop and multiloops. Un-

paired or ‘.’ symbols are processed but ignored and the algorithm exits when the sequence’s
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AGGGCGCGGGCCAGCCGAAGGCGCGGACCGCAGGCCCACCCCCCGCCGGUAC

CGUCGGGGGGACGCGCCGCGGAGGCAAUGACGAGCCCCUAGAGCUUUGCUC

RNAFold

..((((((((((.(((...)))(((...))).))))).(((((((.((....)).)))))))..)))))..((.(((........)))))..((((...))))

Figure 3.1: Folding Process. This figure shows a nucleotide sequence being fed into RNAfold
which will fold the sequence producing a dot bracket representation of the nucleotide se-
quence’s structure. The secondary structure is shown at the end of the process.
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Figure 3.2: Secondary Structure Representation Relationship. Shows the relationship among
the dot bracket notion, the molecular structure, and the tree graph representation of the
RNA secondary structure. The dashed lines are for reference only, showing the mapping
between certain points of one representation to another. It should be noted that the nu-
cleotide and structure sequence are printed in opposite direction from convention, to ease
the mapping of the different representations. The tree graph representation is similar to the
tree in Figure 1 in [56].



CHAPTER 3. BUILDING A SRNAG CLASSIFIER 33

null terminal is found.2

Algorithm 1 ParseTree(i)

Require: structure to be a null terminated string with matching parenthesis.
1: while structure[i] 6= null do
2: if structure[i] = ‘.’ then
3: i = i+ 1
4: else if structure[i] = ‘(’ then
5: i = ParseTree(i+ 1)
6: else if structure[i] = ‘)’ then
7: return i+ 1
8: return i

Once a tree graph representation of the secondary structure is created, certain signatures,

based on the order and number of paired and unpaired child nodes, allow each node to be

labeled as a specific structural element. Figure 3.3 shows several of these signatures. A

hairpin loop is always found at the end of a branch and is characterized by a node with

only unpaired child nodes. Stacks on the other hand always have exactly one child, which

is paired. The signature for internal loops and bulges is similar to the one for stacks, except

that in addition to a lone paired child, internal loops have unpaired child nodes on both

sides of the paired node, while bulges have unpaired child nodes on either side of the paired

node, but not both sides. Multiloops are characterized by having more than one paired child

node; between or to the left or right of these child nodes could exist any number of unpaired

child nodes. Although an external loop typically has similar characteristics to those of a

multiloop, its only requirement is that it contain the two ends of the RNA sequence and

at least one paired node. If the external loop does not contain any paired child then the

sequence given to the parser is completely unpaired. The external loop will aways be the

root node of the tree. Algorithm 2 takes a list of child nodes and labels the parent node

according to the child node signatures described. The function in Algorithm 3 also labels a

node, but this function is only called on the root node, and hence outputs either an unpaired

or external-loop label.

Algorithm 4 is Algorithm 1 with the labeling functions incorporated. Compared to

Algorithm 1, the labeling algorithm collects information about the sibling nodes, particularly

the location of unpaired and paired nodes and passes them to Algorithm 2, which labels the

2Assuming that every open parenthesis is matched with a closing one.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Basic Parse Signatures. The graph structure signatures shown are (a) Hairpin,
(b) Internal Loop, (c) and (d) Bulge, (e) Stack, and (f) Multiloop. Gray nodes with a dotted
outline indicate continuing tree nodes and white nodes with dotted lines indicate unpaired
nodes which may or may not exist. The ellipses indicate that there could be more child
nodes.

Algorithm 2 BasicLabel(siblings)

Require: siblings to be a list populated with unpaired and paired symbols.
1: if siblings.count(paired) = 0 then
2: return hairpin
3: else if siblings.count(paired) = 1 then
4: if siblings.first = unpaired and siblings.last = unpaired then
5: return internal-loop
6: else if siblings.first = unpaired then
7: return bulge
8: else if siblings.last = unpaired then
9: return bulge

10: else
11: return stem
12: else
13: return multiloop
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Algorithm 3 BasicLabelRoot(siblings)

Require: siblings to be a list populated with unpaired and paired symbols.
1: if siblings.count(paired) = 0 then
2: return unpaired
3: else
4: return external-loop

Algorithm 4 ParseTreeBasicLabel(i)

Require: structure to be a null terminated string.
1: siblings← ∅
2: while structure[i] 6= null do
3: if structure[i] = ‘.’ then
4: siblings.append(unpaired)
5: i = i+ 1
6: else if structure[i] = ‘(’ then
7: siblings.append(paired)
8: i = ParseTreeBasicLabel(i+ 1)
9: else if structure[i] = ‘)’ then

10: BasicLabel(siblings)
11: return i+ 1
12: BasicLabelRoot(siblings)
13: return i
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node before moving back up the branch. Since for any input structure that has no unmatched

parentheses Algorithm 4 will only ever hit line 12 and 13 after the null terminating symbol

is found, Algorithm 3 will be run once for the root node. After running Algorithm 4 on

a structure sequence, each node in the tree will be labeled with a localized label, which

is a label pertaining only to the node and its children; however for the larger, multinode

structures, like stemloops, an extension will need to be made.

Using the higher level labeling function found in Algorithm 5 in addition to the two

basic labeling functions (Algorithms 2 and 3), multinode secondary structure elements can

be located and labeled. In order to label larger sections of the tree it is necessary to know

what precedes in the tree. For example, if the current node is known to be a stack, it is

possible that the stack could belong to either a bridge or a stemloop, however the only way

to determine this would be to check if the branch leads to a multiloop or hairpin. So in order

to perform this higher level labeling, as the recursive procedure backtracks up the parse tree,

it passes messages up the tree. For example, when a hairpin loop is reached at the bottom

of a branch, that node is labeled as being part of a stemloop, and the stemloop message is

passed to its parent, which again is labeled as a stemloop. This passing up the tree and

labeling continues until a multiloop is reached, at which point the message is changed to

bridge, and the parent node of the multiloop is labeled as such. This process continues until

the whole structure is annotated.

Algorithm 5 CompoundLabel(current, child)

1: if current = hairpin then
2: return stemloop
3: else if current ∈ {internal-loop, bulge, stem} then
4: if child = stemloop then
5: return stemloop
6: else
7: return bridge
8: else
9: return none

It should be noted that this section has not touched on locating every structural compo-

nent as many of the components are easily determined from the structural elements already

discussed. Joints, for example, are any group of unpaired child nodes in a multiloop, and

tails are any group of unpaired child nodes descending from the root node on the outermost
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Algorithm 6 ParseTreeCompoundLabel(i)

Require: structure to be a null terminated string.
1: siblings← ∅
2: childtype← none
3: while structure[i] 6= null do
4: if structure[i] = ‘.’ then
5: siblings.append(unpaired)
6: i = i+ 1
7: else if structure[i] = ‘(’ then
8: siblings.append(paired)
9: (i, childtype) = ParseTreeBasicLabel(i+ 1)

10: else if structure[i] = ‘)’ then
11: BasicLabel(siblings)
12: CompoundLabel(BasicLabel(siblings), childtype)
13: return i+ 1, CompoundLabel(BasicLabel(siblings), childtype)
14: BasicLabelRoot(siblings)
15: return (i, none)

sides of any paired child nodes.3 Likewise, stems are directly related to bridges, and can be

located in stemloops simply by breaking off the hairpin loop component. For joints, tails,

hairpin loops, bulges, and internal loops it is trivial to parse the component into its stack

and unpaired sub-components. It should be clear that there is no need to locate any ag-

gregate structural elements, as the component metric data can be aggregated directly from

each structural element in the aggregate. The data aggregation process will be discussed in

more detail in Section 3.4. Finally it should be mentioned that the final parsing algorithm

(Algorithm 6) looks at each dot bracket symbol once as it works its way through the struc-

ture sequence, so it is plainly evident that the parsing algorithm runs in O(n) time, where

n is the length of the structure sequence. Likewise the space complexity is also linear, as

even if one was to build the tree in memory, each node would correspond to no more than

half the symbols in the structure sequence since each opening parenthesis needs to be paired

with a closing parenthesis to form a node.

3The unpaired nodes of the external loop between the paired children, are joints.
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3.3 Feature Extraction

Once the structural elements have been labeled, each element is measured in a variety

of ways to create a feature set, which is written to the disk in plain text table format.

Algorithmically most of the features are simple to extract from the excised nucleotide and

structural sequence that makes up the structural element. Only certain metrics are extracted

from each structural element, as in many cases the measurement does not logically apply to

an element of that type. Table 3.1 lists all the metrics and shows which structural elements

they apply to. It is important to note that some of the features listed in Table 3.1 are

actually a group of several related features. It should be made clear that there is no strong

rationale behind including many of the features that are going to be explored, as it can often

be hard to figure out which features are going to produce a strong RNA gene signal without

trying them first. So a kitchen sink approach is taken, where as many different metrics are

tested as possible within practical limits. The rest of this section goes through each feature

listed, describing it in full and detailing the extraction method where applicable.

3.3.1 Size

The feature size can be extracted from any of the structural elements and is simply a

measure of the number of nucleotides that make up the structure.

3.3.2 Linguistic Complexity

Linguistic complexity (LC) is defined as “the ratio of the number of [substrings] present in

the string of interest to the maximum number of [substrings] for a string of the same length

over the same alphabet” [60]. More simply, LC is a measure of the frequency of repeated

segments in a string; the more repeats that are present in a sequence the lower the LC.

LC applies to two metrics: (1) Nucleotide Sequence Linguistic Complexity (NLC) and (2)

Structure Sequence Linguistic Complexity (SLC), where the first is the LC of the nucleotide

sequence and the second is the LC of the dot bracket structure sequence. Since all structural

elements have both a nucleotide sequence and a structure sequence, this metric is applied to

every structural element. LC can be calculated in O(n) time and O(n) space, implemented

using compressed suffix trees [60], so LC will not present a processing or memory bottleneck

for this project.
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3.3.3 Nucleotide Composition

Composition, like LC, is really two groups of features: (1) mononucleotide composition

and (2) dinucleotide composition. Appendix C defines mononucleotide and dinucleotide

composition. Their extraction is as simple as counting the number of occurrences of each

nucleotide or combinations of two nucleotides in the sequence. Since the composition values

are reported as frequencies each composition count is divided by the sum of all the categories

for the given group. This means mononucleotide composition has a total of four metrics

(A%, C%, G%, U%), one for each nucleotide, and dinucleotide composition has a total of

sixteen metrics (AA%, AC%, AG%, AU%, CA%, CC%, CG%, CU%, GA%, GC%, GG%,

GU%, UA%, UC%, UG%, UU%), one for every combination of each nucleotide, totaling

to twenty metrics in the composition group. Again, since every structural element has a

nucleotide sequence the composition group of metrics is applied to every structural element.

3.3.4 Spacing

Spacing is the combination of Center Spacing (CS) and Foot-to-Foot Spacing (FS). Both

these metrics have been described for the stemloop element in Chapter 2 and the same

general principles apply to the other structural elements. When applied to a single stranded

structural element4 the properties are exactly the same as were described for stemloops

in Chapter 2. To reiterate, CS is the average distance between the center of the given

structure to the centers of the two adjacent structures of the same kind, while FS is the

average distance between the edge of the structure to the nearest edge of the next structure

moving outwards. For double stranded structural elements,5 CS distance is the average

distance between the center of the element and the centers of the two adjacent elements

of the same type moving up or down the bound strands of the stem, while FS for double

stranded structures is the average distance between the two closest edges of the elements

of the same type above and below the element in question. This feature is extracted from

every single stranded structural element, except for the structure element as there are no

adjacent structure elements to compute the distance. Likewise, it extracted from every

double stranded element which appears in a stem.

4Joint-Tail, joint, tail, hairpin Loop, stemloop, and unpaired.
5Bulge, Internal Loop, Loop, and Stack
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3.3.5 Percent Paired

Percent Paired (PP) is extracted by dividing the number of ‘(’ symbols in the structure

sequence by the total length of the sequence to give the percentage of nucleotides in the

structural element which are paired. This feature is only applied to structural elements

which many contain any number of paired and unpaired nucleotides (stem, stemloop, bridge,

external loop, multiloop, junction, structure).

3.3.6 Bond Composition

The frequency of GC, AU, and GU bonds appearing in the structural element is given by

the bond composition metric group (GC% Bond, AU% Bond, GU% Bond). These three

metrics are easily calculated from the nucleotide and structure sequences, as every time a

bond is found in the structure sequence the two nucleotides which make up the bond are

counted. These counts are totaled and the total number of each bond type is divided by

the total number of bonds in the structural element. Each structural element that includes

paired nucleotides will record these percentages, which means that only the unpaired, tail,

joint, and joint-tail are excluded from extracting this metric.

3.3.7 Sides Ratio

Side Ratio (SR) only applies to the internal loop structural element and is a measure of the

ratio of the length of one side of the internal loop versus the length of the other side. It

should be noted that this metric is such that the smaller side is divided by the larger side

and so it is independent of whether the larger side is on the left or right.

3.3.8 Gibbs Free Energy

Through the nucleotide sequence folding process that is needed to produce the structure

sequences, the free energy of the structure is calculated. This metric, therefore, applies only

to the structure element.

3.3.9 Average Side Ratio

Within any stem structure or a structure that contains a stem, multiple internal loops can

exist. The metric Average Side Ratio, is simply a measure of the average Side Ratio (see
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Section 3.3.7) of all the internal loops within a given stem. It should be noted that this

metric is a special case of the aggregate metrics.

3.3.10 Sub-element Composition

Sub-element composition (% [TYPE]) is simply a measure of the percentage of nucleotides

each substructure type contributes to a structural element. There is one value reported for

each sub-structural element in the composite element. For example, the stem feature set

would contain four metric values, one for each of the sub-elements: stacks, internal loops,

bulges, and loops. Likewise, for stemloops with their additional hairpin loop, five metrics are

used.

3.3.11 Number Sub-element Composition

Similar to Sub-element Composition, the Number Sub-element Composition (% Num. [Type])

is the percentage of the number of each sub-element type that occurs in the structure. Only

the structure element uses this metric. Values are reported for every sub-element, meaning

there is a value for each and every structural element other than the structure—a total of

15 metric values.

3.3.12 Aggregate Metrics

Several metrics are aggregate metrics, meaning that they attempt to provide a summary of

several sub-elements’ metric values with a single value. Each type of sub-element within a

structural element is aggregated separately from the other types. Take a stem for example;

a stem can contain any number of stacks, internal loops, bulges, and loops. For each of these

sub-structure groups an aggregate value for the given metric will be calculated. Meaning

that a stem will end up with four aggregate values: one for each structural element. Aggre-

gate features only apply to structural elements which contain any number of a structural

sub-element type. Stemloops, stems, and bridges produce aggregate values over the stack,

internal loop, bulge, and loop structural elements, while junctions, external Loops, and multi-

loops produce their aggregates over joint, tail, and joint-tail structural elements. Originally,
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in addition to averaging the aggregates, the minimum and maximum values were also re-

ported; however too much data was produced6 making the processing time impractical with

the inclusion of these two latter metrics, so they were dropped. Aggregate metrics include:

average size, average CS, average FS, average NLC, average SLC, average mononucleotide

composition, average dinucleotide composition, average bond composition, and average SR.

All of these metrics are simply averages of the metrics to which their names refer for each

individual sub-element type.

It is important to note that two types of aggregation occur. Value aggregation, previously

described, is the process of proving a summary metric value for a group of sub-elements.

Depicted in Section 3.4, data aggregation attempts to create a larger training and prediction

dataset by grouping the data records of related structural elements into a single dataset.

3.4 Classification Engine

As mentioned in Chapters 1 and 2, SVMs are used exclusively in this project for classifica-

tion. This section will detail the classification engine while Chapter 4 will detail the training

and testing of the classification models. Specifically LIBSVM7 [10] is the SVM software used

in this thesis.

As discussed in the previous section, after the metrics are extracted from a structural

element they are stored in a dataset file. The second type of aggregation happens in this

stage; that is, aggregation of multiple groups of records. Section 3.3.12 detailed metric

aggregation, where the metric of sub-elements are averaged. In contrast, the aggregation at

this stage involves taking records from two related groups of elements and merging them into

a new group. For example, it is easy to see that both bulges and internal loops are related,

as they are simply an unbound region within a stem. The loop dataset is an aggregate of

those two structural elements, meaning that the loop dataset contains both the bulge and

internal loop feature records.8 Data aggregation will allow for the detection of trends which

might not appear when the specific structural elements are evaluated independently and if

it happens that an aggregate structure is as useful as the individual structural elements,

6By including minimum and maximum aggregates between six and eight additional metric values are
produced for each aggregate metric.

7http://www.csie.ntu.edu.tw/~cjlin/libsvm/
8Only the metrics that appear in both the structural elements’ data are in the combined dataset.
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it will simplify the problem of locating structural elements for RNA gene finding as only

one structural element needs to be located instead of two. Figure 1.5 graphically shows

which structural elements are aggregates through the is-a relationships. To summarize the

hierarchy, junction is a data aggregate of multiloop and external loop and joint-tail is an

aggregate of joint and tail. Since a Branch is a specialization of a stem, the stem group

can be considered an aggregate of the stems found in stemloops and those which make up

bridges.

The data that is produced after the feature extraction process is raw metric data in

table format. In order to use the data with the LIBSVM software, the data needs to be

converted into the LIBSVM file format, where each record is composed of a class label,

followed by a feature index9 followed by the metric value, separated by a colon. The data

is then normalized by scaling it between 0 and 1 using a tool provided with the LIBSVM

software.10

With the datasets for each structural element separate, each of the structural elements

can be tested individually for its own ability to classify prospective gene sequences. However,

it is expected that by using more than one structural element to classify a sequence the

classification accuracy will be improved. To facilitate this combining of the individual

models, a voting system is used, where every model being used for the classification will

cast a weighted vote for what it considers the correct class of the sequence.

In addition to combining different models, when it comes to classifying sequences, often

there will be multiple structural elements in the same prospective secondary structure. For

example, a SRNAG secondary structure might have five stemloops and two bridges. Each

stemloop found will contribute to the classification process, as increasing the sample size

should give a better overall prediction accuracy. The way all the elements of the same

type are used is again through a system of voting. The voting system takes its inspiration

from probability, however it needs to be made clear that the result of the voting scheme

is not a true probability as it is known that the probability values used in the voting are

not independent. In this voting scheme each of the individual structural elements vote on

whether the elements have come from a SRNAG or a non-SRNAG sequence. The vote for

9The feature index allows for LIBSVM to handle sparse datasets, although this feature is not used in this
thesis project.

10When applied to non-training data, it is possible that the scaling factor may scale the data below 0 or
above 1, as the data value may fall outside of the range of the training dataset.
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Candidate Sequence

Instance A3Instance A2Instance A1 Instance B1 Instance B2

SVM A SVM B

Prediction A2Prediction A1 Prediction A3 Prediction B1 Prediction B2

Vote A Vote B

Prediction A Prediction B

Vote

Final Prediction

Figure 3.4: Voting Scheme. The voting scheme is broken down into two layers. On the
first layer instances for each classifier type are processed by their respective classifier, which
predicts a label for each instance and calculates a probability value that the label is cor-
rect. These probability predictions are voted together using Equation 3.1 to produce one
prediction for each classifier. In the second layer both these predictions are voted together
using Equation 3.1 to produce an overall prediction for the sequence which produced the
secondary structure from which the instances were collected. In the diagram, A and B rep-
resent different structural elements, such as stemloop and bridge. Likewise, while only two
structural element types are shown in the figure, more structural elements could be included
in the voting system.
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a given label is calculated by multiplying all the decision probabilities which agree with the

label and one minus the decision probability, for all the decisions which do not agree with

label. Equation 3.1 details this calculation mathematically, where S represents the set of

all decision labels, v(L = X) is the outcome of the vote for label X, and c(L = X) is the

certainty value produced by the SVM for label X of the element represented by L.

v(L = X) =
∏
L∈S

c(L = X) ∗
∏
L∈S

(1− c(L 6= X)) (3.1)

The label with the highest vote value becomes the predicted label for the structural elements

of that type.

As already mentioned, once an element model has produced a vote these models will

need to vote on the overall label of the sequence in question. This higher level voting is done

again using Equation 3.1, where each structural element outputs the calculated vote and a

label, and the votes for the same label are multiplied together while votes for a different

label are subtracted from one and then multiplied. The label with the highest vote is the

predicted class for the sequence being classified by the classification engine. Figure 3.4

illustrates this voting process.

The voting system for this SRNAG finder needed to be flexible to allow for different

configurations of the classifier. The voting system previous described allows new configu-

rations or groups of structural elements to be tested without the need for retraining of the

voting system or reclassification of the individual structural elements. This lack of retraining

and reclassification allows for many voting experiments to be attempted. Specifically, tests

with all the combinations of two and three structural element groups would not have been

possible if it was a complex and time consuming process to reconfigure the voting system.

Likewise this voting system design proved to be quick to develop, as it is not much more

complicated than accumulating the number of votes for each class.

3.5 Candidate Sequence Example

In order to flesh out the details of this SRNAG finding system further, an example candidate

sequence will be tracked through the system. It will be assumed that the structural element

SVMs are already trained and the goal is to label a sequence collected from a genome. The

candidate sequence is shown below:
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Figure 3.5: Example Secondary Structure. This figure shows the secondary structure of the
example sequence.

GUGGGCGCCUCGAGUUUGAGAUUUGGGCGAGAAUUCGUAGGACAGUCUGAGACAGCACUCCACCUGCAGAUCCAA

The first step for the candidate sequence is to be folded into its secondary structure shown

in Figure 3.5. This is done using RNAfold as described in Section 3.1 which produces the

following secondary structure in dot-bracket format.

.((((((((.((((((...)))))))))).......(((((..((((((...))).)))...)))))...)))).

The dot-bracket sequence is used to parse the secondary structure into its structural ele-

ments, which are shown in Table 3.2. Metrics are then extracted from each of the structural

elements in Table 3.2. For brevity only the hairpin loop, internal loop, and joint structural

elements will be focused on from this point. The metric data for these structural elements

is shown in Table 3.3.

Each of the data columns in Table 3.3 becomes a features set which is processed by its

respective SVM. The two hairpin loop structural element data records will be processed

on the hairpin loop SVM, the internal loop structural element will be processed with the

internal loop SVM, and the two joint records will be processed with the joint SVM. Before

any of these metric records are processed they are first scaled using scaling factors created

by the SVM training set to normalize the data.

The scaled data records become the instances in Figure 3.6. Each of the structural

element instances are passed to the trained SVM which will make a prediction based on

the instance’s metric values. A probability indicating the likelihood that the predicted

class is the correct class is also returned by the SVM. Figure 3.6 shows that for the example
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Element Structures

Structure
GUGGGCGCCUCGAGUUUGAGAUUUGGGCGAGAAUUCGUAGGACAGUCUGAGACAGCACUCCACCUGCAGAUCCAA

.((((((((.((((((...)))))))))).......(((((..((((((...))).)))...)))))...)))).

External
Loop

GU AA

.( ).

Multiloop
GC GAGAAUUCG CAGAU

)( ).......( )...(

Junction
GU AA GC GAGAAUUCG CAGAU

.( ). )( ).......( )...(

Bridge
UGGG ACCU

(((( ))))

Stemloop
CGCCUCGAGUUUGAGAUUUGGGCG GUAGGACAGUCUGAGACAGCACUCCACCUGC

((((.((((((...)))))))))) (((((..((((((...))).)))...)))))

Hairpin
Loop

UUGAG GAGAC

(...) (...)

Stem
UGGG ACCU CGCCUCGAGUU GAUUUGGGCG GUAGGACAGUCUG CAGCACUCCACCUGC

(((( )))) ((((.(((((( )))))))))) (((((..(((((( ))).)))...)))))

Bulge
CUC GG UC GCA

(.( )) (( ).)

Internal
Loop

GACA UCCAC

(..( )...)

Loop
CUC GG UC GCA GACA UCCAC

(.( )) (( ).) (..( )...)

Tail
G A

. .

Joint
AGAAUUC AGA

....... ...

Joint-
Tail

G A AGAAUUC AGA

. . ....... ...

Stack
UGGG ACCU CGCC GGCG CGAGUU GAUUUG GUAGG CCUGC AGU ACU CUG CAG

(((( )))) (((( )))) (((((( )))))) ((((( ))))) ((( ))) ((( )))

Unpaired
G U UGA AGAAUUC AC AGA C CCA AGA A

. . ... ....... .. ... . ... ... .

Table 3.2: Parse Structural Elements. Shows the dot-bracket and nucleotide sequences for
each of the structural elements in the candidate sequence’s structure.
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Metric Hairpin 1 Hairpin 2 Internal Loop 1 Joint 1 Joint 2

Size 5 5 9 7 3

NLC 0.5000 1.0000 0.9000 1.0000 0.8333

SLC 0.5000 0.8333 0.5667 0.2917 0.5000

A% 0.3333 0.6667 0.4000 0.4286 0.6667

U% 0.3333 0.0000 0.0000 0.2857 0.0000

C% 0.0000 0.6667 0.6000 0.1429 0.0000

G% 0.0000 0.6667 0.0000 0.1429 0.3333

AA% 0.0000 0.0000 0.0000 0.1667 0.0000

AU% 0.0000 0.0000 0.0000 0.1667 0.0000

AC% 0.0000 0.0000 0.3333 0.0000 0.0000

AG% 0.0000 0.5000 0.0000 0.1667 0.5000

UA% 0.0000 0.0000 0.0000 0.0000 0.0000

UU% 0.0000 0.0000 0.0000 0.1667 0.0000

UC% 0.0000 0.0000 0.0000 0.1667 0.0000

UG% 0.5000 0.0000 0.0000 0.0000 0.0000

CA% 0.0000 0.0000 0.3333 0.0000 0.0000

CU% 0.0000 0.0000 0.0000 0.0000 0.0000

CC% 0.0000 0.0000 0.3333 0.0000 0.0000

CG% 0.0000 0.0000 0.0000 0.0000 0.0000

GA% 0.5000 0.5000 0.0000 0.1667 0.5000

GU% 0.0000 0.0000 0.0000 0.0000 0.0000

GC% 0.0000 0.0000 0.0000 0.0000 0.0000

GG% 0.0000 0.0000 0.0000 0.0000 0.0000

CS 33 33 N/A 36 36

FS 31 31 N/A 32 32

AU% Bond 0.0000 0.0000 0.5000 N/A N/A

GC% Bond 1.0000 0.0000 0.5000 N/A N/A

GU% Bond 0.0000 1.0000 0.0000 N/A N/A

SR N/A N/A 0.6667 N/A N/A

Table 3.3: Metric Data. Shows the structural element metric data for hairpin loop, internal
loop, and joint structural elements from the candidate sequence’s structure.
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Internal Loop
Instance

Hairpin
Instance 2

Hairpin
Instance 1

Joint
Instance 1

Joint
Instance 2

Hairpin SVM
Internal

Loop SVM
Joint SVM

Hairpin
Prediction 1

+ : 0.38
– : 0.62

Hairpin
Prediction 2

+ : 0.09
– : 0.91

Internal Loop
Prediction
+ : 0.55
– : 0.45

Joint
Prediction 2

+ : 0.13
– : 0.87

Joint
Prediction 1

+ : 0.71
– : 0.29

Hairpin Vote Joint Vote
Interloop

Vote

Hairpin
Prediction
+ : 0.034
– : 0.56

Internal Loop
Prediction
+ : 0.55
– : 0.45

Joint
Prediction
+ : 0.092
– : 0.25

Vote

Final
Prediction
+ : 0.0017
– : 0.063

Figure 3.6: Voting Example. Each of the columns of metric data in Table 3.3 are represented
by the structural element instances in this diagram. The metric data is used by the SVMs to
determine a class and the probability of that class being correct for the each of the instances.
The diagram shows these probabilities along with the probability for the other class being
correct as well. The two layers of the voting process is shown along with the calculated
values.
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sequence’s structure the hairpin loops are both predicted to be from a non-SRNAG sequence

with probabilities of 0.62 and 0.91. Since this is a binary classification the probability that

the class other than the one predicted is correct is calculated by simply subtracting the

SVM output probabilities from 1. In the case of the hairpin loop instances, the probabilities

that they are from a SRNAG sequence are 0.38 (1− 0.62) and 0.09 (1− 0.91), respectively.

The internal loop structural element parsed was predicted to come from a SRNAG sequence

with a probability of 0.55. One of the joint structural elements was predicted to be from a

SRNAG with a probability of 0.71 while the other joint element was predicted to not come

from SRNAG with a probability of that prediction being correct of 0.87.

As described in Section 3.4, these predictions need to be combined together. The vot-

ing process treats each of the instance predictions as independent probabilistic events and

attempts to use basic probability theory to combine them. Knowing that the hairpin loop

structural elements receive a 0.62 and 0.91 chance of being from a non-SRNAG sequence, to

calculate if both these elements come from a non-SRNAG sequence their probability values

are multiplied together resulting in the value 0.56. To determine the probability value that

both of these sequences came from a SRNAG their probabilities of being from a SRNAG

are multiplied together (0.38× 0.09 = 0.034). Since the probability that they are not from

a SRNAG sequence is higher than the one that they are, the first level of the system would

predict the sequence from which these two hairpin structures came from is not a SRNAG.

This same process happens to the internal loop and joint groups of predictions as well.

In the case of the internal loop prediction since there are no other internal loop structures

with which it can vote in the first layer of the system the probability values provided by

the SVM are unaffected. The two joint structures with their different predicted labels also

are combined through multiplication leading to a probability value of 0.092 (0.13 × 0.71)

that they come from a SRNAG and a probability value of 0.25 (0.29 × 0.87) that they do

not. This means the first layer of the voting system would predict that the joint structural

elements came from a non-SRNAG sequence, while that the internal loop comes from a

SRNAG.

To determine a prediction using all the structural elements, multiplication is once again

used. All the probability values for a given label produced by the first layer of the voting

system are multiplied together. This second layer predicts there is a 0.0017 (0.034× 0.55×
0.092) probability that all the structural element instances came from a SRNAG, and a

0.063 (0.56× 0.45× 0.25) probability that it did not. Since the probability of all structural
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element instances coming from a non-SRNAG sequence is higher than the probability that

they did not, the system predicts that the candidate sequence is not a SRNAG. It should

be made clear that although each of the instances is treated as an independent event they

are not truly independent events and hence, while a relative comparison of the probability

values is useful in determining which class the instances come from, the values themselves

have little merit.

3.6 Chapter Review

This chapter introduces the major technological components of this thesis, allowing for a

candidate nucleotide sequence to be folded, parsed, and for the structural element metrics to

be extracted from it. Furthermore, the architecture of the classification engine is introduced

detailing not only which SVM software is used, but how the SVM classifications are combined

to give an overall prediction result of a candidate sequence. In regards to the classification of

an unknown sequence the major computational complexity speed bump remains the O(n3)

folding process. Finally a candidate sequence is walked through the system showing the

results at each step as it is folded, parsed, has its features extracted, and is classified. The

next chapter will explain the methodology used to train and test the RNA gene classifier

proposed in this section.



Chapter 4

Methods

Presented in this chapter are the two major experiments used to validate the SRNAG

finder and the hypotheses on which it relies. The first experiment deals with testing the

SRNAG finder under perfect conditions where it must predict the label of whole SRNAG

and non-SRNAG sequences, while the second experiment deals with SRNAG finding under

unfavorable conditions by having the gene finder classify RNA sequence windows cut from

SRNAG and non-SRNAG sequences. Each of these experiments is broken down further

into two parts: one which deals with the structural elements and their metrics and one

which deals with voting among structural elements. Specifically this chapter details the

construction of the training and testing sets used by each experiment and the methodology

used to train and test each of the classification models in the experiments.

As just mentioned, once the SRNAG finder proposed in Chapter 3 was built it is first

tested using a dataset constructed from SRNAG segments and shuffled SRNAG segments, as

seen in Figure 4.1 which shows the whole gene experiment. SRNAG segments and shuffled

SRNAG segments provide the best possible scenario for this SRNAG finder, because the

SRNAG finder uses RNA folding to generate the classification metrics. If the SRNAG

segments are cut or concatenated with non-SRNAG sequence data the secondary structure

produced through folding may not be closely related to the original SRNAG’s secondary

structure. Testing the SRNAG finder under perfect conditions checks whether the SRNAG

software is working and that the key concepts utilized by the SRNAG are valid. Likewise,

having the secondary structures reflect the natural shape of the molecules in nature provides

a clean, accurate secondary structure element dataset for determining which structural

elements and metrics produce strong SRNAG signals. Lastly, testing in favorable conditions

53
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RNA Strand DB

RNA Gene
Shuffle

Shuffled RNA Gene

+ Examples – Examples

Sequence DB

Classification System

Prediction DB

Figure 4.1: Whole RNA Gene Experiment. In the first experiment RNA genes are taken
from RNA Strand and used as the positive sequence examples, while their dinucleotide
shuffled counterparts are used as the negative sequence examples.

provides an upper bound for the SRNAG finder’s performance.

Although testing under favorable conditions can provide insight into the method used

for finding SRNAGs, the true colours of a SRNAG finder come to light when it is tested

in adverse conditions. In this thesis the SRNAG finder is tested under conditions it would

face if it was given a genome sequence with the same background dinucleotide composition

as that of the SRNAGs’ dinucleotide composition. Because the SRNAG finder proposed in

this thesis relies on RNA folding, the genome segment will be cut into manageable sized

sequences using a sliding window (described in Section 2.2). This second experiment is

summarized in Figure 4.2. Since the genome being processed is unannotated the splitting of

the genome most likely will not occur in such a way as to preserve whole SRNAGs, leading

to candidate sequences which will contain only portions of SRNAGs or SRNAGs mixed

with NC sequenced data. As stated in the last paragraph, this corruption of the candidate

SRNAG segments can have a devastating effect on their secondary structures and hence

the feature dataset will be very dirty. This sort of test gives a realistic lower bound for the

performance of the classifier, verifying its performance in a harsh situation.

The next section outlines the building of the dataset for the first experiment, followed

by a section on building the dataset for the second experiment. The training and testing
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+ Examples:

– Examples:
RNA Strand DB

RNA Gene
Shuffle

Shuffled RNA Gene

Sequence DB Classification System Prediction DB

Windows

Figure 4.2: Sliding Window Experiment. The second experiment uses artificial mini-
genomes created by embedding a whole RNA gene in its dinucleotide shuffled counterpart.
A sliding window is run along these mini-genomes to segment it into candidate sequences
for the SRNAG finder.

methodology sections follow.

4.1 Building a Dataset for Favorable Conditions

The dataset for the first experiment was built by acquiring 3386 gene sequences from RNA

Strand1. Since these RNA gene sequences from RNA Strand are stored using the more gen-

eral IUPAC nucleic acid codes, the characters representing more than one possible nucleotide

are replaced with one of their representing nucleotides with an appropriate probability. The

IUPAC coding scheme uses the alphabet Σ = {A,G,U,N,R, Y,K,M} and the translations

shown in Table 4.1. So, for example, in this step if a N appears in the nucleotide sequence

for each A, U, G, or C there is a 25% probability that the nucleotide would replace it.

Likewise, if there is a Y in the sequence there is be a 50% probability of it being replaced

by a C and a 50% probability of being replaced by U. This conversion from IUPAC codes

to standard RNA bases is necessary as the folding software which is used to predict the

secondary structure of the RNA sequence does not handle these generalized bases and it

1www.rnasoft.ca/strand/



CHAPTER 4. METHODS 56

Name IUPAC Code Nucleotide Representation

Any N A, U, G, or C

Purine R G or A

Pyrimidine Y C or U

Keto K G or U

Amino M A or G

Table 4.1: IUPAC Nucleic Acid Codes

eases base composition analysis as probabilities do not need to be taken into account. Fur-

thermore since the dataset size is large and these generalization codes are infrequent it is

expected that the conversion process will not have a significant effect on the overall results.

These standard RNA sequences make up the positive example set, as they represent

many different classes of real RNA genes. The number of genes representing each class is

shown in Table 4.2 in the Positive examples row. The negative examples are generated from

Gene Class 16S rRNA 23S rRNA 5S rRNA RNase P SRP RNA TmRNA tRNA
Positive 723 205 161 470 394 726 707
Negative 723 205 161 470 394 726 707

Table 4.2: Positive and Negative Gene Dataset Examples. The positive examples are the
ones downloaded from RNA Strand3 while the negative examples are generated from the
positive examples through dinucleotide shuffling, which is the reason there are an equal
number of positive and negative examples for each class of genes.

the gene sequences by dinucleotide shuffling the genes. Dinucleotide shuffling, as described

in Appendix C, breaks up the gene by randomizing the nucleotide order while maintaining

dinucleotide frequency.

Dinucleotide shuffling is chosen as the method for generating the negative dataset exam-

ples for a number of reasons. First, the other obvious source of negative examples would be

the NC regions of a fully annotated genome; however, this alternative source may actually

contain an undiscovered structural RNA gene which would pollute the negative example set.

It is also possible that RNA shuffling by random chance could produce a sequence identical

to a RNA gene, but this is highly unlikely. So in order to help preserve the purity of the

example sets, nucleotide shuffling is used to generate the negative examples from the gene

dataset. Second, because dinucleotide shuffling just shuffles the existing gene, while not

affecting the dinucleotide base composition, it is guaranteed that the training and testing



CHAPTER 4. METHODS 57

set is unbiased in regards to dinucleotide based composition, helping to ensure that trends

caused by base composition are not learned by the prediction model as a distinguishing

factor. Third, dinucleotide shuffling can be performed easily and quickly.

It should be made clear that the positive and negative examples are partitioned into

the training set and testing set before the negative examples are generated in order to keep

the dinucleotide content between the positive and negative sets balanced. This results in a

training dataset with 80% of the example sequences and a testing dataset with 20% of the

example sequences (see Table 4.3). The partitioning of the dataset is done through random

selection for each gene class so that all the gene classes are represented fairly in both groups.

Gene Class Training Testing

16S rRNA 578 145

23S rRNA 164 41

5S rRNA 129 32

RNase P 376 94

SRP RNA 315 79

TmRNA 581 145

tRNA 586 141

Non-gene 2709 677

Total 5438 1354

Table 4.3: Training and Testing Sets. Shows the number of training and testing sequences
for each class of RNA. The values for the number of training sequence should be roughly
80% of the total sequences in each category, leaving 20% of the whole dataset for the testing
sequences.

4.2 Building a Dataset for Unfavorable Conditions

Originally, the RNA gene finder was going to utilize the models created from the training

dataset described in the previous section, however this proved to be a poor decision, as

those models are trained under favorable conditions which will lead to a very different set of

feature distributions than when sliding window segments are used for candidate sequences.

As stated in Chapter 1, since SVMs are trained classifiers, the testing dataset needs to come

from the same distributions as the training dataset in order for SVMs to be effective. This

means that each of the experiments have to have their own training and testing sets.

Since it is extremely time-consuming to fold windows along an entire genome, in order
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to train and test the gene finder, mini artificial genomes are constructed. Genes are selected

from the gene database described in Section 4.1 and dinucleotide shuffled. The first half of

the shuffled sequence is concatenated in front of the SRNAG used to produce it and the

second half of the shuffled sequence is concatenated after it. The concatenation points are

annotated. This methodology is similar to one of the experiments Rivas et al. used in [50] to

show that their RNA gene finder was doing nothing more than using GC content as a signal

for RNA gene finding. This technique for evaluating the usefulness of the RNA gene finder is

chosen because it takes considerably less processing time to search the artificial mini genome

for genes than an entire real genome. Likewise, it can be reasonably guaranteed that no

RNA gene is present in the shuffled regions (see Section 4.1) and finding RNA genes within

a region of the same GC content is the discerning test for RNA gene finders. Indicating

that if the RNA gene finder is able to distinguish between RNA genes in RNA sequences

of uniform dinucleotide content then it will most likely be as or more accurate in genomes

where the GC content of the RNA genes is different than that of the surrounding genome.

A sliding window of length 80 nucleotides is used to generate the sequences for the

training set. This specific size parameter is used because Carter et al. showed success using

the same parameter value in their RNA gene finder [9]. Unlike in Carter et al. the window is

shifted by a full 80 nucleotides each time. This fully disjoint shift allows data to be collected

from all the nucleotides in the sequence without increasing the processing requirements.

Since each window of RNA will generate at least one record in the metric datasets, in

order to keep the size of our dataset reasonable and consistent with the previous experiment,

a quota scheme is used. Table 4.3 shows the number of genes used in the training set of

the first experiment; these values make up the quotes of each category. So as windows are

generated by moving sequentially along a strand of RNA, the quote value is decreased for

the window’s category until the quote gets to zero, at which point no more windows of

that category are collected. This results in a new training set which has the exact same

number of RNA segments of each type as the previous experiment. It should be noted, that

non-gene windows have an individual category for each of the different gene types, so there

is an equal number of windows generated from dinucleotide shuffled RNA of each gene type

as from the original gene sequences of each type. Finally it should be made clear that a

window is labeled with a gene label if more than 50% of it belongs to the gene segment,

otherwise it is labeled as non-gene. The testing data set is created in the same way, with

the quota values from the testing side of Table 4.3.
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4.3 Training the Classification Models

With these sequence datasets in place, the metric dataset can be extracted from the training

sequences as described in Chapter 3. This training data, will then be transformed and

normalized according to the description given in Section 3.4 and then used to train the

SVMs4—one for each structural element of the two experiments.

After the extraction of the feature set from the structural elements, there will be a bias

in terms of the number of records for the SRNAG and non-SRNAG training examples. This

bias is due to randomized RNA sequences being less likely to fold into RNA structures

as structurally complex as known gene sequences, therefore the known gene sequences will

tend to have more structural elements such as stemloops and multiloops. In order to re-

balance the training sets, an even number of positive and negative examples are randomly

selected from the metric dataset. When the dataset is balanced it is also reduced to a more

manageable size. Since many of the structural elements will typically be numerous within,

a structure the size of the element model training sets can become too large to process the

SVM training in a reasonable amount of time. For example, the unpaired training set of the

first experiment has over 400,000 examples and the stemloop set has over 56,000 (see Table

4.4). With such large datasets it is impossible to perform a single training, let alone a grid

search in a practical time frame. For this reason as part of the dataset balancing, at most

20,000 records are taking from each element metric dataset to create a new training set. In

the case where 20,000 data points are not available, the minimum value between the number

of SRNAG and non-SRNAG data points is used. It is important to note that although the

initial dataset has no base composition bias, it is possible that after the structure metric

extraction a natural bias will appear. For example, it is possible that the stemloops of

SRNAGs will end up with a higher GC content than the stemloops of non-SRNAGs. Biases

such as these that appear naturally are exactly what the SRNAG finder will exploit to locate

SRNAGs within a genome.

In order to calibrate the parameters of the SVM, a grid search is used, as described in

Section B, which will try all the error penalty rates (C) and kernel parameter values (γ)

within a specified search space. To perform the grid search, the grid search script provided

with LIBSVM is used. The grid search uses cross validation to test the accuracy of the

chosen parameters and allows any search space to be specified. Initially, a coarse grain

4A radial basis function is used for the kernel.
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Favorable Conditions Unfavorable Conditions

Structural Element Initial Size Balanced Size Initial Size Balanced Size

Bridge 40978 20000 10434 9986

Bulge 45061 20000 24145 20000

External Loop 5438 5438 5438 5438

Joint-Tail 126309 20000 62148 20000

Hairpin Loop 56855 20000 21051 20000

Internal Loop 89509 20000 30540 20000

Joint 120335 20000 57312 20000

Loop 134569 20000 54685 20000

Multiloop 40978 20000 15639 15482

Junction 45147 20000 18387 18274

Stack 217282 20000 938212 20000

Stem 97832 20000 31485 20000

Stemloop 56855 20000 21051 20000

Structure 5438 5438 5438 5438

Tail 5974 5974 6836 6648

Unpaired 407242 20000 168424 20000

Table 4.4: Training Set Resizing and Balancing. The Initial Size columns show the number of
positive and negative training examples that were produced by the metric extraction process.
The Balanced Size column shows the number of training examples after the training set has
been resized and rebalanced. This is the final size of the training set for each structural
element of each experiment. Note that the Bridge, Multiloop, Junction, and Tail rows have
an initial size less than 20,000 yet a balanced set size smaller than the initial set size under
unfavorable conditions. The reason for this reduction is due to there being less secondary
structure element examples of one class than the other, so in order to create a set balanced
in terms of class, the smaller class set size is matched with randomly selected examples from
the larger class.
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search space is used for configuration allowing regions which result in a good configuration

to be identified and a fine grained search performed in the targeted area. The initial coarse

grained search uses the default parameters in the LIBSVM grid search software, searching

between -5 and 15 for the C parameter in steps of 2 and between 3 and -15 for the log2(γ)

parameter in steps of -2. After the coarse grain evaluation is performed the data is plotted

using a contour surface, such as the one seen in Figure 4.3, which allows one to easily spot

the space for the fine grained search space.
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Figure 4.3: Grid Search Example Contour Map. This figure shows a contour map of the
accuracy of a SVM tested using all the possible values of C between the -5 and 15 with a
step of 2 and all the possible values of log2(γ) between 3 and -15 with steps of -2. This map
of the coarse grain search enables easy visualization of the configuration parameter values
which result in a strong classifier model, by grouping similar scoring regions into the same
contour layer and labeling the layer by accuracy value.

After the fine grain parameter space evaluation is complete and plotted on a contour,

the center of the area with the highest accuracy is used as the parameters for the SVM.

With these parameters the SVM machine is retrained, with a parameter which allows the

SVM to output a probability for its decision along with the label. This probability training

is done after the grid search has been completed because it is more time-consuming for the
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SVM training to build probability into the model and is largely unnecessary for the grid

search. This final trained model is then saved to the disk along with the scaling parameters

for later use in testing of the SRNAG finder.

It should be noted that there are other possible configuration techniques, such as local

search, however grid search was chosen for two reasons. First, grid search exhaustively

tries all the values specified by the step in the range, insuring a good spread of possible

values are tested. Second, grid search can be easily parallelized as each configuration test

is independent of all others. This allows for multiple computers to work on the same

configuration problem at the same time, helping reduce the configuration time, which is

significant because of the number of features and the large size of the training datasets.

4.4 Testing the SRNAG Finder

The structural element SVM models, trained in Section 4.3, are evaluated using the testing

sequence datasets. Like the training sequence datasets, the test sequences are folded, parsed,

the features extracted, and the data scaled; however, unlike the training set, the testing sets

are not re-balanced for bias caused by the SRNAG sequences possibly having more structural

elements than shuffled RNA sequences. Instead, all the testing records for each structural

element are processed by the structural element’s classification model, where the record

label is hidden. These predictions are stored and analyzed in several different ways. The

prediction records for each model are used to determine which structural elements produce

strong SRNAG signals and which metrics in these structural element models contribute

most to that signal. Likewise, the model predictions are voted together in several different

ways allowing for groups of structural elements to be tested for their ability to classify

SRNAGs. For each test, the hidden labels are compared to the overall prediction allowing

true positives (TP), false positives (FP), true negatives (TN), false negatives (FN), accuracy

(Acc.), precision (Prec.), recall, and F-measure (F-mea.) statistics to be calculated for the

test. These statistics allow for a comparison and evaluation of the SRNAG finder and its

component models, which will be presented in Chapter 5.
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4.5 Chapter Review

The two experiments used to test the SRNAG finding method presented in this thesis were

explained. Primarily, the creation of the datasets, the training of the models, and the testing

of the models was outlined. The analysis of the results obtained by the tests is presented in

the next chapter.



Chapter 5

Metric, Classifier, and Voting

Analysis

While the last chapter explained the methodology of the two experiments conducted to test

the classifiers, metrics, voting, and overall gene discovery engine, this chapter analyzes the

results of those experiments. The overall results of the classifiers are discussed, that is the

prediction results of all the models voting together to predict the sequence’s class. Then the

structural element models are ranked according to their classification ability and the struc-

tural elements which produce the strongest SRNAG finding signal are analyzed in depth.

This analysis includes examining which metrics of the structural elements contribute most

to its prediction power. Various voting schemes are also explored: individual structural

element voting, double structural element voting, triple structural element voting, and pro-

gressive voting. Lastly, a method for reducing false positives is performed with the results

discussed.

5.1 All-Inclusive Voting Analysis

To determine a benchmark for the performance of the SRNAG finder, the voting scheme was

used to combine the prediction results of all of the SVM models in each experiment to create

a classifier which used all the data available in the system for predicting candidate sequence

labels. Each of the all-inclusive classifiers for each experiment was tested on their respective

testing sets. The results are tabulated in Table 5.1 for the first experiment and Table 5.2

64
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4672 0.0146 0.4854 0.0328 0.9526 0.9697 0.9343 0.9517

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0000 0.5000 0.0156 0.9844 1.0000 0.9688 0.9841

RNase P 0.4890 0.0165 0.4835 0.0110 0.9725 0.9674 0.9780 0.9727

SRP RNA 0.4744 0.0513 0.4487 0.0256 0.9231 0.9024 0.9487 0.9250

TmRNA 0.3858 0.0079 0.4921 0.1142 0.8780 0.9800 0.7717 0.8634

tRNA 0.5000 0.0000 0.5000 0.0000 1.0000 1.0000 1.0000 1.0000

All 0.4537 0.0174 0.4826 0.0463 0.9363 0.9631 0.9073 0.9344

Table 5.1: All-Inclusive Voting Classification Statistics for Experiment 1. These are the
prediction results from the experiment where whole genes and their shuffled counterparts
make up the example set and every SVM classifier is used in the voting process.

for the second experiment. From the first experiment it can be seen that for the collection

of test sequences, the combined classifier was able to achieve an accuracy of 93.63% and a

F-measure value of 0.93. For specific RNA gene classes the classification engine was able to

achieve F-measure values above 0.86, with a strong majority of the RNA gene classes’ F-

measure values above 0.92. These results show that given favorable conditions the SRNAG

finder could achieve an accuracy of 93% for an assortment of RNA gene types with the

metrics extracted in this research.

Unfortunately, when ideal conditions are not met, this strong ability to distinguish

between SRNAG and non-SRNAG sequences degrades, as seen in the results for the second

experiment shown in Table 5.2. Overall the second experiment’s classifier showed some

ability to distinguish between SRNAG and non-SRNAG sequence segments, achieving a

classification F-measure of almost 0.7. Some specific gene classes proved to be easier for the

classification engine in the second experiment to predict. The SRNAG finder’s classification

of 5S rRNA’s managed to garner a F-measure value over 0.8, while RNase P received a

F-measure over 0.78. These individual class results are not excellent, but show that even

in unfavorable conditions the all-inclusive set of structural element models can distinguish

between some groups of SRNAG sequences and their complementary randomized RNA

sequences.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16SrRNA 0.4069 0.2828 0.2172 0.0931 0.6241 0.5900 0.8138 0.6841

23S rRNA 0.3659 0.3049 0.1951 0.1341 0.5610 0.5455 0.7317 0.6250

5S rRNA 0.4677 0.1935 0.3065 0.0323 0.7742 0.7073 0.9355 0.8056

RNase P 0.4681 0.2287 0.2713 0.0319 0.7394 0.6718 0.9362 0.7822

SRP RNA 0.3924 0.2532 0.2468 0.1076 0.6392 0.6078 0.7848 0.6851

TmRNA 0.4138 0.3345 0.1655 0.0862 0.5793 0.5530 0.8276 0.6630

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4174 0.2792 0.2208 0.0826 0.6382 0.5992 0.8349 0.6977

Table 5.2: All-Inclusive Voting Classification Statistics for Experiment 2. These are the pre-
diction results from the experiment done with a sliding window where every SVM classifier
is used in the voting process.

Candidate Secondary Structure

Instance A2Instance A1 Instance A3

Classifier A

Final Prediction A2Final Prediction A1 Final Prediction A3

Figure 5.1: Structural Element Classifier Test. Each instance of a structural element is
collected from a secondary structure and processed by the structural element’s classifier to
predict the label of the secondary structure’s sequence. These predictions are compared to
the real label and collected together to evaluate the performance of the classifier.
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5.2 Individual Structural Element and Metric Analysis

Now that the benchmark has been set for the whole group of structural elements and metrics

tested, a look at the prediction power of the individual structural element classifiers will

help determine which of the structural elements and metrics are contributing most to the

prediction power of these all-inclusive classifiers. This is done as shown in Figure 5.1, where

each structural element of a given type is extracted from a test sequence and then classified

by its structural element SVM model to generate performance statistics for the classifier.

Table 5.3 lists each of the structural element models from the first experiment in order of

descending F-measure value. The highest ranked structural element in Table 5.3 received a

F-measure value of almost 0.84. When compared to the F-measure for all SRNAG classes

in Table 5.1 it can be seen that through the use of voting an increase of almost 0.1 is

achieved. This trend, showing the voting scheme’s ability to increase the prediction power

of the classifiers is also seen in the data from the second experiment. Table 5.4 contains

the results for the individual structural element models from the second experiment. These

results from the second experiment show that the highest ranking structural element model

was the structure element’s model with a F-measure of just under 0.62. This F-measure

value is around 0.08 points lower than the all-inclusive classifier results from the second

experiment in Table 5.2.

5.2.1 External Loop and Tail Analysis

The external loop of the first experiment ranked highest, with a F-measure of 0.84. This

result is unexpected in conjunction with the poor performance of the multiloop and junction

models which scored F-measure values of around 0.5 and prediction accuracies around 65%.

Because the external loop is analogous to the multiloop and the junction is the external loop’s

aggregate structural element, it is expected that these three structural elements would have

similarly performing SVM models. The fact that only the multiloop and junction performed

similarly is easily explained, as every structure will only ever have one external loop while

possibly many multiloops, which causes the trends produced by the external loop to become

diffused by the more numerous multiloop data. The unique performance of the external loop

reveals that it is exploiting some special metric biases.

In a similar way, although the tail model in the first experiment was able to predict the

correct label for the testing examples 71.31% of the time, its analogous structural element,
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Structure TP FP TN FN Acc. Prec. Recall F-mea.

External Loop 0.4010 0.0541 0.4454 0.0995 0.8464 0.8811 0.8012 0.8392

Structure 0.3764 0.0319 0.4681 0.1236 0.8446 0.9220 0.7529 0.8289

Stemloop 0.3932 0.1665 0.3000 0.1404 0.6931 0.7025 0.7368 0.7193

Hairpin 0.3478 0.0956 0.3708 0.1858 0.7186 0.7844 0.6518 0.7120

Tail 0.3116 0.1187 0.4015 0.1686 0.7131 0.7241 0.6495 0.6848

Joint 0.3265 0.2785 0.2000 0.1950 0.5265 0.5397 0.6261 0.5797

Joint-Tail 0.2899 0.2405 0.2399 0.2297 0.5298 0.5466 0.5580 0.5522

Bridge 0.2048 0.0282 0.4542 0.3128 0.6590 0.8790 0.3956 0.5457

Stem 0.2288 0.0833 0.3898 0.2981 0.6187 0.7332 0.4343 0.5455

Stack 0.2665 0.2299 0.2750 0.2285 0.5416 0.5368 0.5384 0.5376

Multiloop 0.1774 0.0062 0.4762 0.3402 0.6535 0.9661 0.3427 0.5059

Junction 0.1783 0.0110 0.4730 0.3378 0.6513 0.9421 0.3455 0.5056

Unpaired 0.1917 0.1638 0.3455 0.2990 0.5372 0.5393 0.3907 0.4531

Internal Loop 0.1590 0.0793 0.4560 0.3057 0.6150 0.6673 0.3422 0.4524

Loop 0.1559 0.1093 0.4277 0.3071 0.5836 0.5878 0.3368 0.4282

Bulge 0.1425 0.1085 0.4319 0.3170 0.5744 0.5677 0.3101 0.4011

Table 5.3: Individual Structural Element Model Statistics for Experiment 1. This table
shows the raw statistics for the prediction results achieved by the classification models from
experiment 1. The structural elements are listed in order of descending F-measure.

the joint, achieved an unimpressive accuracy of only 52.65% even though joints should have

a stronger bias as they are more numerous than tails and thus have a larger impact on

the shape of the secondary structure. The contradictory performance of the external loop

and tail ’s analogous and aggregate models points to strong metric biases in these structural

elements developed due to evolutionary pressure. In the second experiment the external

loop and tail structural elements did not perform nearly as well, achieving F-measure values

of 0.54 and 0.20 respectively. This drop in prediction power is due to the sliding window

resulting in windows which cut off the gene tails or extend past the end of the gene and

contain shuffled RNA at the ends of their sequences.

It is important to note that the external loop and tail metric signals in the first ex-

periment, shown in Table 5.5 and Table 5.6 respectively, are naturally occurring biases.

For example, the highest F-score ranked external loop metric of the first experiment is the

average G composition in the external loop’s tails. Table 5.5 indicates that SRNAGs on

average will have a value of 11.73% for this metric, which is much lower than the 25% value

expected by random chance. This 25% probability of G bases in the tail elements is roughly
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Structure TP FP TN FN Acc. Prec. Recall F-mea.

Structure 0.3024 0.1753 0.3247 0.1976 0.6271 0.6330 0.6048 0.6186

Stemloop 0.3120 0.2008 0.2878 0.1995 0.5997 0.6084 0.6100 0.6092

Hairpin 0.2380 0.0892 0.3994 0.2734 0.6374 0.7274 0.4654 0.5676

External Loop 0.2616 0.2161 0.2839 0.2384 0.5455 0.5476 0.5232 0.5351

Joint-Tail 0.2605 0.2198 0.2764 0.2432 0.5370 0.5424 0.5172 0.5295

Joint 0.2548 0.2233 0.2714 0.2505 0.5262 0.5330 0.5042 0.5182

Stack 0.2322 0.2090 0.2980 0.2609 0.5302 0.5263 0.4709 0.4970

Loop 0.1973 0.1795 0.3492 0.2740 0.5465 0.5236 0.4186 0.4652

Unpaired 0.1807 0.1646 0.3444 0.3102 0.5252 0.5233 0.3682 0.4322

Stem 0.1478 0.0781 0.4141 0.3600 0.5619 0.6541 0.2910 0.4028

Internal Loop 0.1421 0.0881 0.4320 0.3378 0.5741 0.6174 0.2961 0.4002

Bridge 0.1322 0.0554 0.4542 0.3582 0.5864 0.7045 0.2696 0.3899

Bulge 0.1165 0.1109 0.4362 0.3364 0.5527 0.5122 0.2571 0.3424

Multiloop 0.0896 0.0128 0.4968 0.4009 0.5864 0.8750 0.1826 0.3022

Junction 0.0608 0.0142 0.4887 0.4363 0.5495 0.8103 0.1222 0.2124

Tail 0.0613 0.0543 0.4437 0.4407 0.5050 0.5303 0.1221 0.1985

Table 5.4: Individual Structural Element Model Statistics for Experiment 2. This table
shows the raw statistics for the prediction results achieved by the classification models from
experiment 2. The structural elements are listed in order of descending F-measure.

observed by the randomly shuffled SRNAGs, where the difference in value is likely due to an

uneven distribution of the four bases in the downloaded SRNAGs. The problem is that in

the second experiment, as additional nongene nucleotides are included as part of tail, the G

composition bias washes out; likewise, if the SRNAG segment length is cut short excluding

nucleotides that were originally part of the SRNAG’s secondary structure, the composition

bias would be distorted. This washing out is exactly what is seen when the first experiment

is compared with the second experiment. The F-score for the G composition of tails in

external loops drops from 0.0718 in the first experiment, where it had the highest F-score,

to 0.0001 in the second experiment, ranking it 68th out of the 104 metrics tested (see Table

E.18). Comparing a SRNAG to shuffled RNA it can be seen from this experiment that

SRNAGs tend to have external loops with a lower G composition in their tails, higher se-

quence repetition in their joint nucleotide sequences, smaller subtrees of elements branching

off, and fewer joints than the shuffled RNA sequences. On the other hand tail structural

elements have distinguishing biases based on nucleotide base composition and repetition in
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the nucleotide sequence. In essence, a SRNAG finder could attempt to exploit the proper-

ties of external loops and tails. However, constructing a SRNAG finder which uses segment

folding to extract metrics to make use of the external loop and tail metrics would require

selecting candidate SRNAG segments very precisely, as the greater the misalignment of the

candidate segment and the embedded SRNAG segment, the larger the deterioration of the

metric biases. More importantly for this research, it would be very hard to develop an

ad hoc method for locating tails in a genome as the tail structural element is very small,

often only consisting of a couple of nucleotides. Likewise, the sequence components which

make up the structural element are distributed throughout the nucleotide sequence of the

secondary structure making it also very challenging to detect using an ad hoc method. This

criteria makes it challenging to construct an efficient SRNAG finder which can exploit the

features of external loops and tails.

Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Tail G% 0.0718 0.1173 0.1881 0.2332 0.2415

Avg. Joint NLC 0.0683 0.2816 0.4316 0.5140 0.4593

Avg. Joint CS 0.0682 3.7600 1.9277 4.0320 2.0743

Avg. Joint-Tail G% 0.0655 0.1306 0.1840 0.2315 0.2097

Joint% 0.0575 0.0898 0.1659 0.1792 0.2057

G% 0.0567 0.0930 0.1194 0.1485 0.1131

Avg. Joint FS 0.0561 1.1378 0.7635 1.0057 0.0805

Avg. Joint A% 0.0537 0.1192 0.2475 0.2523 0.3229

Size 0.0489 10.3385 7.0960 13.4796 7.1502

Avg. Joint Size 0.0488 1.0654 2.2723 2.3128 3.2940

Table 5.5: External Loop Metric Statistics for Experiment 1. Lists, in descending order of
F-score, the top 10 metrics for the external loop structural element of the first experiment.

5.2.2 Structure Analysis

Being the largest and most inclusive structural element, it is no surprise that the structure

structural element ranks high in Table 5.3 and 5.4. The structure structural element has

a classification accuracy of 84.46% for the first experiment and 62.71% in the second ex-

periment. This drop in prediction accuracy seen in the second experiment is expected as

the structure, being a global structural element, would be affected by the changes in the

secondary structure created from a SRNAG sequence which includes additional nucleotides
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Gene Nongene

Feature F-score Mean Std. Mean Std.

G% 0.0385 0.1401 0.2446 0.2480 0.2935

UU% 0.0300 0.1234 0.2741 0.0469 0.1463

NLC 0.0284 0.8745 0.1464 0.9189 0.1124

AC% 0.0190 0.0844 0.1788 0.0421 0.1251

GU% 0.0181 0.0231 0.1088 0.0637 0.1790

CC% 0.0142 0.0596 0.1389 0.0284 0.1142

FS 0.0133 124.3385 250.8350 72.2504 189.4729

CS 0.0130 127.2597 251.1728 75.5594 189.7670

U% 0.0112 0.2901 0.3409 0.2236 0.2706

AA% 0.0087 0.0692 0.1869 0.1071 0.2245

Table 5.6: Tail Metric Statistics for Experiment 1. Lists, in descending order of F-score,
the top 10 metrics for the tail structural element of the first experiment.

or excludes part of the gene. As seen in Table 5.7, the highest ranked metric for the first

experiment is the percentage of joint nucleotides within the structure, while the highest

ranked metric in the second experiment for the structure structural element is MFE. As

discussed in Chapter 2 it is expected that MFE would perform well for SRNAG finding,

yet it did not show significance in the first experiment where it ranked very low receiving

a F-score of 0.0016. However, on closer inspection the first experiment used training and

testing sequences of many different lengths. Since MFE is directly related to the length

of the RNA sequence [50], even though the training and testing datasets were balanced in

terms of length, the large amount of variation in length in the positive sequences (and hence

negative sequences) leads to high variation in the MFE metric as well. This variation results

in a low F-score for the MFE metric because as the standard deviation of the positive MFE

distribution and negative MFE distribution increases these distributions will tend to overlap

significantly. This increased variation will cause low F-scores for MFE, even in-spite of the

natural tendency for SRNAGs to have lower MFE values than random RNA. The lower

average MFE for SRNAG’s can be easily seen in Table 5.7. In the second experiment where

the length of the RNA sequences was fixed, MFE was able to be a powerful gene finding

signal as the MFE distributions had significantly less variation.

As already mentioned, the percentage of joint nucleotides is the highest ranked metric

for the structure structural element of the first experiment. The averages of the two classes

reveals that nongene RNA is slightly more likely to fold into a structure with a higher
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volume of joints. Since joints are unpaired regions it makes sense that the second highest

ranked metric is percent paired, where the nongene secondary structures tend to be less

paired than the SRNAG ones. These high scoring metrics are most likely a product of

evolutionary pressures on SRNAG sequences causing them to develop well-defined pairing

configurations which hold the RNA sequences in their functional shapes. Since no such

evolutionary pressure is applied to the shuffled gene sequences there is a different probability

distribution dictating which nucleotides will form a bond. Likewise, RNA genes tend to have

fewer tails than non-SRNAG. Since the SRNAGs used came from RNA Strand where the

nucleotide sequences are trimmed to encompass no more than the SRNAG, it makes sense

that SRNAGs would have fewer tails in their folded structure as it would be more likely for

a random segment of RNA than for a perfectly sized gene segment to fold into a structure

with tails. Stems fully compose bridges while partially compose stemloops so it is expected

that the density of these important and related structures in the secondary structure would

be both highly ranked and grouped together with similar F-scores in Table 5.7, where each

of these structures is more prevalent in SRNAGs then nongenes. The same is true about the

important hairpin loop structural element, which are more frequent in SRNAG structures

than non-SRNAG structures. Once again because secondary structure is dependent on the

whole sequence it is no surprise that the metrics which were shown to be useful in the first

experiment were not found to be useful signals in the second experiment where the segment

data is dirty. The second experiment found MFE to be a useful metric and in addition to

this metric it is seen from Table 5.8 that on average the SRNAG windows studied tend to

be composed of fewer bridge nucleotides, have slightly lower nucleotide sequence linguistic

complexity, and are composed more of stemloops.

Although in the first experiment no bias in base composition and structure size was

present in the sequence dataset, it is noteworthy that in a real genome there would most

likely be some bias in the composition which could be exploited to help classify genome

windows. Because the structure structural element requires folding the whole sequence,

it does not meet some of the requirements hoped to be achieved by the RNA structural

elements in this thesis. Mainly the structure structural element fails to allow an improvement

in algorithm speed, and it does not allow the use of smaller pieces of the secondary structure

to be used to generate signals for SRNAG, allowing more naturally defined locations and

sizes of SRNAGs to be annotated in the genome. However even with these drawbacks, the

structure structural element is still important in terms of RNA gene finding, as new structure
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Joint% 0.0921 0.2913 0.1826 0.3571 0.1783

PP 0.0513 0.6190 0.0463 0.5960 0.0548

% Num. Tail 0.0382 0.0276 0.0029 0.0288 0.0024

% Num. Stemloop 0.0228 0.0004 0.0016 0.0001 0.0001

% Num. Hairpin Loop 0.0228 0.0004 0.0016 0.0001 0.0001

% Num. Stem 0.0224 0.0008 0.0028 0.0002 0.0001

% Num. Bridge 0.0218 0.0003 0.0012 0.0001 0.0001

% Num. Multiloop 0.0218 0.0003 0.0012 0.0001 0.0001

Internal Loop% 0.0212 0.1463 0.0639 0.1650 0.0646

% Num. Stack 0.0189 0.0023 0.0090 0.0006 0.0004

% Num. Bulge 0.0168 0.0005 0.0018 0.0001 0.0001
...

...
...

...
...

...

MFE 0.0016 -297.3350 319.0345 -272.8374 296.5180

Table 5.7: Structure Metric Statistics for Experiment 1. Lists the top 10 metrics and MFE
of the structure structural element for the first experiment and ranks them in descending
order by F-score.

metrics which are found to be useful for SRNAG finding can help improve the accuracy of

existing SRNAG finding methods by adding additional data into the prediction systems.

Although the other metrics which ranked high in the second experiment may be of some

use, MFE is the dominant metric when it comes to using a fixed length sliding window. The

first experiment’s metrics may be harder to make use of, since the data is based on folding

sequences of nearly the exact gene segment versus shuffled RNA sequences. Currently there

is no computationally feasible way to extract such clean data without already knowing where

the genes lie within the genome. Nonetheless, the metrics in the first experiment can provide

some possible hints at metrics, such as using higher pairing potential and higher density of

stems for SRNAG signals–two signals which may not necessarily require folding to extract.

5.2.3 Stemloop and Hairpin Analysis

The first experiment produced classification results where the stemloop SVM model achieved

a 0.72 F-measure value and the hairpin received a F-measure of 0.71. Table 5.9 and Table

5.10 show that the highest two F-score ranked metrics for these two secondary structure

elements are CS and FS, where in both cases SRNAGs are shown to have more closely spaced
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Gene Nongene

Feature F-score Mean Std. Mean Std.

MFE 0.0190 -22.8759 7.7273 -20.8579 6.8840

Bridge% 0.0061 0.0671 0.1150 0.0861 0.1274

NLC 0.0049 0.9871 0.0046 0.9877 0.0039

Stemloop% 0.0042 0.7495 0.1677 0.7269 0.1818

Multiloop% 0.0029 0.0753 0.1102 0.0874 0.1142

SLC 0.0027 0.9303 0.0213 0.9326 0.0223

Internal Loop% 0.0014 0.1237 0.0895 0.1305 0.0882

Bulge% 0.0013 0.0245 0.0321 0.0269 0.0355

AG% 0.0010 0.0733 0.0259 0.0716 0.0271

AA% 0.0009 0.0809 0.0440 0.0783 0.0440

Table 5.8: Structure Metric Statistics for Experiment 2. Lists the top 10 metrics of the
structure structural element for the second experiment and ranks them in descending order
by F-score.

stemloops and hairpins. Since each stemloop has a hairpin at its tip, it is not surprising that

the spacing of these structural elements is related. Within Table 5.10 which shows the top

metrics for the hairpin structural element model of the first experiment, it is observed that

the rest of the metrics have F-scores over a factor of ten lower than the CS and FS metrics,

indicating that most of the prediction power for the hairpin model comes from CS and FS.

On the other hand, Table 5.9 shows a more diverse picture of the metrics, with the SRNAG

sequences shown to have larger stacks in their stemloops and more pairing. However, the

fact that both the stemloop SVM and hairpin SVM achieved similar prediction power, the

high F-scores of the CS and FS metrics in both models, and that CS and FS are related in

both structures, provides evidence that even in the stemloop model the contribution of the

CS and FS metrics to the prediction power significantly outweighs the other metrics.

These results are interesting for a number of key reasons. First, since these experi-

ments were done in the absence of base composition bias, the stemloop and hairpin CS

and FS metrics should have similar RNA gene signals in genomes of any background base

composition. Second, the figures in Table 5.7 for stemloop CS support Noël’s hypothesis

that properties of stemloops in a genome can provide useful SRNAG finding signals. This

support is more rigorous than Noël’s work because the stemloops were located using folded

MFE secondary structures instead of an ad hoc method. Third, the structure metric data

tabulated in Table 5.7 also correlates these finding showing that the secondary structures
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of SRNAG sequences have a bias towards containing a higher concentration of stemloops.

A higher concentration of stemloops means they must be closer together. Fourth, in addi-

tion to CS, FS is also shown to have some signals for RNA gene finding in the absence of

base composition bias, but weaker signals than CS signals. Lastly, both CS and FS metrics

produce strong signals even for hairpins, which might remove the need to locate the full

stemloop and just search for the smaller hairpin structures.

Recently, a method for locating generic hairpin loops was presented by Jennifer Smith [57].

Using small co-variance models Smith achieved an extremely low false positive rate yet quick

genome scans [57]. Such a method could easily exploit the hairpin spacing distribution with

the hairpins it found to act as an additional RNA gene indicator. Furthermore, it may be

possible to use stemloop and hairpin spacing in SRNAG finding methods which use a folded

sliding window to extract MFE; however, this assertion is not supported by the second ex-

periment, where the prediction power of stemloop and hairpin is poor, achieving F-measures

of 0.61 and 0.57 respectively. Note that these two structural elements did rank high in Table

5.4, only the structure structural element has a higher F-measure.

In the second experiment, the CS and FS metrics are very low in terms of F-score showing

that they produced very little SRNAG finding signal. Although there are many possible

causes for these poor signals, a major factor is due to the window size used in the experiment.

An 80 nucleotide window was used following in the footsteps of Carter [9]. Carter was using

the window of 80 nucleotides to exploit the metrics of MFE, base composition, and motif

presents; however given that the average stemloop and hairpin CS seen in Table 5.9 for

SRNAG is over 51 nucleotides, it is possible that a window of 80 nucleotides is not large

enough to capture enough sequence information for two or more full stemloops. For this

reason it is possible that if a larger sequence window was used, the bias seen in these metrics

would improve. On the other hand there is no guarantee that the problems caused by using

a sliding window will not cause the folded SRNAG window segment’s secondary structure

to be deformed to the point that stemloop and hairpin CS and FS have no statistical

distinguishing difference between the SRNAG segments and random RNA segments.

Although there is no guarantee that the folded SRNAG window will represent some

portion of the real SRNAG’s secondary structure, the metrics collected from higher F-score

ranked metrics of the folded sliding windows still may be useful in revealing some bias in

SRNAG sequences. Table 5.11 shows that SRNAG windows tend to fold into structures

containing stemloops with larger stack sizes, with more of the nucleotides composing stacks,
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and a higher percentage of pairing nucleotides. Clearly these three properties are related,

as stacks are the only paired structure within the stemloop. Furthermore, these biases are

exactly what would be expected since evolution should drive SRNAGs toward higher pairing

patterns. Unfortunately the hairpin element model showed little ability to distinguish RNA

in the second experiment.

Gene Nongene

Feature F-score Mean Std. Mean Std.

CS 0.0234 51.2419 20.5950 58.1415 24.9893

FS 0.0225 24.3202 16.6562 30.0029 21.5590

Avg. Stack Size 0.0197 9.2210 3.5871 8.2691 3.1423

Stack% 0.0177 0.6399 0.1128 0.6062 0.1395

PP 0.0143 0.6490 0.0980 0.6244 0.1080

Avg. Stack CC% 0.0073 0.1177 0.1806 0.0889 0.1577

Avg. Hairpin Loop GG% 0.0065 0.0337 0.1076 0.0532 0.1357

Avg. Stack GG% 0.0065 0.1497 0.1923 0.1203 0.1748

Avg. Hairpin Loop AG% 0.0058 0.0547 0.1119 0.0730 0.1265

Avg. Stack C% 0.0053 0.3001 0.1111 0.2836 0.1155

Table 5.9: Stemloop Metric Statistics for Experiment 1. Lists the top 10 metrics of the
stemloop structural element for the first experiment and ranks them in descending order by
F-score.

Gene Nongene

Feature F-score Mean Std. Mean Std.

CS 0.0232 51.3026 20.7227 58.1448 25.0076

FS 0.0215 47.0594 20.6320 53.5970 24.9224

GG% 0.0065 0.0337 0.1078 0.0532 0.1357

AG% 0.0058 0.0550 0.1123 0.0730 0.1265

SLC 0.0051 0.3867 0.0799 0.3746 0.0865

Size 0.0051 5.2336 2.0237 5.5494 2.3551

AA% 0.0047 0.1887 0.2227 0.1587 0.2191

GC% Bond 0.0037 0.6890 0.4629 0.6320 0.4823

AU% 0.0032 0.0552 0.1079 0.0685 0.1213

AU% Bond 0.0027 0.2066 0.4049 0.2491 0.4325

Table 5.10: Hairpin Metric Statistics for Experiment 1. Lists the top 10 metrics of the
hairpin structural element for the first experiment and ranks them in descending order by
F-score.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Stack Size 0.0114 8.5623 3.2362 7.9108 2.7886

Stack% 0.0082 0.6177 0.1193 0.5956 0.1258

PP 0.0079 0.6309 0.1003 0.6130 0.1022

Avg. Stack SLC 0.0048 0.4459 0.1060 0.4606 0.1059

GC% Bond 0.0045 0.5931 0.2174 0.5897 0.2222

Avg. Hairpin Loop SLC 0.0037 0.3801 0.0852 0.3697 0.0894

Avg. Hairpin Loop Size 0.0037 5.4184 2.2269 5.7052 2.6124

AU% Bond 0.0032 0.2831 0.1958 0.2852 0.1971

Avg. Hairpin Loop GG% 0.0026 0.0420 0.1186 0.0561 0.1399

Avg. Loop AA% 0.0024 0.0643 0.1599 0.0505 0.1274
...

...
...

...
...

...

CS 0.0004 29.3482 8.4823 29.3207 8.4559
...

...
...

...
...

...

FS 8e-06 5.7058 4.4837 5.7958 4.6108

Table 5.11: Stemloop Metric Statistics for Experiment 2. Lists the top 10 metrics along
with CS and FS of the stemloop structural element for the second experiment and ranks
them in descending order by F-score.

5.2.4 Poor Performing Structural Element Models

Observe in Table 5.3 and Table 5.4 that there are many structural elements shown to be

ineffective for SRNAG finding using the metrics presented in this thesis. Particularly for the

first experiment, the structural elements which did not result in models of high prediction

power are unlikely to improve in further experiments as the first experiment represents a

best case scenario for SRNAG finding. If the structural elements failed to produce a signal

under these excellent conditions it means that there are no large enough differences between

the features of the secondary structure of shuffled RNA and real SRNAGs for a classifier to

distinguish between them.

It was expected that the unpaired structural element would not perform well as unpaired

elements are small and contain little structural information; they were included in the

structural element set simply for completion. On the other hand, it was surprising to see

how poorly several other structural elements performed under these ideal conditions. The

stems and bridges are relatively large, important structural elements yet did not achieve F-

measures above 0.55; likewise, multiloops and junctions are critical to the global secondary
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structure yet achieved F-measures below 0.51. In the second experiment it is easy to see from

Table 5.4 that none of the poor predicting structural elements from the first experiment were

able to produce a strong RNA gene signal. The structural elements which performed well

in the first experiment, yet failed to perform well in the second experiment have previously

been discussed. In the next section, voting is used to try to improve the SRNAG finder’s

prediction accuracy by utilizing the predictions of several structural elements.

5.3 Composite Model Analysis

The first section in this chapter discussed the results of the two experiments when all the

structural element models were used in the voting process and the previous section analyzed

metrics involved in producing the prediction signals in those models. This section looks at

the creation of a composite model where a limited number of structural element models are

used in the voting process.

5.3.1 Individual Structural Element Voting

One of the goals of this thesis is to reduce the number of structural elements which need to

be measured while maintaining a strong classification accuracy. The logical starting place

to look is at voting within a structural element type (i.e. all the stemloops of a candidate

sequence voting). Table 5.3 for the first experiment and Table 5.4 for the second experiment

show the predictive power of each structural element type based on individual instances of

structural element data. For all the structural elements except the structure and external

loop elements there is a possibility that a single RNA sequence could fold into a structure

with multiple elements of the same type. Table 5.12 and Table 5.13, for the first and second

experiments respectively, show the prediction results for all the instances of a structural

element type within a sequence voted together (see Figure 5.2). Clearly the structure and

external loop elements will have the same values in the non-voting tables and the voting

tables since each structure can have only one structure element and external loop element.

As expected, the introduction of more information into the classification process increases

the performance of the system. This is seen in the comparison of Table 5.3 with Table 5.12

and Table 5.4 with Table 5.13 where every structural element’s prediction power in the first

experiment increased due to voting (except the structure element and external loop element)

and 11 of the structural elements in the second experiment increased in prediction power due
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to voting. In the first experiment some of these increases were as high as 0.27 and many of

the structural elements which ranked low when considered individually, ranked much higher

with the voting process. In the second experiment, the increases were not as large. The

highest increase being 0.23 F-measure points for the unpaired structural element, but like

the first experiment the increases often changed the ranking of the structural elements in

terms of F-measure. It is interesting to note that structural elements which are numerous

in secondary structures will tend to gain the most through this sort of voting, as more votes

means an increase of information in the system, which should lead to higher prediction

accuracy.

Candidate Secondary Structure

Instance A2Instance A1 Instance A3

Classifier A

Prediction A2Prediction A1 Prediction A3

Vote

Final Prediction

Figure 5.2: Individual Structural Element Voting. Every instance of a structural element
type is collected from a secondary structure and processed by the structural element’s classi-
fier. The predictions of the classifier are voted together to predict the class of the candidate
structure.

5.3.2 Structural Element Paired Voting

In the same way, Table 5.14 and Table 5.15 records the results of voting with combinations

of two structural elements (see Figure 5.3), sorted in descending F-measure value. From

the first table a number of trends are observed. First, as expected, most of the high rank-

ing structural element combinations are composed of elements which also rank high when
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Structures TP FP TN FN Acc. Prec. Recall F-mea.

External Loop 0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

Hairpin 0.4015 0.0627 0.4373 0.0985 0.8388 0.8649 0.8031 0.8328

Structure 0.3764 0.0319 0.4681 0.1236 0.8446 0.9220 0.7529 0.8289

Stemloop 0.3996 0.0782 0.4218 0.1004 0.8214 0.8364 0.7992 0.8174

Stem 0.3755 0.1187 0.3813 0.1245 0.7568 0.7598 0.7510 0.7553

Bridge 0.3591 0.1081 0.3919 0.1409 0.7510 0.7686 0.7181 0.7425

Multiloop 0.3041 0.0174 0.4826 0.1959 0.7867 0.9459 0.6081 0.7403

Tail 0.3716 0.1525 0.3475 0.1284 0.7191 0.7090 0.7432 0.7257

Internal Loop 0.3514 0.1236 0.3764 0.1486 0.7278 0.7398 0.7027 0.7208

Loop 0.3649 0.1988 0.3012 0.1351 0.6660 0.6473 0.7297 0.6860

Stack 0.4710 0.4064 0.0936 0.0290 0.5647 0.5369 0.9421 0.6840

Unpaired 0.3649 0.2095 0.2905 0.1351 0.6554 0.6353 0.7297 0.6792

Joint-Tail 0.4662 0.4431 0.0569 0.0338 0.5232 0.5127 0.9324 0.6616

Junction 0.4662 0.4431 0.0569 0.0338 0.5232 0.5127 0.9324 0.6616

Joint 0.4624 0.4672 0.0328 0.0376 0.4952 0.4974 0.9247 0.6469

Bulge 0.3639 0.3282 0.1718 0.1361 0.5357 0.5258 0.7278 0.6105

Table 5.12: Individual Structural Element Voting Experiment 1. The voted classification
results for the first experiment based on voting with each structural element individually.
Each structural element is listed in descending F-measure value.

Structures TP FP TN FN Acc. Prec. Recall F-mea.

Stemloop 0.4091 0.3154 0.1846 0.0909 0.5937 0.5647 0.8182 0.6682

Hairpin 0.3265 0.1568 0.3432 0.1735 0.6698 0.6756 0.6531 0.6642

Stack 0.4796 0.4666 0.0334 0.0204 0.5130 0.5069 0.9592 0.6632

Unpaired 0.4861 0.4842 0.0158 0.0139 0.5019 0.5010 0.9722 0.6612

Joint-Tail 0.4212 0.3961 0.1039 0.0788 0.5250 0.5153 0.8423 0.6394

Structure 0.3024 0.1753 0.3247 0.1976 0.6271 0.6330 0.6048 0.6186

Loop 0.3469 0.3256 0.1744 0.1531 0.5213 0.5159 0.6939 0.5918

Joint 0.2913 0.2635 0.2365 0.2087 0.5278 0.5251 0.5826 0.5523

External Loop 0.2616 0.2161 0.2839 0.2384 0.5455 0.5476 0.5232 0.5351

Stem 0.2421 0.1642 0.3358 0.2579 0.5779 0.5959 0.4842 0.5343

Internal Loop 0.2106 0.1577 0.3423 0.2894 0.5529 0.5718 0.4212 0.4850

Bulge 0.1048 0.1020 0.3980 0.3952 0.5028 0.5067 0.2096 0.2966

Tail 0.0965 0.0826 0.4174 0.4035 0.5139 0.5389 0.1929 0.2842

Junction 0.0742 0.0204 0.4796 0.4258 0.5538 0.7843 0.1484 0.2496

Bridge 0.0547 0.0232 0.4768 0.4453 0.5315 0.7024 0.1095 0.1894

Multiloop 0.0371 0.0056 0.4944 0.4629 0.5315 0.8696 0.0742 0.1368

Table 5.13: Individual Structural Element Voting Experiment 2. The voted classification
results for the second experiment based on voting with each structural element type indi-
vidually. Each structural element is listed in descending F-measure value.
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Candidate Secondary Structure

Instance A3Instance A2Instance A1 Instance B1 Instance B2

Classifier A Classifier B

Prediction A2Prediction A1 Prediction A3 Prediction B1 Prediction B2

Vote A Vote B

Prediction A Prediction B

Vote

Final Prediction

Figure 5.3: Structural Element Paired Voting. For every pair of structural element com-
binations, all the structural element instances from a candidate secondary structure are
collected and process on their respective classifiers. The classifier prediction are first voted
among themselves and then the results of that initial vote are voted together to produce a
final prediction.
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voted individually, such as the external loop, hairpin, and structure. However, the junction

element, which is not a highly ranked individually voted structural element, also appears

a number of times. Since the junction element has both external loop and multiloop ele-

ment records, pairing it with a strong structural element probably helps compensate for the

uncertainty seen in the junction class while still making use of the information provided

by having both external loop data and junction data in the voting. Second, high ranking

combinations which do not include the structure element tend to be made of structural

elements that are disjoint. This observation coincides with the fact that disjoint structural

elements will tend to add more unique information to the mix. In fact, the highest ranked

structural element pair is based on data from the hairpin and junction structural elements,

which are perfectly disjoint. It is worth pointing out that several of the structural element

combinations do overlap. For example, the structure element appears in three of the five

highest ranked structural element pairs, yet the structure structural element by definition

will overlap any structural element paired with it. Considering the fact that the structure

structural element ranks well when voted individually and contains mainly general metrics,

therefore even though it will overlap its pair, each of the pairs still contributes some unique,

more specified information to the prediction engine. Table 5.14 shows the first expectation

is also not strictly adhered to. In the table it can be observed that the junction structural

element is a member of the highest ranked element pair, yet the junction structural element

ranks third from the bottom in the individual structural element voting. The reason for

this unexpected observation is not obvious, as the junction structural element is a union of

external loop and multiloop structural elements, which means it incorporates information

from the high ranking external loop structural element, but also from the low ranking mul-

tiloop structural element. Furthermore, because the junction is an aggregation of records,

each junction voting group will have one external loop and possibly many multiloop ele-

ments which should overpower the junction structural element with the weaker multiloop

prediction data. Clearly, this is not the case as the junction element appears in the two

highest structural element pairs in Table 5.14.

Overall, the first experiment’s paired voting shows an improvement over individual voting

as the highest ranked vote in the paired set is about 0.07 higher in terms of F-measure than

the highest ranked individual structural element voting results. Pointedly, just because

the highest ranked structural element pair, hairpin and junction, does involve a record

aggregate structure, it could be seen as really three structural elements being part of the
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voting process. Nonetheless, even the highest ranked structural element pair which does

not contain a record aggregate structure, the external loop and hairpin pair, still greatly

improves on the best individual structural element voting. It has already been discussed

that the external loop structural element is not an easy structural element to locate in an ad

hoc fashion and that the structure structural element defeats the purpose of using structural

elements for RNA gene finding. So the highest ranked structural element pair in Table 5.14

that is not based on either of these two structural elements is the bridge and hairpin pair,

which ranked 11 receiving a F-measure of 0.8746. The hairpin and multiloop pair might

be another viable combination, ranking slightly lower than the bridge hairpin combination

with a F-measure of 0.8703.

The sliding window experiment matched the expected results more than the whole gene

experiment. Table 5.15 shows that the highest ranked pairs in the second experiment are

made up of structural elements which ranked well when voted individually, as seen in Table

5.13. Like the previous experiments’ pair voting results, the top ranking pairs in Table

5.15 do not always match disjoint structural elements, but many of the highest ranked

combinations are disjoint with the only exception the broadly based structure structural

element pairing with the hairpin and stemloop elements. Since the second experiment

deals with a sliding window, less care is needed in terms of which structural elements can

be reasonably extracted; however, some structures have greater potential to be detected

using ad hoc algorithms. The structure element for example requires O(n3) folding time to

extract its metrics, but others like hairpin, stemloop, stack, and loop elements can probably

be extracted with less processing power than required to fold the whole RNA window. For

this reason structure pairs like the hairpin and stack pair with a F-measure of 0.6858 seem

promising. Nonetheless it is important to note that even the highest ranked pair from the

second experiment is only 0.0316 points of F-measure improvement when compared to the

highest F-measure achieved with single element voting, while the hairpin and stack pair

is only an improvement of 0.0176 F-measure points. These improvements are important,

but less than expected considering a whole extra structural element is used in the voting

process.

5.3.3 Structural Element Triad Voting

This process of adding another structural element into the voting process is continued with

combinations of three structural elements. Table 5.16 shows these top 30 combinations
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Candidate Secondary Structure

Instances B1 . . . BxInstances A1 . . . Ay Instances C1 . . . Cz

Classifier A Classifier B Classifier C

Predictions A1 . . . Ax Predictions B1 . . . By Predictions C1 . . . Cz

Vote A Vote B Vote C

Prediction A Prediction B Prediction C

Vote

Final Prediction

Figure 5.4: Structural Element Triad Voting. For every triad of structural element com-
binations, all the structural element instances from a candidate secondary structure are
collected and process on their respective classifiers. The classifier prediction are first voted
among themselves and then the results of that initial vote are voted together to produce a
final prediction.
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of three structural elements for the first experiment, while Table 5.17 portrays the top 20

combinations for the second experiment. The first point which is worth noting about the

highest ranked triads in Table 5.16 is that the improvement over the highest ranked pair

in Table 5.14 is small, only 0.0064 F-measure. Since the highest ranking triad contains

both the external loop and the structure structural elements it is not a realistic group of

structural elements to extract by ad hoc means, as both the external loop and structure

rely to some extent on the RNA segment matching the gene perfectly. Running down the

structural element groups in Table 5.16, the highest ranked group which does not include

the use of external loops or structures is the grouping of bridge, hairpin loop, and multiloop

which ranked 30 with a F-measure of 0.8985. This feasible group with its extra structural

element improved in F-measure by 0.0239 over the top two-element feasible group from

the first experiment. Like the results from the first experiment, triad voting in the second

experiment resulted in a very meager improvement as seen in Table 5.17. The hairpin

loop, stemloop, and structure group only gained 0.0064 F-measure points. As expected, this

highest ranked group is simply a union of the two highest ranked pairs in Table 5.17.

This process of adding another structural element and trying all the combinations could

continue; however, the number of groups grows rapidly making the computational time

impractical. The next section deals with a greedy approach to secondary structural element

selection.

5.3.4 Progressive Addition Voting

Table 5.18 shows the classification results for all the classes of RNA genes as structural

elements SVMs from the first experiment are progressively added into the set of structural

element models used for voting. This table is a summary of the data presented in Appendix

E Section E.3. In the table, the models are added in the order they rank in terms of F-

measure. So the external loop model is added to the voting system which gives the largest

increase in F-measure as it is the first model added. The F-measure difference of the system

after the model is added is shown in Table 5.18. The structure SVM adds over 0.05 F-

measure to the system, while the stemloop adds over 0.02 and the hairpin loop adds 0.01.

Interestingly, even though the tail SVM achieved an F-measure value of 0.6848, it has a

slight degrading effect on the classifier’s prediction power. This effect could be simply due

to the fact that the external loop and the structure structural elements already capture

the information which allowed the tail SVM to be effective alone. With those key biases
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already contributed by the other structural element models, there is little left for the tail

element to contribute but noise. Likewise, it was expected that because the hairpin model

was added after the stemloop model, that it would have little to no positive effect on the

voting results, yet it was able to produce a small improvement, which shows that it can

help influence the decision making process. This positive influence could simply be due to

more information being added to the system which was not available in the external loop,

structure, or stemloop models or could be due to more weight being placed upon the stemloop

and hairpin information. Although many of the remaining structural element models did

have some positive effect on the prediction power of the voting model, the improvement is

meager. The combination of these structural element SVMs improved the F-measure by less

than 0.01. When voting with the exclusion of all the models which negatively affected the

classification results, a small gain in F-measure of 0.011 is obtained, as seen in Table 5.19.

The F-measure value, 0.9454, achieved by combining only the structural elements which

produced a positive gain in F-measure in Table 5.18 is the highest of all the model groups

considered.

In the same fashion the progressive voting is accomplished with the models from the

second experiment. The summary of the results of this series of voting trials is shown in

Table 5.20, while the raw results are listed in detail in Appendix E Section E.3. When

only the first three highest ranked SVM models (structure, stemloop, and hairpin) are used,

the highest F-measure seen in Table 5.20 is obtained. This value of 0.7062 is a little bit

higher than using all the models combined. There are several models which negatively

contribute to the results of the voted predictions: external loop, joint-tail, joint, stack,

bulge, and tail. Considering that these models achieved low F-measure of around 0.5 or

less, the fact that they negatively affect the voting is not surprising. Excluding the top

three, the other structural element models which did positively contribute to the prediction

accuracy had a combined impact on the F-measure of a little under 0.015. When the models

which negatively affect the F-measure are removed from the set of models and the remaining

models are used in the voting process, an increase in F-measure of 0.0169 was gained. These

prediction statistics are presented in Table 5.21. When compared to the F-measure in Table

5.20 only an increase of 0.0084 is achieved. Such a small gain is hardly worth the cost of the

7 extra models needed to be processed. In conclusion, although a slight improvement can

be gained by using additional structural elements only the structure, stemloop, and hairpin

models are needed to achieve a F-measure of over 0.7 for the sliding window experiment.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16SrRNA 0.4854 0.0182 0.4818 0.0146 0.9672 0.9638 0.9708 0.9673

23S rRNA 0.4722 0.0000 0.5000 0.0278 0.9722 1.0000 0.9444 0.9714

5S rRNA 0.5000 0.0156 0.4844 0.0000 0.9844 0.9697 1.0000 0.9846

RNase P 0.4945 0.0110 0.4890 0.0055 0.9835 0.9783 0.9890 0.9836

SRP RNA 0.4936 0.0513 0.4487 0.0064 0.9423 0.9059 0.9872 0.9448

TmRNA 0.4055 0.0276 0.4724 0.0945 0.8780 0.9364 0.8110 0.8692

tRNA 0.4706 0.0000 0.5000 0.0294 0.9706 1.0000 0.9412 0.9697

All 0.4681 0.0222 0.4778 0.0319 0.9459 0.9547 0.9363 0.9454

Table 5.19: Only Positive Contributing Structural Element Voting Statistics for Experiment
1. The voting statistics for the structural elements which produced a positive gain in F-
measure in Table 5.18. This group of elements includes: Bulge, External Loop, Joint-Tail,
Hairpin Loop, Internal Loop, Joint, Loop, Multiloop, Junction, Stack, Stem, Stemloop,
Structure, and Unpaired.

5.4 Reducing False Positives

As it was already mentioned in Chapter 1, reducing false positives is crucial to RNA gene

finding because it is very expensive for researchers to investigate predicted RNA genes which

do not end up being real RNA genes. The SRNAG finder presented in this thesis can be

adjusted to reduced the number of false positives by only labeling a candidate sequence a

SRNAG if the vote for it being a SRNAG outweighs the vote against it being a SRNAG by

a margin set with a parameter. As this margin becomes larger, the system will only be able

to classify sequences as SRNAGs if they are highly probable to be so, classifying sequences

which it is uncertain about as non-SRNAGs. Increasing this margin will have the effect of

reducing false positives, but also increasing the number of false negatives.

Although this method of reducing false positives can be used for any set of structural

elements, for brevity, only the data from Table 5.19 and Table 5.21 will be presented in this

thesis as they achieved some of the strongest prediction results. Table 5.22 tabulates the

classification results when a low false positive margin is used in the voting process for the first

experiment. This table shows a false positive rate of just under 0.005 for the whole group

of gene classes. Even with this low false positive rate, expanding the cutoff margin only

drove the false negative rate up to 0.1139. Hence under favorable conditions the classifier is

able to achieve a very low false positive rate, while still maintaining a reasonable accuracy

of 88% by correctly labeling nearly all the non-SRNAG segments and just over 38% of the

SRNAG segments.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4276 0.2448 0.2552 0.0724 0.6828 0.6359 0.8552 0.7294

23S rRNA 0.3902 0.2805 0.2195 0.1098 0.6098 0.5818 0.7805 0.6667

5S rRNA 0.4677 0.1774 0.3226 0.0323 0.7903 0.7250 0.9355 0.8169

RNase P 0.4574 0.2553 0.2447 0.0426 0.7021 0.6418 0.9149 0.7544

SRP RNA 0.3987 0.2278 0.2722 0.1013 0.6709 0.6364 0.7975 0.7079

TmRNA 0.4138 0.3172 0.1828 0.0862 0.5966 0.5660 0.8276 0.6723

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4239 0.2625 0.2375 0.0761 0.6614 0.6176 0.8479 0.7146

Table 5.21: Only Positive Contributing Structural Element Voting Statistics for Experiment
2. The voting statistics for the structural elements which produced a positive gain in F-
measure in Table 5.20. This group of elements includes: Structure, Stemloop, Hairpin,
Loop, Unpaired, Stem, Internal Loop, Bridge, Multiloop, and Junction.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3869 0.0036 0.4964 0.1131 0.8832 0.9907 0.7737 0.8689

23S rRNA 0.4583 0.0000 0.5000 0.0417 0.9583 1.0000 0.9167 0.9565

5S rRNA 0.4375 0.0000 0.5000 0.0625 0.9375 1.0000 0.8750 0.9333

RNase P 0.4615 0.0055 0.4945 0.0385 0.9560 0.9882 0.9231 0.9545

SRP RNA 0.4295 0.0192 0.4808 0.0705 0.9103 0.9571 0.8590 0.9054

TmRNA 0.2677 0.0000 0.5000 0.2323 0.7677 1.0000 0.5354 0.6974

tRNA 0.4118 0.0000 0.5000 0.0882 0.9118 1.0000 0.8235 0.9032

All 0.3861 0.0048 0.4952 0.1139 0.8813 0.9877 0.7722 0.8667

Table 5.22: Low False Positive Prediction Statistics for Experiment 1. This table contains
the same classification as Table 5.19 except an increased certainty margin is used to reduce
the number of false positives to below half a percent.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.0793 0.0034 0.4966 0.4207 0.5759 0.9583 0.1586 0.2722

23S rRNA 0.0244 0.0000 0.5000 0.4756 0.5244 1.0000 0.0488 0.0930

5S rRNA 0.1774 0.0000 0.5000 0.3226 0.6774 1.0000 0.3548 0.5238

RNase P 0.1117 0.0106 0.4894 0.3883 0.6011 0.9130 0.2234 0.3590

SRP RNA 0.0190 0.0063 0.4937 0.4810 0.5127 0.7500 0.0380 0.0723

TmRNA 0.0655 0.0034 0.4966 0.4345 0.5621 0.9500 0.1310 0.2303

tRNA 0.1250 0.0000 0.5000 0.3750 0.6250 1.0000 0.2500 0.4000

All 0.0742 0.0046 0.4954 0.4258 0.5696 0.9412 0.1484 0.2564

Table 5.23: Low False Positive Prediction Statistics for Experiment 2. This table contains
the same classification as Table 5.21 except an increased certainty margin is used to reduce
the number of false positives to below half a percent.

Table 5.23 portrays a similar story for the second experiment where an increased cutoff

margin was used. The false positive rate is just below 0.005, while the false negative rate has

risen to 0.4258. This table shows that under harsh conditions where the genome background

base composition is the same as the SRNAG composition, the SRNAG finder can classify

the sequence windows just under 57% of the time, while maintaining a low false positive

rate. Any SRNAGs segments found by this classifier would most likely be genuine SRNAGs.

Nonetheless, with such a high false negative rate, the classifier would tend to miss most of

the genes, only finding about 7%.

5.5 Comparison to Other SRNAG Finders

It is hard to compare these results to the ab initio SRNAG finding techniques discussed

in Chapter 2 as many of the authors did not report statistics for the number of SRNAGs

they were able to locate. An exception to this is in the paper describing RNAGENiE where

Carter reported the classifier’s prediction statistics. Carter’s experiment methodology has

a number of similarities to the methodology used to test the SRNAG finder described in

this thesis. These similarities detailed in Chapter 2 include using an 80 nucleotide sliding

window, several of the same metrics, and machine learning algorithms for classification.

Because of these similarities and the fact that Carter reports the classification statistics, a

comparison of the SRNAG finder presented in this thesis to RNAGENiE can be made.

Even though the highest prediction accuracy achieved by the SRNAG finder presented in

this thesis was 95%, since this accuracy was achieved under favorable conditions it is unfair to
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use in the comparision. Hence, the highest sliding window accuracy achieved will be used in

the comparison with RNAGENiE. With its sliding window dataset RNAGENiE was reported

to have had an overall prediction accuracy of 92% [9], while the SRNAG finder presented in

this thesis only scored a 67% accuracy on its own dataset. This 67% accuracy was achieved

using the structure, stemloop, and hairpin elements together in a voting group. Even though

RNAGENiE was reported to produce a higher prediction accuracy, the comparison is not

perfectly fair as RNAGENiE utilized motif data and their negative dataset was created from

genome NC regions. The negative dataset, used to test the SRNAG finder in this thesis,

was created from shuffled SRNAG sequences so that no base composition bias could be

exploited. Clearly this new SRNAG finder had a huge disadvantage as RNAGENiE’s base

composition inputs alone achieved a prediction accuracy greater than 85% [9]. Therefore,

in light of what appear to be poor prediction results for the SRNAG finder in this thesis

when it was processing the windows, it needs to be remembered that all the results in this

thesis are in the absence of base composition bias. This absence of base composition bias

means that any of the results discovered in this thesis should be applicable in any genome

of any base composition background.

5.6 Chapter Review

This chapter presented the results for the whole SRNAG and sliding window experiments

in parallel. The tests of the SRNAG finder under favorable conditions proved successful,

revealing not only that the software was working correctly, but that the concepts utilized by

SRNAG finder worked as expected. By analyzing each of the structural elements individu-

ally (without voting), it was seen that in the first experiment the external loop, structure,

stemloop, hairpin, and tail structural elements were good candidates for producing strong

SRNAG finding signals. Upon closer inspection it was found that of these five structural

elements, the external loop and tail structural elements would be difficult to locate using ad

hoc algorithms and the structure structural element would not allow the O(n3) algorithmic

complexity to be addressed. This leaves the stemloop and hairpin elements as the most

likely structural elements to be useful for SRNAG finding. Specifically it was found that

the spacing of the stemloops and hairpins produced a strong signal for SRNAGs, confirming

Noël’s hypothesis in a rigorous way.

From the second experiment it was revealed that the sliding window had a negative effect
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on the structural element’s ability to classify SRNAG and non-SRNAG sequences. The only

two structural elements which stood out were the structure and stemloop elements, but even

these structural elements did not achieve results as strong as the first experiment.

The results from the numerous voting experiments showed that the voting mechanism

proposed in this thesis allowed several weaker structural element models to be combined into

a single classifier with better prediction accuracy. Voting with a single structural element

type proved to be quite successful in both experiments. As the size of the voting group

increased, the gains produced by the additional structural element data shrank and the time

required to test successively larger group sizes, drastically increased. As a result, a greedy

structural element selection system was used to combat this growing time complexity which

revealed that some of the structural elements caused a decrease in classifier performance.

When only the structural element models which produced F-measure gains in the greedy

selection test were combined, the highest F-measure value for the first experiment was

achieved.

A mechanism for reducing false positives was introduced and tested. This mechanism

used a parameter to increase the certainty required by the SRNAG finder to label a SRNAG.

This mechanism was shown to work, reducing the false positive rate for both experiments to

less than 0.005. Even with this reduction in false positives the first experiment’s classification

system was still able to locate many of the genes; however, this very low false positive

rate caused the second experiment’s classification system to mis-classify many SRNAGs as

nongenes, drastically reducing the true positive rate to 7%.

Lastly, a comparison to RNAGENiE is made. Although RNAGENiE was able to beat

the prediction accuracy of the SRNAG finder presented in this thesis, since the same dataset

was not used by both RNA gene finders for this comparison, it reveals little about their true

relative performance.

The next chapter draws some conclusions from the results presented in this chapter and

outlines the direction this research will lead to in the future.



Chapter 6

Conclusion

This thesis has introduced and examined a new SRNAG finder, which uses structural el-

ements to generate SRNAG detection signals. This method involved folding candidate

sequences and extracting metrics from their secondary structure components. These met-

rics were then utilized by SVMs to classify whether the secondary structural elements had

come from a SRNAG sequence or not. Since these individual structural element models are

often weak predictors, voting was used to strengthen the prediction accuracy of the system.

Although this SRNAG finder was built and tested, its real purpose was to explore some

of the underlying concepts which allowed it to function. Particularly it allowed each struc-

tural element’s ability to produce a signal for SRNAGs to be investigated and the key

properties of those secondary structure elements to be discovered. This investigation re-

vealed that under favorable conditions the external loop, structure, stemloop, hairpin, and

tail structural elements produced strong SRNAG signals. Unfortunately, several of these

secondary structures are unsuitable for ad hoc detection which is required so that the O(n3)

running time of contemporary ab initio SRNAG finders could be addressed. However, the

stemloop and hairpin have been demonstrated to be detectable with some level of accuracy

in a running time less than O(n3), making them prospective structural elements for use in

SRNAG finding.

When artificial mini genomes were developed and a sliding window was used to select

genome regions for evaluation, the sliding window would break up the hidden SRNAGs,

destroying the structural elements’ ability to classify the SRNAGs. However, the fixed

window size allowed structure’s MFE metric to produce a SRNAG signal. MFE was already

known to have some ability to produce a SRNAG signal, so this is no surprise, yet the MFE
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metric requires folding the sequence window and hence is not able to address the O(n3)

run time. Although weak compared to the first experiment, the stemloop in the second

experiment also produced a SRNAG signal. The stemloop metric which contributed most

to this signal was the average stack size where it was found that SRNAGs tended to have

larger stacks within their stemloops.

The experiment results revealed that the voting mechanism was able to significantly

improve the results of the individual structural element SVM models. Keeping complexity

at a minimum is important for any system, so using the least number of structural elements

in the SRNAG finder helps control complexity. Beginning with using only data records

produced for a sequence from a single structural element type it was easy to see the gains

that could be accomplished through voting even without using more than a single struc-

tural element for classification. Next, every combination of two structural elements and

then every combination of three was tested. As more structural elements were added to the

SRNAG finding system, the prediction results rose making use of the additional informa-

tion. However, even after adding only three structural elements to the system, the gains in

prediction power from adding an additional structural element became insignificant. Later a

greedy secondary structure model selection scheme was tried which added the voting power

of each structural element iteratively. This greedy selection scheme revealed that some of

the structural elements added, weaken the prediction results of the SRNAG finder and that

only the first couple of structural elements contributed significant information into the sys-

tem. Given the added complexity for diminishing returns, at most two to three structural

elements should be used for SRNAG finding.

As already mentioned, when classifying between whole SRNAGs and random RNA, a

group consisting of the external loop, structure, and stemloop structural elements excels,

achieving a F-measure over 0.91. Since the external loop and structure elements can not

be used to address the O(n3) run time, the favorable conditions experiments indicates that

the stemloop and hairpin elements make a feasible, yet powerful structural element group,

having a F-measure over 0.86. The sliding window experiment with its fixed length window

allowed the structure, stemloop, and hairpin group to outrank the rest. Once again since this

group contains the structure structural element which is relying on MFE for its prediction

power, it can not address the O(n3) run time needed to calculate MFE. The next possible

structural element which could be exchanged for the structure is the loop. The loop is a

weak structural element model which does not contribute much to the prediction results.
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Therefore, the sliding window experiment also revealed that a group consisting of stemloops

and hairpins is a strong candidate group for SRNAG finding.

The last test performed in this thesis was to test the mechanism for reducing false

positives. This mechanism utilized a parameter to increase the certainty needed by the

SRNAG finder before it could label a candidate sequence as a SRNAG. Applied to the

experiment which used the favorable conditions dataset, this mechanism drastically reduced

the number of false positives while still maintaining to correctly classify a reasonable number

of SRNAGs. The mechanism also worked in the second experiment, reducing the false

positive rate to less than 0.005; however, without the support of a strong classification models

the classifier tended to label nearly every candidate sequence as a non-SRNAG sequence.

The results of the second experiment are not a failing of the mechanism, but reveal that a

strong classification engine is needed to reduce false positives while still maintaining a high

detection rate.

6.1 Future Work

This thesis laid the ground work to a more ambitious ab-initio SRNAG finding project.

Designed to explore many different structural elements and many different metrics of those

structural elements, this project saw which of them produce strong SRNAG signals. This

project successfully achieved that goal, demonstrating the predictive potential of the struc-

ture, stemloop, and hairpin structural elements in the absence of base composition bias. The

structural elements not included in this group have been shown to be useless or infeasible

for the task of SRNAG finding and will not be explored further.

Although this research did not directly address the O(n3) running time of existing ab

initio SRNAG finders, computational complexity required for structural element extraction

was a requirement which was constantly referred to when choosing structural elements with

SRNAG finding ability. In the end only the stemloop and hairpin elements produced SRNAG

signals and are feasible to be detected without folding. Fortunately, Noël, already devised

a stemloop finding algorithm, Wave, which runs in O(n2); however, as Noël demonstrated

in his thesis Wave is not accurate enough to produce strong SRNAG finding signals from

the stemloops it locates. Wave always finds the largest stemloops and allows for internal

loops and bulges which most likely leads to this poor detection accuracy. If the accuracy

of Wave could be improved, the results found in this thesis indicate it could possibly be
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used to produce SRNAG signals by exploiting stemloops spacing metrics in genomes of any

background composition. Likewise, a simpler version of Wave which only detects hairpins

could have similar potential.

The key metrics discovered by this thesis could be implemented in any SRNAG finder

which makes use of MFE or requires folding the RNA sequence for metric extraction. For

example, RNAGENiE could easily be modified to incorporate stemloop and hairpin spacing

as an additional metric since it already uses MFE as a metric. In the same way, it would

be interesting to add motif analysis into the SRNAG finder proposed in this thesis as they

were able to produce a strong signal in RNAGENiE.

Working within the scope of this thesis project, it would be worth testing the SRNAG

finder with a larger sliding window. It was already discussed that a sliding window of 80

nucleotides is not large enough to get an accurate measure of stemloop spacing; as on average

80 nucleotides is not large enough to contain two full stemloops. Likewise, rerunning the

experiment using NC RNA sequences from real genomes, instead of shuffled SRNAGs for

the negative example set would be interesting as it would demonstrate the SRNAG finders

ability to classify SRNAGs in the presence of base composition. Finally, since Carter showed

much success with NNs, it might be worth replacing the SVMs with NNs.



Appendix A

Statistics

This appendix gives a brief overview of the statistics utilized in this thesis. It is broken

down into two main sections. In the first section the statistics which are used to compare

structural element metrics are discussed, while the second section details the metrics which

are used to compare the results from the classifier tests.

A.1 Metric Statistics

The two statistical techniques discussed in this thesis for comparing RNA secondary struc-

ture features are z-scores and f-scores. Z-scores, while not utilized by the SRNAG finding

method presented in this thesis are a technique used by other SRNAG finders to produce

SRNAG signals from the SRNAG features. On the other hand, F-scores are utilized by the

methods in this thesis to rank the structural element metrics tested, making it easy to spot

which metrics are likely to be effective in distinguishing between SRNAG and non-SRNAG

sequences.

A.1.1 Z-scores

In order to justify the statistical significance of a metric value a z-score (standard score) can

be calculated, which shows the number of units of standard deviations an observed value

is away form the mean random score [31], allowing the comparison of observations from

different normal distributions. The z-score formula follows,

z =
x− µ
s

, (A.1)
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where z is the z-score, x is the raw observation to be standardized, µ is the mean observation

for a population, and s is the standard deviation of observation for the population. It is

important to note that the z-score is dependent on the population sample size from which

µ and s are calculated, as the variation in the z-score tends to decrease as the sample size

increases [31]. Scores with very negative or positive values tend to be significant as they are

outside the probable region of the normal distribution [12].

A.1.2 F-score

F-score gives a measure of the discrimination of two sets of values [13]. In other words, F-

score measures the amount of overlap between distributions of two datasets. This measure

is particularly useful in classification as it provides a metric for indicating the strength of a

feature in distinguishing between two classes of data. Higher F-score values indicate more

disjoint feature data values and hence that the feature is useful for classification [13]. The

following equation defines F-score:

f =

(
x̄(+) − x̄)2 + (x̄(−) − x̄

)2
1

n+−1

n+∑
k=1

(
x
(+)
k − x̄(+)

)2
+ 1

n−−1

n−∑
k=1

(
x
(−)
k − x̄(−)

)2 , (A.2)

where x̄ is the average for the whole dataset and x̄+ and x̄− are the averages of the different

classes in the dataset; x
(+)
k and x

(−)
k are the kth examples for the two classes in the dataset;

and n+ and n− are the number of examples for each of the classes in the whole dataset [13].

One major disadvantage of relying on F-score as a measure of the discrimination of a

metric is that F-score does not account for mutual information between features [13]. Figure

A.1 demonstrates this problem, where a dataset with two features is plotted. The points of

each class are easily partitionable when both features are considered together, yet this data

produces low F-scores when each of the features are considered independently. So while

F-score is a simple and generally effective means to measure the potential of a metric in

classification, this measure is not definitive [13].

A.2 Classifier Statistics

There are four possible outcomes when a classifier predicts the class of a candidate instance:

true positive (TP), false positive (FP), true negative (TN), and false negative (FN) [22]. In
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Figure A.1: Mutual Information Among Features. This figure shows a dataset with two
classes which are completely disjoint when both features are considered together; however,
when evaluated individually using a F-score the resulting value indicates low discrimination
of the data classes. The dashed and doted lines reveal the range of Feature 2 values for the
data point of each class and the solid line shows that the class data is completely disjoint.
This figure is based on a figure in [13].

order to explain these four categories, assume a two class dataset exists with one class being

positive and the other class being negative. If the actual class of the instance is positive

and the classifier predicts positive then it falls in the TP category, while if the actual class

is positive and the classifier predicts the instance to be a negative then it is a FN. Likewise,

if the predicted class is negative and the actual class is negative then it is a TN, while if

the real class is a negative and the classifier predicts the example to be a positive then its

a FP. While these four categories of prediction results are informative on their own, they

can reveal more information about the performance of the classifier by combining them to

calculate accuracy, precision, recall, and f-measure.

A.2.1 Accuracy

Accuracy is simply a measure of the number of instances the classifier correctly predicted

over the total number of instances attempted [22]. The following equation defines accuracy

in terms of TP, FP, TN, and FN:

a =
TP + TN

TP + TN + FP + FN
(A.3)
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One disadvantage of using accuracy as a measure of classifier performance is that accuracy

does not take into account the underlying distribution of positive and negative cases which

occur in the testing dataset. This means that if you have a test dataset with 90% of the

instances of one class and the rest of the other class, the classifier could easily achieve a

90% accuracy by classifying all the instances with the majority class label. Clearly, in a

case where there is a strong bias in class label in the testing dataset, accuracy reveals little

about the true performace of the classifier.

A.2.2 Precision

Precision is the accuracy of prediction given that a specific class has been predicted [22]. It

is defined in terms of TP, FP, TN, and FN in the following equation:

p =
TP

TP + FP
(A.4)

A.2.3 Recall

Recall is a measure of the sensitivity of the classifier, measuring the classifier’s ability to

select instances of a specific class from the dataset [22]. It is defined as follows:

r =
TP

TP + FN
(A.5)

A.2.4 F-measure

F-measure is the weighted harmonic mean of precision and recall [22]. Balanced F-measure

is defined as:

F =
2 ∗ p ∗ r
p+ r

, (A.6)

where p is precision, and r is recall. F-measure discourages a classification system which

“sacrifices one measure for another too drastically” [22].
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Support Vector Machines

The problem of RNA gene finding is reducible to a classification problem, where features

extracted from a segment of a genomic sequence are used to predict a label. In the problem’s

simplest form these labels are binary (i.e. the segment is either from a RNA gene region or

not). Although there are many useful techniques for data classification, this thesis primarily

focuses on the use of Support Vector Machines (SVMs) for reasons discussed in Section 2.2.

A SVM is a computer algorithm which learns from a training set to solve a classifica-

tion problem by maximizing a particular mathematical function in respect to the training

data [43]. Although fully based on mathematical theory, SVMs have a geometric interpreta-

tion which makes them understandable without delving deep into mathematics. There are

four basic concepts needed to understand the basics of SVMs: “the separating hyperplane,

the maximum-margin hyperplane, the soft margin, and the kernel function” [43].

Imagine data from two features is extracted from a RNA gene and non-RNA gene se-

quence training set. This feature data is used to plot each sequence from the training set on

a plane, where the symbol used for the points is determined by the label of the particular

sequence the point represents. From Figure B.1 it is easy to see the two clusters formed by

this data (one in the upper left corner and one in the lower right corner) and how they can

be partitioned by a line. The equation which produces the partitioning line can be thought

as a simple rule for classification: if an unlabeled sequence has feature data which falls on

the RNA gene side or the non RNA gene, its label is predicted accordingly. This concept

of finding an optimal cut through training set data can be applied to both higher and lower

feature dimensions. In the case of one feature all that is needed is a point on a line which

maximizes the separation of the labeled data points, as illustrated in Figure B.2. Likewise,
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Figure B.1: Two Feature Separating Hyperplane Example.

Feature 1

Figure B.2: One Feature Separating Hyperplane Example.

moving into three-dimensional space (three features) a cutting plane is used to partition the

data instead of just a line [43]. This process is quite general and one can use a hyperplane

to mathematically extrapolate this process to higher dimensional spaces [43, 8].

SVMs are not the only classifier to utilize this cutting plane concept [43]. There are

often many different possible cuts that can be used [43]. SVMs have a unique method for

selecting the cutting plane based on statistical learning theory, where they try to maximize

the margin of the hyperplane, which is the distance from the hyperplane to the nearest

expression vector (data point) [43]. By selecting a hyperplane that divides the data labels

as evenly as possible the SVM is able to maximize its potential to correctly predict the

class of unseen cases [43]. Because SVMs are a trained model and do not assume a normal

distribution, it is important that the data classified by the SVM comes from the same

distribution which is used to train the SVM [43].

As real world data is often dirty, the SVM algorithm deals with outliers that potentially

negatively affect the hyperplane using a soft margin, that is, when the dataset contains a

rogue data point, it is allowed to fall on the wrong side of the cutting plane [43]. This

means that some of the data points will be on the opposite side of the cutting plane from
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the majority of their group [43]. Plainly, the SVM would not be a useful algorithm if it

allowed too many of these misclassifications, hence user specified parameters can control

roughly the number of misclassifications and how far across the line they are allowed to

reside [43]. Such relaxation is in direct conflict with the size of the margin, so there is a

trade off between violations and margin size, making the parameters tricky to configure [43].

Feature

(a)

Projection

Feature

(b)

Figure B.3: Data Projection. This figure illustrates how a kernel method can be used to
separate nonlinear divisible data using a projection into a higher dimension.

To explain the concept of a kernel function, consider another one dimensional classifica-

tion problem, shown in graph (a) of Figure B.3. In this case, the data for one of the labels

is clustered around the zero mark and the other label’s data have large absolute values,

creating a situation where no single point on the line can be used to partition the data

into its respective groups (even applying a soft margin does not help). In cases like the

one described, a kernel function can be introduced, which will add an additional dimension

to the data. Figure B.3 (b) shows a projection of the dataset into a second dimension,

where the values for the second dimension were computed by simply squaring the original

values. In Figure B.3 (b) this projection separated the data allowing for a linear equation

to cleanly partition the data. In basic terms, the kernel function is a mathematical trick

that allows the SVM to preform a higher dimensional classification from a lower dimensional

dataset [43]. It is important to note that for any given dataset with non-contradicting labels

(two identical data points with different labels) there always exists a kernel function that

will allow the data to be linearly separated; however, in order to achieve this, projecting
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the data into a very high-dimensional space may be needed [43, 8]. Although the data

will always be separated perfectly in a very high-dimensional space, the hyperplane can be

overly specific to the training set, overfitting the data [43]. The degree to which the SVM

algorithm projects the data into higher dimensions is the second configurable parameter of

SVMs. In this case one wants the kernel function to separate the data, but not to the point

where it introduces irrelevant dimensions [43].

It often can be hard to predict a “good” configuration for the parameters of a SVM

and often the only realistic method of configuration is through trial and error, where the

trials are tested using cross-validation1 [43]. A grid search can be used to automate this

process of trial and error, by training and testing the SVM for each combination of values

in a discrete space and then picking the best configuration of the configurations explored.

Finally, it should be noted that as discussed so far, SVMs appear to be only able to do

binary classification, however SVMs can be extended to achieve multiple classification by

breaking a multiple classification into a series of binary classifications. For example, if a

dataset contains data with the labels A, B, and C, the problem could be converted into a

compound binary classification problem by first classifying between A and not A [43]. Then

once the data points with the label A have been dealt with, the problem is reduced to a

binary classification problem partition B and C labeled data points [43]. This discussion of

SVMs has been mostly conceptual as this thesis deals with SVMs as a “black box.” For a

mathematical discussion of SVMs see [62] or [8].

1A method by which a dataset is divided into several equal parts and each partition is trained against
the remaining partitions.



Appendix C

Nucleotide Shuffling

Often RNA gene finding experiments rely on nucleotide shuffling as either an integral part

of the method or as a gene finding testing tool. Nucleotide shuffling transforms a RNA gene

sequence into a random RNA sequence with the similar sequence composition properties as

the RNA gene but without the same structural properties. This destruction of the structural

properties of an RNA gene while preserving certain composition properties is useful when

validating whether a gene finder is actually using structural information for RNA gene

finding or is relying on sequence composition. Furthermore, nucleotide shuffling is helpful

in generating populations of sequence with the same sequence composition when calculating

z-scores.

Mononucleotide and dinucleotide shuffling are the two varieties of RNA sequence shuf-

fling commonly used. When mononucleotide shuffling is performed on a sequence, it is a

simple procedure of running through each nucleotide in the sequence and randomly choosing

a nucleotide to swap it with from the part of the sequence not yet processed. Mononucleotide

shuffling will preserve sequence composition, length, but just change the order of the nu-

cleotides, as swapping ensures each nucleotide in the original sequence is also in the shuffled

one. Dinucleotide shuffling allows a random sequence to be generated which preserves the

base composition, length, and transitional frequency of the sequence. The transitional fre-

quency of a sequence is the rate at which one nucleotide follows another one.

A method for generating these dinucleotide shuffled sequences is proposed and proved

correct by Altschul and Erickson [1]. First a digraph is constructed from the original se-

quence where each node in the digraph represents a nucleotide and each edge in the digraph

represents a transition from one nucleotide to another [1]. The sequence is processed one
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nucleotide at a time and for each transition a new edge is added to the graph [1]. As an

example the sequence “AATAAGCCGAT” is used to compose the digraph in Figure C.1.

Once the sequence has been completely processed, a random walk is formed in the graph

A

T

G

C

2

2

1

1

1

1 1

1

Figure C.1: Dinucleotide Shuffling Digraph. The digraph produced by the nucleotide tran-
sitions found in the sequence “AATAAGCCGAT”.

which passes over every edge exactly once [1]. The sequence of nucleotides created by this

path will be a dinucleotide shuffle of the original sequence [1]. Finally it should be noted that

because, as already described, stacking energies contribute greatly to the stability of a RNA

gene, using mononucleotide shuffling instead of dinucleotide shuffling can skew experiments

that rely on it [14].



Appendix D

Protein Finding Methods

Unlike proteins which heavily rely on specific DNA sequences to produce their structures,

RNA genes are less dependent upon their specific sequences. As mentioned elsewhere in

this thesis, this is because the structure of RNA genes is derived directly from their se-

quences whereas proteins go through the process of translation, mapping their sequence in

consecutive groups of three nucleotides, known as codons, to specific amino acids, producing

the protein sequence [50]. The mapping produced by translation has a major effect on the

resulting amino acid sequence. For example, consider the mRNA transcript “AAUGAU-

UAUA”, if the first nucleotide was used as the start of the translation reading frame the

resulting amino acid sequence would be “Asparagine-Aspartic Acid-Tyrosine”1. However, if

the second nucleotide was used as the start of the reading frame then the resulting protein

sequence would be “Methionine-Isoleucine-Isoleucine”. As it can be seen from this example,

the reading frame for translation can have a devastating effect on protein gene sequence

and hence structure. So if a protein gene sequence suffers a deletion or addition mutation

where a nucleotide is removed or added respectfully, the resulting reading frame after that

mutation will be altered, causing a major change in the protein sequence which ultimately

will affect the protein’s structure and function. Although point mutations, where a single

nucleotide is changed from one base to another do not cause a change as significant as a

deletion or addition mutation, they can still cause the amino acid sequence of the protein to

be altered enough to disrupt the function of the protein. Since an organism with a mutation

that causes a disruption of a protein’s function will not be as fit as other organisms in the

1See [7] for amino acid encodings.
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species without the mutation, the mutation will be selected against by evolution. Therefore

it can be seen that there is evolutionary pressure to ensure protein sequence is conserved.

This evolutionary pressure is not as strong in RNA genes, because the sequence of RNA

genes is directly used to construct the RNA gene structure. If a small change occurs in the

RNA gene from a mutation, it may have very little effect on the resulting structure of the

RNA gene and hence very little evolutionary pressure on the sequence. Likewise, RNA gene

sequences can undergo correlated mutations, which occur when two paired nucleotides both

mutate to another set of pairing nucleotides. For example, the nucleotide pair A-T might

be converted into C-G. This type of correlated mutation often has very little impact on the

structure of the RNA gene and often there is little evolutionary pressure against it. Since

protein gene sequences are conserved across evolution sequence alignment, open reading

frame, hexamer frequency, and codon bias signals are very successful as protein gene finding

tools, but are not effective for RNA gene finding [50].



Appendix E

Data

E.1 Structural Element Metric Statistics

E.1.1 Experiment 1

Gene Nongene

Feature F-score Mean Std. Mean Std.

SLC 0.0099 0.5789 0.2063 0.6195 0.2021

Avg. Stack% 0.0095 0.8813 0.1423 0.8510 0.1683

Avg. Stack Size 0.0072 9.6812 3.6537 9.0829 3.4417

Avg. Internal Loop SLC 0.0061 0.3180 0.3802 0.3792 0.3946

Loop% 0.0058 0.1063 0.1190 0.1247 0.1234

PP 0.0058 0.8937 0.1190 0.8753 0.1234

Avg. Loop SLC 0.0054 0.4199 0.4072 0.4802 0.4067

Avg. Bulge FS 0.0053 4.9465 1.7936 4.8986 1.6883

Avg. Loop FS 0.0053 4.8693 1.7360 4.7771 1.5636

Avg. Bulge CS 0.0052 5.3056 1.9742 5.2469 1.9515

Avg. Internal Loop FS 0.0051 4.8135 1.7976 4.7178 1.6193

Avg. Loop CS 0.0050 5.5777 1.9785 5.4423 1.8477

Avg. Internal Loop CS 0.0049 5.6463 2.0522 5.5076 1.9145

Avg. Internal Loop NLC 0.0049 0.4041 0.4611 0.4692 0.4654

Size 0.0046 23.5521 19.5865 26.4218 22.5898
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Avg. Loop NLC 0.0046 0.5096 0.4693 0.5728 0.4608

Avg. Bulge NLC 0.0045 0.2741 0.4360 0.3334 0.4610

Avg. Bulge SLC 0.0043 0.2432 0.4004 0.2972 0.4262

Internal Loop% 0.0041 0.0869 0.1145 0.1018 0.1186

Avg. Bulge GC% Bond 0.0036 0.1694 0.3225 0.2093 0.3458

Avg. Internal Loop GC% Bond 0.0034 0.2233 0.3268 0.2625 0.3393

Avg. Loop G% 0.0032 0.1335 0.2230 0.1601 0.2432

Avg. Internal Loop G% 0.0032 0.1328 0.2291 0.1597 0.2520

Avg. Stack FS 0.0031 2.8300 1.1443 2.8215 1.1204

Avg. Loop GC% Bond 0.0030 0.2947 0.3481 0.3335 0.3514

Avg. Loop C% 0.0030 0.0783 0.1691 0.0978 0.1823

Avg. Internal Loop C% 0.0029 0.0629 0.1393 0.0791 0.1543

Avg. Stack C% 0.0026 0.2962 0.1067 0.2854 0.1079

Avg. Stack SLC 0.0025 0.4180 0.1035 0.4283 0.1074

Avg. Bulge Size 0.0024 0.4996 1.0796 0.6086 1.2020

Avg. Stack CS 0.0024 6.2801 1.8011 6.1400 1.7406

Avg. Bulge G% 0.0023 0.0390 0.1580 0.0560 0.1909

Avg. Stack CC% 0.0023 0.1061 0.1727 0.0906 0.1560

Avg. Internal Loop AU% Bond 0.0022 0.1447 0.2548 0.1693 0.2641

Avg. Stack G% 0.0022 0.3516 0.0988 0.3423 0.1015

Avg. Bulge C% 0.0021 0.0417 0.1678 0.0581 0.1958

Avg. Internal Loop Size 0.0020 1.8342 2.4914 2.0613 2.5092

Avg. Loop AU% Bond 0.0020 0.1731 0.2576 0.1962 0.2621

NLC 0.0018 0.9175 0.0929 0.9249 0.0804

Bulge% 0.0018 0.0195 0.0401 0.0229 0.0423

Avg. Bulge AU% 0.0017 0.0838 0.2053 0.1014 0.2229

Avg. Internal Loop CC% 0.0017 0.0059 0.0479 0.0105 0.0624

Avg. Loop CC% 0.0016 0.0061 0.0474 0.0105 0.0605

Avg. Loop Size 0.0014 1.8318 2.2510 1.9965 2.1841

Avg. Internal Loop SR 0.0013 0.9175 0.1743 0.9042 0.1826

CC% 0.0013 0.0882 0.1063 0.0809 0.0984
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Avg. Stack GG% 0.0013 0.1342 0.1850 0.1215 0.1721

Avg. Bulge U% 0.0012 0.0750 0.2283 0.0911 0.2456

Avg. Stack UG% 0.0011 0.0556 0.1269 0.0644 0.1307

GG% 0.0011 0.1221 0.1134 0.1147 0.1060

Avg. Internal Loop A% 0.0010 0.1619 0.2479 0.1784 0.2483

Avg. Internal Loop CG% 0.0010 0.0079 0.0505 0.0114 0.0590

Avg. Loop CG% 0.0010 0.0074 0.0473 0.0106 0.0537

GC% 0.0009 0.1066 0.1578 0.0977 0.1348

Avg. Stack GC% 0.0009 0.1307 0.2704 0.1149 0.2406

Avg. Stack U% 0.0009 0.2016 0.1058 0.2078 0.1054

C% 0.0009 0.2797 0.1051 0.2737 0.1036

Avg. Internal Loop U% 0.0008 0.0809 0.1804 0.0917 0.1875

Avg. Loop U% 0.0008 0.1150 0.2223 0.1275 0.2246

GC% Bond 0.0008 0.5905 0.2109 0.5793 0.2094

A% 0.0008 0.1742 0.1012 0.1796 0.0992

Avg. Stack NLC 0.0007 0.8812 0.1124 0.8745 0.1340

Avg. Stack UU% 0.0007 0.0395 0.1097 0.0449 0.1117

Avg. Loop GA% 0.0006 0.0385 0.1227 0.0324 0.1067

U% 0.0006 0.2031 0.1047 0.2082 0.1035

Avg. Stack A% 0.0006 0.1462 0.0965 0.1509 0.0949

UG% 0.0006 0.0634 0.0606 0.0665 0.0623

Avg. Internal Loop AG% 0.0006 0.0253 0.0965 0.0304 0.1060

Avg. Bulge CC% 0.0006 0.0019 0.0308 0.0038 0.0460

G% 0.0006 0.3430 0.0968 0.3385 0.0952

Avg. Internal Loop GA% 0.0005 0.0409 0.1327 0.0349 0.1174

UU% 0.0005 0.0448 0.0637 0.0474 0.0638

Avg. Bulge CG% 0.0005 0.0016 0.0268 0.0030 0.0381

Avg. Internal Loop AU% 0.0004 0.0146 0.0585 0.0171 0.0643

Avg. Internal Loop UG% 0.0004 0.0272 0.1307 0.0220 0.1051

Avg. Bulge CU% 0.0004 0.0031 0.0408 0.0050 0.0505

AU% Bond 0.0004 0.2963 0.1918 0.3038 0.1880
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Avg. Loop UG% 0.0004 0.0251 0.1185 0.0206 0.0953

Avg. Internal Loop UC% 0.0004 0.0089 0.0573 0.0113 0.0609

Avg. Bulge GG% 0.0004 0.0018 0.0289 0.0031 0.0377

Avg. Internal Loop GU% Bond 0.0004 0.0705 0.1704 0.0771 0.1695

Avg. Stack AA% 0.0003 0.0193 0.0775 0.0221 0.0800

Avg. Stack CA% 0.0003 0.0348 0.1027 0.0385 0.1043

Avg. Bulge A% 0.0003 0.1302 0.3017 0.1409 0.3053

Avg. Stack GC% 0.0003 0.0551 0.1268 0.0592 0.1270

GA% 0.0003 0.0619 0.0642 0.0640 0.0654

AC% 0.0003 0.0448 0.0558 0.0469 0.0577

Avg. Internal Loop GC% 0.0003 0.0083 0.0582 0.0104 0.0614

GU% Bond 0.0003 0.1132 0.1115 0.1169 0.1119

Avg. Loop US% 0.0003 0.0096 0.0566 0.0115 0.0587

Avg. Internal Loop UU% 0.0003 0.0161 0.0868 0.0191 0.0907

Avg. Loop AU% 0.0003 0.0171 0.0654 0.0191 0.0702

Avg. Stack GU% 0.0003 0.0843 0.1526 0.0799 0.1436

Avg. Loop AG% 0.0002 0.0250 0.0906 0.0280 0.0961

Avg. Bulge GU% 0.0002 0.0035 0.0413 0.0047 0.0470

Avg. Loop GU% Bond 0.0002 0.0778 0.1665 0.0823 0.1626

Avg. Bulge AG% 0.0002 0.0082 0.0739 0.0063 0.0550

Avg. Stack UC% 0.0002 0.0544 0.1270 0.0576 0.1257

Avg. Loop GC% 0.0002 0.0081 0.0548 0.0096 0.0558

AA% 0.0002 0.0376 0.0542 0.0391 0.0544

Avg. Loop A% 0.0002 0.2187 0.2947 0.2264 0.2825

Avg. Bulge GU% Bond 0.0002 0.0326 0.1216 0.0354 0.1247

Avg. Loop CU% 0.0002 0.0100 0.0579 0.0116 0.0604

Avg. Bulge UG% 0.0002 0.0038 0.0435 0.0050 0.0506

Avg. Stack CG% 0.0002 0.0647 0.1931 0.0699 0.1893

Avg. Internal Loop GG% 0.0002 0.0196 0.0911 0.0217 0.0927

Avg. Bulge AU% 0.0002 0.0078 0.0611 0.0095 0.0689

Avg. Internal Loop UA% 0.0001 0.0188 0.0683 0.0204 0.0723
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Avg. Loop GG% 0.0001 0.0173 0.0810 0.0191 0.0821

Avg. Bulge AA% 0.0001 0.0191 0.1098 0.0168 0.0985

CG% 0.0001 0.0661 0.0929 0.0685 0.0962

UA% 0.0001 0.0389 0.0617 0.0404 0.0632

Avg. Loop UA% 0.0001 0.0203 0.0720 0.0218 0.0757

CU% 0.0001 0.0579 0.0599 0.0565 0.0605

Avg. Loop UU% 0.0001 0.0181 0.0907 0.0199 0.0887

Avg. Internal Loop AA% 0.0001 0.0520 0.1413 0.0553 0.1445

Avg. Bulge CA% 0.0001 0.0051 0.0495 0.0062 0.0556

Avg. Stack AU% 0.0001 0.0293 0.1151 0.0314 0.1227

Avg. Stack UA% 0.0001 0.0316 0.1313 0.0338 0.1303

Avg. Loop GU% 0.0001 0.0101 0.0573 0.0111 0.0570

Avg. Loop CA% 0.0001 0.0149 0.0655 0.0162 0.0698

Avg. Bulge UA% 0.0001 0.0084 0.0699 0.0095 0.0688

CA% 0.0001 0.0410 0.0526 0.0418 0.0530

Avg. Bulge AC% 0.0001 0.0055 0.0510 0.0063 0.0550

Avg. Internal Loop GU% 0.0001 0.0097 0.0568 0.0105 0.0572

Avg. Internal Loop AC% 5e-05 0.0172 0.0767 0.0162 0.0689

Avg. Stack CU% 4e-05 0.0598 0.1316 0.0617 0.1281

Avg. Bulge GC% 4e-05 0.0020 0.0292 0.0023 0.0319

AU% 4e-05 0.0369 0.0603 0.0361 0.0585

Avg. Bulge UC% 4e-05 0.0039 0.0447 0.0044 0.0458

Avg. Loop AA% 4e-05 0.0555 0.1421 0.0541 0.1376

Avg. Bulge UU% 3e-05 0.0074 0.0659 0.0078 0.0661

Avg. Loop AC% 3e-05 0.0174 0.0747 0.0167 0.0691

Avg. Internal Loop CU% 2e-05 0.0104 0.0673 0.0111 0.0615

Avg. Internal Loop CA% 2e-05 0.0148 0.0685 0.0156 0.0702

Avg. Stack AC% 2e-05 0.0449 0.1179 0.0442 0.1120

GU% 2e-05 0.0716 0.0680 0.0723 0.0682

UC% 1e-05 0.0538 0.0621 0.0541 0.0640

Avg. Stack AG% 8e-06 0.0512 0.1230 0.0520 0.1189
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Avg. Bulge GA% 2e-06 0.0081 0.0669 0.0077 0.0596

AG% 1e-06 0.0600 0.0581 0.0600 0.0597

Table E.1: Experiment 1 Stem Metric Statistics. Ranks each stem metric from the first

experiment in descending value of F-score. The mean and standard deviation of the metrics

for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

CS 0.0234 51.2419 20.5950 58.1415 24.9893

FS 0.0225 24.3202 16.6562 30.0029 21.5590

Avg. Stack Size 0.0197 9.2210 3.5871 8.2691 3.1423

Stack% 0.0177 0.6399 0.1128 0.6062 0.1395

PP 0.0143 0.6490 0.0980 0.6244 0.1080

Avg. Stack CC% 0.0073 0.1177 0.1806 0.0889 0.1577

Avg. Hairpin Loop GG% 0.0065 0.0337 0.1076 0.0532 0.1357

Avg. Stack GG% 0.0065 0.1497 0.1923 0.1203 0.1748

Avg. Hairpin Loop AG% 0.0058 0.0547 0.1119 0.0730 0.1265

Avg. Stack C% 0.0053 0.3001 0.1111 0.2836 0.1155

Avg. Hairpin Loop SLC 0.0051 0.3864 0.0800 0.3746 0.0865

Avg. Hairpin Loop Size 0.0051 5.2396 2.0148 5.5494 2.3551

Avg. Stack G% 0.0050 0.3564 0.1033 0.3415 0.1107

Avg. Hairpin Loop AA% 0.0047 0.1897 0.2236 0.1587 0.2191

Avg. Stack SLC 0.0044 0.4294 0.1078 0.4442 0.1161

Avg. Bulge FS 0.0044 4.9117 1.6795 4.7531 1.6186

Avg. Bulge NLC 0.0042 0.2541 0.4250 0.3112 0.4528

Avg. Bulge SLC 0.0042 0.2235 0.3877 0.2761 0.4172

Avg. Bulge CS 0.0041 5.3227 1.8730 5.1170 1.9184

Avg. Bulge GC% Bond 0.0038 0.1557 0.3127 0.1961 0.3394

GC% Bond 0.0037 0.6016 0.2184 0.5869 0.2211

Avg. Stack UG% 0.0036 0.0496 0.1210 0.0646 0.1336

Avg. Internal Loop SLC 0.0033 0.3159 0.3734 0.3594 0.3927

Avg. Hairpin Loop AU% 0.0032 0.0557 0.1084 0.0685 0.1213

Avg. Loop SLC 0.0032 0.4109 0.3999 0.4572 0.4091

Avg. Internal Loop GA% 0.0032 0.0479 0.1442 0.0328 0.1144

Avg. Loop FS 0.0029 4.8513 1.6959 4.6180 1.4910

Avg. Loop GA% 0.0028 0.0437 0.1315 0.0308 0.1051

AU% Bond 0.0027 0.2838 0.1975 0.2945 0.1975
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Avg. Internal Loop FS 0.0026 4.8131 1.7501 4.5601 1.5454

Avg. Loop G% 0.0025 0.1311 0.2145 0.1538 0.2425

Bulge% 0.0025 0.0158 0.0348 0.0193 0.0374

Hairpin% 0.0024 0.2551 0.1407 0.2698 0.1587

Avg. Hairpin Loop GA% 0.0023 0.1196 0.1646 0.1041 0.1515

Avg. Loop CS 0.0023 5.6648 1.9669 5.2972 1.8067

Avg. Loop C% 0.0023 0.0775 0.1678 0.0945 0.1810

Avg. Internal Loop G% 0.0022 0.1303 0.2196 0.1519 0.2491

Avg. Internal Loop CS 0.0021 5.7498 2.0266 5.3610 1.8732

Avg. Bulge Size 0.0021 0.4800 1.1009 0.5798 1.2096

Loop% 0.0020 0.0959 0.1089 0.1058 0.1119

Avg. Bulge G% 0.0020 0.0371 0.1555 0.0523 0.1858

Avg. Bulge C% 0.0019 0.0392 0.1647 0.0552 0.1919

Avg. Internal Loop C% 0.0018 0.0638 0.1413 0.0763 0.1531

Avg. Loop NLC 0.0018 0.5076 0.4667 0.5471 0.4652

Avg. Internal Loop NLC 0.0016 0.4087 0.4599 0.4457 0.4646

AC% 0.0016 0.0513 0.0468 0.0551 0.0497

UG% 0.0016 0.0607 0.0484 0.0645 0.0507

Avg. Stack CA% 0.0016 0.0305 0.0967 0.0385 0.1064

Avg. Hairpin Loop CC% 0.0016 0.0271 0.0927 0.0354 0.1081

Avg. Loop AA% 0.0016 0.0638 0.1530 0.0522 0.1362

Avg. Hairpin Loop UU% 0.0015 0.0703 0.1627 0.0581 0.1417

Avg. Stack U% 0.0015 0.1961 0.1093 0.2045 0.1113

Avg. Internal Loop GC% Bond 0.0015 0.2268 0.3264 0.2522 0.3383

Avg. Bulge AU% 0.0013 0.0787 0.2003 0.0938 0.2166

Avg. Loop GC% Bond 0.0013 0.2955 0.3482 0.3210 0.3528

Avg. Bulge U% 0.0013 0.0685 0.2184 0.0841 0.2377

Avg. Stack A% 0.0013 0.1398 0.0993 0.1466 0.0997

Avg. Hairpin Loop AG% 0.0012 0.0519 0.1093 0.0595 0.1147

Avg. Stack GC% 0.0012 0.1340 0.2765 0.1154 0.2451

SLC 0.0012 0.8827 0.0457 0.8860 0.0495
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Avg. Loop CC% 0.0012 0.0070 0.0520 0.0107 0.0621

Avg. Internal Loop CG% 0.0012 0.0074 0.0481 0.0111 0.0581

GC% Bond 0.0011 0.6016 0.2184 0.5869 0.2211

CG% 0.0011 0.0696 0.0627 0.0654 0.0638

Avg. Loop CG% 0.0011 0.0071 0.0460 0.0105 0.0536

Avg. Stack UU% 0.0010 0.0370 0.1074 0.0441 0.1121

Avg. Internal Loop CC% 0.0010 0.0070 0.0537 0.0104 0.0619

AU% 0.0010 0.0428 0.0508 0.0459 0.0516

Avg. Internal Loop AU% Bond 0.0010 0.1412 0.2491 0.1568 0.2570

CC% 0.0010 0.0654 0.0624 0.0617 0.0645

Avg. Internal Loop GC% 0.0009 0.0066 0.0473 0.0101 0.0615

Internal Loop% 0.0009 0.0800 0.1048 0.0866 0.1060

Avg. Internal Loop UG% 0.0009 0.0275 0.1328 0.0203 0.1009

Avg. Stack CG% 0.0009 0.0612 0.1877 0.0731 0.1973

Avg. Bulge CC% 0.0009 0.0016 0.0301 0.0039 0.0479

Avg. Hairpin Loop UC% 0.0009 0.0451 0.1031 0.0393 0.0976

CA% 0.0009 0.0456 0.0452 0.0484 0.0466

Avg. Stack NLC 0.0009 0.8717 0.1265 0.8630 0.1614

Avg. Hairpin Loop C% 0.0009 0.1574 0.1701 0.1685 0.1784

Size 0.0009 28.0147 19.2559 29.1799 21.4146

Avg. Loop UG% 0.0009 0.0256 0.1231 0.0192 0.0927

Avg. Loop AU% Bond 0.0008 0.1683 0.2530 0.1833 0.2577

Avg. Bulge AG% 0.0008 0.0104 0.0876 0.0063 0.0544

AU% Bond 0.0008 0.2838 0.1975 0.2945 0.1975

G% 0.0008 0.3129 0.0893 0.3080 0.0932

Avg. Hairpin Loop GC% 0.0007 0.0460 0.1085 0.0407 0.1001

GG% 0.0007 0.1008 0.0781 0.0965 0.0786

Avg. Hairpin Loop UG% 0.0007 0.0456 0.1027 0.0516 0.1107

Avg. Stack AA% 0.0006 0.0173 0.0737 0.0209 0.0786

C% 0.0006 0.2424 0.0848 0.2384 0.0874

U% 0.0006 0.2069 0.0994 0.2117 0.1004
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Avg. Hairpin Loop CU% 0.0006 0.0350 0.0931 0.0397 0.0972

Avg. Loop GC% 0.0006 0.0068 0.0460 0.0093 0.0555

Avg. Hairpin Loop CA% 0.0006 0.0617 0.1183 0.0565 0.1126

Avg. Hairpin Loop A% 0.0005 0.3886 0.2249 0.3775 0.2246

GU% Bond 0.0005 0.1147 0.1155 0.1186 0.1197

A% 0.0005 0.2378 0.0962 0.2419 0.1005

GC% 0.0005 0.0770 0.0744 0.0739 0.0684

Avg. Hairpin Loop NLC 0.0005 0.8681 0.1072 0.8730 0.1098

Avg. Bulge GG% 0.0005 0.0018 0.0281 0.0033 0.0396

Avg. Bulge CG% 0.0004 0.0016 0.0278 0.0030 0.0384

Avg. Bulge AC% 0.0004 0.0042 0.0454 0.0062 0.0547

Avg. Loop U% 0.0004 0.1122 0.2170 0.1207 0.2213

Avg. Bulge AA% 0.0004 0.0204 0.1138 0.0162 0.0963

UA% 0.0004 0.0482 0.0536 0.0502 0.0539

GA% 0.0004 0.0735 0.0555 0.0757 0.0570

Avg. Internal Loop GG% 0.0004 0.0177 0.0825 0.0210 0.0910

Avg. Internal Loop AA% 0.0004 0.0585 0.1494 0.0529 0.1428

Avg. Loop A% 0.0003 0.2262 0.2995 0.2159 0.2803

Avg. Internal Loop AU% 0.0003 0.0141 0.0558 0.0162 0.0625

Avg. Stack GC% 0.0003 0.0525 0.1242 0.0567 0.1268

Avg. Bulge A% 0.0003 0.1213 0.2943 0.1318 0.2977

Avg. Bulge CU% 0.0003 0.0035 0.0453 0.0049 0.0500

Avg. Loop GG% 0.0003 0.0163 0.0750 0.0187 0.0811

Avg. Internal Loop AC% 0.0003 0.0183 0.0788 0.0159 0.0697

Avg. Stack FS 0.0003 2.9197 1.1824 2.8533 1.1478

GU% Bond 0.0002 0.1147 0.1155 0.1186 0.1197

Avg. Bulge GU% 0.0002 0.0033 0.0418 0.0047 0.0466

Avg. Bulge UG% 0.0002 0.0032 0.0427 0.0046 0.0483

AA% 0.0002 0.0780 0.0734 0.0757 0.0802

Avg. Internal Loop U% 0.0002 0.0816 0.1791 0.0864 0.1828

Avg. Internal Loop UU% 0.0002 0.0162 0.0875 0.0185 0.0893
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CU% 0.0001 0.0535 0.0458 0.0524 0.0462

Avg. Internal Loop SR 0.0001 0.9127 0.1786 0.9088 0.1807

Avg. Hairpin Loop G% 0.0001 0.2318 0.1773 0.2364 0.1944

UU% 0.0001 0.0490 0.0615 0.0504 0.0626

Avg. Loop AU% 0.0001 0.0167 0.0636 0.0180 0.0676

Avg. Internal Loop AG% 0.0001 0.0266 0.1002 0.0288 0.1036

Avg. Internal Loop GU% 0.0001 0.0112 0.0601 0.0100 0.0550

Avg. Hairpin Loop CG% 0.0001 0.0384 0.0989 0.0365 0.0955

Avg. Stack AG% 0.0001 0.0495 0.1212 0.0522 0.1218

Avg. Hairpin Loop U% 0.0001 0.2222 0.2188 0.2177 0.2056

Avg. Internal Loop CA% 0.0001 0.0163 0.0705 0.0149 0.0684

AG% 0.0001 0.0723 0.0501 0.0716 0.0537

Avg. Bulge GA% 0.0001 0.0063 0.0585 0.0072 0.0557

Avg. Internal Loop UC% 0.0001 0.0097 0.0613 0.0110 0.0603

Avg. Internal Loop CU% 0.0001 0.0119 0.0762 0.0107 0.0605

Avg. Bulge CA% 0.0001 0.0054 0.0519 0.0061 0.0546

Avg. Bulge AU% 0.0001 0.0079 0.0625 0.0087 0.0651

Avg. Stack UA% 0.0001 0.0297 0.1300 0.0316 0.1284

Avg. Stack AC% 0.0001 0.0408 0.1102 0.0425 0.1123

Avg. Internal Loop GU% Bond 0.0001 0.0777 0.1792 0.0750 0.1688

Avg. Loop GU% Bond 0.0001 0.0832 0.1735 0.0806 0.1637

Avg. Internal Loop Size 0.0001 1.9395 2.6061 1.9745 2.5133

Avg. Bulge GU% Bond 5e-05 0.0319 0.1222 0.0335 0.1222

GU% 5e-05 0.0641 0.0492 0.0647 0.0502

Avg. Loop US% 5e-05 0.0102 0.0593 0.0111 0.0575

Avg. Stack UC% 4e-05 0.0533 0.1264 0.0546 0.1247

Avg. Loop GU% 4e-05 0.0115 0.0616 0.0108 0.0561

Avg. Bulge GC% 3e-05 0.0017 0.0256 0.0019 0.0272

Avg. Loop AG% 3e-05 0.0279 0.0980 0.0268 0.0946

Avg. Loop AC% 3e-05 0.0174 0.0737 0.0166 0.0700

Avg. Stack CU% 3e-05 0.0608 0.1328 0.0625 0.1319
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Avg. Loop UA% 3e-05 0.0221 0.0736 0.0211 0.0757

Avg. Stack AU% 3e-05 0.0299 0.1152 0.0309 0.1244

Avg. Hairpin Loop GU% 2e-05 0.0518 0.1078 0.0507 0.1086

UC% 2e-05 0.0482 0.0458 0.0477 0.0454

Avg. Bulge UC% 2e-05 0.0039 0.0441 0.0042 0.0444

Avg. Bulge UU% 2e-05 0.0073 0.0663 0.0067 0.0602

Avg. Hairpin Loop UA% 1e-05 0.0738 0.1239 0.0743 0.1245

Avg. Loop Size 1e-05 1.9481 2.3928 1.9302 2.2133

Avg. Internal Loop UA% 9e-06 0.0200 0.0686 0.0194 0.0707

Avg. Bulge UA% 9e-06 0.0089 0.0711 0.0090 0.0674

NLC 6e-06 0.9618 0.0297 0.9616 0.0320

Avg. Loop UU% 3e-06 0.0186 0.0931 0.0190 0.0866

Avg. Loop CU% 3e-06 0.0115 0.0638 0.0112 0.0592

Avg. Loop CA% 3e-06 0.0161 0.0664 0.0158 0.0692

Avg. Stack GU% 2e-06 0.0788 0.1453 0.0794 0.1462

Avg. Internal Loop A% 1e-06 0.1700 0.2519 0.1693 0.2454

Avg. Stack CS 1e-06 6.2529 1.8212 5.9132 1.7104

Table E.2: Experiment 1 Stemloop Metric Statistics. Ranks each stemloop metric from

the first experiment in descending value of F-score. The mean and standard deviation of

the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Size 0.0153 24.7129 20.2033 30.1691 23.8731

Loop% 0.0135 0.0975 0.1103 0.1238 0.1160

PP 0.0135 0.9025 0.1103 0.8762 0.1160

Avg. Stack FS 0.0130 2.6973 1.0702 2.7844 1.0865

Avg. Stack CS 0.0123 6.3172 1.7607 6.4046 1.7383

SLC 0.0123 0.5561 0.2100 0.6027 0.2106

Internal Loop% 0.0122 0.0772 0.1043 0.1010 0.1116

Avg. Internal Loop NLC 0.0119 0.3996 0.4630 0.5008 0.4647

Avg. Stack% 0.0118 0.8949 0.1216 0.8680 0.1254

Avg. Internal Loop SLC 0.0110 0.3232 0.3904 0.4058 0.3957

Avg. Loop NLC 0.0106 0.5119 0.4730 0.6073 0.4524

Avg. Internal Loop Size 0.0102 1.6902 2.3105 2.1778 2.4989

Avg. Internal Loop CS 0.0101 5.5350 2.0799 5.6750 1.9474

Avg. Loop Size 0.0099 1.6684 2.0287 2.0856 2.1411

Avg. Loop CS 0.0097 5.4821 1.9902 5.6083 1.8800

Avg. Internal Loop FS 0.0094 4.8332 1.8502 4.8980 1.6819

Avg. Loop SLC 0.0092 0.4323 0.4169 0.5111 0.4015

Avg. Loop FS 0.0090 4.9058 1.7774 4.9591 1.6238

Avg. Internal Loop GC% Bond 0.0071 0.2201 0.3280 0.2763 0.3402

Avg. Loop GC% Bond 0.0065 0.2940 0.3477 0.3501 0.3488

Avg. Bulge CS 0.0064 5.2905 2.0600 5.3907 1.9777

Avg. Bulge FS 0.0062 4.9968 1.8924 5.0597 1.7483

Avg. Internal Loop A% 0.0062 0.1513 0.2416 0.1905 0.2517

Avg. Internal Loop SR 0.0050 0.9232 0.1692 0.8981 0.1851

Avg. Internal Loop C% 0.0048 0.0629 0.1378 0.0829 0.1558

Avg. Bulge NLC 0.0046 0.3007 0.4490 0.3633 0.4702

Avg. Internal Loop AU% Bond 0.0046 0.1498 0.2628 0.1861 0.2724

Avg. Internal Loop G% 0.0045 0.1361 0.2416 0.1702 0.2554

Avg. Bulge SLC 0.0043 0.2691 0.4147 0.3254 0.4363
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Avg. Loop G% 0.0042 0.1371 0.2351 0.1686 0.2438

Avg. Loop C% 0.0042 0.0796 0.1697 0.1023 0.1841

Avg. Loop AU% Bond 0.0041 0.1795 0.2631 0.2134 0.2670

Avg. Internal Loop GU% Bond 0.0034 0.0609 0.1574 0.0800 0.1704

Avg. Loop A% 0.0034 0.2070 0.2858 0.2405 0.2848

Avg. Internal Loop CC% 0.0033 0.0046 0.0408 0.0106 0.0631

Avg. Bulge GC% Bond 0.0031 0.1883 0.3337 0.2270 0.3535

Avg. Internal Loop AA% 0.0029 0.0436 0.1308 0.0586 0.1466

Avg. Bulge Size 0.0028 0.5273 1.0497 0.6472 1.1906

Avg. Bulge G% 0.0027 0.0420 0.1623 0.0611 0.1975

Avg. Internal Loop U% 0.0025 0.0805 0.1836 0.0988 0.1935

Avg. Loop CC% 0.0025 0.0052 0.0425 0.0102 0.0582

Avg. Bulge C% 0.0022 0.0443 0.1683 0.0619 0.2010

Avg. Bulge AU% 0.0022 0.0913 0.2118 0.1118 0.2307

Avg. Loop GU% Bond 0.0022 0.0698 0.1553 0.0845 0.1611

Avg. Loop AG% 0.0021 0.0211 0.0816 0.0296 0.0981

Avg. Loop AA% 0.0021 0.0445 0.1265 0.0566 0.1396

Avg. Internal Loop AG% 0.0019 0.0236 0.0934 0.0326 0.1090

Avg. Stack GU% 0.0016 0.0929 0.1625 0.0805 0.1401

AA% 0.0015 0.0367 0.0523 0.0407 0.0520

Avg. Loop U% 0.0015 0.1196 0.2299 0.1366 0.2285

A% 0.0014 0.1785 0.0942 0.1854 0.0912

Avg. Internal Loop UC% 0.0014 0.0076 0.0505 0.0118 0.0618

Avg. Loop CU% 0.0013 0.0081 0.0500 0.0121 0.0620

Avg. Loop UA% 0.0012 0.0177 0.0692 0.0228 0.0758

Avg. Internal Loop UA% 0.0011 0.0171 0.0681 0.0217 0.0743

Avg. Stack GG% 0.0011 0.1117 0.1719 0.1230 0.1685

Avg. Internal Loop GU% 0.0011 0.0076 0.0522 0.0111 0.0600

Avg. Bulge U% 0.0010 0.0845 0.2415 0.1005 0.2555

Avg. Loop US% 0.0010 0.0085 0.0519 0.0120 0.0604

Bulge% 0.0010 0.0203 0.0386 0.0228 0.0398
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NLC 0.0010 0.9244 0.0825 0.9294 0.0742

Avg. Stack SLC 0.0010 0.4013 0.0949 0.4070 0.0903

GC% 0.0010 0.1025 0.1349 0.0946 0.1139

Avg. Loop GU% 0.0010 0.0082 0.0512 0.0114 0.0582

C% 0.0009 0.2742 0.0979 0.2685 0.0946

Avg. Internal Loop GA% 0.0008 0.0315 0.1137 0.0379 0.1212

Avg. Loop CG% 0.0008 0.0079 0.0489 0.0107 0.0538

Avg. Internal Loop CG% 0.0008 0.0087 0.0545 0.0117 0.0601

Avg. Internal Loop CU% 0.0008 0.0085 0.0545 0.0116 0.0628

Avg. Stack NLC 0.0007 0.8945 0.0870 0.8900 0.0818

Avg. Bulge CU% 0.0007 0.0028 0.0380 0.0051 0.0511

Avg. Internal Loop AU% 0.0006 0.0151 0.0620 0.0183 0.0666

Avg. Stack Size 0.0006 10.3486 3.6571 10.1755 3.5227

Avg. Internal Loop CA% 0.0006 0.0130 0.0664 0.0165 0.0726

UU% 0.0005 0.0466 0.0618 0.0493 0.0606

Avg. Loop AU% 0.0005 0.0173 0.0680 0.0206 0.0734

Avg. Internal Loop UU% 0.0005 0.0159 0.0854 0.0200 0.0925

Avg. Stack GC% 0.0005 0.1264 0.2608 0.1142 0.2344

Avg. Stack UC% 0.0005 0.0558 0.1275 0.0616 0.1270

Avg. Loop UU% 0.0005 0.0170 0.0846 0.0213 0.0913

Avg. Loop CA% 0.0005 0.0132 0.0637 0.0166 0.0706

Avg. Bulge CG% 0.0005 0.0017 0.0256 0.0030 0.0378

UC% 0.0005 0.0573 0.0591 0.0547 0.0543

Avg. Bulge GU% Bond 0.0005 0.0326 0.1178 0.0379 0.1279

Avg. Stack AC% 0.0004 0.0515 0.1285 0.0464 0.1117

GU% Bond 0.0004 0.1106 0.1053 0.1148 0.1004

GU% 0.0004 0.0746 0.0649 0.0721 0.0571

AG% 0.0004 0.0597 0.0540 0.0618 0.0524

Avg. Bulge A% 0.0004 0.1414 0.3097 0.1532 0.3150

Avg. Bulge AU% 0.0003 0.0081 0.0609 0.0105 0.0735

UA% 0.0003 0.0402 0.0618 0.0422 0.0591
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G% 0.0003 0.3358 0.0912 0.3327 0.0875

Avg. Stack UU% 0.0003 0.0419 0.1114 0.0459 0.1111

Avg. Loop GA% 0.0003 0.0313 0.1091 0.0346 0.1087

Avg. Stack GC% 0.0003 0.0581 0.1297 0.0624 0.1271

Avg. Bulge UU% 0.0003 0.0067 0.0619 0.0093 0.0732

GC% Bond 0.0003 0.5749 0.1981 0.5689 0.1921

Avg. Bulge CC% 0.0002 0.0024 0.0333 0.0036 0.0434

Avg. Bulge GG% 0.0002 0.0017 0.0281 0.0028 0.0350

Avg. Stack C% 0.0002 0.2907 0.0997 0.2878 0.0968

Avg. Stack U% 0.0002 0.2093 0.0997 0.2121 0.0968

Avg. Bulge AG% 0.0002 0.0049 0.0473 0.0064 0.0559

Avg. Bulge UA% 0.0002 0.0081 0.0704 0.0101 0.0705

Avg. Bulge GA% 0.0002 0.0107 0.0784 0.0085 0.0645

Avg. Stack AU% 0.0002 0.0285 0.1142 0.0321 0.1203

Avg. Bulge GU% 0.0002 0.0037 0.0407 0.0048 0.0475

Avg. Bulge CA% 0.0001 0.0048 0.0452 0.0063 0.0571

Avg. Stack CG% 0.0001 0.0700 0.2012 0.0656 0.1780

UG% 0.0001 0.0668 0.0577 0.0681 0.0545

Avg. Stack CA% 0.0001 0.0410 0.1107 0.0385 0.1013

U% 0.0001 0.2115 0.0975 0.2133 0.0951

Avg. Stack CC% 0.0001 0.0894 0.1596 0.0928 0.1536

GA% 0.0001 0.0640 0.0611 0.0651 0.0561

Avg. Bulge UG% 0.0001 0.0047 0.0440 0.0055 0.0535

Avg. Bulge AC% 0.0001 0.0075 0.0595 0.0063 0.0553

Avg. Stack AA% 0.0001 0.0222 0.0826 0.0237 0.0819

Avg. Bulge UC% 0.0001 0.0039 0.0448 0.0048 0.0477

Avg. Stack UA% 0.0001 0.0343 0.1325 0.0366 0.1326

Avg. Internal Loop UG% 0.0001 0.0262 0.1266 0.0243 0.1103

CU% 0.0001 0.0585 0.0555 0.0575 0.0524

Avg. Stack CU% 0.0001 0.0583 0.1294 0.0606 0.1229

Avg. Stack AG% 0.0001 0.0534 0.1251 0.0517 0.1149
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Avg. Internal Loop AC% 0.0001 0.0157 0.0724 0.0166 0.0679

Avg. Loop UG% 0.0001 0.0239 0.1116 0.0224 0.0987

Avg. Stack G% 0.0001 0.3445 0.0915 0.3433 0.0878

Avg. Stack A% 0.0001 0.1555 0.0915 0.1567 0.0877

Avg. Bulge GC% 0.0001 0.0023 0.0320 0.0028 0.0373

CA% 4e-05 0.0418 0.0499 0.0426 0.0466

Avg. Loop GG% 4e-05 0.0185 0.0879 0.0196 0.0832

AU% Bond 3e-05 0.3144 0.1818 0.3163 0.1736

CG% 2e-05 0.0672 0.0900 0.0681 0.0822

Avg. Internal Loop GG% 2e-05 0.0218 0.1016 0.0228 0.0949

Avg. Loop AC% 2e-05 0.0176 0.0757 0.0169 0.0679

AC% 1e-05 0.0476 0.0525 0.0474 0.0497

GG% 8e-06 0.1156 0.1030 0.1151 0.0957

AU% 6e-06 0.0383 0.0595 0.0379 0.0550

Avg. Stack UG% 4e-06 0.0646 0.1352 0.0642 0.1266

Avg. Internal Loop GC% 3e-06 0.0105 0.0698 0.0106 0.0614

CC% 2e-06 0.0828 0.0960 0.0826 0.0899

Avg. Loop GC% 2e-06 0.0098 0.0632 0.0099 0.0563

Avg. Bulge AA% 1e-06 0.0177 0.1050 0.0176 0.1015

Table E.3: Experiment 1 Bridge Metric Statistics. Ranks each bridge metric from the

first experiment in descending value of F-score. The mean and standard deviation of the

metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Tail G% 0.0718 0.1173 0.1881 0.2332 0.2415

Avg. Joint NLC 0.0683 0.2816 0.4316 0.5140 0.4593

Avg. Joint CS 0.0682 3.7600 1.9277 4.0320 2.0743

Avg. Joint-Tail G% 0.0655 0.1306 0.1840 0.2315 0.2097

Joint% 0.0575 0.0898 0.1659 0.1792 0.2057

G% 0.0567 0.0930 0.1194 0.1485 0.1131

Avg. Joint FS 0.0561 1.1378 0.7635 1.0057 0.0805

Avg. Joint A% 0.0537 0.1192 0.2475 0.2523 0.3229

Size 0.0489 10.3385 7.0960 13.4796 7.1502

Avg. Joint Size 0.0488 1.0654 2.2723 2.3128 3.2940

Avg. Joint-Tail NLC 0.0417 0.8309 0.2226 0.9053 0.1292

Avg. Joint SLC 0.0411 0.1923 0.3268 0.3290 0.3487

AA% 0.0375 0.0743 0.1499 0.1415 0.1951

Avg. Tail AC% 0.0357 0.0881 0.1507 0.0395 0.1018

Avg. Tail UU% 0.0350 0.1253 0.2616 0.0475 0.1327

Avg. Joint-Tail UU% 0.0328 0.1103 0.2308 0.0454 0.1028

Avg. Tail CC% 0.0314 0.0689 0.1396 0.0271 0.0916

Avg. Joint-Tail AC% 0.0305 0.0884 0.1440 0.0459 0.0944

Avg. Joint-Tail AA% 0.0302 0.0630 0.1373 0.1164 0.1694

UU% 0.0279 0.1250 0.2525 0.0584 0.1241

Avg. Joint-Tail CC% 0.0271 0.0683 0.1371 0.0304 0.0886

GU% 0.0262 0.0271 0.0900 0.0649 0.1390

Avg. Tail GU% 0.0258 0.0211 0.0917 0.0618 0.1546

Avg. Joint-Tail GU% 0.0257 0.0220 0.0794 0.0550 0.1220

Avg. Joint AA% 0.0240 0.0323 0.1172 0.0822 0.1958

CC% 0.0223 0.0737 0.1397 0.0371 0.1027

Avg. Tail NLC 0.0220 0.8096 0.2477 0.8776 0.2093

AC% 0.0196 0.0926 0.1406 0.0573 0.1091

Avg. Joint-Tail CA% 0.0178 0.0711 0.1298 0.0413 0.0909
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Avg. Joint-Tail AG% 0.0170 0.0289 0.0690 0.0513 0.0996

Avg. Tail AA% 0.0170 0.0593 0.1506 0.1038 0.1895

Avg. Tail CA% 0.0167 0.0725 0.1405 0.0402 0.1084

Avg. Joint C% 0.0166 0.0502 0.1533 0.0950 0.1926

GC% 0.0159 0.0183 0.0757 0.0426 0.1139

Avg. Joint-Tail GC% 0.0159 0.0152 0.0636 0.0367 0.1030

Avg. Joint-Tail Size 0.0156 3.7313 2.3429 4.3963 2.9611

Avg. Joint-Tail GA% 0.0147 0.0456 0.0973 0.0735 0.1307

Avg. Tail GA% 0.0138 0.0443 0.1074 0.0758 0.1558

Joint-Tail% 0.0129 0.6265 0.2026 0.6688 0.1691

Avg. Tail AG% 0.0128 0.0277 0.0754 0.0497 0.1154

Avg. Joint U% 0.0125 0.0643 0.1750 0.1063 0.2011

AG% 0.0124 0.0406 0.0848 0.0625 0.1097

Avg. Tail C% 0.0124 0.1940 0.2273 0.1467 0.1952

Avg. Joint G% 0.0120 0.0678 0.1843 0.1110 0.2093

CA% 0.0120 0.0805 0.1381 0.0531 0.1107

Avg. Joint AG% 0.0116 0.0113 0.0612 0.0309 0.1137

Avg. Tail U% 0.0113 0.2762 0.3142 0.2171 0.2334

Avg. Joint-Tail CS 0.0111 4.1960 2.0337 4.4271 1.6563

Avg. Joint GA% 0.0106 0.0165 0.0817 0.0383 0.1263

Avg. Tail GC% 0.0103 0.0149 0.0776 0.0339 0.1066

Avg. Joint-Tail U% 0.0099 0.2632 0.2957 0.2127 0.2003

A% 0.0087 0.2262 0.1440 0.2530 0.1412

Avg. Joint AU% 0.0084 0.0165 0.0799 0.0335 0.1051

Tail% 0.0084 0.5368 0.2499 0.4896 0.2665

Avg. Joint-Tail C% 0.0083 0.1953 0.2159 0.1595 0.1737

CG% 0.0072 0.0143 0.0642 0.0263 0.0769

Avg. Joint UA% 0.0069 0.0184 0.0753 0.0336 0.1051

UA% 0.0063 0.0518 0.1045 0.0693 0.1163

Avg. Tail Size 0.0063 3.7609 2.6397 4.2400 3.3848

NLC 0.0062 0.7580 0.1376 0.7783 0.1587
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Avg. Joint AC% 0.0060 0.0175 0.0811 0.0323 0.1079

C% 0.0060 0.1334 0.1333 0.1148 0.1049

Avg. Tail GG% 0.0059 0.0207 0.0657 0.0346 0.1090

Avg. Joint CC% 0.0058 0.0064 0.0479 0.0168 0.0847

Avg. Joint GC% 0.0056 0.0067 0.0454 0.0187 0.1042

Avg. Joint-Tail GG% 0.0054 0.0223 0.0619 0.0342 0.0961

Avg. Joint-Tail UG% 0.0053 0.0198 0.0642 0.0304 0.0810

Avg. Tail UG% 0.0052 0.0188 0.0688 0.0306 0.0939

UG% 0.0051 0.0260 0.0802 0.0382 0.0906

Avg. Joint UC% 0.0050 0.0082 0.0583 0.0180 0.0788

Avg. Joint CA% 0.0050 0.0116 0.0570 0.0221 0.0887

Avg. Joint UU% 0.0050 0.0121 0.0675 0.0236 0.0936

U% 0.0048 0.1740 0.1789 0.1526 0.1199

GA% 0.0046 0.0651 0.1398 0.0842 0.1403

Avg. Joint-Tail CG% 0.0045 0.0117 0.0574 0.0198 0.0628

Avg. Tail FS 0.0042 1.3536 1.8006 1.1205 0.3185

Avg. Joint UG% 0.0039 0.0072 0.0470 0.0145 0.0680

Avg. Tail CS 0.0035 4.3571 2.4175 4.5407 1.8622

Avg. Tail CG% 0.0034 0.0108 0.0567 0.0181 0.0684

SLC 0.0032 0.7048 0.3902 0.6541 0.4770

Avg. Joint CG% 0.0029 0.0047 0.0464 0.0104 0.0580

Avg. Joint-Tail FS 0.0028 1.2912 1.4603 1.0847 0.2430

Avg. Joint CU% 0.0028 0.0084 0.0513 0.0144 0.0628

Avg. Joint-Tail A% 0.0021 0.3605 0.2634 0.3843 0.2414

GU% Bond 0.0020 0.0855 0.2406 0.1073 0.2553

Avg. Joint-Tail UA% 0.0016 0.0477 0.1033 0.0562 0.1094

Avg. Joint GG% 0.0016 0.0078 0.0540 0.0130 0.0758

GG% 0.0016 0.0332 0.0867 0.0412 0.1121

Avg. Joint-Tail SLC 0.0015 0.5353 0.2277 0.5527 0.2096

Avg. Tail SLC 0.0015 0.5163 0.2455 0.5360 0.2571

UC% 0.0010 0.0327 0.0966 0.0386 0.0874
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Avg. Joint GU% 0.0010 0.0123 0.0746 0.0172 0.0783

GC% Bond 0.0007 0.6744 0.4181 0.6532 0.3897

Avg. Joint-Tail CU% 0.0006 0.0374 0.1056 0.0326 0.0806

AU% 0.0004 0.0679 0.1406 0.0734 0.1296

Avg. Joint-Tail UC% 0.0004 0.0273 0.0881 0.0307 0.0747

Avg. Tail CU% 0.0004 0.0377 0.1103 0.0334 0.0985

Avg. Tail A% 0.0003 0.3487 0.2821 0.3598 0.2825

CU% 0.0002 0.0441 0.1158 0.0408 0.0958

Avg. Tail UA% 0.0002 0.0492 0.1180 0.0525 0.1197

Avg. Tail AU% 0.0001 0.0627 0.1482 0.0592 0.1359

Avg. Joint-Tail AU% 3e-05 0.0610 0.1400 0.0595 0.1120

Avg. Tail UC% 3e-05 0.0276 0.0921 0.0285 0.0846

AU% Bond 1e-06 0.2402 0.3831 0.2396 0.3463

Table E.4: Experiment 1 External Loop Metric Statistics. Ranks each external loop metric

from the first experiment in descending value of F-score. The mean and standard deviation

of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Joint FS 0.0081 1.2161 1.5395 1.0177 0.2591

Avg. Joint-Tail FS 0.0081 1.2161 1.5395 1.0177 0.2591

Avg. Joint CC% 0.0023 0.0175 0.0562 0.0237 0.0702

Avg. Joint-Tail CC% 0.0023 0.0175 0.0562 0.0237 0.0702

CA% 0.0018 0.0618 0.1117 0.0529 0.0978

Joint% 0.0016 0.5883 0.1244 0.5984 0.1298

Joint-Tail% 0.0016 0.5883 0.1244 0.5984 0.1298

Avg. Joint C% 0.0014 0.1388 0.1458 0.1500 0.1540

Avg. Joint-Tail C% 0.0014 0.1388 0.1458 0.1500 0.1540

Avg. Joint Size 0.0014 3.8014 2.0079 3.9574 2.1261

Avg. Joint-Tail Size 0.0014 3.8014 2.0079 3.9574 2.1261

NLC 0.0013 0.8955 0.0787 0.8901 0.0831

Avg. Joint NLC 0.0013 0.9072 0.0766 0.9017 0.0820

Avg. Joint-Tail NLC 0.0013 0.9072 0.0766 0.9017 0.0820

Avg. Joint CA% 0.0013 0.0464 0.0915 0.0402 0.0808

Avg. Joint-Tail CA% 0.0013 0.0464 0.0915 0.0402 0.0808

C% 0.0013 0.0867 0.0759 0.0922 0.0795

Avg. Joint CS 0.0012 4.0294 1.9903 3.9119 1.3182

Avg. Joint-Tail CS 0.0012 4.0294 1.9903 3.9119 1.3182

CC% 0.0011 0.0241 0.0745 0.0294 0.0847

Avg. Joint GA% 0.0009 0.0822 0.1232 0.0751 0.1192

Avg. Joint-Tail GA% 0.0009 0.0822 0.1232 0.0751 0.1192

Avg. Joint GU% 0.0007 0.0342 0.0826 0.0300 0.0746

Avg. Joint-Tail GU% 0.0007 0.0342 0.0826 0.0300 0.0746

GU% 0.0007 0.0468 0.1043 0.0415 0.0978

GU% Bond 0.0007 0.1142 0.1787 0.1046 0.1746

SLC 0.0006 0.4759 0.1662 0.4679 0.1749

A% 0.0006 0.2704 0.1125 0.2759 0.1175

GC% 0.0004 0.0326 0.0894 0.0292 0.0807
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Avg. Joint SLC 0.0004 0.5932 0.1588 0.5867 0.1653

Avg. Joint-Tail SLC 0.0004 0.5932 0.1588 0.5867 0.1653

GA% 0.0004 0.1003 0.1396 0.0949 0.1435

Avg. Joint UC% 0.0004 0.0217 0.0611 0.0241 0.0634

Avg. Joint-Tail UC% 0.0004 0.0217 0.0611 0.0241 0.0634

Avg. Joint AG% 0.0004 0.0564 0.1015 0.0604 0.1031

Avg. Joint-Tail AG% 0.0004 0.0564 0.1015 0.0604 0.1031

AU% Bond 0.0004 0.2615 0.2536 0.2714 0.2599

Avg. Joint UU% 0.0003 0.0380 0.0842 0.0348 0.0814

Avg. Joint-Tail UU% 0.0003 0.0380 0.0842 0.0348 0.0814

Avg. Joint GG% 0.0003 0.0245 0.0737 0.0274 0.0784

Avg. Joint-Tail GG% 0.0003 0.0245 0.0737 0.0274 0.0784

CU% 0.0003 0.0289 0.0730 0.0317 0.0758

Avg. Joint G% 0.0003 0.2172 0.1873 0.2108 0.1898

Avg. Joint-Tail G% 0.0003 0.2172 0.1873 0.2108 0.1898

UC% 0.0003 0.0300 0.0781 0.0328 0.0818

Avg. Joint CU% 0.0003 0.0208 0.0570 0.0229 0.0601

Avg. Joint-Tail CU% 0.0003 0.0208 0.0570 0.0229 0.0601

AG% 0.0003 0.0734 0.1202 0.0776 0.1235

Avg. Joint UA% 0.0003 0.0613 0.0951 0.0580 0.0901

Avg. Joint-Tail UA% 0.0003 0.0613 0.0951 0.0580 0.0901

Avg. Joint CG% 0.0003 0.0154 0.0494 0.0171 0.0522

Avg. Joint-Tail CG% 0.0003 0.0154 0.0494 0.0171 0.0522

Avg. Joint AC% 0.0002 0.0594 0.1055 0.0624 0.1068

Avg. Joint-Tail AC% 0.0002 0.0594 0.1055 0.0624 0.1068

UA% 0.0002 0.0824 0.1147 0.0789 0.1122

G% 0.0002 0.1188 0.0818 0.1168 0.0852

Avg. Joint U% 0.0002 0.1727 0.1678 0.1682 0.1691

Avg. Joint-Tail U% 0.0002 0.1727 0.1678 0.1682 0.1691

GG% 0.0001 0.0329 0.0936 0.0348 0.0998

AC% 0.0001 0.0744 0.1208 0.0765 0.1238
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UU% 0.0001 0.0523 0.1067 0.0505 0.1104

CG% 0.0001 0.0219 0.0659 0.0233 0.0661

AA% 0.0001 0.2029 0.2054 0.2058 0.2119

U% 4e-05 0.1125 0.0889 0.1135 0.0927

Avg. Joint AA% 3e-05 0.1638 0.1779 0.1658 0.1792

Avg. Joint-Tail AA% 3e-05 0.1638 0.1779 0.1658 0.1792

Avg. Joint AU% 1e-05 0.0618 0.0984 0.0610 0.0958

Avg. Joint-Tail AU% 1e-05 0.0618 0.0984 0.0610 0.0958

UG% 1e-05 0.0362 0.0864 0.0354 0.0803

AU% 9e-06 0.0808 0.1175 0.0815 0.1169

Avg. Joint UG% 6e-06 0.0249 0.0623 0.0251 0.0623

Avg. Joint-Tail UG% 6e-06 0.0249 0.0623 0.0251 0.0623

Avg. Joint GC% 4e-06 0.0249 0.0669 0.0248 0.0710

Avg. Joint-Tail GC% 4e-06 0.0249 0.0669 0.0248 0.0710

Avg. Joint A% 1e-06 0.4712 0.2114 0.4707 0.2165

Avg. Joint-Tail A% 1e-06 0.4712 0.2114 0.4707 0.2165

Size 1e-06 17.4431 6.1393 17.4250 6.2932

GC% Bond 1e-06 0.6244 0.2797 0.6240 0.2834

Table E.5: Experiment 1 Multiloop Metric Statistics. Ranks each multiloop metric from

the first experiment in descending value of F-score. The mean and standard deviation of

the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Joint-Tail FS 0.0075 1.2219 1.5157 1.0240 0.2583

Avg. Tail G% 0.0047 0.0107 0.0666 0.0222 0.1011

Avg. Joint FS 0.0038 1.2126 1.5011 1.0170 0.2524

Avg. Joint Size 0.0029 3.5529 2.1805 3.8010 2.3140

Avg. Joint CC% 0.0025 0.0166 0.0557 0.0230 0.0718

Joint-Tail% 0.0025 0.5917 0.1336 0.6051 0.1356

CA% 0.0024 0.0637 0.1146 0.0529 0.0991

Avg. Tail GU% 0.0024 0.0019 0.0280 0.0059 0.0510

Avg. Tail UU% 0.0024 0.0112 0.0857 0.0045 0.0432

Avg. Joint-Tail Size 0.0022 3.7943 2.0410 3.9991 2.2227

Avg. Tail AC% 0.0022 0.0080 0.0522 0.0038 0.0335

Avg. Joint-Tail CA% 0.0022 0.0487 0.0955 0.0403 0.0818

Avg. Tail CC% 0.0021 0.0063 0.0464 0.0026 0.0293

Avg. Joint C% 0.0021 0.1306 0.1481 0.1448 0.1589

Avg. Joint-Tail UU% 0.0020 0.0442 0.1077 0.0358 0.0838

Avg. Tail AA% 0.0016 0.0053 0.0478 0.0099 0.0659

Joint% 0.0016 0.5432 0.1922 0.5585 0.1854

Avg. Tail GA% 0.0013 0.0040 0.0349 0.0072 0.0529

Avg. Tail AG% 0.0012 0.0025 0.0241 0.0047 0.0385

Avg. Tail CA% 0.0010 0.0066 0.0471 0.0038 0.0354

Avg. Tail GC% 0.0010 0.0014 0.0241 0.0032 0.0344

Avg. Joint NLC 0.0010 0.8509 0.2331 0.8648 0.1977

A% 0.0010 0.2663 0.1160 0.2737 0.1201

UU% 0.0010 0.0585 0.1278 0.0512 0.1118

Avg. Joint CA% 0.0008 0.0432 0.0890 0.0385 0.0818

Avg. Joint-Tail AG% 0.0008 0.0538 0.0988 0.0595 0.1028

Avg. Joint AG% 0.0007 0.0522 0.0989 0.0576 0.1045

Avg. Tail GG% 0.0006 0.0019 0.0208 0.0033 0.0351

Avg. Joint UC% 0.0006 0.0206 0.0610 0.0235 0.0651
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Avg. Joint-Tail GG% 0.0006 0.0243 0.0730 0.0280 0.0803

AG% 0.0006 0.0704 0.1171 0.0761 0.1223

Avg. Tail UG% 0.0006 0.0017 0.0214 0.0029 0.0303

Avg. Joint-Tail C% 0.0005 0.1437 0.1536 0.1509 0.1560

Avg. Joint-Tail U% 0.0005 0.1803 0.1848 0.1724 0.1728

Avg. Tail Size 0.0005 0.3404 1.3420 0.4033 1.6238

Avg. Joint GU% 0.0005 0.0322 0.0820 0.0287 0.0750

Avg. Joint A% 0.0005 0.4395 0.2372 0.4499 0.2375

Avg. Joint-Tail CG% 0.0005 0.0152 0.0503 0.0174 0.0533

Avg. Tail NLC 0.0005 0.0731 0.2436 0.0835 0.2655

Avg. Tail C% 0.0004 0.0175 0.0877 0.0140 0.0740

C% 0.0004 0.0910 0.0838 0.0944 0.0825

Avg. Joint CU% 0.0004 0.0196 0.0565 0.0221 0.0604

AA% 0.0004 0.1911 0.2038 0.1996 0.2112

Avg. Joint GA% 0.0004 0.0765 0.1222 0.0716 0.1204

UC% 0.0004 0.0302 0.0795 0.0334 0.0824

Avg. Joint-Tail UC% 0.0004 0.0223 0.0639 0.0247 0.0646

Avg. Joint GG% 0.0004 0.0230 0.0726 0.0260 0.0782

Avg. Joint-Tail CS 0.0004 4.0404 1.9785 3.9604 1.3620

Avg. Tail CG% 0.0004 0.0010 0.0172 0.0017 0.0218

Avg. Joint CG% 0.0004 0.0146 0.0493 0.0165 0.0528

Size 0.0004 16.7875 6.5333 17.0497 6.4837

Avg. Joint AC% 0.0004 0.0555 0.1039 0.0595 0.1073

Avg. Tail U% 0.0003 0.0247 0.1224 0.0207 0.0961

G% 0.0003 0.1167 0.0861 0.1199 0.0887

Avg. Joint-Tail AA% 0.0003 0.1549 0.1770 0.1611 0.1789

Avg. Joint-Tail GA% 0.0003 0.0792 0.1222 0.0749 0.1204

GU% Bond 0.0003 0.1110 0.1854 0.1049 0.1838

Avg. Tail CS 0.0003 4.3711 2.4512 4.5407 1.8622

Avg. Joint AA% 0.0003 0.1522 0.1775 0.1578 0.1825

AU% Bond 0.0003 0.2594 0.2678 0.2684 0.2695
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Avg. Joint-Tail CC% 0.0002 0.0222 0.0693 0.0243 0.0722

CG% 0.0002 0.0217 0.0675 0.0236 0.0672

CU% 0.0002 0.0301 0.0781 0.0325 0.0780

NLC 0.0002 0.9281 0.1823 0.9243 0.1921

Avg. Tail SLC 0.0002 0.0465 0.1650 0.0510 0.1761

Avg. Joint-Tail SLC 0.0002 0.5880 0.1669 0.5835 0.1703

GG% 0.0002 0.0328 0.0926 0.0354 0.1011

Avg. Joint-Tail CU% 0.0002 0.0222 0.0629 0.0239 0.0624

Avg. Joint-Tail GC% 0.0002 0.0242 0.0669 0.0259 0.0747

Avg. Joint SLC 0.0001 0.5571 0.2140 0.5622 0.2049

GA% 0.0001 0.0975 0.1408 0.0939 0.1433

Avg. Joint UU% 0.0001 0.0354 0.0825 0.0337 0.0827

Avg. Tail A% 0.0001 0.0316 0.1311 0.0342 0.1369

Avg. Joint-Tail UA% 0.0001 0.0598 0.0959 0.0578 0.0921

Avg. Joint-Tail UG% 0.0001 0.0244 0.0624 0.0256 0.0643

CC% 0.0001 0.0288 0.0840 0.0301 0.0866

Avg. Joint UA% 0.0001 0.0572 0.0943 0.0557 0.0919

Avg. Joint-Tail NLC 0.0001 0.9005 0.1016 0.9020 0.0876

Avg. Joint G% 0.0001 0.2044 0.1921 0.2013 0.1939

Avg. Joint-Tail G% 0.0001 0.2101 0.1889 0.2127 0.1918

Avg. Tail UA% 0.0001 0.0044 0.0378 0.0050 0.0400

Avg. Joint UG% 0.0001 0.0232 0.0609 0.0241 0.0629

GU% 4e-05 0.0450 0.1032 0.0437 0.1027

UA% 4e-05 0.0791 0.1137 0.0780 0.1127

Avg. Joint GC% 3e-05 0.0234 0.0656 0.0242 0.0748

AC% 3e-05 0.0761 0.1227 0.0746 0.1226

Avg. Joint-Tail AC% 2e-05 0.0620 0.1096 0.0608 0.1058

GC% 2e-05 0.0314 0.0879 0.0305 0.0845

Tail% 2e-05 0.0485 0.1714 0.0466 0.1655

AU% 2e-05 0.0794 0.1199 0.0807 0.1182

Avg. Joint-Tail GU% 2e-05 0.0331 0.0822 0.0323 0.0806
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Avg. Tail UC% 2e-05 0.0025 0.0285 0.0027 0.0274

Avg. Joint-Tail AU% 2e-05 0.0615 0.1030 0.0609 0.0974

GC% Bond 2e-05 0.6297 0.2949 0.6268 0.2953

Avg. Joint AU% 1e-05 0.0575 0.0979 0.0584 0.0970

UG% 1e-05 0.0352 0.0865 0.0357 0.0813

Avg. Tail FS 1e-05 1.3635 1.8457 1.1205 0.3185

U% 1e-05 0.1177 0.1020 0.1172 0.0963

Avg. Tail CU% 9e-06 0.0034 0.0346 0.0032 0.0319

Avg. Joint-Tail A% 7e-06 0.4612 0.2184 0.4625 0.2204

Avg. Joint CS 3e-06 4.0173 1.9700 3.9186 1.3719

Avg. Joint U% 1e-06 0.1624 0.1712 0.1623 0.1734

SLC 0e+00 0.4935 0.2016 0.4841 0.2245

Avg. Tail AU% 0e+00 0.0057 0.0476 0.0056 0.0453

Table E.6: Experiment 1 Junction Metric Statistics. Ranks each junction metric from the

first experiment in descending value of F-score. The mean and standard deviation of the

metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Joint% 0.0921 0.2913 0.1826 0.3571 0.1783

PP 0.0513 0.6190 0.0463 0.5960 0.0548

% Num. Tail 0.0382 0.0286 0.0295 0.0288 0.0294

% Num. Stemloop 0.0228 0.0004 0.0016 0.0001 0.0001

% Num. Hairpin Loop 0.0228 0.0004 0.0016 0.0001 0.0001

% Num. Stem 0.0224 0.0008 0.0028 0.0002 0.0001

% Num. Bridge 0.0218 0.0003 0.0012 0.0001 0.0001

% Num. Multiloop 0.0218 0.0003 0.0012 0.0001 0.0001

Internal Loop% 0.0212 0.1463 0.0639 0.1650 0.0646

% Num. Stack 0.0189 0.0023 0.0090 0.0006 0.0004

% Num. Bulge 0.0168 0.0005 0.0018 0.0001 0.0001

% Num. Internal Loop 0.0152 0.0009 0.0038 0.0003 0.0002

Bulge% 0.0121 0.0331 0.0217 0.0381 0.0241

Multiloop% 0.0078 0.2000 0.0889 0.1852 0.0782

Stemloop% 0.0074 0.5701 0.1558 0.5439 0.1485

Stack% 0.0067 0.8480 0.1086 0.8279 0.1347

GU% Bond 0.0065 0.1232 0.0411 0.1299 0.0420

Bridge% 0.0043 0.2854 0.1291 0.3029 0.1377

Stem% 0.0043 0.7531 0.0761 0.7428 0.0814

NLC 0.0041 0.9937 0.0234 0.9959 0.0071

MFE 0.0016 -297.3350 319.0345 -272.8374 296.5180

% Num. Joint 0.0016 0.3012 0.0303 0.3036 0.0291

SLC 0.0012 0.9724 0.0297 0.9748 0.0392

Tail% 0.0010 0.0497 0.0878 0.0542 0.0904

Hairpin Loop% 0.0004 0.1023 0.0416 0.1039 0.0402

AU% Bond 0.0004 0.3102 0.1157 0.3057 0.1159

GC% Bond 0.0002 0.5666 0.1250 0.5630 0.1279

GU% 0e+00 0.0622 0.0148 0.0622 0.0148

AG% 0e+00 0.0718 0.0170 0.0718 0.0170
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CG% 0e+00 0.0660 0.0271 0.0660 0.0271

GG% 0e+00 0.0933 0.0356 0.0933 0.0356

AU% 0e+00 0.0479 0.0242 0.0479 0.0242

A% 0e+00 0.2482 0.0520 0.2482 0.0520

UA% 0e+00 0.0512 0.0263 0.0512 0.0263

GA% 0e+00 0.0684 0.0169 0.0684 0.0169

GC% 0e+00 0.0719 0.0246 0.0719 0.0246

AA% 0e+00 0.0750 0.0308 0.0750 0.0308

UC% 0e+00 0.0500 0.0170 0.0500 0.0170

UG% 0e+00 0.0621 0.0178 0.0621 0.0178

AC% 0e+00 0.0533 0.0142 0.0533 0.0142

CU% 0e+00 0.0541 0.0159 0.0541 0.0159

C% 0e+00 0.2405 0.0496 0.2405 0.0496

U% 0e+00 0.2163 0.0563 0.2163 0.0563

CC% 0e+00 0.0660 0.0308 0.0660 0.0308

UU% 0e+00 0.0526 0.0325 0.0526 0.0325

G% 0e+00 0.2950 0.0549 0.2950 0.0549

CA% 0e+00 0.0541 0.0146 0.0541 0.0146

Size 0e+00 774.2023 794.3973 774.2023 794.3973

Table E.7: Experiment 1 Structure Metric Statistics. Ranks each structure metric from

the first experiment in descending value of F-score. The mean and standard deviation of

the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

FS 0.0035 2.8478 1.2532 2.8503 1.2897

Size 0.0029 9.2299 4.2774 8.7877 4.0410

SLC 0.0025 0.4351 0.1284 0.4479 0.1277

CS 0.0021 6.2301 1.9451 6.0954 1.9430

CC% 0.0011 0.0992 0.1994 0.0861 0.1887

GG% 0.0007 0.1294 0.2190 0.1183 0.2125

GC% Bond 0.0005 0.5772 0.2564 0.5651 0.2612

U% 0.0005 0.2114 0.1282 0.2175 0.1306

C% 0.0005 0.2886 0.1282 0.2825 0.1306

UG% 0.0005 0.0608 0.1661 0.0684 0.1740

UU% 0.0004 0.0420 0.1387 0.0475 0.1467

A% 0.0003 0.1523 0.1190 0.1566 0.1201

AU% Bond 0.0003 0.3046 0.2380 0.3132 0.2402

G% 0.0003 0.3477 0.1190 0.3434 0.1201

CG% 0.0003 0.0642 0.2323 0.0723 0.2435

GC% 0.0002 0.1198 0.3017 0.1108 0.2929

GA% 0.0002 0.0561 0.1578 0.0605 0.1630

AA% 0.0002 0.0208 0.0998 0.0234 0.1057

GU% 0.0001 0.0868 0.1894 0.0826 0.1859

GU% Bond 0.0001 0.1182 0.1528 0.1218 0.1577

CA% 0.0001 0.0372 0.1313 0.0400 0.1356

UC% 0.0001 0.0552 0.1567 0.0585 0.1607

CU% 2e-05 0.0627 0.1656 0.0644 0.1675

AG% 2e-05 0.0528 0.1537 0.0543 0.1555

UA% 2e-05 0.0337 0.1669 0.0351 0.1678

AU% 1e-05 0.0344 0.1631 0.0333 0.1610

NLC 0e+00 0.8879 0.1095 0.8878 0.1096

AC% 0e+00 0.0446 0.1425 0.0445 0.1424

Table E.8: Experiment 1 Stack Metric Statistics. Ranks each stack metric from the first
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

FS 0.0165 1.1354 0.6542 1.0133 0.1865

GA% 0.0020 0.0821 0.2096 0.0644 0.1846

CS 0.0015 3.5832 1.8591 3.4386 1.8082

SLC 0.0015 0.6541 0.2693 0.6754 0.2778

AA% 0.0009 0.1319 0.2645 0.1168 0.2577

A% 0.0007 0.4151 0.3644 0.3962 0.3750

CC% 0.0005 0.0161 0.0916 0.0205 0.1090

G% 0.0005 0.2447 0.3207 0.2589 0.3442

CA% 0.0004 0.0382 0.1312 0.0329 0.1248

C% 0.0004 0.1454 0.2606 0.1561 0.2777

UU% 0.0004 0.0401 0.1525 0.0343 0.1399

UG% 0.0003 0.0393 0.1600 0.0341 0.1440

NLC 0.0003 0.9142 0.1241 0.9182 0.1256

Size 0.0001 3.0853 2.5950 3.0214 2.7226

AG% 0.0001 0.0487 0.1612 0.0525 0.1663

UA% 0.0001 0.0489 0.1449 0.0458 0.1440

GG% 0.0001 0.0297 0.1393 0.0326 0.1465

U% 0.0001 0.1947 0.2942 0.1888 0.2956

AC% 0.0001 0.0429 0.1442 0.0400 0.1395

CG% 0.0001 0.0179 0.0951 0.0196 0.1035

GU% 0.0001 0.0277 0.1124 0.0260 0.1135

AU% 3e-05 0.0443 0.1432 0.0427 0.1363

GC% 2e-05 0.0221 0.1057 0.0212 0.1087

CU% 2e-05 0.0211 0.1020 0.0218 0.1040

UC% 4e-06 0.0230 0.1063 0.0226 0.1085

Table E.9: Experiment 1 Unpaired Metric Statistics. Ranks each unpaired metric from the
first experiment in descending value of F-score. The mean and standard deviation of the
metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

AA% 0.0019 0.0664 0.2125 0.0490 0.1817

A% 0.0015 0.4395 0.4435 0.4069 0.4436

G% 0.0013 0.1394 0.3013 0.1637 0.3293

AG% 0.0011 0.0264 0.1368 0.0188 0.1029

CG% 0.0009 0.0055 0.0539 0.0095 0.0761

C% 0.0008 0.1512 0.3207 0.1679 0.3355

CC% 0.0007 0.0070 0.0672 0.0109 0.0867

NLC 0.0005 0.9583 0.1011 0.9629 0.0939

GU% Bond 0.0004 0.1138 0.3176 0.1083 0.3108

CU% 0.0004 0.0115 0.0851 0.0152 0.0983

UU% 0.0003 0.0275 0.1413 0.0226 0.1228

GG% 0.0003 0.0074 0.0659 0.0099 0.0805

AU% 0.0002 0.0316 0.1393 0.0272 0.1269

GC% Bond 0.0002 0.5765 0.4941 0.5874 0.4923

SLC 0.0002 0.8483 0.2320 0.8548 0.2345

GA% 0.0001 0.0260 0.1267 0.0237 0.1175

GC% Bond 0.0001 0.5765 0.4941 0.5874 0.4923

GU% Bond 0.0001 0.1138 0.3176 0.1083 0.3108

AC% 0.0001 0.0211 0.1146 0.0191 0.1064

U% 0.0001 0.2699 0.4003 0.2615 0.3954

Size 0.0001 1.7582 1.5168 1.7822 1.6916

GU% 5e-05 0.0128 0.0865 0.0139 0.0908

UG% 4e-05 0.0130 0.0877 0.0147 0.0951

CA% 3e-05 0.0169 0.0937 0.0179 0.1033

GC% 3e-05 0.0081 0.0703 0.0074 0.0673

UC% 2e-05 0.0144 0.0952 0.0135 0.0907

AU% Bond 2e-05 0.3096 0.4624 0.3043 0.4601

AU% Bond 2e-06 0.3096 0.4624 0.3043 0.4601

UA% 0e+00 0.0277 0.1312 0.0275 0.1276

Table E.10: Experiment 1 Bulge Metric Statistics. Ranks each bulge metric from the first
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

GA% 0.0038 0.0960 0.2268 0.0705 0.1935

SLC 0.0016 0.7232 0.2148 0.7420 0.2224

UG% 0.0015 0.0577 0.2090 0.0429 0.1704

A% 0.0011 0.3716 0.2932 0.3510 0.2961

CC% 0.0011 0.0142 0.0831 0.0201 0.1009

G% 0.0008 0.2989 0.3023 0.3162 0.3296

AC% 0.0007 0.0389 0.1258 0.0323 0.1147

AA% 0.0006 0.1213 0.2297 0.1086 0.2249

CG% 0.0005 0.0179 0.0868 0.0217 0.0952

Size 0.0005 4.2036 2.4361 4.0861 2.5457

C% 0.0005 0.1447 0.2107 0.1545 0.2215

GU% Bond 0.0004 0.1565 0.3633 0.1551 0.3620

AU% Bond 0.0003 0.3424 0.4745 0.3328 0.4712

AG% 0.0003 0.0558 0.1627 0.0607 0.1729

CA% 0.0002 0.0341 0.1176 0.0307 0.1143

U% 0.0002 0.1848 0.2711 0.1783 0.2705

UA% 0.0001 0.0432 0.1201 0.0403 0.1164

GC% 0.0001 0.0186 0.0965 0.0207 0.1041

GC% Bond 0.0001 0.5012 0.5000 0.5121 0.4999

SR 0.0001 0.8114 0.2616 0.8068 0.2701

AU% Bond 0.0001 0.3424 0.4745 0.3328 0.4712

NLC 0.0001 0.9196 0.1071 0.9219 0.1087

UU% 4e-05 0.0392 0.1548 0.0372 0.1470

UC% 4e-05 0.0212 0.1024 0.0227 0.1031

GU% Bond 1e-05 0.1565 0.3633 0.1551 0.3620

GG% 1e-05 0.0442 0.1531 0.0430 0.1527

GU% 9e-06 0.0220 0.0972 0.0214 0.0983

AU% 3e-06 0.0345 0.1048 0.0341 0.1063

GC% Bond 2e-06 0.5012 0.5000 0.5121 0.4999

CU% 1e-06 0.0221 0.1062 0.0218 0.1010

Table E.11: Experiment 1 Internal Loop Metric Statistics. Ranks each internal loop metric
from the first experiment in descending value of F-score. The mean and standard deviation
of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

GA% 0.0023 0.0726 0.2017 0.0546 0.1724

FS 0.0018 4.8341 1.9004 4.7395 1.7864

CS 0.0015 5.5490 2.1696 5.4169 2.0935

A% 0.0012 0.3943 0.3522 0.3704 0.3536

CC% 0.0009 0.0118 0.0782 0.0172 0.0976

AA% 0.0009 0.1029 0.2256 0.0894 0.2141

SLC 0.0009 0.7650 0.2285 0.7798 0.2326

G% 0.0009 0.2455 0.3112 0.2650 0.3370

UG% 0.0008 0.0427 0.1791 0.0331 0.1489

CG% 0.0006 0.0138 0.0776 0.0176 0.0897

C% 0.0006 0.1469 0.2529 0.1591 0.2662

AC% 0.0005 0.0329 0.1225 0.0279 0.1123

GU% Bond 0.0004 0.1422 0.3493 0.1382 0.3451

Size 0.0002 3.3857 2.4598 3.3126 2.5404

NLC 0.0002 0.9326 0.1067 0.9354 0.1060

AU% Bond 0.0001 0.3314 0.4707 0.3247 0.4683

GC% Bond 0.0001 0.5264 0.4993 0.5371 0.4986

U% 0.0001 0.2133 0.3227 0.2056 0.3204

UU% 0.0001 0.0353 0.1505 0.0322 0.1390

CA% 0.0001 0.0283 0.1105 0.0261 0.1103

UA% 0.0001 0.0380 0.1241 0.0360 0.1207

AU% Bond 0.0001 0.3314 0.4707 0.3247 0.4683

AU% 5e-05 0.0335 0.1175 0.0317 0.1139

GC% 5e-05 0.0151 0.0887 0.0165 0.0947

GU% Bond 3e-05 0.1422 0.3493 0.1382 0.3451

CU% 3e-05 0.0186 0.0998 0.0195 0.1001

GC% Bond 1e-05 0.5264 0.4993 0.5371 0.4986

AG% 1e-05 0.0460 0.1552 0.0471 0.1550

UC% 8e-06 0.0189 0.1001 0.0192 0.0983

GG% 0e+00 0.0319 0.1318 0.0320 0.1343

GU% 0e+00 0.0190 0.0939 0.0190 0.0961

Table E.12: Experiment 1 Loop Metric Statistics. Ranks each loop metric from the first
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

CS 0.0232 51.3026 20.7227 58.1448 25.0076

FS 0.0215 47.0594 20.6320 53.5970 24.9224

GG% 0.0065 0.0337 0.1078 0.0532 0.1357

AG% 0.0058 0.0550 0.1123 0.0730 0.1265

SLC 0.0051 0.3867 0.0799 0.3746 0.0865

Size 0.0051 5.2336 2.0237 5.5494 2.3551

AA% 0.0047 0.1887 0.2227 0.1587 0.2191

GC% Bond 0.0037 0.6890 0.4629 0.6320 0.4823

AU% 0.0032 0.0552 0.1079 0.0685 0.1213

AU% Bond 0.0027 0.2066 0.4049 0.2491 0.4325

GA% 0.0023 0.1194 0.1648 0.1041 0.1515

CC% 0.0016 0.0274 0.0933 0.0354 0.1081

UU% 0.0015 0.0705 0.1635 0.0581 0.1417

AC% 0.0012 0.0519 0.1093 0.0595 0.1147

UC% 0.0009 0.0451 0.1035 0.0393 0.0976

C% 0.0009 0.1580 0.1705 0.1685 0.1784

GC% 0.0007 0.0466 0.1092 0.0407 0.1001

UG% 0.0007 0.0461 0.1033 0.0516 0.1107

CU% 0.0006 0.0353 0.0938 0.0397 0.0972

CA% 0.0006 0.0616 0.1183 0.0565 0.1126

A% 0.0005 0.3875 0.2250 0.3775 0.2246

GU% Bond 0.0005 0.1044 0.3057 0.1189 0.3237

NLC 0.0005 0.8680 0.1070 0.8730 0.1098

G% 0.0001 0.2321 0.1776 0.2364 0.1944

CG% 0.0001 0.0384 0.0993 0.0365 0.0955

U% 0.0001 0.2223 0.2195 0.2177 0.2056

GU% 2e-05 0.0515 0.1076 0.0507 0.1086

UA% 1e-05 0.0737 0.1240 0.0743 0.1245

Table E.13: Experiment 1 Hairpin Loop Metric Statistics. Ranks each Hairpin Loop metric
from the first experiment in descending value of F-score. The mean and standard deviation
of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

G% 0.0385 0.1401 0.2446 0.2480 0.2935

UU% 0.0300 0.1234 0.2741 0.0469 0.1463

NLC 0.0284 0.8745 0.1464 0.9189 0.1124

AC% 0.0190 0.0844 0.1788 0.0421 0.1251

GU% 0.0181 0.0231 0.1088 0.0637 0.1790

CC% 0.0142 0.0596 0.1389 0.0284 0.1142

FS 0.0133 124.3385 250.8350 72.2504 189.4729

CS 0.0130 127.2597 251.1728 75.5594 189.7670

U% 0.0112 0.2901 0.3409 0.2236 0.2706

AA% 0.0087 0.0692 0.1869 0.1071 0.2245

CA% 0.0082 0.0664 0.1492 0.0413 0.1227

GC% 0.0077 0.0159 0.0939 0.0372 0.1372

C% 0.0053 0.1907 0.2507 0.1546 0.2353

AG% 0.0052 0.0338 0.1030 0.0519 0.1368

GA% 0.0039 0.0569 0.1603 0.0797 0.1926

CG% 0.0033 0.0106 0.0610 0.0187 0.0810

Size 0.0027 4.0368 3.1692 4.4015 3.9832

UG% 0.0020 0.0227 0.0886 0.0322 0.1134

GG% 0.0019 0.0262 0.0926 0.0365 0.1364

AU% 0.0003 0.0664 0.1735 0.0592 0.1556

CU% 0.0003 0.0394 0.1199 0.0347 0.1199

A% 0.0001 0.3791 0.3210 0.3738 0.3315

SLC 0.0001 0.5576 0.2631 0.5632 0.2838

UC% 4e-05 0.0310 0.1088 0.0299 0.1018

UA% 4e-06 0.0557 0.1519 0.0544 0.1389

Table E.14: Experiment 1 Tail Metric Statistics. Ranks each tail metric from the first
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

FS 0.0065 1.2256 1.7359 1.0192 0.3363

CC% 0.0009 0.0174 0.0928 0.0240 0.1141

Size 0.0008 3.7328 3.3283 3.9320 3.5174

C% 0.0008 0.1376 0.2314 0.1512 0.2446

NLC 0.0005 0.9079 0.1244 0.9021 0.1305

CS 0.0004 3.9841 2.6768 3.8850 2.1464

GA% 0.0004 0.0826 0.2027 0.0746 0.1888

SLC 0.0003 0.6001 0.2722 0.5895 0.2770

CA% 0.0003 0.0452 0.1438 0.0404 0.1325

G% 0.0003 0.2208 0.2948 0.2107 0.2923

UC% 0.0002 0.0214 0.0962 0.0243 0.1033

GU% 0.0002 0.0325 0.1234 0.0291 0.1164

AC% 0.0002 0.0577 0.1642 0.0626 0.1735

GG% 0.0001 0.0246 0.1174 0.0272 0.1258

AG% 0.0001 0.0576 0.1689 0.0604 0.1670

CU% 0.0001 0.0208 0.0942 0.0227 0.0955

CG% 0.0001 0.0155 0.0851 0.0170 0.0872

UU% 0.0001 0.0359 0.1269 0.0339 0.1215

U% 3e-05 0.1688 0.2497 0.1656 0.2458

UA% 3e-05 0.0595 0.1515 0.0576 0.1485

GC% 8e-06 0.0251 0.1170 0.0247 0.1179

AA% 7e-06 0.1640 0.2876 0.1661 0.2912

AU% 3e-06 0.0596 0.1610 0.0601 0.1564

A% 3e-06 0.4729 0.3438 0.4724 0.3465

UG% 0e+00 0.0246 0.1039 0.0245 0.0989

Table E.15: Experiment 1 Joint Metric Statistics. Ranks each joint metric from the first
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

FS 0.0064 1.2256 1.7255 1.0239 0.3305

Size 0.0009 3.7541 3.3255 3.9565 3.5443

C% 0.0005 0.1406 0.2327 0.1515 0.2442

CC% 0.0005 0.0196 0.0967 0.0242 0.1142

CA% 0.0004 0.0466 0.1448 0.0405 0.1321

UU% 0.0004 0.0395 0.1375 0.0346 0.1231

SLC 0.0003 0.5975 0.2720 0.5881 0.2773

GA% 0.0003 0.0811 0.2004 0.0748 0.1889

CS 0.0003 4.0126 2.6767 3.9314 2.1560

UC% 0.0002 0.0218 0.0966 0.0246 0.1032

NLC 0.0002 0.9063 0.1257 0.9029 0.1296

GG% 0.0002 0.0245 0.1163 0.0277 0.1264

AG% 0.0001 0.0565 0.1660 0.0600 0.1655

CG% 0.0001 0.0153 0.0841 0.0171 0.0869

U% 0.0001 0.1740 0.2556 0.1687 0.2475

CU% 0.0001 0.0217 0.0952 0.0234 0.0969

AC% 5e-05 0.0593 0.1658 0.0615 0.1713

G% 5e-05 0.2161 0.2925 0.2125 0.2925

UA% 3e-05 0.0592 0.1509 0.0575 0.1481

AA% 2e-05 0.1602 0.2849 0.1631 0.2884

GU% 2e-05 0.0318 0.1219 0.0309 0.1206

A% 9e-06 0.4693 0.3432 0.4673 0.3463

UG% 7e-06 0.0244 0.1029 0.0249 0.0996

GC% 2e-06 0.0250 0.1165 0.0253 0.1189

AU% 1e-06 0.0601 0.1617 0.0602 0.1565

Table E.16: Experiment 1 Joint-Tail Metric Statistics. Ranks each joint-tail metric from
the first experiment in descending value of F-score. The mean and standard deviation of
the metrics for the SRNAG and non-SRNAG classes are also listed.



APPENDIX E. DATA 153

E.1.2 Experiment 2

Gene Nongene

Feature F-score Mean Std. Mean Std.

GU% Bond 0.0054 0.1128 0.1780 0.0875 0.1683

C% 0.0054 0.0939 0.0811 0.1056 0.0862

GU% 0.0050 0.0555 0.1204 0.0396 0.0925

Avg. Joint C% 0.0042 0.1524 0.1460 0.1702 0.1623

Avg. Joint-Tail C% 0.0042 0.1524 0.1460 0.1702 0.1623

UC% 0.0039 0.0336 0.0842 0.0425 0.0998

Avg. Joint CC% 0.0035 0.0230 0.0653 0.0313 0.0807

Avg. Joint-Tail CC% 0.0035 0.0230 0.0653 0.0313 0.0807

Avg. Joint UC% 0.0031 0.0230 0.0597 0.0291 0.0747

Avg. Joint-Tail UC% 0.0031 0.0230 0.0597 0.0291 0.0747

Avg. Joint G% 0.0030 0.2319 0.2054 0.2121 0.2002

Avg. Joint-Tail G% 0.0030 0.2319 0.2054 0.2121 0.2002

G% 0.0029 0.1259 0.0902 0.1166 0.0907

Joint% 0.0023 0.5790 0.1341 0.5904 0.1296

Joint-Tail% 0.0023 0.5790 0.1341 0.5904 0.1296

CC% 0.0021 0.0311 0.0804 0.0396 0.0968

Avg. Joint U% 0.0021 0.1607 0.1726 0.1776 0.1903

Avg. Joint-Tail U% 0.0021 0.1607 0.1726 0.1776 0.1903

U% 0.0020 0.1051 0.0922 0.1124 0.0936

UU% 0.0018 0.0444 0.1043 0.0512 0.1201

Avg. Joint SLC 0.0017 0.6080 0.1683 0.5965 0.1646

Avg. Joint-Tail SLC 0.0017 0.6080 0.1683 0.5965 0.1646

Avg. Joint GU% 0.0015 0.0385 0.0995 0.0314 0.0818

Avg. Joint-Tail GU% 0.0015 0.0385 0.0995 0.0314 0.0818

AG% 0.0014 0.0799 0.1213 0.0715 0.1092

Avg. Joint UU% 0.0013 0.0330 0.0817 0.0369 0.0880

Avg. Joint-Tail UU% 0.0013 0.0330 0.0817 0.0369 0.0880

SLC 0.0013 0.4919 0.1810 0.4805 0.1728
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Avg. Joint NLC 0.0012 0.9099 0.0746 0.9056 0.0792

Avg. Joint-Tail NLC 0.0012 0.9099 0.0746 0.9056 0.0792

Avg. Joint A% 0.0011 0.4550 0.2169 0.4401 0.2259

Avg. Joint-Tail A% 0.0011 0.4550 0.2169 0.4401 0.2259

Avg. Joint UA% 0.0011 0.0555 0.0911 0.0508 0.0852

Avg. Joint-Tail UA% 0.0011 0.0555 0.0911 0.0508 0.0852

Avg. Joint CG% 0.0010 0.0168 0.0509 0.0203 0.0599

Avg. Joint-Tail CG% 0.0010 0.0168 0.0509 0.0203 0.0599

CU% 0.0010 0.0296 0.0720 0.0347 0.0880

Avg. Joint CS 0.0010 4.0928 1.4273 4.1756 1.3032

Avg. Joint-Tail CS 0.0010 4.0928 1.4273 4.1756 1.3032

Avg. Joint CU% 0.0009 0.0218 0.0589 0.0255 0.0716

Avg. Joint-Tail CU% 0.0009 0.0218 0.0589 0.0255 0.0716

UA% 0.0009 0.0735 0.1183 0.0686 0.1095

AA% 0.0008 0.2038 0.2438 0.1917 0.2183

Size 0.0007 16.1238 5.5751 16.3925 5.7299

Avg. Joint Size 0.0007 3.7075 2.0378 3.7981 2.0742

Avg. Joint-Tail Size 0.0007 3.7075 2.0378 3.7981 2.0742

Avg. Joint AA% 0.0007 0.1589 0.1834 0.1502 0.1769

Avg. Joint-Tail AA% 0.0007 0.1589 0.1834 0.1502 0.1769

GC% Bond 0.0006 0.6538 0.2907 0.6677 0.2813

NLC 0.0005 0.8961 0.0812 0.8931 0.0860

AU% Bond 0.0005 0.2334 0.2596 0.2448 0.2555

CA% 0.0005 0.0557 0.1168 0.0606 0.1040

Avg. Joint CA% 0.0005 0.0409 0.0862 0.0446 0.0861

Avg. Joint-Tail CA% 0.0005 0.0409 0.0862 0.0446 0.0861

Avg. Joint GC% 0.0005 0.0310 0.0835 0.0349 0.0858

Avg. Joint-Tail GC% 0.0005 0.0310 0.0835 0.0349 0.0858

Avg. Joint GG% 0.0004 0.0259 0.0766 0.0299 0.0839

Avg. Joint-Tail GG% 0.0004 0.0259 0.0766 0.0299 0.0839

Avg. Joint AU% 0.0003 0.0504 0.0928 0.0545 0.0913
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Avg. Joint-Tail AU% 0.0003 0.0504 0.0928 0.0545 0.0913

Avg. Joint AG% 0.0003 0.0602 0.1062 0.0582 0.1034

Avg. Joint-Tail AG% 0.0003 0.0602 0.1062 0.0582 0.1034

GG% 0.0002 0.0395 0.1059 0.0374 0.1022

AU% 0.0001 0.0708 0.1330 0.0756 0.1231

Avg. Joint AC% 0.0001 0.0601 0.1072 0.0572 0.0999

Avg. Joint-Tail AC% 0.0001 0.0601 0.1072 0.0572 0.0999

UG% 0.0001 0.0320 0.0689 0.0336 0.0754

Avg. Joint UG% 0.0001 0.0234 0.0611 0.0246 0.0622

Avg. Joint-Tail UG% 0.0001 0.0234 0.0611 0.0246 0.0622

GC% 0.0001 0.0382 0.0977 0.0416 0.1047

AC% 0.0001 0.0731 0.1322 0.0720 0.1186

Avg. Joint FS 0.0001 1.0394 0.7753 1.0310 0.3636

Avg. Joint-Tail FS 0.0001 1.0394 0.7753 1.0310 0.3636

A% 0.0001 0.2541 0.1112 0.2558 0.1200

Avg. Joint GA% 2e-05 0.0679 0.1135 0.0649 0.1059

Avg. Joint-Tail GA% 2e-05 0.0679 0.1135 0.0649 0.1059

CG% 1e-05 0.0257 0.0834 0.0267 0.0712

GA% 1e-06 0.0871 0.1346 0.0868 0.1347

Table E.17: Experiment 2 Multiloop Metric Statistics. Ranks each multiloop metric from

the second experiment in descending value of F-score. The mean and standard deviation

of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Joint% 0.0045 0.1616 0.2061 0.1346 0.1954

Avg. Joint NLC 0.0043 0.4525 0.4588 0.3927 0.4549

Avg. Joint CS 0.0041 4.6924 2.5529 4.5974 2.5241

Tail% 0.0041 0.5486 0.2662 0.5825 0.2651

CG% 0.0040 0.0264 0.0683 0.0360 0.0836

Avg. Joint FS 0.0031 1.0466 0.9819 1.0459 1.0900

Avg. Joint SLC 0.0028 0.2681 0.3254 0.2341 0.3196

Avg. Joint Size 0.0027 2.4026 3.7966 2.0175 3.5728

Avg. Joint-Tail CG% 0.0027 0.0229 0.0638 0.0303 0.0778

Avg. Joint A% 0.0023 0.2042 0.2927 0.1765 0.2854

Avg. Tail C% 0.0021 0.1719 0.2059 0.1914 0.2168

Size 0.0021 14.3156 7.6785 13.6317 7.2071

Avg. Joint AA% 0.0020 0.0763 0.1843 0.0603 0.1747

Avg. Joint UA% 0.0019 0.0350 0.1140 0.0259 0.0923

C% 0.0019 0.1272 0.1102 0.1369 0.1135

Avg. Joint G% 0.0019 0.1191 0.2299 0.0998 0.2182

Avg. Tail CC% 0.0016 0.0262 0.0868 0.0339 0.1044

Avg. Tail CG% 0.0014 0.0238 0.0826 0.0302 0.0854

Avg. Joint-Tail CC% 0.0014 0.0282 0.0812 0.0347 0.0931

Avg. Joint-Tail C% 0.0014 0.1761 0.1839 0.1899 0.1895

Avg. Joint C% 0.0011 0.0873 0.1900 0.0750 0.1780

Avg. Joint-Tail CA% 0.0011 0.0474 0.0952 0.0414 0.0850

CC% 0.0011 0.0334 0.0911 0.0396 0.1013

Avg. Tail UU% 0.0010 0.0552 0.1314 0.0473 0.1170

Avg. Joint AG% 0.0010 0.0325 0.1212 0.0254 0.1035

Avg. Joint CU% 0.0008 0.0167 0.0697 0.0128 0.0659

Avg. Tail UC% 0.0008 0.0309 0.0802 0.0360 0.0971

Avg. Tail U% 0.0008 0.2201 0.2232 0.2080 0.2136

Avg. Joint CA% 0.0008 0.0226 0.0823 0.0182 0.0780
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AA% 0.0007 0.1361 0.1818 0.1269 0.1682

CA% 0.0006 0.0558 0.0990 0.0509 0.0954

GC% Bond 0.0006 0.6171 0.4162 0.6381 0.4208

Avg. Joint UC% 0.0006 0.0161 0.0780 0.0126 0.0647

Avg. Tail CA% 0.0006 0.0452 0.1064 0.0403 0.0969

GC% 0.0006 0.0374 0.0922 0.0420 0.1016

Avg. Joint-Tail UU% 0.0006 0.0516 0.1133 0.0465 0.1009

Avg. Joint U% 0.0005 0.0903 0.1759 0.0824 0.1804

Avg. Tail UG% 0.0005 0.0434 0.1169 0.0387 0.0954

UC% 0.0005 0.0386 0.0799 0.0424 0.0939

Joint-Tail% 0.0005 0.7102 0.1583 0.7171 0.1616

Avg. Joint GG% 0.0005 0.0218 0.1161 0.0172 0.0952

Avg. Joint-Tail U% 0.0005 0.2171 0.1969 0.2088 0.1927

Avg. Tail GU% 0.0004 0.0503 0.1291 0.0453 0.1125

Avg. Joint-Tail UG% 0.0004 0.0428 0.1044 0.0391 0.0838

CU% 0.0004 0.0478 0.0961 0.0440 0.0963

UG% 0.0004 0.0532 0.1160 0.0490 0.1000

UU% 0.0004 0.0632 0.1319 0.0584 0.1166

Avg. Joint-Tail AA% 0.0004 0.1136 0.1630 0.1076 0.1497

Avg. Joint-Tail GC% 0.0003 0.0340 0.0886 0.0375 0.0988

Avg. Joint UG% 0.0003 0.0166 0.0809 0.0138 0.0697

Avg. Joint AC% 0.0003 0.0305 0.1028 0.0269 0.1036

GG% 0.0003 0.0550 0.1363 0.0505 0.1227

AU% Bond 0.0003 0.2458 0.3650 0.2332 0.3669

NLC 0.0003 0.2414 0.3956 0.2657 0.4169

Avg. Joint-Tail UC% 0.0002 0.0331 0.0760 0.0357 0.0893

Avg. Joint-Tail A% 0.0002 0.3435 0.2271 0.3369 0.2222

GU% Bond 0.0002 0.1371 0.2983 0.1287 0.2951

Avg. Joint-Tail CU% 0.0002 0.0387 0.0845 0.0363 0.0875

Avg. Joint-Tail AU% 0.0002 0.0580 0.1134 0.0553 0.0903

Avg. Joint UU% 0.0001 0.0159 0.0746 0.0176 0.0785
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Avg. Joint-Tail GU% 0.0001 0.0497 0.1129 0.0474 0.1029

AU% 0.0001 0.0687 0.1217 0.0664 0.0988

U% 0.0001 0.1647 0.1257 0.1622 0.1238

Avg. Tail AU% 0.0001 0.0551 0.1210 0.0529 0.1051

Avg. Tail A% 0.0001 0.3233 0.2578 0.3182 0.2506

G% 0.0001 0.1672 0.1223 0.1695 0.1229

Avg. Tail GA% 0.0001 0.0646 0.1405 0.0619 0.1333

Avg. Tail G% 0.0001 0.2549 0.2466 0.2502 0.2473

A% 0.0001 0.2511 0.1467 0.2485 0.1434

GA% 0.0001 0.0716 0.1130 0.0735 0.1237

Avg. Joint AU% 0.0001 0.0299 0.1071 0.0283 0.1072

Avg. Tail AG% 0.0001 0.0621 0.1278 0.0602 0.1233

AC% 0.0001 0.0635 0.1098 0.0619 0.1089

Avg. Joint-Tail SLC 0.0001 0.5171 0.2075 0.5141 0.2125

Avg. Tail AA% 0.0001 0.1021 0.1789 0.0996 0.1660

Avg. Tail SLC 4e-05 0.5103 0.2438 0.5071 0.2465

Avg. Joint-Tail CS 3e-05 5.0212 2.2131 5.0046 2.0481

SLC 2e-05 0.5865 0.4335 0.5915 0.4530

Avg. Joint-Tail AG% 2e-05 0.0626 0.1115 0.0616 0.1115

Avg. Tail GC% 2e-05 0.0353 0.1090 0.0362 0.1059

Avg. Joint CG% 2e-05 0.0097 0.0634 0.0092 0.0548

Avg. Joint-Tail UA% 1e-05 0.0561 0.0925 0.0554 0.0927

Avg. Tail CS 1e-05 5.0123 2.3627 5.0090 2.1911

Avg. Joint-Tail GG% 1e-05 0.0443 0.1089 0.0451 0.1147

UA% 1e-05 0.0684 0.1015 0.0677 0.1018

Avg. Tail NLC 9e-06 0.8887 0.1817 0.8876 0.1853

Avg. Joint GA% 7e-06 0.0316 0.1066 0.0309 0.1225

Avg. Joint CC% 7e-06 0.0148 0.0796 0.0153 0.0862

Avg. Joint-Tail Size 6e-06 5.1945 3.8196 5.1764 3.4450

Avg. Joint GC% 6e-06 0.0137 0.0734 0.0133 0.0734

AG% 5e-06 0.0712 0.1153 0.0706 0.1185
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Avg. Tail UA% 4e-06 0.0534 0.1122 0.0529 0.1025

Avg. Tail AC% 3e-06 0.0479 0.1058 0.0483 0.1082

GU% 3e-06 0.0566 0.1140 0.0570 0.1169

Avg. Joint-Tail FS 3e-06 1.1970 0.8362 1.2027 0.7024

Avg. Joint GU% 2e-06 0.0179 0.0798 0.0181 0.0885

Avg. Tail FS 2e-06 1.2502 0.8029 1.2535 0.7011

Avg. Joint-Tail GA% 2e-06 0.0648 0.1185 0.0651 0.1222

Avg. Joint-Tail AC% 1e-06 0.0520 0.0970 0.0518 0.0981

Avg. Tail CU% 1e-06 0.0376 0.0909 0.0374 0.1002

Avg. Joint-Tail G% 1e-06 0.2564 0.2223 0.2560 0.2280

Avg. Joint-Tail NLC 0e+00 0.9079 0.1115 0.9077 0.1162

Avg. Tail Size 0e+00 5.0042 4.1801 4.9995 3.7536

Avg. Tail GG% 0e+00 0.0436 0.1276 0.0437 0.1234

Table E.18: Experiment 2 External Loop Metric Statistics. Ranks each external loop

metric from the second experiment in descending value of F-score. The mean and standard

deviation of the metrics for the SRNAG and non-SRNAG classes are also listed.



APPENDIX E. DATA 160

Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Joint-Tail CG% 0.0021 0.0212 0.0606 0.0276 0.0740

C% 0.0020 0.1182 0.1041 0.1275 0.1068

CG% 0.0020 0.0262 0.0727 0.0332 0.0804

Avg. Joint-Tail C% 0.0018 0.1696 0.1747 0.1851 0.1826

Avg. Joint-Tail CC% 0.0018 0.0268 0.0772 0.0331 0.0879

Avg. Joint G% 0.0015 0.1498 0.2290 0.1331 0.2190

Avg. Joint UA% 0.0014 0.0406 0.1086 0.0327 0.0898

CC% 0.0013 0.0328 0.0883 0.0388 0.0981

Avg. Joint NLC 0.0012 0.5769 0.4429 0.5436 0.4495

Avg. Tail U% 0.0012 0.1603 0.2142 0.1453 0.2023

Avg. Joint CS 0.0012 4.4363 2.1655 4.3931 2.0400

UC% 0.0012 0.0373 0.0811 0.0437 0.0986

Avg. Tail UU% 0.0011 0.0402 0.1148 0.0327 0.1004

Avg. Joint AA% 0.0010 0.0987 0.1877 0.0872 0.1801

Avg. Joint FS 0.0009 1.0435 0.8992 1.0394 0.8278

Avg. Joint Size 0.0009 2.7574 3.4581 2.5494 3.3170

Avg. Joint A% 0.0008 0.2724 0.2960 0.2548 0.2957

Avg. Joint SLC 0.0008 0.3605 0.3281 0.3408 0.3273

Avg. Tail CC% 0.0008 0.0191 0.0750 0.0232 0.0872

Avg. Tail NLC 0.0008 0.6471 0.4248 0.6230 0.4351

Avg. Tail CG% 0.0007 0.0173 0.0712 0.0214 0.0737

GU% Bond 0.0007 0.1305 0.2711 0.1160 0.2636

Avg. Tail CA% 0.0007 0.0329 0.0930 0.0287 0.0843

GC% Bond 0.0007 0.6270 0.3865 0.6483 0.3847

Avg. Tail SLC 0.0007 0.3715 0.3079 0.3565 0.3110

Avg. Tail CS 0.0006 5.0123 2.3627 4.9957 2.1968

Avg. Tail FS 0.0006 1.2502 0.8029 1.2546 0.7111

Avg. Joint-Tail UC% 0.0006 0.0304 0.0720 0.0345 0.0867

Avg. Tail UG% 0.0006 0.0316 0.1016 0.0272 0.0827
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Size 0.0006 14.8073 7.2120 14.4150 6.9131

Avg. Joint AG% 0.0006 0.0400 0.1180 0.0350 0.1045

Avg. Tail A% 0.0006 0.2354 0.2628 0.2235 0.2559

Avg. Tail GU% 0.0005 0.0366 0.1124 0.0325 0.0979

Avg. Tail C% 0.0005 0.1251 0.1916 0.1345 0.2018

AA% 0.0005 0.1546 0.2028 0.1463 0.1875

Avg. Joint UU% 0.0005 0.0205 0.0770 0.0240 0.0840

Avg. Tail G% 0.0004 0.1856 0.2390 0.1755 0.2365

Avg. Joint CC% 0.0004 0.0171 0.0761 0.0197 0.0837

GC% 0.0004 0.0376 0.0937 0.0414 0.1022

Avg. Joint-Tail GU% 0.0004 0.0466 0.1096 0.0430 0.0976

GU% 0.0004 0.0563 0.1158 0.0527 0.1117

Avg. Joint-Tail GC% 0.0003 0.0332 0.0873 0.0368 0.0960

GG% 0.0003 0.0508 0.1289 0.0469 0.1174

Avg. Joint-Tail CA% 0.0003 0.0457 0.0929 0.0425 0.0855

Avg. Tail UC% 0.0003 0.0225 0.0698 0.0255 0.0836

Avg. Joint-Tail AA% 0.0003 0.1259 0.1700 0.1200 0.1596

Avg. Joint-Tail G% 0.0003 0.2497 0.2180 0.2429 0.2206

Avg. Tail Size 0.0003 3.6434 4.2047 3.4932 3.8891

Avg. Joint-Tail UG% 0.0003 0.0376 0.0950 0.0349 0.0788

Joint-Tail% 0.0002 0.6745 0.1629 0.6794 0.1622

Avg. Tail AU% 0.0002 0.0401 0.1061 0.0367 0.0912

UG% 0.0002 0.0474 0.1057 0.0444 0.0942

Avg. Tail GA% 0.0002 0.0470 0.1233 0.0434 0.1160

Avg. Tail AA% 0.0002 0.0743 0.1593 0.0693 0.1458

Avg. Tail AG% 0.0002 0.0452 0.1125 0.0425 0.1078

Tail% 0.0002 0.3994 0.3334 0.4086 0.3468

Avg. Joint-Tail A% 0.0002 0.3738 0.2298 0.3684 0.2292

Avg. Joint-Tail UA% 0.0001 0.0559 0.0921 0.0535 0.0900

AG% 0.0001 0.0735 0.1170 0.0714 0.1172

Avg. Joint AC% 0.0001 0.0386 0.1048 0.0357 0.1046
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Avg. Joint GG% 0.0001 0.0229 0.1068 0.0210 0.0921

UA% 0.0001 0.0698 0.1063 0.0675 0.1037

Avg. Joint-Tail UU% 0.0001 0.0465 0.1060 0.0440 0.0990

Avg. Joint CU% 0.0001 0.0181 0.0670 0.0164 0.0675

G% 0.0001 0.1559 0.1160 0.1539 0.1169

CA% 0.0001 0.0558 0.1042 0.0540 0.0986

Avg. Joint UG% 0.0001 0.0184 0.0761 0.0170 0.0661

Avg. Joint-Tail SLC 0.0001 0.5418 0.2017 0.5390 0.2025

Avg. Tail UA% 0.0001 0.0389 0.0987 0.0367 0.0873

Avg. Joint CA% 0.0001 0.0276 0.0838 0.0256 0.0795

CU% 0.0001 0.0428 0.0905 0.0410 0.0935

NLC 0.0001 0.1419 0.3712 0.1513 0.3946

Avg. Joint GC% 0.0001 0.0184 0.0767 0.0199 0.0784

AU% Bond 0.0001 0.2425 0.3396 0.2357 0.3365

Avg. Joint-Tail AG% 0.0001 0.0619 0.1101 0.0606 0.1095

Avg. Joint CG% 0.0001 0.0116 0.0603 0.0128 0.0576

Avg. Joint GU% 0.0001 0.0235 0.0861 0.0217 0.0844

Avg. Joint-Tail NLC 0.0001 0.9084 0.1028 0.9073 0.1049

Joint% 0.0001 0.2751 0.2652 0.2708 0.2750

GA% 5e-05 0.0758 0.1194 0.0774 0.1277

Avg. Tail CU% 5e-05 0.0273 0.0794 0.0263 0.0864

AC% 4e-05 0.0661 0.1163 0.0646 0.1117

Avg. Joint-Tail U% 4e-05 0.2017 0.1922 0.1981 0.1920

Avg. Joint-Tail AU% 3e-05 0.0560 0.1082 0.0544 0.0898

Avg. Joint-Tail CU% 3e-05 0.0341 0.0787 0.0332 0.0839

Avg. Tail AC% 3e-05 0.0349 0.0928 0.0341 0.0929

Avg. Tail GG% 3e-05 0.0317 0.1106 0.0309 0.1061

Avg. Joint-Tail GG% 2e-05 0.0393 0.1014 0.0407 0.1070

A% 2e-05 0.2519 0.1380 0.2510 0.1372

Avg. Joint-Tail CS 2e-05 4.7674 2.0703 4.7478 1.9022

UU% 1e-05 0.0581 0.1252 0.0566 0.1186
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U% 1e-05 0.1485 0.1205 0.1470 0.1181

Avg. Joint U% 1e-05 0.1095 0.1777 0.1092 0.1871

Avg. Joint-Tail FS 1e-05 1.1539 0.8229 1.1519 0.6319

Avg. Joint-Tail AC% 9e-06 0.0542 0.0999 0.0536 0.0999

Avg. Joint-Tail Size 8e-06 4.7902 3.4910 4.7640 3.1755

AU% 8e-06 0.0692 0.1248 0.0683 0.1052

Avg. Joint C% 6e-06 0.1050 0.1814 0.1039 0.1794

Avg. Joint AU% 4e-06 0.0354 0.1038 0.0356 0.1018

Avg. Tail GC% 3e-06 0.0257 0.0943 0.0253 0.0912

Avg. Joint GA% 1e-06 0.0414 0.1097 0.0416 0.1206

SLC 1e-06 0.5592 0.3808 0.5597 0.3956

Avg. Joint UC% 0e+00 0.0179 0.0736 0.0180 0.0700

Avg. Joint-Tail GA% 0e+00 0.0657 0.1172 0.0657 0.1197

Table E.19: Experiment 2 Junction Metric Statistics. Ranks each junction metric from

the second experiment in descending value of F-score. The mean and standard deviation

of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Stack Size 0.0068 8.5136 3.2173 8.0098 2.8230

SLC 0.0039 0.6144 0.1961 0.6387 0.1903

Avg. Stack SLC 0.0029 0.4478 0.1053 0.4590 0.1045

Avg. Internal Loop SLC 0.0026 0.3343 0.3800 0.3742 0.3923

Avg. Loop AA% 0.0022 0.0618 0.1586 0.0482 0.1265

Avg. Stack% 0.0019 0.8520 0.1685 0.8367 0.1774

Avg. Internal Loop NLC 0.0019 0.4263 0.4602 0.4668 0.4655

Avg. Loop SLC 0.0019 0.4353 0.4014 0.4715 0.4068

Avg. Loop FS 0.0017 4.4838 1.4281 4.3760 1.3850

Avg. Internal Loop GC% Bond 0.0017 0.2472 0.3392 0.2754 0.3543

Avg. Internal Loop FS 0.0015 4.4285 1.4784 4.3330 1.4281

Avg. Internal Loop C% 0.0015 0.0767 0.1560 0.0893 0.1663

Avg. Loop CS 0.0014 5.2972 1.7400 5.1101 1.7783

Avg. Internal Loop G% 0.0014 0.1368 0.2331 0.1551 0.2557

Avg. Loop NLC 0.0013 0.5315 0.4631 0.5659 0.4627

Avg. Internal Loop CS 0.0013 5.3657 1.8073 5.1873 1.8255

AC% 0.0012 0.0396 0.0560 0.0437 0.0616

Avg. Loop G% 0.0011 0.1396 0.2286 0.1560 0.2471

Avg. Loop GC% Bond 0.0011 0.3182 0.3566 0.3423 0.3626

Avg. Bulge FS 0.0011 4.5969 1.5219 4.4718 1.4712

Avg. Stack AC% 0.0010 0.0357 0.1020 0.0422 0.1123

Loop% 0.0010 0.1277 0.1356 0.1363 0.1352

PP 0.0010 0.8723 0.1356 0.8637 0.1352

GA% 0.0010 0.0557 0.0635 0.0598 0.0677

Avg. Bulge AC% 0.0010 0.0082 0.0659 0.0046 0.0442

Avg. Internal Loop AA% 0.0010 0.0581 0.1531 0.0490 0.1315

Avg. Bulge CS 0.0009 5.0559 1.8212 4.8566 1.7902

Avg. Bulge AG% 0.0009 0.0090 0.0675 0.0054 0.0509

Avg. Loop C% 0.0009 0.0978 0.1905 0.1099 0.1977
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Internal Loop% 0.0008 0.1056 0.1314 0.1127 0.1307

Avg. Bulge SLC 0.0008 0.2524 0.4038 0.2761 0.4192

Avg. Bulge GC% Bond 0.0007 0.1786 0.3292 0.1971 0.3405

AU% 0.0007 0.0374 0.0651 0.0339 0.0596

Avg. Internal Loop U% 0.0007 0.0880 0.1874 0.0981 0.1946

Avg. Stack GC% 0.0007 0.1430 0.2782 0.1294 0.2574

Avg. Bulge AA% 0.0007 0.0192 0.1127 0.0141 0.0906

Avg. Stack CC% 0.0006 0.1018 0.1710 0.0931 0.1611

Avg. Bulge NLC 0.0006 0.2862 0.4407 0.3100 0.4536

Avg. Loop AG% 0.0006 0.0302 0.1001 0.0254 0.0922

Avg. Stack GC% 0.0006 0.0496 0.1182 0.0556 0.1256

Avg. Stack GG% 0.0006 0.1369 0.1879 0.1279 0.1774

GG% 0.0006 0.1261 0.1216 0.1202 0.1155

Avg. Internal Loop CG% 0.0006 0.0091 0.0531 0.0118 0.0615

Avg. Loop AU% 0.0006 0.0161 0.0608 0.0188 0.0648

Avg. Stack FS 0.0005 2.9543 1.1949 2.9248 1.2346

GU% 0.0005 0.0686 0.0688 0.0718 0.0727

Avg. Stack C% 0.0005 0.2975 0.1129 0.2925 0.1140

AA% 0.0004 0.0390 0.0581 0.0365 0.0554

Avg. Internal Loop CC% 0.0004 0.0110 0.0669 0.0140 0.0729

Avg. Internal Loop AU% 0.0004 0.0155 0.0607 0.0178 0.0650

Avg. Stack UU% 0.0004 0.0375 0.1070 0.0416 0.1091

Avg. Stack UA% 0.0004 0.0275 0.1186 0.0326 0.1313

Avg. Bulge AU% 0.0004 0.0063 0.0556 0.0085 0.0656

Avg. Internal Loop AU% Bond 0.0004 0.1451 0.2511 0.1549 0.2547

Avg. Stack G% 0.0004 0.3568 0.1040 0.3529 0.1057

CG% 0.0003 0.0672 0.1004 0.0710 0.1088

CA% 0.0003 0.0427 0.0549 0.0409 0.0555

Avg. Internal Loop CU% 0.0003 0.0122 0.0714 0.0148 0.0726

Avg. Loop CG% 0.0003 0.0089 0.0498 0.0107 0.0543

AG% 0.0003 0.0599 0.0631 0.0578 0.0638
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CC% 0.0003 0.0883 0.1129 0.0845 0.1070

Avg. Stack CG% 0.0002 0.0799 0.2136 0.0730 0.2017

Avg. Internal Loop SR 0.0002 0.9092 0.1831 0.9035 0.1856

Avg. Loop US% 0.0002 0.0123 0.0595 0.0145 0.0647

Avg. Bulge UU% 0.0002 0.0091 0.0759 0.0069 0.0631

Avg. Stack GU% 0.0002 0.0754 0.1417 0.0794 0.1467

U% 0.0002 0.1999 0.1101 0.2031 0.1094

Avg. Internal Loop UC% 0.0002 0.0132 0.0680 0.0153 0.0699

Avg. Loop AU% Bond 0.0002 0.1724 0.2558 0.1808 0.2543

Avg. Loop CC% 0.0002 0.0114 0.0716 0.0137 0.0699

Avg. Bulge G% 0.0002 0.0437 0.1675 0.0492 0.1807

Bulge% 0.0002 0.0222 0.0448 0.0236 0.0460

Avg. Stack U% 0.0002 0.1985 0.1111 0.2015 0.1115

Avg. Stack NLC 0.0002 0.8738 0.1226 0.8702 0.1319

UC% 0.0002 0.0517 0.0638 0.0536 0.0665

Avg. Bulge CU% 0.0002 0.0032 0.0376 0.0043 0.0450

Avg. Loop UU% 0.0002 0.0229 0.1031 0.0204 0.0884

NLC 0.0002 0.9153 0.0894 0.9177 0.0854

Avg. Internal Loop CA% 0.0002 0.0150 0.0616 0.0169 0.0757

Avg. Internal Loop AC% 0.0002 0.0143 0.0601 0.0157 0.0658

Avg. Stack CS 0.0002 5.9590 1.7035 5.7663 1.7511

Avg. Loop U% 0.0002 0.1269 0.2352 0.1334 0.2306

Avg. Bulge GC% 0.0001 0.0029 0.0420 0.0021 0.0309

Avg. Stack AA% 0.0001 0.0179 0.0739 0.0196 0.0771

Avg. Stack CU% 0.0001 0.0565 0.1278 0.0596 0.1277

GC% 0.0001 0.1131 0.1595 0.1098 0.1558

Avg. Internal Loop Size 0.0001 2.0349 2.6620 2.0921 2.5816

Avg. Loop CU% 0.0001 0.0124 0.0680 0.0139 0.0655

Avg. Bulge C% 0.0001 0.0583 0.2001 0.0632 0.2111

GU% Bond 0.0001 0.1212 0.1212 0.1241 0.1224

UG% 0.0001 0.0627 0.0638 0.0643 0.0647
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Avg. Bulge GU% Bond 0.0001 0.0353 0.1278 0.0330 0.1233

Avg. Stack A% 0.0001 0.1392 0.0997 0.1411 0.0995

Avg. Loop GU% Bond 0.0001 0.0838 0.1695 0.0807 0.1666

Avg. Bulge A% 0.0001 0.1130 0.2773 0.1185 0.2861

Size 0.0001 21.9827 17.0357 22.3084 17.3015

Avg. Bulge Size 0.0001 0.5475 1.1872 0.5715 1.2148

Avg. Loop A% 0.0001 0.2101 0.2846 0.2045 0.2703

GC% Bond 0.0001 0.5983 0.2216 0.5945 0.2214

Avg. Bulge AU% 0.0001 0.0862 0.2134 0.0907 0.2124

Avg. Internal Loop AG% 0.0001 0.0287 0.0982 0.0272 0.0981

Avg. Internal Loop UA% 0.0001 0.0205 0.0707 0.0215 0.0776

Avg. Bulge UC% 0.0001 0.0034 0.0395 0.0045 0.0482

Avg. Stack AU% 0.0001 0.0326 0.1296 0.0303 0.1214

Avg. Stack AG% 0.0001 0.0458 0.1156 0.0479 0.1159

Avg. Loop AC% 0.0001 0.0163 0.0667 0.0151 0.0607

Avg. Loop UA% 0.0001 0.0216 0.0746 0.0227 0.0812

Avg. Bulge U% 0.0001 0.0850 0.2448 0.0899 0.2474

Avg. Loop CA% 0.0001 0.0164 0.0691 0.0176 0.0744

Avg. Stack UC% 0.0001 0.0545 0.1254 0.0568 0.1263

G% 0.0001 0.3477 0.1005 0.3463 0.1005

Avg. Loop GC% 3e-05 0.0105 0.0550 0.0099 0.0578

UU% 3e-05 0.0459 0.0659 0.0464 0.0655

Avg. Internal Loop UG% 3e-05 0.0214 0.1078 0.0200 0.0965

UA% 2e-05 0.0380 0.0649 0.0372 0.0635

Avg. Loop UG% 2e-05 0.0206 0.1003 0.0193 0.0913

C% 2e-05 0.2827 0.1104 0.2819 0.1095

A% 2e-05 0.1697 0.1056 0.1687 0.1030

Avg. Internal Loop GU% Bond 1e-05 0.0745 0.1697 0.0757 0.1727

Avg. Internal Loop A% 9e-06 0.1653 0.2466 0.1636 0.2358

Avg. Internal Loop GG% 9e-06 0.0211 0.0935 0.0219 0.0969

AU% Bond 9e-06 0.2805 0.1982 0.2814 0.1962
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Avg. Loop Size 8e-06 2.0213 2.3578 2.0314 2.2864

Avg. Bulge GU% 8e-06 0.0047 0.0498 0.0050 0.0511

Avg. Loop GA% 8e-06 0.0301 0.1024 0.0292 0.1040

Avg. Bulge GA% 7e-06 0.0062 0.0556 0.0064 0.0545

Avg. Internal Loop GC% 7e-06 0.0110 0.0566 0.0106 0.0631

Avg. Bulge GG% 6e-06 0.0034 0.0438 0.0036 0.0470

Avg. Stack CA% 5e-06 0.0360 0.1007 0.0367 0.1024

Avg. Bulge CG% 4e-06 0.0019 0.0279 0.0020 0.0288

Avg. Internal Loop GA% 3e-06 0.0322 0.1124 0.0316 0.1161

Avg. Internal Loop GU% 3e-06 0.0113 0.0626 0.0115 0.0640

Avg. Bulge CC% 3e-06 0.0037 0.0520 0.0038 0.0460

Avg. Loop GU% 3e-06 0.0124 0.0666 0.0123 0.0640

Avg. Stack UG% 2e-06 0.0615 0.1318 0.0623 0.1293

Avg. Bulge CA% 2e-06 0.0063 0.0596 0.0065 0.0576

Avg. Loop GG% 2e-06 0.0195 0.0846 0.0198 0.0884

Avg. Bulge UA% 1e-06 0.0080 0.0638 0.0082 0.0663

Avg. Internal Loop UU% 1e-06 0.0207 0.1007 0.0209 0.0970

Avg. Bulge UG% 0e+00 0.0049 0.0530 0.0048 0.0494

CU% 0e+00 0.0570 0.0646 0.0570 0.0658

Table E.20: Experiment 2 Stem Metric Statistics. Ranks each stem metric from the

second experiment in descending value of F-score. The mean and standard deviation of

the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Size 0.0092 14.3775 9.3802 16.1137 9.3887

Avg. Stack CS 0.0091 5.6057 1.6503 5.5696 1.8326

Avg. Loop SLC 0.0089 0.3183 0.4027 0.3921 0.4200

Avg. Loop NLC 0.0081 0.3827 0.4623 0.4616 0.4719

Avg. Stack FS 0.0080 2.8512 1.2250 2.7968 1.2773

Avg. Internal Loop C% 0.0072 0.0427 0.1273 0.0665 0.1625

Avg. Internal Loop SLC 0.0071 0.2333 0.3642 0.2911 0.3872

Avg. Internal Loop NLC 0.0068 0.2880 0.4310 0.3546 0.4527

Avg. Loop U% 0.0058 0.0839 0.2095 0.1176 0.2411

Avg. Internal Loop GG% 0.0056 0.0070 0.0471 0.0200 0.1014

Avg. Bulge SLC 0.0055 0.1404 0.3266 0.1998 0.3818

Avg. Internal Loop GC% Bond 0.0050 0.1767 0.3208 0.2194 0.3471

Avg. Internal Loop UA% 0.0049 0.0082 0.0490 0.0181 0.0815

Avg. Loop FS 0.0048 3.9899 1.2496 4.0013 1.5297

Avg. Bulge FS 0.0046 4.2747 1.2334 4.0478 1.3206

Avg. Bulge NLC 0.0046 0.1597 0.3584 0.2186 0.4061

Avg. Internal Loop U% 0.0044 0.0527 0.1578 0.0747 0.1883

Avg. Loop GG% 0.0041 0.0088 0.0593 0.0206 0.1044

Avg. Bulge CS 0.0041 4.6162 1.4493 4.2674 1.5777

Avg. Loop GC% Bond 0.0039 0.2460 0.3638 0.2863 0.3652

Avg. Internal Loop FS 0.0038 4.0298 1.4078 3.9641 1.5609

Avg. Bulge AU% 0.0037 0.0008 0.0121 0.0054 0.0510

Avg. Loop CS 0.0037 4.6924 1.4797 4.4975 1.8638

PP 0.0035 0.9134 0.1252 0.9002 0.1208

Loop% 0.0035 0.0866 0.1252 0.0998 0.1208

Avg. Loop AG% 0.0034 0.0313 0.1149 0.0182 0.0778

Avg. Internal Loop Size 0.0031 1.2567 2.1994 1.4795 2.2616

Avg. Loop GU% Bond 0.0031 0.0494 0.1461 0.0706 0.1787

Avg. Internal Loop CS 0.0029 4.8386 1.5824 4.5547 1.9021
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Avg. Internal Loop AC% 0.0029 0.0050 0.0390 0.0102 0.0552

Avg. Bulge A% 0.0028 0.0556 0.2066 0.0852 0.2575

Avg. Bulge AC% 0.0028 0.0050 0.0458 0.0014 0.0253

UG% 0.0028 0.0561 0.0689 0.0647 0.0672

Avg. Loop Size 0.0028 1.3727 2.1338 1.5632 2.1143

Avg. Bulge GC% Bond 0.0027 0.1086 0.2859 0.1432 0.3061

Avg. Loop A% 0.0027 0.1378 0.2559 0.1651 0.2700

Avg. Bulge U% 0.0027 0.0476 0.1939 0.0721 0.2373

Avg. Internal Loop AG% 0.0026 0.0287 0.1091 0.0189 0.0813

Avg. Loop AU% Bond 0.0026 0.1159 0.2428 0.1380 0.2455

Avg. Internal Loop GU% Bond 0.0025 0.0405 0.1362 0.0584 0.1714

Avg. Bulge AU% 0.0024 0.0436 0.1648 0.0625 0.1813

NLC 0.0023 0.8988 0.0935 0.9073 0.0867

Avg. Loop UU% 0.0023 0.0121 0.0857 0.0227 0.1165

Internal Loop% 0.0022 0.0720 0.1220 0.0814 0.1169

Avg. Stack% 0.0022 0.9007 0.1477 0.8887 0.1394

AC% 0.0021 0.0378 0.0633 0.0430 0.0602

Avg. Internal Loop UU% 0.0021 0.0098 0.0777 0.0201 0.1203

SLC 0.0021 0.5614 0.1836 0.5762 0.1935

Avg. Internal Loop CC% 0.0020 0.0074 0.0650 0.0148 0.0924

Avg. Loop GA% 0.0019 0.0141 0.0746 0.0227 0.0995

Avg. Internal Loop A% 0.0018 0.1043 0.2197 0.1224 0.2244

Avg. Bulge UU% 0.0018 0.0033 0.0452 0.0085 0.0743

CC% 0.0018 0.0976 0.1256 0.0868 0.1084

GU% Bond 0.0018 0.1083 0.1282 0.1210 0.1296

Avg. Loop C% 0.0017 0.0696 0.1899 0.0845 0.1968

Avg. Internal Loop GA% 0.0016 0.0144 0.0750 0.0224 0.0985

GG% 0.0016 0.1354 0.1304 0.1244 0.1186

Avg. Stack Size 0.0016 8.2340 3.0376 8.4837 2.9390

Avg. Internal Loop CA% 0.0015 0.0057 0.0355 0.0092 0.0628

UC% 0.0015 0.0490 0.0693 0.0528 0.0642
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Bulge% 0.0014 0.0146 0.0404 0.0184 0.0450

GA% 0.0014 0.0530 0.0689 0.0568 0.0663

Avg. Stack AU% 0.0011 0.0278 0.1249 0.0194 0.0975

Avg. Bulge UC% 0.0011 0.0015 0.0227 0.0005 0.0076

Avg. Loop CC% 0.0011 0.0094 0.0766 0.0154 0.0933

Avg. Internal Loop AU% Bond 0.0011 0.0953 0.2279 0.1071 0.2325

Avg. Loop CU% 0.0011 0.0049 0.0411 0.0073 0.0508

Avg. Bulge CU% 0.0011 0.0004 0.0092 0.0019 0.0265

CG% 0.0011 0.0642 0.1084 0.0703 0.1041

Avg. Internal Loop AA% 0.0011 0.0431 0.1458 0.0334 0.1140

Avg. Bulge Size 0.0010 0.3079 1.0028 0.3831 1.0312

Avg. Internal Loop CU% 0.0010 0.0050 0.0421 0.0074 0.0570

Avg. Stack UC% 0.0010 0.0558 0.1429 0.0647 0.1441

Avg. Stack SLC 0.0009 0.4575 0.1005 0.4510 0.0979

U% 0.0009 0.1879 0.1204 0.1953 0.1077

Avg. Stack UG% 0.0009 0.0458 0.1255 0.0564 0.1350

Avg. Bulge UA% 0.0008 0.0069 0.0736 0.0040 0.0443

Avg. Loop AA% 0.0008 0.0449 0.1488 0.0355 0.1202

CA% 0.0008 0.0348 0.0591 0.0390 0.0583

Avg. Bulge GC% 0.0008 0.0022 0.0289 0.0006 0.0128

GC% 0.0008 0.1486 0.2060 0.1404 0.1869

Avg. Bulge G% 0.0008 0.0262 0.1302 0.0326 0.1555

Avg. Bulge GU% Bond 0.0007 0.0152 0.0917 0.0218 0.1044

Avg. Internal Loop G% 0.0005 0.1128 0.2418 0.1214 0.2486

AG% 0.0005 0.0579 0.0675 0.0553 0.0620

Avg. Internal Loop SR 0.0005 0.9441 0.1521 0.9351 0.1695

Avg. Loop AU% 0.0005 0.0117 0.0734 0.0153 0.0699

Avg. Bulge CA% 0.0005 0.0064 0.0567 0.0041 0.0549

Avg. Loop G% 0.0005 0.1200 0.2418 0.1278 0.2449

Avg. Stack CA% 0.0005 0.0271 0.0975 0.0331 0.1067

AA% 0.0004 0.0340 0.0638 0.0309 0.0550
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Avg. Internal Loop UC% 0.0004 0.0068 0.0594 0.0084 0.0575

Avg. Loop UA% 0.0004 0.0141 0.0865 0.0178 0.0750

Avg. Stack AC% 0.0003 0.0420 0.1235 0.0471 0.1304

Avg. Stack UA% 0.0003 0.0261 0.1305 0.0306 0.1339

GC% Bond 0.0003 0.6245 0.2425 0.6155 0.2155

UU% 0.0003 0.0421 0.0705 0.0442 0.0678

G% 0.0003 0.3617 0.1052 0.3590 0.0978

Avg. Stack AG% 0.0002 0.0496 0.1360 0.0475 0.1222

Avg. Stack NLC 0.0002 0.8775 0.0980 0.8803 0.0950

Avg. Stack CC% 0.0002 0.1025 0.1822 0.0954 0.1693

Avg. Stack GC% 0.0002 0.1714 0.3273 0.1621 0.3090

Avg. Internal Loop GC% 0.0002 0.0068 0.0575 0.0077 0.0708

C% 0.0002 0.2967 0.1212 0.2931 0.1071

Avg. Stack AA% 0.0002 0.0144 0.0708 0.0168 0.0792

Avg. Bulge UG% 0.0002 0.0042 0.0566 0.0031 0.0398

GU% 0.0002 0.0709 0.0772 0.0736 0.0727

Avg. Internal Loop UG% 0.0002 0.0169 0.0933 0.0208 0.1229

Avg. Loop AC% 0.0001 0.0087 0.0526 0.0098 0.0521

Avg. Stack A% 0.0001 0.1339 0.1072 0.1316 0.0959

Avg. Stack G% 0.0001 0.3661 0.1072 0.3684 0.0959

Avg. Loop UG% 0.0001 0.0181 0.0946 0.0216 0.1218

Avg. Bulge CC% 0.0001 0.0034 0.0537 0.0027 0.0502

Avg. Stack CU% 0.0001 0.0578 0.1465 0.0559 0.1326

UA% 0.0001 0.0348 0.0737 0.0335 0.0643

Avg. Stack CG% 0.0001 0.0761 0.2178 0.0709 0.2092

Avg. Loop CA% 0.0001 0.0102 0.0603 0.0106 0.0656

Avg. Loop US% 0.0001 0.0072 0.0585 0.0073 0.0495

Avg. Stack GG% 0.0001 0.1278 0.1967 0.1296 0.1870

Avg. Bulge GA% 0.0001 0.0034 0.0533 0.0045 0.0555

AU% Bond 0.0001 0.2673 0.2109 0.2636 0.1906

Avg. Bulge AA% 0.0001 0.0073 0.0762 0.0085 0.0844
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Avg. Internal Loop GU% 0.0001 0.0087 0.0606 0.0071 0.0566

Avg. Internal Loop CG% 0.0001 0.0081 0.0658 0.0079 0.0501

Avg. Internal Loop AU% 0.0001 0.0116 0.0736 0.0132 0.0671

Avg. Bulge C% 4e-05 0.0382 0.1754 0.0376 0.1756

Avg. Bulge AG% 3e-05 0.0047 0.0501 0.0035 0.0451

Avg. Stack GU% 3e-05 0.0822 0.1661 0.0797 0.1623

Avg. Loop GC% 3e-05 0.0075 0.0582 0.0068 0.0610

Avg. Bulge CG% 3e-05 0.0013 0.0224 0.0018 0.0375

Avg. Loop GU% 2e-05 0.0115 0.0692 0.0107 0.0751

Avg. Stack U% 2e-05 0.1881 0.1236 0.1899 0.1078

Avg. Stack C% 2e-05 0.3119 0.1236 0.3101 0.1078

Avg. Bulge GG% 2e-05 0.0040 0.0562 0.0028 0.0438

CU% 2e-05 0.0574 0.0712 0.0576 0.0646

Avg. Bulge GU% 1e-05 0.0037 0.0397 0.0046 0.0545

Avg. Stack GC% 1e-05 0.0590 0.1456 0.0565 0.1374

AU% 8e-06 0.0265 0.0625 0.0266 0.0551

A% 8e-06 0.1537 0.1104 0.1526 0.0988

Avg. Loop CG% 5e-06 0.0074 0.0555 0.0078 0.0484

Avg. Stack UU% 1e-06 0.0346 0.1107 0.0343 0.1083

Table E.21: Experiment 2 Bridge Metric Statistics. Ranks each bridge metric from the

second experiment in descending value of F-score. The mean and standard deviation of

the metrics for the SRNAG and non-SRNAG classes are also listed.



APPENDIX E. DATA 174

Gene Nongene

Feature F-score Mean Std. Mean Std.

Avg. Stack Size 0.0114 8.5623 3.2362 7.9108 2.7886

Stack% 0.0082 0.6177 0.1193 0.5956 0.1258

PP 0.0079 0.6309 0.1003 0.6130 0.1022

Avg. Stack SLC 0.0048 0.4459 0.1060 0.4606 0.1059

GC% Bond 0.0045 0.5931 0.2174 0.5897 0.2222

Avg. Hairpin Loop SLC 0.0037 0.3801 0.0852 0.3697 0.0894

Avg. Hairpin Loop Size 0.0037 5.4184 2.2269 5.7052 2.6124

AU% Bond 0.0032 0.2831 0.1958 0.2852 0.1971

Avg. Hairpin Loop GG% 0.0026 0.0420 0.1186 0.0561 0.1399

Avg. Loop AA% 0.0024 0.0643 0.1599 0.0505 0.1274

Avg. Internal Loop SLC 0.0024 0.3527 0.3807 0.3907 0.3907

Avg. Hairpin Loop AG% 0.0021 0.0605 0.1192 0.0716 0.1263

Avg. Hairpin Loop AA% 0.0020 0.1586 0.2102 0.1401 0.2096

Avg. Loop FS 0.0020 4.5198 1.4320 4.4209 1.3659

Avg. Hairpin Loop GU% 0.0018 0.0609 0.1162 0.0509 0.1077

Avg. Internal Loop FS 0.0018 4.4589 1.4798 4.3759 1.4118

Avg. Internal Loop G% 0.0017 0.1410 0.2319 0.1617 0.2558

Avg. Loop CS 0.0017 5.3399 1.7486 5.1815 1.7553

Avg. Internal Loop NLC 0.0017 0.4507 0.4611 0.4895 0.4647

Avg. Internal Loop CS 0.0016 5.4066 1.8182 5.2587 1.8041

SLC 0.0015 0.8865 0.0470 0.8904 0.0507

Avg. Internal Loop GC% Bond 0.0015 0.2584 0.3404 0.2863 0.3540

Hairpin% 0.0015 0.2550 0.1456 0.2660 0.1560

Avg. Loop G% 0.0014 0.1428 0.2261 0.1614 0.2467

Avg. Loop SLC 0.0014 0.4575 0.3981 0.4877 0.4019

Avg. Hairpin Loop AU% 0.0014 0.0555 0.1081 0.0645 0.1166

Avg. Hairpin Loop UC% 0.0013 0.0529 0.1137 0.0450 0.1018

Avg. Stack AC% 0.0012 0.0338 0.0966 0.0413 0.1082

Avg. Bulge FS 0.0012 4.6087 1.5327 4.5194 1.4795
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Avg. Internal Loop C% 0.0011 0.0833 0.1612 0.0940 0.1672

Avg. Hairpin Loop AG% 0.0011 0.0524 0.1100 0.0596 0.1148

Avg. Bulge AG% 0.0011 0.0093 0.0681 0.0057 0.0503

Avg. Bulge CS 0.0010 5.0720 1.8311 4.9229 1.7995

Avg. Stack GC% 0.0010 0.1382 0.2687 0.1223 0.2453

Avg. Loop GC% Bond 0.0009 0.3297 0.3528 0.3532 0.3602

Avg. Stack GG% 0.0009 0.1386 0.1864 0.1273 0.1751

Avg. Internal Loop CG% 0.0009 0.0094 0.0509 0.0128 0.0641

Avg. Loop NLC 0.0009 0.5588 0.4583 0.5872 0.4579

Avg. Loop C% 0.0009 0.1040 0.1912 0.1151 0.1981

Avg. Bulge AA% 0.0009 0.0215 0.1183 0.0152 0.0923

Avg. Stack GC% 0.0009 0.0480 0.1129 0.0551 0.1228

Avg. Internal Loop AA% 0.0008 0.0602 0.1543 0.0521 0.1345

GA% 0.0008 0.0660 0.0518 0.0689 0.0538

Avg. Stack C% 0.0008 0.2946 0.1107 0.2885 0.1148

Avg. Bulge AC% 0.0008 0.0084 0.0669 0.0053 0.0474

Avg. Stack CC% 0.0008 0.1014 0.1690 0.0921 0.1590

Loop% 0.0007 0.1141 0.1187 0.1211 0.1191

Avg. Stack G% 0.0007 0.3550 0.1034 0.3496 0.1074

Avg. Bulge GC% Bond 0.0007 0.1898 0.3335 0.2095 0.3466

Avg. Bulge UU% 0.0007 0.0100 0.0794 0.0064 0.0596

Avg. Stack UU% 0.0006 0.0385 0.1071 0.0432 0.1092

Avg. Loop AU% 0.0006 0.0163 0.0568 0.0196 0.0642

GU% Bond 0.0006 0.1237 0.1202 0.1251 0.1211

Avg. Internal Loop AU% 0.0006 0.0158 0.0574 0.0189 0.0651

GC% 0.0006 0.0815 0.0695 0.0783 0.0682

Internal Loop% 0.0006 0.0945 0.1141 0.1003 0.1137

Avg. Bulge SLC 0.0006 0.2721 0.4128 0.2939 0.4257

Avg. Loop UU% 0.0006 0.0249 0.1070 0.0202 0.0828

Avg. Bulge NLC 0.0005 0.3083 0.4499 0.3312 0.4614

Avg. Internal Loop U% 0.0005 0.0940 0.1913 0.1028 0.1952
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Avg. Loop CG% 0.0005 0.0094 0.0494 0.0114 0.0559

Avg. Stack UA% 0.0004 0.0278 0.1162 0.0329 0.1309

CS 0.0004 29.3482 8.4823 29.3207 8.4559

Avg. Stack GU% 0.0004 0.0737 0.1363 0.0792 0.1431

Avg. Internal Loop AU% Bond 0.0004 0.1544 0.2557 0.1644 0.2568

Avg. Loop GU% Bond 0.0004 0.0908 0.1737 0.0836 0.1649

Avg. Hairpin Loop CG% 0.0004 0.0387 0.0974 0.0426 0.1015

Avg. Stack NLC 0.0004 0.8735 0.1266 0.8681 0.1384

AC% 0.0003 0.0497 0.0472 0.0515 0.0475

Avg. Loop US% 0.0003 0.0136 0.0621 0.0158 0.0669

Avg. Stack U% 0.0003 0.2007 0.1087 0.2042 0.1121

Avg. Hairpin Loop GC% 0.0003 0.0496 0.1114 0.0456 0.1042

Avg. Internal Loop SR 0.0003 0.9028 0.1874 0.8964 0.1886

Avg. Internal Loop CU% 0.0003 0.0138 0.0776 0.0163 0.0754

Avg. Loop AG% 0.0003 0.0295 0.0977 0.0267 0.0931

NLC 0.0003 0.9627 0.0284 0.9616 0.0324

AA% 0.0003 0.0718 0.0718 0.0693 0.0758

Avg. Stack CU% 0.0003 0.0566 0.1241 0.0606 0.1268

Avg. Loop A% 0.0003 0.2220 0.2876 0.2130 0.2699

Avg. Stack CG% 0.0003 0.0793 0.2115 0.0732 0.1993

Avg. Bulge C% 0.0003 0.0622 0.2041 0.0690 0.2182

Avg. Bulge AU% 0.0003 0.0070 0.0580 0.0092 0.0685

Size 0.0003 28.6532 17.7924 29.3289 18.6346

Avg. Stack A% 0.0002 0.1403 0.0983 0.1431 0.1001

Avg. Internal Loop UC% 0.0002 0.0144 0.0685 0.0166 0.0719

Avg. Stack FS 0.0002 2.9543 1.1815 2.9446 1.2240

Avg. Internal Loop CC% 0.0002 0.0116 0.0675 0.0139 0.0687

Avg. Hairpin Loop U% 0.0002 0.2296 0.2081 0.2237 0.2076

Avg. Bulge G% 0.0002 0.0468 0.1729 0.0524 0.1846

Avg. Hairpin Loop C% 0.0002 0.1862 0.1861 0.1903 0.1862

Avg. Stack AG% 0.0002 0.0458 0.1120 0.0484 0.1150
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Avg. Bulge GU% Bond 0.0002 0.0391 0.1331 0.0357 0.1274

Bulge% 0.0002 0.0196 0.0379 0.0208 0.0392

Avg. Bulge CU% 0.0002 0.0037 0.0410 0.0048 0.0483

Avg. Bulge UC% 0.0002 0.0042 0.0471 0.0054 0.0530

Avg. Stack AA% 0.0002 0.0187 0.0746 0.0202 0.0767

Avg. Loop AU% Bond 0.0001 0.1837 0.2583 0.1894 0.2540

G% 0.0001 0.3104 0.0926 0.3088 0.0938

CG% 0.0001 0.0679 0.0617 0.0664 0.0632

Avg. Hairpin Loop NLC 0.0001 0.8754 0.1031 0.8773 0.1091

Avg. Hairpin Loop CU% 0.0001 0.0443 0.1030 0.0461 0.1032

UU% 0.0001 0.0513 0.0624 0.0525 0.0628

Avg. Internal Loop CA% 0.0001 0.0170 0.0673 0.0184 0.0779

Avg. Loop CU% 0.0001 0.0139 0.0728 0.0152 0.0680

Avg. Loop CC% 0.0001 0.0117 0.0710 0.0134 0.0645

Avg. Hairpin Loop UA% 0.0001 0.0736 0.1218 0.0717 0.1220

Avg. Hairpin Loop UU% 0.0001 0.0645 0.1516 0.0616 0.1449

Avg. Bulge GC% 0.0001 0.0031 0.0429 0.0024 0.0332

Avg. Loop AC% 0.0001 0.0173 0.0686 0.0162 0.0622

GC% Bond 0.0001 0.5931 0.2174 0.5897 0.2222

Avg. Loop GG% 0.0001 0.0217 0.0896 0.0199 0.0856

CC% 0.0001 0.0663 0.0636 0.0674 0.0683

Avg. Hairpin Loop CC% 0.0001 0.0427 0.1169 0.0444 0.1218

Avg. Hairpin Loop GA% 0.0001 0.0924 0.1448 0.0900 0.1426

Avg. Loop CA% 0.0001 0.0178 0.0728 0.0190 0.0757

Avg. Internal Loop Size 0.0001 2.1664 2.7048 2.2171 2.6181

Avg. Bulge Size 0.0001 0.5883 1.2033 0.6143 1.2500

GU% 0.0001 0.0658 0.0486 0.0649 0.0492

AU% 0.0001 0.0447 0.0518 0.0455 0.0508

Avg. Internal Loop UG% 0.0001 0.0219 0.1096 0.0201 0.0907

Avg. Loop UG% 0.0001 0.0208 0.1007 0.0191 0.0841

Avg. Internal Loop AC% 0.0001 0.0156 0.0626 0.0169 0.0677
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Avg. Loop GA% 0.0001 0.0327 0.1059 0.0309 0.1055

U% 0.0001 0.2131 0.0997 0.2145 0.1009

UG% 0.0001 0.0636 0.0498 0.0645 0.0515

Avg. Internal Loop A% 0.0001 0.1756 0.2500 0.1722 0.2371

Avg. Loop UA% 0.0001 0.0226 0.0721 0.0239 0.0830

Avg. Loop GC% 0.0001 0.0111 0.0553 0.0103 0.0561

Avg. Bulge UA% 0.0001 0.0081 0.0620 0.0092 0.0704

Avg. Internal Loop UU% 5e-05 0.0227 0.1049 0.0213 0.0929

AU% Bond 5e-05 0.2831 0.1958 0.2852 0.1971

Avg. Internal Loop GG% 4e-05 0.0240 0.1006 0.0225 0.0969

GU% Bond 4e-05 0.1237 0.1202 0.1251 0.1211

GG% 4e-05 0.0993 0.0775 0.0990 0.0799

Avg. Bulge CA% 4e-05 0.0062 0.0590 0.0071 0.0586

Avg. Bulge A% 4e-05 0.1221 0.2865 0.1267 0.2926

Avg. Bulge AU% 3e-05 0.0944 0.2209 0.0972 0.2187

Avg. Internal Loop GA% 3e-05 0.0354 0.1175 0.0338 0.1198

Avg. Internal Loop GC% 3e-05 0.0116 0.0565 0.0111 0.0609

Avg. Bulge CC% 2e-05 0.0037 0.0519 0.0041 0.0458

Avg. Internal Loop GU% 2e-05 0.0118 0.0634 0.0123 0.0643

UA% 2e-05 0.0484 0.0534 0.0488 0.0533

CA% 2e-05 0.0499 0.0461 0.0495 0.0459

Avg. Bulge GG% 2e-05 0.0033 0.0414 0.0036 0.0457

Avg. Hairpin Loop G% 1e-05 0.2334 0.1893 0.2349 0.1973

Avg. Stack AU% 9e-06 0.0338 0.1315 0.0325 0.1253

Avg. Bulge GU% 9e-06 0.0050 0.0524 0.0052 0.0511

FS 8e-06 5.7058 4.4837 5.7958 4.6108

A% 7e-06 0.2292 0.0972 0.2296 0.1001

Avg. Bulge U% 7e-06 0.0922 0.2530 0.0942 0.2499

Avg. Hairpin Loop UG% 6e-06 0.0502 0.1092 0.0493 0.1072

Avg. Loop U% 6e-06 0.1354 0.2402 0.1366 0.2279

Avg. Stack CS 6e-06 5.9881 1.6992 5.7966 1.7371
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Avg. Bulge UG% 6e-06 0.0051 0.0530 0.0052 0.0516

Avg. Bulge GA% 5e-06 0.0067 0.0559 0.0069 0.0548

Avg. Stack UG% 5e-06 0.0640 0.1330 0.0642 0.1289

Avg. Loop Size 4e-06 2.1307 2.3642 2.1239 2.2969

Avg. Internal Loop GU% Bond 4e-06 0.0812 0.1755 0.0800 0.1738

Avg. Stack UC% 3e-06 0.0546 0.1227 0.0551 0.1223

Avg. Bulge CG% 3e-06 0.0021 0.0296 0.0021 0.0272

CU% 1e-06 0.0542 0.0470 0.0544 0.0468

AG% 1e-06 0.0693 0.0500 0.0692 0.0528

Avg. Hairpin Loop CA% 1e-06 0.0612 0.1218 0.0609 0.1157

Avg. Loop GU% 0e+00 0.0128 0.0672 0.0126 0.0606

Avg. Hairpin Loop A% 0e+00 0.3509 0.2282 0.3510 0.2240

Avg. Stack CA% 0e+00 0.0377 0.1018 0.0379 0.1021

Avg. Internal Loop AG% 0e+00 0.0286 0.0975 0.0290 0.1008

C% 0e+00 0.2473 0.0882 0.2472 0.0922

Avg. Internal Loop UA% 0e+00 0.0223 0.0735 0.0224 0.0775

UC% 0e+00 0.0502 0.0461 0.0500 0.0456

Table E.22: Experiment 2 Stemloop Metric Statistics. Ranks each stemloop metric from

the second experiment in descending value of F-score. The mean and standard deviation

of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

MFE 0.0190 -22.8759 7.7273 -20.8579 6.8840

Bridge% 0.0061 0.0671 0.1150 0.0861 0.1274

NLC 0.0049 0.9871 0.0046 0.9877 0.0039

Stemloop% 0.0042 0.7495 0.1677 0.7269 0.1818

Multiloop% 0.0029 0.0753 0.1102 0.0874 0.1142

SLC 0.0027 0.9303 0.0213 0.9326 0.0223

Internal Loop% 0.0014 0.1237 0.0895 0.1305 0.0882

Bulge% 0.0013 0.0245 0.0321 0.0269 0.0355

AG% 0.0010 0.0733 0.0259 0.0716 0.0271

AA% 0.0009 0.0809 0.0440 0.0783 0.0440

CC% 0.0007 0.0593 0.0364 0.0612 0.0375

A% 0.0007 0.2570 0.0650 0.2536 0.0660

C% 0.0005 0.2309 0.0626 0.2336 0.0624

UC% 0.0004 0.0479 0.0242 0.0489 0.0240

UA% 0.0003 0.0552 0.0349 0.0540 0.0330

UG% 0.0003 0.0634 0.0285 0.0643 0.0276

Stem% 0.0002 0.6755 0.1239 0.6716 0.1222

GC% 0.0002 0.0721 0.0328 0.0711 0.0319

AC% 0.0002 0.0521 0.0242 0.0528 0.0245

CU% 0.0002 0.0537 0.0260 0.0544 0.0253

GU% 0.0002 0.0628 0.0269 0.0621 0.0252

Stack% 0.0002 0.5831 0.1247 0.5864 0.1315

UU% 0.0002 0.0543 0.0439 0.0554 0.0425

% Num. Bridge 0.0001 0.0001 0.0005 0.0001 0.0005

% Num. Multiloop 0.0001 0.0001 0.0005 0.0001 0.0005

GA% 0.0001 0.0672 0.0266 0.0677 0.0265

U% 0.0001 0.2213 0.0729 0.2225 0.0700

% Num. Hairpin Loop 2e-05 0.0003 0.0016 0.0003 0.0016

% Num. Stemloop 2e-05 0.0003 0.0016 0.0003 0.0016
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G% 1e-05 0.2908 0.0722 0.2903 0.0706

GG% 1e-05 0.0889 0.0483 0.0892 0.0477

% Num. Internal Loop 1e-05 0.0004 0.0022 0.0004 0.0017

AU% 9e-06 0.0509 0.0335 0.0511 0.0322

CA% 7e-06 0.0538 0.0250 0.0539 0.0240

CG% 7e-06 0.0643 0.0331 0.0642 0.0333

Hairpin Loop% 7e-06 0.1411 0.0585 0.1414 0.0592

% Num. Joint 5e-06 0.1692 0.0046 0.1692 0.0039

% Num. Stack 0e+00 0.0009 0.0046 0.0010 0.0042

Tail% 0e+00 0.0275 0.2851 0.0308 0.2866

% Num. Stem 0e+00 0.0004 0.0020 0.0004 0.0020

Joint% 0e+00 0.0950 0.1166 0.0787 0.1137

% Num. Bulge 0e+00 0.0002 0.0013 0.0002 0.0010

% Num. Tail 0e+00 0.1624 0.0050 0.1624 0.0047

Size 0e+00 80.0000 0.0000 80.0000 0.0000

Table E.23: Experiment 2 Structure Metric Statistics. Ranks each structure metric from

the second experiment in descending value of F-score. The mean and standard deviation

of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

GC% Bond 0.0045 0.6899 0.4626 0.6259 0.4840

SLC 0.0037 0.3801 0.0853 0.3697 0.0894

Size 0.0037 5.4158 2.2098 5.7052 2.6124

AU% Bond 0.0032 0.1978 0.3984 0.2444 0.4298

GG% 0.0026 0.0425 0.1204 0.0561 0.1399

AG% 0.0021 0.0611 0.1197 0.0716 0.1263

AA% 0.0020 0.1594 0.2112 0.1401 0.2096

GU% 0.0018 0.0605 0.1162 0.0509 0.1077

AU% 0.0014 0.0559 0.1085 0.0645 0.1166

UC% 0.0013 0.0528 0.1136 0.0450 0.1018

AC% 0.0011 0.0513 0.1091 0.0596 0.1148

FS 0.0008 25.0122 8.5746 24.7540 8.3869

GU% Bond 0.0006 0.1123 0.3158 0.1297 0.3361

CS 0.0005 29.4141 8.5949 29.3450 8.5556

CG% 0.0004 0.0386 0.0973 0.0426 0.1015

GC% 0.0003 0.0498 0.1116 0.0456 0.1042

U% 0.0002 0.2305 0.2088 0.2237 0.2076

C% 0.0002 0.1843 0.1854 0.1903 0.1862

NLC 0.0001 0.8749 0.1037 0.8773 0.1091

CU% 0.0001 0.0439 0.1024 0.0461 0.1032

UA% 0.0001 0.0747 0.1226 0.0717 0.1220

UU% 0.0001 0.0649 0.1522 0.0616 0.1449

CC% 0.0001 0.0418 0.1161 0.0444 0.1218

GA% 0.0001 0.0928 0.1449 0.0900 0.1426

G% 1e-05 0.2335 0.1898 0.2349 0.1973

UG% 6e-06 0.0498 0.1091 0.0493 0.1072

CA% 1e-06 0.0602 0.1209 0.0609 0.1157

A% 0e+00 0.3517 0.2286 0.3510 0.2240

Table E.24: Experiment 2 Hairpin Loop Metric Statistics. Ranks each hairpin loop met-
ric from the second experiment in descending value of F-score. The mean and standard
deviation of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

AA% 0.0013 0.1204 0.2506 0.1037 0.2344

SLC 0.0009 0.6227 0.2776 0.6384 0.2860

NLC 0.0004 0.9128 0.1222 0.9174 0.1221

A% 0.0004 0.3657 0.3501 0.3528 0.3539

GA% 0.0004 0.0653 0.1799 0.0584 0.1683

CC% 0.0003 0.0249 0.1101 0.0291 0.1251

C% 0.0003 0.1733 0.2737 0.1830 0.2862

GU% 0.0003 0.0344 0.1201 0.0306 0.1170

UA% 0.0002 0.0508 0.1428 0.0468 0.1384

CG% 0.0002 0.0215 0.0990 0.0245 0.1074

CS 0.0002 4.0640 1.9349 4.0181 1.9878

GC% 0.0002 0.0298 0.1210 0.0271 0.1153

AG% 0.0001 0.0552 0.1610 0.0520 0.1571

UC% 0.0001 0.0324 0.1272 0.0299 0.1183

UU% 0.0001 0.0428 0.1534 0.0404 0.1470

Size 0.0001 3.5134 3.1360 3.4678 3.2259

GG% 0.0001 0.0353 0.1432 0.0375 0.1517

UG% 0.0001 0.0384 0.1447 0.0361 0.1397

CU% 4e-05 0.0277 0.1091 0.0292 0.1149

CA% 3e-05 0.0389 0.1270 0.0374 0.1259

AU% 3e-05 0.0421 0.1313 0.0433 0.1296

AC% 3e-05 0.0414 0.1359 0.0403 0.1307

G% 1e-05 0.2565 0.3215 0.2584 0.3339

U% 9e-06 0.2044 0.2879 0.2057 0.2951

FS 8e-06 1.0502 0.2917 1.0489 0.2683

Table E.25: Experiment 2 Unpaired Metric Statistics. Ranks each unpaired metric from
the second experiment in descending value of F-score. The mean and standard deviation of
the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

Size 0.0026 8.1492 3.6413 7.7984 3.3268

SLC 0.0018 0.4662 0.1238 0.4764 0.1209

FS 0.0003 2.9625 1.3441 2.9370 1.3914

UU% 0.0003 0.0400 0.1357 0.0449 0.1429

GU% Bond 0.0002 0.1240 0.1642 0.1287 0.1691

CU% 0.0002 0.0582 0.1603 0.0622 0.1650

CC% 0.0002 0.0923 0.1940 0.0870 0.1896

U% 0.0002 0.2083 0.1329 0.2115 0.1358

C% 0.0002 0.2917 0.1329 0.2885 0.1358

GC% Bond 0.0002 0.5835 0.2658 0.5770 0.2715

GC% 0.0001 0.1344 0.3183 0.1278 0.3122

AG% 0.0001 0.0483 0.1477 0.0513 0.1517

UA% 0.0001 0.0295 0.1552 0.0331 0.1628

AC% 0.0001 0.0389 0.1340 0.0417 0.1382

NLC 0.0001 0.8858 0.1122 0.8838 0.1134

CG% 0.0001 0.0754 0.2494 0.0717 0.2420

AA% 4e-05 0.0195 0.0967 0.0209 0.1001

GG% 3e-05 0.1257 0.2169 0.1228 0.2152

CS 3e-05 5.8758 1.8524 5.7199 1.9134

CA% 2e-05 0.0402 0.1360 0.0391 0.1342

GA% 1e-05 0.0560 0.1577 0.0574 0.1594

AU% Bond 8e-06 0.2926 0.2444 0.2942 0.2478

G% 8e-06 0.3537 0.1222 0.3529 0.1239

A% 8e-06 0.1463 0.1222 0.1471 0.1239

AU% 7e-06 0.0338 0.1626 0.0331 0.1620

UC% 5e-06 0.0590 0.1613 0.0583 0.1605

UG% 2e-06 0.0671 0.1744 0.0675 0.1731

GU% 0e+00 0.0816 0.1849 0.0813 0.1847

Table E.26: Experiment 2 Stack Metric Statistics. Ranks each stack metric from the second
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

AC% 0.0028 0.0280 0.1376 0.0163 0.0907

AG% 0.0027 0.0279 0.1258 0.0162 0.0940

NLC 0.0021 0.9571 0.1036 0.9655 0.0912

AA% 0.0020 0.0605 0.2055 0.0436 0.1691

GC% Bond 0.0017 0.5937 0.4913 0.5877 0.4924

GU% Bond 0.0008 0.1084 0.3109 0.1116 0.3149

SLC 0.0007 0.8450 0.2347 0.8580 0.2365

UU% 0.0007 0.0270 0.1340 0.0211 0.1181

AU% Bond 0.0006 0.2980 0.4575 0.3007 0.4587

GC% 0.0005 0.0105 0.0866 0.0069 0.0624

G% 0.0005 0.1432 0.3020 0.1564 0.3234

AU% 0.0004 0.0213 0.1137 0.0257 0.1207

A% 0.0004 0.3794 0.4325 0.3624 0.4345

UA% 0.0003 0.0285 0.1312 0.0247 0.1202

CG% 0.0001 0.0059 0.0519 0.0072 0.0604

CU% 0.0001 0.0123 0.0885 0.0143 0.0914

CC% 0.0001 0.0112 0.0940 0.0134 0.0947

UG% 0.0001 0.0143 0.0950 0.0159 0.0968

GU% 0.0001 0.0148 0.0947 0.0156 0.0998

GU% Bond 2e-05 0.1084 0.3109 0.1116 0.3149

GC% Bond 9e-06 0.5937 0.4913 0.5877 0.4924

U% 9e-06 0.2806 0.4083 0.2824 0.4074

GA% 5e-06 0.0202 0.1098 0.0204 0.1036

GG% 5e-06 0.0111 0.0838 0.0122 0.0926

Size 4e-06 1.7961 1.6400 1.7948 1.7442

C% 1e-06 0.1968 0.3594 0.1989 0.3641

AU% Bond 0e+00 0.2980 0.4575 0.3007 0.4587

UC% 0e+00 0.0144 0.1005 0.0142 0.0926

CA% 0e+00 0.0214 0.1176 0.0207 0.1151

Table E.27: Experiment 2 bulge Metric Statistics. Ranks each bulge metric from the second
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

AA% 0.0031 0.1218 0.2300 0.0968 0.2073

SLC 0.0030 0.7132 0.2219 0.7392 0.2257

A% 0.0021 0.3514 0.2889 0.3243 0.2868

Size 0.0018 4.3922 2.6898 4.1626 2.7011

NLC 0.0009 0.9150 0.1077 0.9219 0.1083

AG% 0.0008 0.0646 0.1730 0.0548 0.1620

GA% 0.0005 0.0689 0.1877 0.0603 0.1806

CG% 0.0005 0.0193 0.0852 0.0233 0.1005

UA% 0.0005 0.0460 0.1203 0.0415 0.1174

C% 0.0004 0.1661 0.2219 0.1756 0.2347

GC% 0.0004 0.0262 0.1041 0.0219 0.1045

CC% 0.0004 0.0234 0.1066 0.0271 0.1196

CU% 0.0004 0.0239 0.1094 0.0282 0.1148

AU% Bond 0.0003 0.3194 0.4663 0.3041 0.4601

G% 0.0003 0.2984 0.3136 0.3072 0.3330

GC% Bond 0.0002 0.5276 0.4993 0.5411 0.4984

AC% 0.0002 0.0340 0.1112 0.0296 0.1029

U% 0.0001 0.1842 0.2650 0.1929 0.2742

UC% 0.0001 0.0328 0.1421 0.0290 0.1126

GC% Bond 0.0001 0.5276 0.4993 0.5411 0.4984

UG% 0.0001 0.0437 0.1734 0.0410 0.1655

GU% 0.0001 0.0236 0.0991 0.0221 0.1001

GU% Bond 0.0001 0.1530 0.3601 0.1548 0.3618

AU% Bond 3e-05 0.3194 0.4663 0.3041 0.4601

CA% 8e-06 0.0332 0.1081 0.0315 0.1171

GG% 7e-06 0.0434 0.1483 0.0433 0.1575

AU% 2e-06 0.0349 0.1021 0.0356 0.1057

UU% 1e-06 0.0409 0.1574 0.0416 0.1543

SR 1e-06 0.8074 0.2637 0.8090 0.2673

GU% Bond 0e+00 0.1530 0.3601 0.1548 0.3618

Table E.28: Experiment 2 Internal Loop Metric Statistics. Ranks each internal loop met-
ric from the second experiment in descending value of F-score. The mean and standard
deviation of the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

C% 0.0013 0.1776 0.2458 0.1949 0.2611

CC% 0.0012 0.0268 0.1070 0.0351 0.1293

CG% 0.0009 0.0240 0.0986 0.0300 0.1056

UU% 0.0007 0.0565 0.1585 0.0488 0.1403

UC% 0.0004 0.0320 0.1054 0.0364 0.1162

GA% 0.0003 0.0692 0.1779 0.0629 0.1592

CA% 0.0003 0.0467 0.1351 0.0422 0.1203

U% 0.0003 0.2231 0.2657 0.2138 0.2558

G% 0.0002 0.2649 0.3013 0.2579 0.2977

UG% 0.0002 0.0421 0.1302 0.0387 0.1148

GU% 0.0001 0.0488 0.1431 0.0461 0.1360

Size 0.0001 5.0588 4.8262 5.1731 4.7893

AG% 0.0001 0.0647 0.1636 0.0617 0.1506

AU% 5e-05 0.0567 0.1446 0.0548 0.1291

CU% 3e-05 0.0396 0.1163 0.0374 0.1175

NLC 3e-05 0.9162 0.1136 0.9173 0.1126

SLC 2e-05 0.5304 0.2850 0.5272 0.2918

UA% 2e-05 0.0543 0.1312 0.0558 0.1300

CS 2e-05 56.6958 4.0007 56.6463 4.0977

FS 2e-05 34.3916 8.0014 34.2927 8.1955

GC% 7e-06 0.0371 0.1412 0.0367 0.1287

A% 4e-06 0.3343 0.3072 0.3333 0.3064

AA% 2e-06 0.1045 0.2158 0.1041 0.2103

GG% 0e+00 0.0434 0.1508 0.0436 0.1476

AC% 0e+00 0.0498 0.1316 0.0498 0.1351

Table E.29: Experiment 2 Tail Metric Statistics. Ranks each tail metric from the second
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

G% 0.0013 0.2361 0.3075 0.2143 0.2914

CC% 0.0009 0.0260 0.1119 0.0334 0.1355

UU% 0.0008 0.0313 0.1165 0.0386 0.1326

C% 0.0006 0.1611 0.2480 0.1741 0.2574

U% 0.0006 0.1649 0.2371 0.1774 0.2537

UA% 0.0006 0.0607 0.1570 0.0536 0.1457

GC% 0.0003 0.0291 0.1227 0.0338 0.1390

AG% 0.0002 0.0621 0.1743 0.0566 0.1567

AU% 0.0002 0.0526 0.1506 0.0575 0.1522

AA% 0.0002 0.1560 0.2828 0.1480 0.2745

UC% 0.0002 0.0267 0.1026 0.0295 0.1091

CG% 0.0001 0.0180 0.0920 0.0200 0.0921

NLC 0.0001 0.9073 0.1256 0.9043 0.1282

CA% 0.0001 0.0421 0.1328 0.0444 0.1353

SLC 4e-05 0.5841 0.2798 0.5806 0.2749

AC% 3e-05 0.0615 0.1699 0.0598 0.1643

Size 2e-05 4.0579 3.6757 4.0193 3.6162

CU% 2e-05 0.0275 0.0985 0.0265 0.1038

GU% 2e-05 0.0345 0.1221 0.0334 0.1257

GA% 2e-05 0.0664 0.1769 0.0673 0.1773

A% 2e-05 0.4378 0.3437 0.4342 0.3446

UG% 1e-05 0.0257 0.0991 0.0265 0.1018

FS 8e-06 1.0315 0.5701 1.0348 0.5056

CS 3e-06 4.0812 2.1724 4.0723 2.1361

GG% 0e+00 0.0315 0.1347 0.0319 0.1359

Table E.30: Experiment 2 Joint Metric Statistics. Ranks each joint metric from the second
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

CC% 0.0011 0.0264 0.1095 0.0339 0.1311

C% 0.0009 0.1692 0.2471 0.1841 0.2590

G% 0.0006 0.2502 0.3048 0.2353 0.2955

CG% 0.0005 0.0209 0.0953 0.0248 0.0995

UC% 0.0003 0.0293 0.1040 0.0329 0.1126

AG% 0.0002 0.0634 0.1691 0.0593 0.1543

UA% 0.0001 0.0576 0.1449 0.0548 0.1383

AA% 0.0001 0.1307 0.2535 0.1264 0.2455

GU% 0.0001 0.0415 0.1330 0.0391 0.1297

GC% 0.0001 0.0331 0.1321 0.0352 0.1341

GA% 4e-05 0.0678 0.1774 0.0653 0.1692

SLC 3e-05 0.5578 0.2836 0.5551 0.2847

UG% 3e-05 0.0337 0.1157 0.0325 0.1092

CU% 3e-05 0.0334 0.1077 0.0323 0.1127

AU% 3e-05 0.0546 0.1477 0.0561 0.1410

CA% 2e-05 0.0443 0.1340 0.0431 0.1276

Size 1e-05 4.5483 4.3071 4.5792 4.2742

NLC 1e-05 0.9117 0.1200 0.9109 0.1206

A% 1e-05 0.3871 0.3304 0.3854 0.3305

U% 9e-06 0.1934 0.2532 0.1951 0.2552

AC% 8e-06 0.0557 0.1524 0.0549 0.1507

CS 6e-06 4.6283 2.5614 4.6402 2.5301

FS 4e-06 1.1428 0.9083 1.1453 0.8148

UU% 0e+00 0.0436 0.1392 0.0433 0.1358

GG% 0e+00 0.0374 0.1429 0.0372 0.1411

Table E.31: Experiment 2 Joint-Tail Metric Statistics. Ranks each joint-tail metric from
the second experiment in descending value of F-score. The mean and standard deviation of
the metrics for the SRNAG and non-SRNAG classes are also listed.
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Gene Nongene

Feature F-score Mean Std. Mean Std.

AA% 0.0026 0.1019 0.2242 0.0801 0.1981

SLC 0.0019 0.7561 0.2344 0.7758 0.2359

A% 0.0012 0.3605 0.3425 0.3362 0.3407

NLC 0.0011 0.9287 0.1082 0.9358 0.1053

AG% 0.0010 0.0527 0.1601 0.0430 0.1453

Size 0.0007 3.5474 2.6898 3.4079 2.6680

AC% 0.0007 0.0320 0.1205 0.0268 0.1033

GC% 0.0004 0.0211 0.0990 0.0170 0.0941

GC% Bond 0.0004 0.5491 0.4976 0.5573 0.4967

FS 0.0004 4.4430 1.5795 4.3362 1.5561

UA% 0.0004 0.0403 0.1242 0.0356 0.1169

CG% 0.0004 0.0149 0.0762 0.0178 0.0891

G% 0.0003 0.2479 0.3183 0.2586 0.3364

CC% 0.0003 0.0195 0.1028 0.0230 0.1139

CU% 0.0003 0.0201 0.1032 0.0242 0.1101

GA% 0.0003 0.0530 0.1680 0.0477 0.1614

GU% Bond 0.0002 0.1385 0.3455 0.1409 0.3479

C% 0.0001 0.1761 0.2747 0.1835 0.2825

AU% Bond 0.0001 0.3124 0.4635 0.3018 0.4591

AU% Bond 0.0001 0.3124 0.4635 0.3018 0.4591

CS 0.0001 5.2517 1.9192 5.0648 1.9509

GC% Bond 0.0001 0.5491 0.4976 0.5573 0.4967

AU% 0.0001 0.0305 0.1062 0.0320 0.1104

UC% 0.0001 0.0268 0.1303 0.0246 0.1086

UU% 0.0001 0.0364 0.1503 0.0343 0.1431

U% 0.0001 0.2155 0.3219 0.2216 0.3261

UG% 2e-05 0.0342 0.1530 0.0335 0.1486

GU% 9e-06 0.0207 0.0978 0.0200 0.0997

GG% 8e-06 0.0329 0.1317 0.0336 0.1411

CA% 4e-06 0.0294 0.1114 0.0295 0.1192

GU% Bond 2e-06 0.1385 0.3455 0.1409 0.3479

Table E.32: Experiment 2 Loop Metric Statistics. Ranks each loop metric from the second
experiment in descending value of F-score. The mean and standard deviation of the metrics
for the SRNAG and non-SRNAG classes are also listed.
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E.2 Individual Structural Element Models Gene Class Pre-

diction Statistics

E.2.1 Experiment 1

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.2993 0.0620 0.4380 0.2007 0.7372 0.8283 0.5985 0.6949

23S rRNA 0.4444 0.0417 0.4583 0.0556 0.9028 0.9143 0.8889 0.9014

5S rRNA 0.4531 0.0312 0.4688 0.0469 0.9219 0.9355 0.9062 0.9206

RNase P 0.4725 0.0275 0.4725 0.0275 0.9451 0.9451 0.9451 0.9451

SRP RNA 0.4744 0.0769 0.4231 0.0256 0.8974 0.8605 0.9487 0.9024

TmRNA 0.3740 0.0472 0.4528 0.1260 0.8268 0.8879 0.7480 0.8120

tRNA 0.5000 0.1471 0.3529 0.0000 0.8529 0.7727 1.0000 0.8718

All 0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

Table E.33: External Loop Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4307 0.0146 0.4854 0.0693 0.9161 0.9672 0.8613 0.9112

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0781 0.4219 0.0156 0.9062 0.8611 0.9688 0.9118

RNase P 0.4451 0.0220 0.4780 0.0549 0.9231 0.9529 0.8901 0.9205

SRP RNA 0.4359 0.0449 0.4551 0.0641 0.8910 0.9067 0.8718 0.8889

TmRNA 0.1811 0.0315 0.4685 0.3189 0.6496 0.8519 0.3622 0.5083

tRNA 0.3824 0.1176 0.3824 0.1176 0.7647 0.7647 0.7647 0.7647

All 0.3764 0.0319 0.4681 0.1236 0.8446 0.9220 0.7529 0.8289

Table E.34: Structure Loop Prediction Statistics for Experiment 1.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4562 0.0146 0.4854 0.0438 0.9416 0.9690 0.9124 0.9398

23S rRNA 0.4861 0.0278 0.4722 0.0139 0.9583 0.9459 0.9722 0.9589

5S rRNA 0.3125 0.1562 0.3438 0.1875 0.6562 0.6667 0.6250 0.6452

RNase P 0.4231 0.0659 0.4341 0.0769 0.8571 0.8652 0.8462 0.8556

SRP RNA 0.3654 0.1154 0.3846 0.1346 0.7500 0.7600 0.7308 0.7451

TmRNA 0.3425 0.1220 0.3780 0.1575 0.7205 0.7373 0.6850 0.7102

tRNA 0.3824 0.1176 0.3824 0.1176 0.7647 0.7647 0.7647 0.7647

All 0.3996 0.0782 0.4218 0.1004 0.8214 0.8364 0.7992 0.8174

Table E.35: Stemloop Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4745 0.0182 0.4818 0.0255 0.9562 0.9630 0.9489 0.9559

23S rRNA 0.4583 0.0000 0.5000 0.0417 0.9583 1.0000 0.9167 0.9565

5S rRNA 0.4219 0.0938 0.4062 0.0781 0.8281 0.8182 0.8438 0.8308

RNase P 0.4451 0.0879 0.4121 0.0549 0.8571 0.8351 0.8901 0.8617

SRP RNA 0.3782 0.0897 0.4103 0.1218 0.7885 0.8082 0.7564 0.7815

TmRNA 0.2953 0.0906 0.4094 0.2047 0.7047 0.7653 0.5906 0.6667

tRNA 0.3235 0.0294 0.4706 0.1765 0.7941 0.9167 0.6471 0.7586

All 0.4015 0.0627 0.4373 0.0985 0.8388 0.8649 0.8031 0.8328

Table E.36: Hairpin Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3467 0.1314 0.3686 0.1533 0.7153 0.7252 0.6934 0.7090

23S rRNA 0.2778 0.1528 0.3472 0.2222 0.6250 0.6452 0.5556 0.5970

5S rRNA 0.3594 0.1250 0.3750 0.1406 0.7344 0.7419 0.7188 0.7302

RNase P 0.4176 0.1538 0.3462 0.0824 0.7637 0.7308 0.8352 0.7795

SRP RNA 0.3397 0.1410 0.3590 0.1603 0.6987 0.7067 0.6795 0.6928

TmRNA 0.4094 0.1850 0.3150 0.0906 0.7244 0.6887 0.8189 0.7482

tRNA 0.4118 0.1765 0.3235 0.0882 0.7353 0.7000 0.8235 0.7568

All 0.3716 0.1525 0.3475 0.1284 0.7191 0.7090 0.7432 0.7257

Table E.37: Tail Prediction Statistics for Experiment 1.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4927 0.4964 0.0036 0.0073 0.4964 0.4982 0.9854 0.6618

23S rRNA 0.4861 0.4861 0.0139 0.0139 0.5000 0.5000 0.9722 0.6604

5S rRNA 0.4531 0.3906 0.1094 0.0469 0.5625 0.5370 0.9062 0.6744

RNase P 0.4945 0.4780 0.0220 0.0055 0.5165 0.5085 0.9890 0.6716

SRP RNA 0.3397 0.4295 0.0705 0.1603 0.4103 0.4417 0.6795 0.5354

TmRNA 0.5000 0.4921 0.0079 0.0000 0.5079 0.5040 1.0000 0.6702

tRNA 0.2941 0.2647 0.2353 0.2059 0.5294 0.5263 0.5882 0.5556

All 0.4624 0.4672 0.0328 0.0376 0.4952 0.4974 0.9247 0.6469

Table E.38: Joint Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4964 0.4964 0.0036 0.0036 0.5000 0.5000 0.9927 0.6650

23S rRNA 0.5000 0.4861 0.0139 0.0000 0.5139 0.5070 1.0000 0.6729

5S rRNA 0.4219 0.3281 0.1719 0.0781 0.5938 0.5625 0.8438 0.6750

RNase P 0.4835 0.4176 0.0824 0.0165 0.5659 0.5366 0.9670 0.6902

SRP RNA 0.3846 0.4103 0.0897 0.1154 0.4744 0.4839 0.7692 0.5941

TmRNA 0.4843 0.4606 0.0394 0.0157 0.5236 0.5125 0.9685 0.6703

tRNA 0.3824 0.2941 0.2059 0.1176 0.5882 0.5652 0.7647 0.6500

All 0.4662 0.4431 0.0569 0.0338 0.5232 0.5127 0.9324 0.6616

Table E.39: Joint-Tail Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4343 0.1204 0.3796 0.0657 0.8139 0.7829 0.8686 0.8235

23S rRNA 0.4444 0.0417 0.4583 0.0556 0.9028 0.9143 0.8889 0.9014

5S rRNA 0.1875 0.0469 0.4531 0.3125 0.6406 0.8000 0.3750 0.5106

RNase P 0.4231 0.1374 0.3626 0.0769 0.7857 0.7549 0.8462 0.7979

SRP RNA 0.1474 0.0962 0.4038 0.3526 0.5513 0.6053 0.2949 0.3966

TmRNA 0.4055 0.1260 0.3740 0.0945 0.7795 0.7630 0.8110 0.7863

tRNA 0.1765 0.0294 0.4706 0.3235 0.6471 0.8571 0.3529 0.5000

All 0.3591 0.1081 0.3919 0.1409 0.7510 0.7686 0.7181 0.7425

Table E.40: Bridge Prediction Statistics for Experiment 1.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4270 0.0620 0.4380 0.0730 0.8650 0.8731 0.8540 0.8635

23S rRNA 0.4722 0.0278 0.4722 0.0278 0.9444 0.9444 0.9444 0.9444

5S rRNA 0.2969 0.1719 0.3281 0.2031 0.6250 0.6333 0.5938 0.6129

RNase P 0.4066 0.1758 0.3242 0.0934 0.7308 0.6981 0.8132 0.7513

SRP RNA 0.2500 0.1795 0.3205 0.2500 0.5705 0.5821 0.5000 0.5379

TmRNA 0.3701 0.1102 0.3898 0.1299 0.7598 0.7705 0.7402 0.7550

tRNA 0.3529 0.1471 0.3529 0.1471 0.7059 0.7059 0.7059 0.7059

All 0.3755 0.1187 0.3813 0.1245 0.7568 0.7598 0.7510 0.7553

Table E.41: Stem Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4927 0.4818 0.0182 0.0073 0.5109 0.5056 0.9854 0.6683

23S rRNA 0.5000 0.4861 0.0139 0.0000 0.5139 0.5070 1.0000 0.6729

5S rRNA 0.4219 0.3125 0.1875 0.0781 0.6094 0.5745 0.8438 0.6835

RNase P 0.4945 0.3901 0.1099 0.0055 0.6044 0.5590 0.9890 0.7143

SRP RNA 0.4359 0.3718 0.1282 0.0641 0.5641 0.5397 0.8718 0.6667

TmRNA 0.4528 0.3780 0.1220 0.0472 0.5748 0.5450 0.9055 0.6805

tRNA 0.5000 0.2647 0.2353 0.0000 0.7353 0.6538 1.0000 0.7907

All 0.4710 0.4064 0.0936 0.0290 0.5647 0.5369 0.9421 0.6840

Table E.42: Stack Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3978 0.0182 0.4818 0.1022 0.8796 0.9561 0.7956 0.8685

23S rRNA 0.4444 0.0000 0.5000 0.0556 0.9444 1.0000 0.8889 0.9412

5S rRNA 0.2188 0.0156 0.4844 0.2812 0.7031 0.9333 0.4375 0.5957

RNase P 0.3242 0.0165 0.4835 0.1758 0.8077 0.9516 0.6484 0.7712

SRP RNA 0.1538 0.0192 0.4808 0.3462 0.6346 0.8889 0.3077 0.4571

TmRNA 0.2953 0.0236 0.4764 0.2047 0.7717 0.9259 0.5906 0.7212

tRNA 0.0588 0.0000 0.5000 0.4412 0.5588 1.0000 0.1176 0.2105

All 0.3041 0.0174 0.4826 0.1959 0.7867 0.9459 0.6081 0.7403

Table E.43: Multiloop Prediction Statistics for Experiment 1.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4964 0.4964 0.0036 0.0036 0.5000 0.5000 0.9927 0.6650

23S rRNA 0.5000 0.4861 0.0139 0.0000 0.5139 0.5070 1.0000 0.6729

5S rRNA 0.4219 0.3281 0.1719 0.0781 0.5938 0.5625 0.8438 0.6750

RNase P 0.4835 0.4176 0.0824 0.0165 0.5659 0.5366 0.9670 0.6902

SRP RNA 0.3846 0.4103 0.0897 0.1154 0.4744 0.4839 0.7692 0.5941

TmRNA 0.4843 0.4606 0.0394 0.0157 0.5236 0.5125 0.9685 0.6703

tRNA 0.3824 0.2941 0.2059 0.1176 0.5882 0.5652 0.7647 0.6500

All 0.4662 0.4431 0.0569 0.0338 0.5232 0.5127 0.9324 0.6616

Table E.44: Junction Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4307 0.2299 0.2701 0.0693 0.7007 0.6519 0.8613 0.7421

23S rRNA 0.4722 0.2083 0.2917 0.0278 0.7639 0.6939 0.9444 0.8000

5S rRNA 0.3750 0.1719 0.3281 0.1250 0.7031 0.6857 0.7500 0.7164

RNase P 0.3626 0.2473 0.2527 0.1374 0.6154 0.5946 0.7253 0.6535

SRP RNA 0.3782 0.1410 0.3590 0.1218 0.7372 0.7284 0.7564 0.7421

TmRNA 0.2717 0.2283 0.2717 0.2283 0.5433 0.5433 0.5433 0.5433

tRNA 0.2353 0.0882 0.4118 0.2647 0.6471 0.7273 0.4706 0.5714

All 0.3649 0.2095 0.2905 0.1351 0.6554 0.6353 0.7297 0.6792

Table E.45: Unpaired Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4562 0.0985 0.4015 0.0438 0.8577 0.8224 0.9124 0.8651

23S rRNA 0.4722 0.0417 0.4583 0.0278 0.9306 0.9189 0.9444 0.9315

5S rRNA 0.3438 0.2031 0.2969 0.1562 0.6406 0.6286 0.6875 0.6567

RNase P 0.2527 0.1429 0.3571 0.2473 0.6099 0.6389 0.5055 0.5644

SRP RNA 0.3974 0.1282 0.3718 0.1026 0.7692 0.7561 0.7949 0.7750

TmRNA 0.2835 0.1457 0.3543 0.2165 0.6378 0.6606 0.5669 0.6102

tRNA 0.0882 0.0588 0.4412 0.4118 0.5294 0.6000 0.1765 0.2727

All 0.3514 0.1236 0.3764 0.1486 0.7278 0.7398 0.7027 0.7208

Table E.46: Internal Loop Prediction Statistics for Experiment 1.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4197 0.2190 0.2810 0.0803 0.7007 0.6571 0.8394 0.7372

23S rRNA 0.4861 0.1528 0.3472 0.0139 0.8333 0.7609 0.9722 0.8537

5S rRNA 0.3438 0.1875 0.3125 0.1562 0.6562 0.6471 0.6875 0.6667

RNase P 0.3077 0.2253 0.2747 0.1923 0.5824 0.5773 0.6154 0.5957

SRP RNA 0.3077 0.2115 0.2885 0.1923 0.5962 0.5926 0.6154 0.6038

TmRNA 0.3740 0.1654 0.3346 0.1260 0.7087 0.6934 0.7480 0.7197

tRNA 0.2059 0.2059 0.2941 0.2941 0.5000 0.5000 0.4118 0.4516

All 0.3649 0.1988 0.3012 0.1351 0.6660 0.6473 0.7297 0.6860

Table E.47: Loop Prediction Statistics for Experiment 1.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4635 0.4124 0.0876 0.0365 0.5511 0.5292 0.9270 0.6737

23S rRNA 0.4583 0.4028 0.0972 0.0417 0.5556 0.5323 0.9167 0.6735

5S rRNA 0.1875 0.1875 0.3125 0.3125 0.5000 0.5000 0.3750 0.4286

RNase P 0.3681 0.3297 0.1703 0.1319 0.5385 0.5276 0.7363 0.6147

SRP RNA 0.3397 0.2885 0.2115 0.1603 0.5513 0.5408 0.6795 0.6023

TmRNA 0.3268 0.2992 0.2008 0.1732 0.5276 0.5220 0.6535 0.5804

tRNA 0.0588 0.1471 0.3529 0.4412 0.4118 0.2857 0.1176 0.1667

All 0.3639 0.3282 0.1718 0.1361 0.5357 0.5258 0.7278 0.6105

Table E.48: Bulge Prediction Statistics for Experiment 1.
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E.2.2 Experiment 2

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.0414 0.0207 0.4793 0.4586 0.5207 0.6667 0.0828 0.1472

23S rRNA 0.0366 0.0122 0.4878 0.4634 0.5244 0.7500 0.0732 0.1333

5S rRNA 0.1774 0.0161 0.4839 0.3226 0.6613 0.9167 0.3548 0.5116

RNase P 0.0851 0.0426 0.4574 0.4149 0.5426 0.6667 0.1702 0.2712

SRP RNA 0.0506 0.0253 0.4747 0.4494 0.5253 0.6667 0.1013 0.1758

TmRNA 0.0931 0.0069 0.4931 0.4069 0.5862 0.9310 0.1862 0.3103

tRNA 0.3750 0.0000 0.5000 0.1250 0.8750 1.0000 0.7500 0.8571

All 0.0742 0.0204 0.4796 0.4258 0.5538 0.7843 0.1484 0.2496

Table E.49: Junction Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4690 0.4586 0.0414 0.0310 0.5103 0.5056 0.9379 0.6570

23S rRNA 0.5000 0.4634 0.0366 0.0000 0.5366 0.5190 1.0000 0.6833

5S rRNA 0.5000 0.4839 0.0161 0.0000 0.5161 0.5082 1.0000 0.6739

RNase P 0.4734 0.4840 0.0160 0.0266 0.4894 0.4944 0.9468 0.6496

SRP RNA 0.4747 0.4747 0.0253 0.0253 0.5000 0.5000 0.9494 0.6550

TmRNA 0.4862 0.4586 0.0414 0.0138 0.5276 0.5146 0.9724 0.6730

tRNA 0.5000 0.3750 0.1250 0.0000 0.6250 0.5714 1.0000 0.7273

All 0.4796 0.4666 0.0334 0.0204 0.5130 0.5069 0.9592 0.6632

Table E.50: Stack Prediction Statistics for Experiment 2.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3966 0.3103 0.1897 0.1034 0.5862 0.5610 0.7931 0.6571

23S rRNA 0.4146 0.3049 0.1951 0.0854 0.6098 0.5763 0.8293 0.6800

5S rRNA 0.4516 0.2903 0.2097 0.0484 0.6613 0.6087 0.9032 0.7273

RNase P 0.4521 0.2979 0.2021 0.0479 0.6543 0.6028 0.9043 0.7234

SRP RNA 0.3987 0.3481 0.1519 0.1013 0.5506 0.5339 0.7975 0.6396

TmRNA 0.3897 0.3241 0.1759 0.1103 0.5655 0.5459 0.7793 0.6420

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4091 0.3154 0.1846 0.0909 0.5937 0.5647 0.8182 0.6682

Table E.51: Stemloop Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.2448 0.1690 0.3310 0.2552 0.5759 0.5917 0.4897 0.5358

23S rRNA 0.2439 0.1707 0.3293 0.2561 0.5732 0.5882 0.4878 0.5333

5S rRNA 0.1452 0.2097 0.2903 0.3548 0.4355 0.4091 0.2903 0.3396

RNase P 0.3138 0.1436 0.3564 0.1862 0.6702 0.6860 0.6277 0.6556

SRP RNA 0.2152 0.1646 0.3354 0.2848 0.5506 0.5667 0.4304 0.4892

TmRNA 0.2241 0.1586 0.3414 0.2759 0.5655 0.5856 0.4483 0.5078

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.2421 0.1642 0.3358 0.2579 0.5779 0.5959 0.4842 0.5343

Table E.52: Stem Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3276 0.1586 0.3414 0.1724 0.6690 0.6738 0.6552 0.6643

23S rRNA 0.2927 0.1707 0.3293 0.2073 0.6220 0.6316 0.5854 0.6076

5S rRNA 0.2419 0.0645 0.4355 0.2581 0.6774 0.7895 0.4839 0.6000

RNase P 0.3617 0.1543 0.3457 0.1383 0.7074 0.7010 0.7234 0.7120

SRP RNA 0.2405 0.1392 0.3608 0.2595 0.6013 0.6333 0.4810 0.5468

TmRNA 0.2966 0.2517 0.2483 0.2034 0.5448 0.5409 0.5931 0.5658

tRNA 0.0000 0.1250 0.3750 0.5000 0.3750 0.0000 0.0000 0.0000

All 0.3024 0.1753 0.3247 0.1976 0.6271 0.6330 0.6048 0.6186

Table E.53: Structure Prediction Statistics for Experiment 2.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3379 0.1483 0.3517 0.1621 0.6897 0.6950 0.6759 0.6853

23S rRNA 0.2683 0.1829 0.3171 0.2317 0.5854 0.5946 0.5366 0.5641

5S rRNA 0.4194 0.0968 0.4032 0.0806 0.8226 0.8125 0.8387 0.8254

RNase P 0.3830 0.1702 0.3298 0.1170 0.7128 0.6923 0.7660 0.7273

SRP RNA 0.3101 0.1582 0.3418 0.1899 0.6519 0.6622 0.6203 0.6405

TmRNA 0.2828 0.1655 0.3345 0.2172 0.6172 0.6308 0.5655 0.5964

tRNA 0.3750 0.0000 0.5000 0.1250 0.8750 1.0000 0.7500 0.8571

All 0.3265 0.1568 0.3432 0.1735 0.6698 0.6756 0.6531 0.6642

Table E.54: Hairpin Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.0483 0.0103 0.4897 0.4517 0.5379 0.8235 0.0966 0.1728

23S rRNA 0.0366 0.0366 0.4634 0.4634 0.5000 0.5000 0.0732 0.1277

5S rRNA 0.0323 0.0484 0.4516 0.4677 0.4839 0.4000 0.0645 0.1111

RNase P 0.0851 0.0266 0.4734 0.4149 0.5585 0.7619 0.1702 0.2783

SRP RNA 0.0316 0.0253 0.4747 0.4684 0.5063 0.5556 0.0633 0.1136

TmRNA 0.0586 0.0241 0.4759 0.4414 0.5345 0.7083 0.1172 0.2012

tRNA 0.2500 0.0000 0.5000 0.2500 0.7500 1.0000 0.5000 0.6667

All 0.0547 0.0232 0.4768 0.4453 0.5315 0.7024 0.1095 0.1894

Table E.55: Bridge Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4931 0.4828 0.0172 0.0069 0.5103 0.5053 0.9862 0.6682

23S rRNA 0.4512 0.4878 0.0122 0.0488 0.4634 0.4805 0.9024 0.6271

5S rRNA 0.5000 0.5000 0.0000 0.0000 0.5000 0.5000 1.0000 0.6667

RNase P 0.4947 0.4787 0.0213 0.0053 0.5160 0.5082 0.9894 0.6715

SRP RNA 0.4810 0.4873 0.0127 0.0190 0.4937 0.4967 0.9620 0.6552

TmRNA 0.4828 0.4828 0.0172 0.0172 0.5000 0.5000 0.9655 0.6588

tRNA 0.5000 0.5000 0.0000 0.0000 0.5000 0.5000 1.0000 0.6667

All 0.4861 0.4842 0.0158 0.0139 0.5019 0.5010 0.9722 0.6612

Table E.56: Unpaired Prediction Statistics for Experiment 2.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3379 0.3276 0.1724 0.1621 0.5103 0.5078 0.6759 0.5799

23S rRNA 0.3049 0.3780 0.1220 0.1951 0.4268 0.4464 0.6098 0.5155

5Sr RNA 0.4516 0.3871 0.1129 0.0484 0.5645 0.5385 0.9032 0.6747

RNase P 0.3723 0.3245 0.1755 0.1277 0.5479 0.5344 0.7447 0.6222

SRP RNA 0.3544 0.3038 0.1962 0.1456 0.5506 0.5385 0.7089 0.6120

TmRNA 0.3310 0.3103 0.1897 0.1690 0.5207 0.5161 0.6621 0.5801

tRNA 0.1250 0.2500 0.2500 0.3750 0.3750 0.3333 0.2500 0.2857

All 0.3469 0.3256 0.1744 0.1531 0.5213 0.5159 0.6939 0.5918

Table E.57: Loop Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.2207 0.2241 0.2759 0.2793 0.4966 0.4961 0.4414 0.4672

23S rRNA 0.1707 0.2439 0.2561 0.3293 0.4268 0.4118 0.3415 0.3733

5S rRNA 0.3710 0.2581 0.2419 0.1290 0.6129 0.5897 0.7419 0.6571

RNase P 0.2872 0.1862 0.3138 0.2128 0.6011 0.6067 0.5745 0.5902

SRP RNA 0.2215 0.2089 0.2911 0.2785 0.5127 0.5147 0.4430 0.4762

TmRNA 0.3034 0.2138 0.2862 0.1966 0.5897 0.5867 0.6069 0.5966

tRNA 0.5000 0.2500 0.2500 0.0000 0.7500 0.6667 1.0000 0.8000

All 0.2616 0.2161 0.2839 0.2384 0.5455 0.5476 0.5232 0.5351

Table E.58: External Loop Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.2207 0.1655 0.3345 0.2793 0.5552 0.5714 0.4414 0.4981

23S rRNA 0.1341 0.2195 0.2805 0.3659 0.4146 0.3793 0.2683 0.3143

5S rRNA 0.3548 0.0968 0.4032 0.1452 0.7581 0.7857 0.7097 0.7458

RNase P 0.1755 0.1489 0.3511 0.3245 0.5266 0.5410 0.3511 0.4258

SRP RNA 0.2658 0.1392 0.3608 0.2342 0.6266 0.6562 0.5316 0.5874

TmRNA 0.1862 0.1621 0.3379 0.3138 0.5241 0.5347 0.3724 0.4390

tRNA 0.1250 0.1250 0.3750 0.3750 0.5000 0.5000 0.2500 0.3333

All 0.2106 0.1577 0.3423 0.2894 0.5529 0.5718 0.4212 0.4850

Table E.59: Internal Loop Prediction Statistics for Experiment 2.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3000 0.2828 0.2172 0.2000 0.5172 0.5148 0.6000 0.5541

23S rRNA 0.2561 0.2805 0.2195 0.2439 0.4756 0.4773 0.5122 0.4941

5S rRNA 0.1774 0.2419 0.2581 0.3226 0.4355 0.4231 0.3548 0.3860

RNase P 0.3617 0.2713 0.2287 0.1383 0.5904 0.5714 0.7234 0.6385

SRP RNA 0.2278 0.2532 0.2468 0.2722 0.4747 0.4737 0.4557 0.4645

TmRNA 0.3069 0.2448 0.2552 0.1931 0.5621 0.5563 0.6138 0.5836

tRNA 0.2500 0.2500 0.2500 0.2500 0.5000 0.5000 0.5000 0.5000

All 0.2913 0.2635 0.2365 0.2087 0.5278 0.5251 0.5826 0.5523

Table E.60: Joint Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4310 0.4207 0.0793 0.0690 0.5103 0.5061 0.8621 0.6378

23S rRNA 0.4024 0.3780 0.1220 0.0976 0.5244 0.5156 0.8049 0.6286

5S rRNA 0.3387 0.4194 0.0806 0.1613 0.4194 0.4468 0.6774 0.5385

RNase P 0.4574 0.3936 0.1064 0.0426 0.5638 0.5375 0.9149 0.6772

SRP RNA 0.3861 0.4114 0.0886 0.1139 0.4747 0.4841 0.7722 0.5951

TmRNA 0.4276 0.3655 0.1345 0.0724 0.5621 0.5391 0.8552 0.6613

tRNA 0.5000 0.3750 0.1250 0.0000 0.6250 0.5714 1.0000 0.7273

All 0.4212 0.3961 0.1039 0.0788 0.5250 0.5153 0.8423 0.6394

Table E.61: Joint-Tail Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.0586 0.0759 0.4241 0.4414 0.4828 0.4359 0.1172 0.1848

23S rRNA 0.0854 0.1463 0.3537 0.4146 0.4390 0.3684 0.1707 0.2333

5S rRNA 0.0968 0.0484 0.4516 0.4032 0.5484 0.6667 0.1935 0.3000

RNase P 0.1330 0.0957 0.4043 0.3670 0.5372 0.5814 0.2660 0.3650

SRP RNA 0.1139 0.0759 0.4241 0.3861 0.5380 0.6000 0.2278 0.3303

TmRNA 0.1069 0.0759 0.4241 0.3931 0.5310 0.5849 0.2138 0.3131

tRNA 0.0000 0.0000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000

All 0.0965 0.0826 0.4174 0.4035 0.5139 0.5389 0.1929 0.2842

Table E.62: Tail Prediction Statistics for Experiment 2.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.0345 0.0000 0.5000 0.4655 0.5345 1.0000 0.0690 0.1290

23S rRNA 0.0244 0.0000 0.5000 0.4756 0.5244 1.0000 0.0488 0.0930

5S rRNA 0.0968 0.0161 0.4839 0.4032 0.5806 0.8571 0.1935 0.3158

RNase P 0.0319 0.0106 0.4894 0.4681 0.5213 0.7500 0.0638 0.1176

SRP RNA 0.0190 0.0000 0.5000 0.4810 0.5190 1.0000 0.0380 0.0732

TmRNA 0.0345 0.0103 0.4897 0.4655 0.5241 0.7692 0.0690 0.1266

tRNA 0.3750 0.0000 0.5000 0.1250 0.8750 1.0000 0.7500 0.8571

All 0.0371 0.0056 0.4944 0.4629 0.5315 0.8696 0.0742 0.1368

Table E.63: Multiloop Prediction Statistics for Experiment 2.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.1069 0.1034 0.3966 0.3931 0.5034 0.5082 0.2138 0.3010

23S rRNA 0.0976 0.1341 0.3659 0.4024 0.4634 0.4211 0.1951 0.2667

5S rRNA 0.1935 0.1290 0.3710 0.3065 0.5645 0.6000 0.3871 0.4706

RNase P 0.1117 0.0904 0.4096 0.3883 0.5213 0.5526 0.2234 0.3182

SRP RNA 0.0759 0.1076 0.3924 0.4241 0.4684 0.4138 0.1519 0.2222

TmRNA 0.1000 0.0931 0.4069 0.4000 0.5069 0.5179 0.2000 0.2886

tRNA 0.0000 0.0000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000

All 0.1048 0.1020 0.3980 0.3952 0.5028 0.5067 0.2096 0.2966

Table E.64: Bulge Prediction Statistics for Experiment 2.
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E.3 Progressively Inclusive Structural Element Voting Re-

sults

E.3.1 Experiment 1

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.2993 0.0620 0.4380 0.2007 0.7372 0.8283 0.5985 0.6949

23S rRNA 0.4444 0.0417 0.4583 0.0556 0.9028 0.9143 0.8889 0.9014

5S rRNA 0.4531 0.0312 0.4688 0.0469 0.9219 0.9355 0.9062 0.9206

RNase P 0.4725 0.0275 0.4725 0.0275 0.9451 0.9451 0.9451 0.9451

SRP RNA 0.4744 0.0769 0.4231 0.0256 0.8974 0.8605 0.9487 0.9024

TmRNA 0.3740 0.0472 0.4528 0.1260 0.8268 0.8879 0.7480 0.8120

tRNA 0.5000 0.1471 0.3529 0.0000 0.8529 0.7727 1.0000 0.8718

All 0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

Table E.65: Greedy Voting Size 1 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4854 0.0693 0.4307 0.0146 0.9161 0.8750 0.9708 0.9204

23S rRNA 0.4722 0.0556 0.4444 0.0278 0.9167 0.8947 0.9444 0.9189

5S rRNA 0.5000 0.1094 0.3906 0.0000 0.8906 0.8205 1.0000 0.9014

RNase P 0.4945 0.0440 0.4560 0.0055 0.9505 0.9184 0.9890 0.9524

SRP RNA 0.5000 0.1218 0.3782 0.0000 0.8782 0.8041 1.0000 0.8914

TmRNA 0.3937 0.0787 0.4213 0.1063 0.8150 0.8333 0.7874 0.8097

tRNA 0.5000 0.2353 0.2647 0.0000 0.7647 0.6800 1.0000 0.8095

All 0.4672 0.0820 0.4180 0.0328 0.8851 0.8506 0.9344 0.8905

Table E.66: Greedy Voting Size 2 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop and structure.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4818 0.0438 0.4562 0.0182 0.9380 0.9167 0.9635 0.9395

23S rRNA 0.4722 0.0139 0.4861 0.0278 0.9583 0.9714 0.9444 0.9577

5S rRNA 0.5000 0.0469 0.4531 0.0000 0.9531 0.9143 1.0000 0.9552

RNase P 0.4945 0.0385 0.4615 0.0055 0.9560 0.9278 0.9890 0.9574

SRP RNA 0.4808 0.0577 0.4423 0.0192 0.9231 0.8929 0.9615 0.9259

TmRNA 0.3701 0.0472 0.4528 0.1299 0.8228 0.8868 0.7402 0.8069

tRNA 0.5000 0.1176 0.3824 0.0000 0.8824 0.8095 1.0000 0.8947

All 0.4575 0.0463 0.4537 0.0425 0.9112 0.9080 0.9151 0.9115

Table E.67: Greedy Voting Size 3 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, and stemloop.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4854 0.0182 0.4818 0.0146 0.9672 0.9638 0.9708 0.9673

23S rRNA 0.4722 0.0139 0.4861 0.0278 0.9583 0.9714 0.9444 0.9577

5S rRNA 0.5000 0.0312 0.4688 0.0000 0.9688 0.9412 1.0000 0.9697

RNase P 0.4945 0.0165 0.4835 0.0055 0.9780 0.9677 0.9890 0.9783

SRP RNA 0.4679 0.0577 0.4423 0.0321 0.9103 0.8902 0.9359 0.9125

TmRNA 0.3819 0.0433 0.4567 0.1181 0.8386 0.8981 0.7638 0.8255

tRNA 0.5000 0.0882 0.4118 0.0000 0.9118 0.8500 1.0000 0.9189

All 0.4595 0.0328 0.4672 0.0405 0.9266 0.9333 0.9189 0.9261

Table E.68: Greedy Voting Size 4 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, and hairpin.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4818 0.0219 0.4781 0.0182 0.9599 0.9565 0.9635 0.9600

23S rRNA 0.4583 0.0278 0.4722 0.0417 0.9306 0.9429 0.9167 0.9296

5S rRNA 0.5000 0.0156 0.4844 0.0000 0.9844 0.9697 1.0000 0.9846

RNase P 0.4890 0.0275 0.4725 0.0110 0.9615 0.9468 0.9780 0.9622

SRP RNA 0.4744 0.0513 0.4487 0.0256 0.9231 0.9024 0.9487 0.9250

TmRNA 0.3819 0.0315 0.4685 0.1181 0.8504 0.9238 0.7638 0.8362

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4566 0.0319 0.4681 0.0434 0.9247 0.9348 0.9131 0.9238

Table E.69: Greedy Voting Size 5 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, and tail.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4708 0.0146 0.4854 0.0292 0.9562 0.9699 0.9416 0.9556

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.5000 0.0000 0.5000 0.0000 1.0000 1.0000 1.0000 1.0000

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4615 0.0449 0.4551 0.0385 0.9167 0.9114 0.9231 0.9172

TmRNA 0.3780 0.0276 0.4724 0.1220 0.8504 0.9320 0.7559 0.8348

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4508 0.0251 0.4749 0.0492 0.9257 0.9473 0.9015 0.9238

Table E.70: Greedy Voting Size 6 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, and joint.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4818 0.0255 0.4745 0.0182 0.9562 0.9496 0.9635 0.9565

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.5000 0.0156 0.4844 0.0000 0.9844 0.9697 1.0000 0.9846

RNase P 0.4945 0.0275 0.4725 0.0055 0.9670 0.9474 0.9890 0.9677

SRP RNA 0.4744 0.0449 0.4551 0.0256 0.9295 0.9136 0.9487 0.9308

TmRNA 0.3819 0.0354 0.4646 0.1181 0.8465 0.9151 0.7638 0.8326

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4575 0.0319 0.4681 0.0425 0.9257 0.9349 0.9151 0.9249

Table E.71: Greedy Voting Size 7 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, and joint-
tail.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4745 0.0146 0.4854 0.0255 0.9599 0.9701 0.9489 0.9594

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0156 0.4844 0.0156 0.9688 0.9688 0.9688 0.9688

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4679 0.0513 0.4487 0.0321 0.9167 0.9012 0.9359 0.9182

TmRNA 0.3819 0.0315 0.4685 0.1181 0.8504 0.9238 0.7638 0.8362

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4527 0.0280 0.4720 0.0473 0.9247 0.9418 0.9054 0.9232

Table E.72: Greedy Voting Size 8 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
and bridge.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4745 0.0146 0.4854 0.0255 0.9599 0.9701 0.9489 0.9594

23S rRNA 0.4583 0.0278 0.4722 0.0417 0.9306 0.9429 0.9167 0.9296

5S rRNA 0.5000 0.0156 0.4844 0.0000 0.9844 0.9697 1.0000 0.9846

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4679 0.0513 0.4487 0.0321 0.9167 0.9012 0.9359 0.9182

TmRNA 0.3819 0.0236 0.4764 0.1181 0.8583 0.9417 0.7638 0.8435

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4537 0.0270 0.4730 0.0463 0.9266 0.9438 0.9073 0.9252

Table E.73: Greedy Voting Size 9 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, and stem.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4781 0.0146 0.4854 0.0219 0.9635 0.9704 0.9562 0.9632

23S rRNA 0.4583 0.0278 0.4722 0.0417 0.9306 0.9429 0.9167 0.9296

5S rRNA 0.5000 0.0312 0.4688 0.0000 0.9688 0.9412 1.0000 0.9697

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4679 0.0513 0.4487 0.0321 0.9167 0.9012 0.9359 0.9182

TmRNA 0.3819 0.0236 0.4764 0.1181 0.8583 0.9417 0.7638 0.8435

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4546 0.0280 0.4720 0.0454 0.9266 0.9420 0.9093 0.9253

Table E.74: Greedy Voting Size 10 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, and stack.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4708 0.0146 0.4854 0.0292 0.9562 0.9699 0.9416 0.9556

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0156 0.4844 0.0156 0.9688 0.9688 0.9688 0.9688

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4744 0.0513 0.4487 0.0256 0.9231 0.9024 0.9487 0.9250

TmRNA 0.3819 0.0157 0.4843 0.1181 0.8661 0.9604 0.7638 0.8509

tRNA 0.4706 0.0882 0.4118 0.0294 0.8824 0.8421 0.9412 0.8889

All 0.4527 0.0241 0.4759 0.0473 0.9286 0.9494 0.9054 0.9269

Table E.75: Greedy Voting Size 11 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, and multiloop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4818 0.0182 0.4818 0.0182 0.9635 0.9635 0.9635 0.9635

23S rRNA 0.4583 0.0278 0.4722 0.0417 0.9306 0.9429 0.9167 0.9296

5S rRNA 0.5000 0.0469 0.4531 0.0000 0.9531 0.9143 1.0000 0.9552

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4872 0.0577 0.4423 0.0128 0.9295 0.8941 0.9744 0.9325

TmRNA 0.3858 0.0236 0.4764 0.1142 0.8622 0.9423 0.7717 0.8485

tRNA 0.5000 0.0882 0.4118 0.0000 0.9118 0.8500 1.0000 0.9189

All 0.4604 0.0309 0.4691 0.0396 0.9295 0.9371 0.9208 0.9289

Table E.76: Greedy Voting Size 12 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, multiloop, and junction.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4854 0.0219 0.4781 0.0146 0.9635 0.9568 0.9708 0.9638

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.5000 0.0469 0.4531 0.0000 0.9531 0.9143 1.0000 0.9552

RNase P 0.4890 0.0220 0.4780 0.0110 0.9670 0.9570 0.9780 0.9674

SRP RNA 0.4872 0.0577 0.4423 0.0128 0.9295 0.8941 0.9744 0.9325

TmRNA 0.3858 0.0236 0.4764 0.1142 0.8622 0.9423 0.7717 0.8485

tRNA 0.5000 0.0882 0.4118 0.0000 0.9118 0.8500 1.0000 0.9189

All 0.4614 0.0309 0.4691 0.0386 0.9305 0.9373 0.9228 0.9300

Table E.77: Greedy Voting Size 13 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, multiloop, junction, and unpaired.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4599 0.0146 0.4854 0.0401 0.9453 0.9692 0.9197 0.9438

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0000 0.5000 0.0156 0.9844 1.0000 0.9688 0.9841

RNase P 0.4890 0.0165 0.4835 0.0110 0.9725 0.9674 0.9780 0.9727

SRP RNA 0.4679 0.0385 0.4615 0.0321 0.9295 0.9241 0.9359 0.9299

TmRNA 0.3780 0.0039 0.4961 0.1220 0.8740 0.9897 0.7559 0.8571

tRNA 0.5000 0.0000 0.5000 0.0000 1.0000 1.0000 1.0000 1.0000

All 0.4488 0.0145 0.4855 0.0512 0.9344 0.9688 0.8977 0.9319

Table E.78: Greedy Voting Size 14 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, multiloop, junction, unpaired, and internal loop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4672 0.0146 0.4854 0.0328 0.9526 0.9697 0.9343 0.9517

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0000 0.5000 0.0156 0.9844 1.0000 0.9688 0.9841

RNase P 0.4890 0.0165 0.4835 0.0110 0.9725 0.9674 0.9780 0.9727

SRP RNA 0.4679 0.0513 0.4487 0.0321 0.9167 0.9012 0.9359 0.9182

TmRNA 0.3819 0.0039 0.4961 0.1181 0.8780 0.9898 0.7638 0.8622

tRNA 0.5000 0.0000 0.5000 0.0000 1.0000 1.0000 1.0000 1.0000

All 0.4517 0.0164 0.4836 0.0483 0.9353 0.9649 0.9035 0.9332

Table E.79: Greedy Voting Size 15 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, multiloop, junction, unpaired, and internal loop, and loop.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4672 0.0146 0.4854 0.0328 0.9526 0.9697 0.9343 0.9517

23S rRNA 0.4583 0.0139 0.4861 0.0417 0.9444 0.9706 0.9167 0.9429

5S rRNA 0.4844 0.0000 0.5000 0.0156 0.9844 1.0000 0.9688 0.9841

RNase P 0.4890 0.0165 0.4835 0.0110 0.9725 0.9674 0.9780 0.9727

SRP RNA 0.4744 0.0513 0.4487 0.0256 0.9231 0.9024 0.9487 0.9250

TmRNA 0.3858 0.0079 0.4921 0.1142 0.8780 0.9800 0.7717 0.8634

tRNA 0.5000 0.0000 0.5000 0.0000 1.0000 1.0000 1.0000 1.0000

All 0.4537 0.0174 0.4826 0.0463 0.9363 0.9631 0.9073 0.9344

Table E.80: Greedy Voting Size 16 Prediction Statistics for Experiment 1. The progressive
voting group contains the external loop, structure, stemloop, hairpin, tail, joint, joint-tail,
bridge, stem, stack, multiloop, junction, unpaired, and internal loop, loop, and bulge.
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E.3.2 Experiment 2

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3276 0.1586 0.3414 0.1724 0.6690 0.6738 0.6552 0.6643

23S rRNA 0.2927 0.1707 0.3293 0.2073 0.6220 0.6316 0.5854 0.6076

5S rRNA 0.2419 0.0645 0.4355 0.2581 0.6774 0.7895 0.4839 0.6000

RNase P 0.3617 0.1543 0.3457 0.1383 0.7074 0.7010 0.7234 0.7120

SRP RNA 0.2405 0.1392 0.3608 0.2595 0.6013 0.6333 0.4810 0.5468

TmRNA 0.2966 0.2517 0.2483 0.2034 0.5448 0.5409 0.5931 0.5658

tRNA 0.0000 0.1250 0.3750 0.5000 0.3750 0.0000 0.0000 0.0000

All 0.3024 0.1753 0.3247 0.1976 0.6271 0.6330 0.6048 0.6186

Table E.81: Greedy Voting Size 1 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4517 0.3207 0.1793 0.0483 0.6310 0.5848 0.9034 0.7100

23S rRNA 0.4268 0.3415 0.1585 0.0732 0.5854 0.5556 0.8537 0.6731

5S rRNA 0.4516 0.2581 0.2419 0.0484 0.6935 0.6364 0.9032 0.7467

RNase P 0.4628 0.3032 0.1968 0.0372 0.6596 0.6042 0.9255 0.7311

SRP RNA 0.4367 0.3354 0.1646 0.0633 0.6013 0.5656 0.8734 0.6866

TmRNA 0.4379 0.3690 0.1310 0.0621 0.5690 0.5427 0.8759 0.6702

tRNA 0.1250 0.3750 0.1250 0.3750 0.2500 0.2500 0.2500 0.2500

All 0.4434 0.3312 0.1688 0.0566 0.6122 0.5725 0.8868 0.6958

Table E.82: Greedy Voting Size 2 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure and stemloop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4103 0.1966 0.3034 0.0897 0.7138 0.6761 0.8207 0.7414

23S rRNA 0.4024 0.2683 0.2317 0.0976 0.6341 0.6000 0.8049 0.6875

5S rRNA 0.4032 0.1290 0.3710 0.0968 0.7742 0.7576 0.8065 0.7812

RNase P 0.4362 0.2234 0.2766 0.0638 0.7128 0.6613 0.8723 0.7523

SRP RNA 0.3671 0.1962 0.3038 0.1329 0.6709 0.6517 0.7342 0.6905

TmRNA 0.3759 0.2966 0.2034 0.1241 0.5793 0.5590 0.7517 0.6412

tRNA 0.3750 0.1250 0.3750 0.1250 0.7500 0.7500 0.7500 0.7500

All 0.3980 0.2291 0.2709 0.1020 0.6688 0.6346 0.7959 0.7062

Table E.83: Greedy Voting Size 3 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, and hairpin.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4379 0.3103 0.1897 0.0621 0.6276 0.5853 0.8759 0.7017

23S rRNA 0.4024 0.3293 0.1707 0.0976 0.5732 0.5500 0.8049 0.6535

5S rRNA 0.4194 0.2581 0.2419 0.0806 0.6613 0.6190 0.8387 0.7123

RNase P 0.4628 0.2713 0.2287 0.0372 0.6915 0.6304 0.9255 0.7500

SRP RNA 0.3987 0.2722 0.2278 0.1013 0.6266 0.5943 0.7975 0.6811

TmRNA 0.4207 0.3448 0.1552 0.0793 0.5759 0.5495 0.8414 0.6649

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4276 0.3052 0.1948 0.0724 0.6224 0.5835 0.8553 0.6938

Table E.84: Greedy Voting Size 4 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, and external loop.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4517 0.3483 0.1517 0.0483 0.6034 0.5647 0.9034 0.6950

23S rRNA 0.4146 0.3537 0.1463 0.0854 0.5610 0.5397 0.8293 0.6538

5S rRNA 0.4516 0.2903 0.2097 0.0484 0.6613 0.6087 0.9032 0.7273

RNase P 0.4734 0.3085 0.1915 0.0266 0.6649 0.6054 0.9468 0.7386

SRP RNA 0.4177 0.3101 0.1899 0.0823 0.6076 0.5739 0.8354 0.6804

TmRNA 0.4310 0.3552 0.1448 0.0690 0.5759 0.5482 0.8621 0.6702

tRNA 0.5000 0.2500 0.2500 0.0000 0.7500 0.6667 1.0000 0.8000

All 0.4425 0.3340 0.1660 0.0575 0.6085 0.5699 0.8850 0.6933

Table E.85: Greedy Voting Size 5 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, and joint-tail.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4103 0.2724 0.2276 0.0897 0.6379 0.6010 0.8207 0.6939

23S rRNA 0.3537 0.2927 0.2073 0.1463 0.5610 0.5472 0.7073 0.6170

5S rRNA 0.4355 0.2097 0.2903 0.0645 0.7258 0.6750 0.8710 0.7606

RNase P 0.4521 0.2394 0.2606 0.0479 0.7128 0.6538 0.9043 0.7589

SRP RNA 0.3608 0.2468 0.2532 0.1392 0.6139 0.5938 0.7215 0.6514

TmRNA 0.4069 0.3241 0.1759 0.0931 0.5828 0.5566 0.8138 0.6611

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4063 0.2746 0.2254 0.0937 0.6317 0.5967 0.8126 0.6881

Table E.86: Greedy Voting Size 6 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, and joint.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3759 0.1966 0.3034 0.1241 0.6793 0.6566 0.7517 0.7010

23S rRNA 0.3537 0.2195 0.2805 0.1463 0.6341 0.6170 0.7073 0.6591

5S rRNA 0.4032 0.1290 0.3710 0.0968 0.7742 0.7576 0.8065 0.7812

RNase P 0.4362 0.2021 0.2979 0.0638 0.7340 0.6833 0.8723 0.7664

SRP RNA 0.3228 0.1962 0.3038 0.1772 0.6266 0.6220 0.6456 0.6335

TmRNA 0.3724 0.2966 0.2034 0.1276 0.5759 0.5567 0.7448 0.6372

tRNA 0.3750 0.1250 0.3750 0.1250 0.7500 0.7500 0.7500 0.7500

All 0.3776 0.2217 0.2783 0.1224 0.6558 0.6300 0.7551 0.6869

Table E.87: Greedy Voting Size 7 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, and
stack.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3655 0.1828 0.3172 0.1345 0.6828 0.6667 0.7310 0.6974

23S rRNA 0.3293 0.2073 0.2927 0.1707 0.6220 0.6136 0.6585 0.6353

5S rRNA 0.4032 0.1613 0.3387 0.0968 0.7419 0.7143 0.8065 0.7576

RNase P 0.4202 0.1915 0.3085 0.0798 0.7287 0.6870 0.8404 0.7560

SRP RNA 0.3291 0.1709 0.3291 0.1709 0.6582 0.6582 0.6582 0.6582

TmRNA 0.3828 0.2793 0.2207 0.1172 0.6034 0.5781 0.7655 0.6588

tRNA 0.3750 0.0000 0.5000 0.1250 0.8750 1.0000 0.7500 0.8571

All 0.3738 0.2078 0.2922 0.1262 0.6660 0.6427 0.7477 0.6913

Table E.88: Greedy Voting Size 8 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
and loop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3862 0.2414 0.2586 0.1138 0.6448 0.6154 0.7724 0.6850

23S rRNA 0.3415 0.2683 0.2317 0.1585 0.5732 0.5600 0.6829 0.6154

5S rRNA 0.4355 0.1613 0.3387 0.0645 0.7742 0.7297 0.8710 0.7941

RNase P 0.4574 0.2074 0.2926 0.0426 0.7500 0.6880 0.9149 0.7854

SRP RNA 0.3354 0.2152 0.2848 0.1646 0.6203 0.6092 0.6709 0.6386

TmRNA 0.4069 0.3172 0.1828 0.0931 0.5897 0.5619 0.8138 0.6648

tRNA 0.3750 0.1250 0.3750 0.1250 0.7500 0.7500 0.7500 0.7500

All 0.3961 0.2486 0.2514 0.1039 0.6475 0.6144 0.7922 0.6921

Table E.89: Greedy Voting Size 9 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, and unpaired.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4034 0.2862 0.2138 0.0966 0.6172 0.5850 0.8069 0.6783

23S rRNA 0.3780 0.3049 0.1951 0.1220 0.5732 0.5536 0.7561 0.6392

5S rRNA 0.4355 0.1935 0.3065 0.0645 0.7419 0.6923 0.8710 0.7714

RNase P 0.4681 0.2340 0.2660 0.0319 0.7340 0.6667 0.9362 0.7788

SRP RNA 0.3734 0.2468 0.2532 0.1266 0.6266 0.6020 0.7468 0.6667

TmRNA 0.4172 0.3310 0.1690 0.0828 0.5862 0.5576 0.8345 0.6685

tRNA 0.3750 0.1250 0.3750 0.1250 0.7500 0.7500 0.7500 0.7500

All 0.4137 0.2783 0.2217 0.0863 0.6354 0.5979 0.8275 0.6942

Table E.90: Greedy Voting Size 10 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, and stem.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3897 0.2241 0.2759 0.1103 0.6655 0.6348 0.7793 0.6997

23S rRNA 0.3415 0.2439 0.2561 0.1585 0.5976 0.5833 0.6829 0.6292

5S rRNA 0.4032 0.1774 0.3226 0.0968 0.7258 0.6944 0.8065 0.7463

RNase P 0.4415 0.1968 0.3032 0.0585 0.7447 0.6917 0.8830 0.7757

SRP RNA 0.3608 0.2025 0.2975 0.1392 0.6582 0.6404 0.7215 0.6786

TmRNA 0.3897 0.2931 0.2069 0.1103 0.5966 0.5707 0.7793 0.6589

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.3915 0.2338 0.2662 0.1085 0.6577 0.6261 0.7829 0.6958

Table E.91: Greedy Voting Size 11 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, and internal loop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.3931 0.2172 0.2828 0.1069 0.6759 0.6441 0.7862 0.7081

23S rRNA 0.3293 0.2561 0.2439 0.1707 0.5732 0.5625 0.6585 0.6067

5S rRNA 0.4194 0.1935 0.3065 0.0806 0.7258 0.6842 0.8387 0.7536

RNase P 0.4415 0.2021 0.2979 0.0585 0.7394 0.6860 0.8830 0.7721

SRP RNA 0.3608 0.1962 0.3038 0.1392 0.6646 0.6477 0.7215 0.6826

TmRNA 0.3862 0.2862 0.2138 0.1138 0.6000 0.5744 0.7724 0.6588

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.3915 0.2319 0.2681 0.1085 0.6596 0.6280 0.7829 0.6969

Table E.92: Greedy Voting Size 12 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, internal loop, and bridge.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4034 0.2655 0.2345 0.0966 0.6379 0.6031 0.8069 0.6903

23S rRNA 0.3415 0.2927 0.2073 0.1585 0.5488 0.5385 0.6829 0.6022

5S rRNA 0.4355 0.1935 0.3065 0.0645 0.7419 0.6923 0.8710 0.7714

RNase P 0.4681 0.2234 0.2766 0.0319 0.7447 0.6769 0.9362 0.7857

SRP RNA 0.3797 0.2468 0.2532 0.1203 0.6329 0.6061 0.7595 0.6742

TmRNA 0.4103 0.3207 0.1793 0.0897 0.5897 0.5613 0.8207 0.6667

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4100 0.2681 0.2319 0.0900 0.6419 0.6047 0.8200 0.6961

Table E.93: Greedy Voting Size 13 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, internal loop, bridge, and bulge.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4034 0.2655 0.2345 0.0966 0.6379 0.6031 0.8069 0.6903

23S rRNA 0.3537 0.2927 0.2073 0.1463 0.5610 0.5472 0.7073 0.6170

5S rRNA 0.4677 0.1935 0.3065 0.0323 0.7742 0.7073 0.9355 0.8056

RNase P 0.4681 0.2234 0.2766 0.0319 0.7447 0.6769 0.9362 0.7857

SRP RNA 0.3797 0.2468 0.2532 0.1203 0.6329 0.6061 0.7595 0.6742

TmRNA 0.4103 0.3241 0.1759 0.0897 0.5862 0.5587 0.8207 0.6648

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4128 0.2690 0.2310 0.0872 0.6438 0.6054 0.8256 0.6986

Table E.94: Greedy Voting Size 14 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, internal loop, bridge, bulge, and multiloop.
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Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16S rRNA 0.4000 0.2483 0.2517 0.1000 0.6517 0.6170 0.8000 0.6967

23S rRNA 0.3415 0.2683 0.2317 0.1585 0.5732 0.5600 0.6829 0.6154

5S rRNA 0.4516 0.1935 0.3065 0.0484 0.7581 0.7000 0.9032 0.7887

RNase P 0.4521 0.2128 0.2872 0.0479 0.7394 0.6800 0.9043 0.7763

SRP RNA 0.3797 0.2215 0.2785 0.1203 0.6582 0.6316 0.7595 0.6897

TmRNA 0.4034 0.3034 0.1966 0.0966 0.6000 0.5707 0.8069 0.6686

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4054 0.2514 0.2486 0.0946 0.6540 0.6172 0.8108 0.7009

Table E.95: Greedy Voting Size 15 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, internal loop, bridge, bulge, multiloop, and junction.

Gene Type TP FP TN FN Acc. Prec. Recall F-mea.

16SrRNA 0.4069 0.2828 0.2172 0.0931 0.6241 0.5900 0.8138 0.6841

23S rRNA 0.3659 0.3049 0.1951 0.1341 0.5610 0.5455 0.7317 0.6250

5S rRNA 0.4677 0.1935 0.3065 0.0323 0.7742 0.7073 0.9355 0.8056

RNase P 0.4681 0.2287 0.2713 0.0319 0.7394 0.6718 0.9362 0.7822

SRP RNA 0.3924 0.2532 0.2468 0.1076 0.6392 0.6078 0.7848 0.6851

TmRNA 0.4138 0.3345 0.1655 0.0862 0.5793 0.5530 0.8276 0.6630

tRNA 0.3750 0.2500 0.2500 0.1250 0.6250 0.6000 0.7500 0.6667

All 0.4174 0.2792 0.2208 0.0826 0.6382 0.5992 0.8349 0.6977

Table E.96: Greedy Voting Size 16 Prediction Statistics for Experiment 2. The progressive
voting group contains the structure, stemloop, hairpin, external loop, joint-tail, joint, stack,
loop, unpaired, stem, internal loop, bridge, bulge, multiloop, junction, tail.
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E.4 Structural Element Paired Voting

Elements TP FP TN FN Acc. Prec. Recall F-mea.

Hairpin & Junction 0.4604 0.0589 0.4411 0.0396 0.9015 0.8866 0.9208 0.9034

Junction & Struc-

ture

0.4585 0.0598 0.4402 0.0415 0.8986 0.8845 0.9170 0.9005

External Loop &

Hairpin

0.4575 0.0647 0.4353 0.0425 0.8929 0.8762 0.9151 0.8952

Multiloop & Struc-

ture

0.4440 0.0512 0.4488 0.0560 0.8929 0.8967 0.8880 0.8923

External Loop &

Structure

0.4672 0.0820 0.4180 0.0328 0.8851 0.8506 0.9344 0.8905

Bridge & Structure 0.4508 0.0724 0.4276 0.0492 0.8784 0.8616 0.9015 0.8811

Junction & Stem-

loop

0.4459 0.0695 0.4305 0.0541 0.8764 0.8652 0.8919 0.8783

External Loop &

Multiloop

0.4459 0.0705 0.4295 0.0541 0.8755 0.8636 0.8919 0.8775

External Loop &

Stemloop

0.4846 0.1226 0.3774 0.0154 0.8620 0.7981 0.9691 0.8753

Hairpin & Struc-

ture

0.4431 0.0695 0.4305 0.0569 0.8736 0.8644 0.8861 0.8751

Bridge & Hairpin 0.4344 0.0589 0.4411 0.0656 0.8755 0.8806 0.8687 0.8746

External Loop &

Junction

0.4469 0.0801 0.4199 0.0531 0.8668 0.8480 0.8938 0.8703

Hairpin & Multi-

loop

0.4208 0.0463 0.4537 0.0792 0.8745 0.9008 0.8417 0.8703

Stemloop & Struc-

ture

0.4266 0.0550 0.4450 0.0734 0.8716 0.8858 0.8533 0.8692

External Loop &

Internal Loop

0.4556 0.1014 0.3986 0.0444 0.8542 0.8180 0.9112 0.8621

Hairpin & Stem-

loop

0.4546 0.1004 0.3996 0.0454 0.8542 0.8191 0.9093 0.8618

Stem & Structure 0.4440 0.0869 0.4131 0.0560 0.8571 0.8364 0.8880 0.8614

Multiloop & Junc-

tion

0.4112 0.0454 0.4546 0.0888 0.8658 0.9006 0.8224 0.8597

Junction & Stem 0.4112 0.0463 0.4537 0.0888 0.8649 0.8987 0.8224 0.8589
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Structure & Tail 0.4479 0.0965 0.4035 0.0521 0.8514 0.8227 0.8958 0.8577

Internal Loop &

Junction

0.4160 0.0550 0.4450 0.0840 0.8610 0.8832 0.8320 0.8569

Bridge & Stemloop 0.4421 0.0917 0.4083 0.0579 0.8504 0.8282 0.8842 0.8553

Hairpin & Stem 0.4102 0.0502 0.4498 0.0898 0.8600 0.8910 0.8205 0.8543

Hairpin & Tail 0.4151 0.0569 0.4431 0.0849 0.8581 0.8793 0.8301 0.8540

External Loop &

Unpaired

0.4324 0.0820 0.4180 0.0676 0.8504 0.8405 0.8649 0.8525

External Loop &

Stem

0.4257 0.0772 0.4228 0.0743 0.8485 0.8464 0.8514 0.8489

Multiloop & Stem-

loop

0.4344 0.0907 0.4093 0.0656 0.8436 0.8272 0.8687 0.8475

Bridge & External

Loop

0.4363 0.0936 0.4064 0.0637 0.8427 0.8233 0.8726 0.8472

Hairpin & Internal

Loop

0.4218 0.0743 0.4257 0.0782 0.8475 0.8502 0.8436 0.8469

Hairpin & Stack 0.4180 0.0695 0.4305 0.0820 0.8485 0.8574 0.8359 0.8465

Junction & Un-

paired

0.3996 0.0454 0.4546 0.1004 0.8542 0.8980 0.7992 0.8458

Hairpin & Loop 0.4112 0.0618 0.4382 0.0888 0.8494 0.8694 0.8224 0.8452

Junction & Stack 0.4054 0.0560 0.4440 0.0946 0.8494 0.8787 0.8108 0.8434

Internal Loop &

Structure

0.4112 0.0647 0.4353 0.0888 0.8465 0.8641 0.8224 0.8427

External Loop &

Loop

0.4064 0.0589 0.4411 0.0936 0.8475 0.8734 0.8127 0.8420

External Loop &

Stack

0.3996 0.0512 0.4488 0.1004 0.8485 0.8865 0.7992 0.8406

External Loop &

Joint

0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

External Loop &

Joint-Tail

0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

Bulge & External

Loop

0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392

External Loop &

Tail

0.4006 0.0541 0.4459 0.0994 0.8465 0.8811 0.8012 0.8392
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Hairpin & Un-

paired

0.4025 0.0569 0.4431 0.0975 0.8456 0.8761 0.8050 0.8390

Joint-Tail & Hair-

pin

0.3986 0.0531 0.4469 0.1014 0.8456 0.8825 0.7973 0.8377

Bridge & Junction 0.4102 0.0724 0.4276 0.0898 0.8378 0.8500 0.8205 0.8350

Loop & Structure 0.3919 0.0473 0.4527 0.1081 0.8446 0.8923 0.7838 0.8345

Loop & Junction 0.4025 0.0627 0.4373 0.0975 0.8398 0.8651 0.8050 0.8340

Structure & Un-

paired

0.4189 0.0859 0.4141 0.0811 0.8330 0.8298 0.8378 0.8338

Internal Loop &

Stemloop

0.4266 0.0975 0.4025 0.0734 0.8292 0.8140 0.8533 0.8332

Stack & Structure 0.3793 0.0338 0.4662 0.1207 0.8456 0.9182 0.7587 0.8309

Stem & Stemloop 0.4054 0.0705 0.4295 0.0946 0.8349 0.8519 0.8108 0.8309

Joint & Structure 0.3938 0.0560 0.4440 0.1062 0.8378 0.8755 0.7876 0.8293

Joint-Tail & Struc-

ture

0.3764 0.0319 0.4681 0.1236 0.8446 0.9220 0.7529 0.8289

Bulge & Structure 0.3764 0.0319 0.4681 0.1236 0.8446 0.9220 0.7529 0.8289

Joint-Tail & Junc-

tion

0.4035 0.0705 0.4295 0.0965 0.8330 0.8513 0.8069 0.8285

Loop & Stemloop 0.4160 0.0888 0.4112 0.0840 0.8272 0.8241 0.8320 0.8280

Joint & Stemloop 0.4122 0.0840 0.4160 0.0878 0.8282 0.8307 0.8243 0.8275

Stemloop & Tail 0.4421 0.1264 0.3736 0.0579 0.8156 0.7776 0.8842 0.8275

Hairpin & Joint 0.4122 0.0849 0.4151 0.0878 0.8272 0.8291 0.8243 0.8267

Bulge & Hairpin 0.4025 0.0714 0.4286 0.0975 0.8311 0.8493 0.8050 0.8266

Joint-Tail & Stem-

loop

0.4276 0.1129 0.3871 0.0724 0.8147 0.7911 0.8552 0.8219

Stack & Stemloop 0.4160 0.0965 0.4035 0.0840 0.8195 0.8117 0.8320 0.8217

Joint & Junction 0.3996 0.0734 0.4266 0.1004 0.8263 0.8449 0.7992 0.8214

Stemloop & Un-

paired

0.4131 0.0946 0.4054 0.0869 0.8185 0.8137 0.8263 0.8199

Bulge & Stemloop 0.4276 0.1197 0.3803 0.0724 0.8079 0.7813 0.8552 0.8166

Junction & Tail 0.4044 0.0888 0.4112 0.0956 0.8156 0.8200 0.8089 0.8144

Internal Loop &

Multiloop

0.3880 0.0685 0.4315 0.1120 0.8195 0.8499 0.7761 0.8113

Bulge & Junction 0.4122 0.1071 0.3929 0.0878 0.8050 0.7937 0.8243 0.8087
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Multiloop & Stem 0.3909 0.0888 0.4112 0.1091 0.8021 0.8149 0.7819 0.7980

Multiloop & Tail 0.4421 0.1660 0.3340 0.0579 0.7761 0.7270 0.8842 0.7979

Bridge & Internal

Loop

0.4170 0.1313 0.3687 0.0830 0.7857 0.7606 0.8340 0.7956

Bridge & Multiloop 0.3793 0.0763 0.4237 0.1207 0.8031 0.8326 0.7587 0.7939

Bridge & Tail 0.4054 0.1236 0.3764 0.0946 0.7819 0.7664 0.8108 0.7880

Bridge & Stem 0.3755 0.0782 0.4218 0.1245 0.7973 0.8277 0.7510 0.7874

Internal Loop &

Stem

0.3986 0.1178 0.3822 0.1014 0.7809 0.7720 0.7973 0.7844

Multiloop & Un-

paired

0.3494 0.0415 0.4585 0.1506 0.8079 0.8938 0.6988 0.7844

Internal Loop &

Tail

0.4469 0.1959 0.3041 0.0531 0.7510 0.6952 0.8938 0.7821

Multiloop & Stack 0.3716 0.0792 0.4208 0.1284 0.7925 0.8244 0.7432 0.7817

Loop & Multiloop 0.3880 0.1081 0.3919 0.1120 0.7799 0.7821 0.7761 0.7791

Bridge & Loop 0.3822 0.1014 0.3986 0.1178 0.7809 0.7904 0.7645 0.7772

Stem & Tail 0.4469 0.2046 0.2954 0.0531 0.7423 0.6859 0.8938 0.7762

loop & Stem 0.4064 0.1409 0.3591 0.0936 0.7654 0.7425 0.8127 0.7760

Stem & Unpaired 0.3716 0.0946 0.4054 0.1284 0.7770 0.7971 0.7432 0.7692

Stack & Stem 0.3871 0.1197 0.3803 0.1129 0.7674 0.7638 0.7741 0.7689

Tail & Unpaired 0.4440 0.2133 0.2867 0.0560 0.7307 0.6755 0.8880 0.7673

Loop & Tail 0.4469 0.2191 0.2809 0.0531 0.7278 0.6710 0.8938 0.7666

Joint-Tail & Stem 0.3929 0.1332 0.3668 0.1071 0.7597 0.7468 0.7857 0.7658

Bridge & Stack 0.3774 0.1120 0.3880 0.1226 0.7654 0.7712 0.7548 0.7629

Bridge & Unpaired 0.3900 0.1351 0.3649 0.1100 0.7548 0.7426 0.7799 0.7608

Bridge & Joint-Tail 0.3678 0.1004 0.3996 0.1322 0.7674 0.7856 0.7355 0.7597

Bridge & Joint 0.3649 0.1081 0.3919 0.1351 0.7568 0.7714 0.7297 0.7500

Joint-Tail & Multi-

loop

0.3465 0.0792 0.4208 0.1535 0.7674 0.8141 0.6931 0.7487

Joint & Stem 0.3591 0.1042 0.3958 0.1409 0.7548 0.7750 0.7181 0.7455

Stack & Tail 0.4517 0.2635 0.2365 0.0483 0.6882 0.6316 0.9035 0.7434

Bulge & Tail 0.4054 0.1892 0.3108 0.0946 0.7162 0.6818 0.8108 0.7407

Internal Loop &

Stack

0.3716 0.1342 0.3658 0.1284 0.7375 0.7347 0.7432 0.7390

Bridge & Bulge 0.3764 0.1467 0.3533 0.1236 0.7297 0.7196 0.7529 0.7358
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Loop & Unpaired 0.3842 0.1612 0.3388 0.1158 0.7230 0.7044 0.7683 0.7350

Bulge & Stem 0.3755 0.1486 0.3514 0.1245 0.7268 0.7164 0.7510 0.7333

Bulge & Multiloop 0.3639 0.1293 0.3707 0.1361 0.7346 0.7378 0.7278 0.7328

Joint-Tail & Tail 0.3542 0.1129 0.3871 0.1458 0.7413 0.7583 0.7085 0.7325

Joint & Tail 0.4102 0.2104 0.2896 0.0898 0.6998 0.6610 0.8205 0.7321

Joint & Multiloop 0.3282 0.0685 0.4315 0.1718 0.7597 0.8273 0.6564 0.7320

Internal Loop &

Loop

0.3407 0.0927 0.4073 0.1593 0.7481 0.7862 0.6815 0.7301

Internal Loop &

Unpaired

0.3552 0.1187 0.3813 0.1448 0.7365 0.7495 0.7104 0.7294

Loop & Stack 0.3629 0.1458 0.3542 0.1371 0.7172 0.7135 0.7259 0.7196

Stack & Unpaired 0.4025 0.2317 0.2683 0.0975 0.6708 0.6347 0.8050 0.7098

Joint-Tail & Loop 0.3716 0.1805 0.3195 0.1284 0.6911 0.6731 0.7432 0.7064

Joint-Tail & Inter-

nal Loop

0.3784 0.2037 0.2963 0.1216 0.6747 0.6501 0.7568 0.6994

Bulge & Internal

Loop

0.3330 0.1236 0.3764 0.1670 0.7095 0.7294 0.6660 0.6963

Internal Loop &

Joint

0.3542 0.1660 0.3340 0.1458 0.6882 0.6809 0.7085 0.6944

Joint-Tail & Stack 0.3803 0.2317 0.2683 0.1197 0.6486 0.6215 0.7606 0.6840

Joint-Tail & Un-

paired

0.3716 0.2162 0.2838 0.1284 0.6554 0.6322 0.7432 0.6832

Bulge & Stack 0.4913 0.4662 0.0338 0.0087 0.5251 0.5131 0.9826 0.6742

Bulge & Unpaired 0.4836 0.4566 0.0434 0.0164 0.5270 0.5144 0.9672 0.6716

Joint & Stack 0.4981 0.4865 0.0135 0.0019 0.5116 0.5059 0.9961 0.6710

Bulge & Loop 0.4131 0.3214 0.1786 0.0869 0.5917 0.5624 0.8263 0.6693

Joint & Loop 0.3436 0.1844 0.3156 0.1564 0.6593 0.6508 0.6873 0.6685

Joint & Unpaired 0.4981 0.4971 0.0029 0.0019 0.5010 0.5005 0.9961 0.6662

Bulge & Joint-Tail 0.4817 0.4681 0.0319 0.0183 0.5135 0.5071 0.9633 0.6644

Joint-Tail & Joint 0.4218 0.3533 0.1467 0.0782 0.5685 0.5442 0.8436 0.6616

Bulge & Joint 0.4759 0.4778 0.0222 0.0241 0.4981 0.4990 0.9517 0.6547

Table E.97: Structural Element Voting Pair Statistics for Experiment 1. Lists every com-

bination of structural element voting pairs, sorted by descending F-measure.
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Elements TP FP TN FN Acc. Prec. Recall F-mea.

Hairpin & Struc-

ture

0.4119 0.2653 0.2347 0.0881 0.6466 0.6082 0.8237 0.6998

Stemloop & Struc-

ture

0.4573 0.3562 0.1438 0.0427 0.6011 0.5621 0.9147 0.6963

Hairpin & Stack 0.4202 0.3052 0.1948 0.0798 0.6150 0.5793 0.8404 0.6858

Stack & Stemloop 0.4917 0.4555 0.0445 0.0083 0.5362 0.5191 0.9833 0.6795

Joint-Tail & Hair-

pin

0.3952 0.2681 0.2319 0.1048 0.6271 0.5958 0.7904 0.6794

Hairpin & Stem-

loop

0.4267 0.3340 0.1660 0.0733 0.5928 0.5610 0.8534 0.6770

Loop & Structure 0.4276 0.3358 0.1642 0.0724 0.5918 0.5601 0.8553 0.6769

Internal Loop &

Stemloop

0.4416 0.3636 0.1364 0.0584 0.5779 0.5484 0.8831 0.6766

Hairpin & Internal

Loop

0.3766 0.2375 0.2625 0.1234 0.6391 0.6133 0.7532 0.6761

Hairpin & Un-

paired

0.4276 0.3377 0.1623 0.0724 0.5900 0.5588 0.8553 0.6760

Stack & Structure 0.4731 0.4267 0.0733 0.0269 0.5464 0.5258 0.9462 0.6759

Stemloop & Un-

paired

0.4583 0.3980 0.1020 0.0417 0.5603 0.5352 0.9165 0.6758

External Loop &

Hairpin

0.4100 0.3043 0.1957 0.0900 0.6058 0.5740 0.8200 0.6753

Bulge & Stemloop 0.4212 0.3265 0.1735 0.0788 0.5946 0.5633 0.8423 0.6751

Loop & Stemloop 0.4712 0.4249 0.0751 0.0288 0.5464 0.5259 0.9425 0.6751

Hairpin & Loop 0.3599 0.2069 0.2931 0.1401 0.6531 0.6350 0.7199 0.6748

External Loop &

Stemloop

0.4527 0.3942 0.1058 0.0473 0.5584 0.5345 0.9054 0.6722

Joint-Tail & Stem-

loop

0.4221 0.3340 0.1660 0.0779 0.5881 0.5583 0.8442 0.6721

Junction & Stem-

loop

0.4147 0.3219 0.1781 0.0853 0.5928 0.5630 0.8293 0.6707

Hairpin & Stem 0.3340 0.1623 0.3377 0.1660 0.6716 0.6729 0.6679 0.6704

Stemloop & Tail 0.4249 0.3432 0.1568 0.0751 0.5816 0.5531 0.8497 0.6701

Bridge & Hairpin 0.3386 0.1725 0.3275 0.1614 0.6660 0.6624 0.6772 0.6697



APPENDIX E. DATA 221

Joint & Stack 0.4917 0.4768 0.0232 0.0083 0.5148 0.5077 0.9833 0.6696

Stack & Unpaired 0.4981 0.4898 0.0102 0.0019 0.5083 0.5042 0.9963 0.6696

Stem & Stemloop 0.4035 0.3024 0.1976 0.0965 0.6011 0.5716 0.8071 0.6692

Joint-Tail & Stack 0.4981 0.4907 0.0093 0.0019 0.5074 0.5038 0.9963 0.6692

Joint & Stemloop 0.4230 0.3414 0.1586 0.0770 0.5816 0.5534 0.8460 0.6691

Multiloop & Stem-

loop

0.4100 0.3163 0.1837 0.0900 0.5937 0.5645 0.8200 0.6687

Bulge & Hairpin 0.3581 0.2134 0.2866 0.1419 0.6447 0.6266 0.7161 0.6684

Internal Loop &

Structure

0.3813 0.2597 0.2403 0.1187 0.6215 0.5948 0.7625 0.6683

Stem & Structure 0.3905 0.2783 0.2217 0.1095 0.6122 0.5839 0.7811 0.6683

Bridge & Stack 0.4796 0.4573 0.0427 0.0204 0.5223 0.5119 0.9592 0.6675

Loop & Stack 0.4805 0.4592 0.0408 0.0195 0.5213 0.5114 0.9610 0.6675

Hairpin & Multi-

loop

0.3312 0.1614 0.3386 0.1688 0.6698 0.6723 0.6623 0.6673

Bridge & Stemloop 0.4109 0.3210 0.1790 0.0891 0.5900 0.5615 0.8219 0.6672

Joint-Tail & Struc-

ture

0.4647 0.4286 0.0714 0.0353 0.5362 0.5202 0.9295 0.6671

Joint-Tail & Un-

paired

0.4972 0.4935 0.0065 0.0028 0.5037 0.5019 0.9944 0.6671

Internal Loop &

Stack

0.4833 0.4666 0.0334 0.0167 0.5167 0.5088 0.9666 0.6667

External Loop &

Stack

0.4889 0.4777 0.0223 0.0111 0.5111 0.5058 0.9777 0.6667

Hairpin & Junction 0.3321 0.1651 0.3349 0.1679 0.6670 0.6679 0.6642 0.6660

Structure & Un-

paired

0.4954 0.4926 0.0074 0.0046 0.5028 0.5014 0.9907 0.6658

Stack & Stem 0.4833 0.4685 0.0315 0.0167 0.5148 0.5078 0.9666 0.6658

Joint-Tail & Loop 0.4852 0.4731 0.0269 0.0148 0.5121 0.5063 0.9703 0.6654

Joint & Unpaired 0.4954 0.4944 0.0056 0.0046 0.5009 0.5005 0.9907 0.6650

Stem & Unpaired 0.4944 0.4926 0.0074 0.0056 0.5019 0.5009 0.9889 0.6650

Stack & Tail 0.4842 0.4731 0.0269 0.0158 0.5111 0.5058 0.9685 0.6645

Bulge & Stack 0.4842 0.4759 0.0241 0.0158 0.5083 0.5043 0.9685 0.6633

Junction & Stack 0.4805 0.4685 0.0315 0.0195 0.5121 0.5064 0.9610 0.6633

Multiloop & Stack 0.4796 0.4666 0.0334 0.0204 0.5130 0.5069 0.9592 0.6632



APPENDIX E. DATA 222

Hairpin & Joint 0.3256 0.1568 0.3432 0.1744 0.6688 0.6750 0.6512 0.6629

Hairpin & Tail 0.3553 0.2171 0.2829 0.1447 0.6382 0.6207 0.7106 0.6626

Internal Loop &

Unpaired

0.4917 0.4926 0.0074 0.0083 0.4991 0.4995 0.9833 0.6625

External Loop &

Unpaired

0.4926 0.4954 0.0046 0.0074 0.4972 0.4986 0.9852 0.6621

Junction & Un-

paired

0.4870 0.4842 0.0158 0.0130 0.5028 0.5014 0.9740 0.6620

Loop & Unpaired 0.4917 0.4954 0.0046 0.0083 0.4963 0.4981 0.9833 0.6613

Bulge & Unpaired 0.4889 0.4898 0.0102 0.0111 0.4991 0.4995 0.9777 0.6612

Multiloop & Un-

paired

0.4889 0.4898 0.0102 0.0111 0.4991 0.4995 0.9777 0.6612

Bridge & Unpaired 0.4861 0.4842 0.0158 0.0139 0.5019 0.5010 0.9722 0.6612

Tail & Unpaired 0.4879 0.4917 0.0083 0.0121 0.4963 0.4981 0.9759 0.6596

External Loop &

Structure

0.4026 0.3200 0.1800 0.0974 0.5826 0.5571 0.8052 0.6586

Joint-Tail & Inter-

nal Loop

0.4564 0.4304 0.0696 0.0436 0.5260 0.5146 0.9128 0.6582

Joint & Loop 0.4555 0.4304 0.0696 0.0445 0.5250 0.5141 0.9109 0.6573

External Loop &

Joint-Tail

0.4564 0.4332 0.0668 0.0436 0.5232 0.5130 0.9128 0.6569

Loop & Stem 0.4397 0.4007 0.0993 0.0603 0.5390 0.5232 0.8794 0.6561

Joint-Tail & Stem 0.4406 0.4156 0.0844 0.0594 0.5250 0.5146 0.8813 0.6498

Junction & Struc-

ture

0.3293 0.1855 0.3145 0.1707 0.6438 0.6396 0.6586 0.6490

Joint-Tail & Junc-

tion

0.4314 0.3980 0.1020 0.0686 0.5334 0.5201 0.8627 0.6490

Joint-Tail & Joint 0.4360 0.4119 0.0881 0.0640 0.5241 0.5142 0.8720 0.6469

Bulge & Joint-Tail 0.4406 0.4249 0.0751 0.0594 0.5158 0.5091 0.8813 0.6454

Internal Loop &

Joint

0.3989 0.3377 0.1623 0.1011 0.5612 0.5416 0.7978 0.6452

Joint & Structure 0.4045 0.3506 0.1494 0.0955 0.5538 0.5356 0.8089 0.6445

Multiloop & Struc-

ture

0.3210 0.1781 0.3219 0.1790 0.6429 0.6431 0.6419 0.6425

Joint-Tail & Tail 0.4249 0.3989 0.1011 0.0751 0.5260 0.5158 0.8497 0.6419
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Bridge & Joint-Tail 0.4239 0.3970 0.1030 0.0761 0.5269 0.5164 0.8479 0.6419

External Loop &

Joint

0.3998 0.3488 0.1512 0.1002 0.5510 0.5341 0.7996 0.6404

Joint-Tail & Multi-

loop

0.4212 0.3970 0.1030 0.0788 0.5241 0.5147 0.8423 0.6390

Bulge & Structure 0.3386 0.2254 0.2746 0.1614 0.6132 0.6003 0.6772 0.6364

External Loop &

Loop

0.4082 0.3748 0.1252 0.0918 0.5334 0.5213 0.8163 0.6363

Bridge & Structure 0.3191 0.1874 0.3126 0.1809 0.6317 0.6300 0.6382 0.6341

Internal Loop &

Stem

0.3534 0.2644 0.2356 0.1466 0.5891 0.5721 0.7069 0.6324

Structure & Tail 0.3367 0.2301 0.2699 0.1633 0.6067 0.5941 0.6735 0.6313

External Loop &

Stem

0.3692 0.3015 0.1985 0.1308 0.5677 0.5505 0.7384 0.6307

Internal Loop &

Loop

0.3692 0.3256 0.1744 0.1308 0.5436 0.5314 0.7384 0.6180

Bridge & Loop 0.3701 0.3367 0.1633 0.1299 0.5334 0.5236 0.7403 0.6134

External Loop &

Internal Loop

0.3534 0.3006 0.1994 0.1466 0.5529 0.5404 0.7069 0.6125

Loop & Tail 0.3738 0.3488 0.1512 0.1262 0.5250 0.5173 0.7477 0.6115

Loop & Junction 0.3646 0.3367 0.1633 0.1354 0.5278 0.5198 0.7291 0.6069

Loop & Multiloop 0.3590 0.3293 0.1707 0.1410 0.5297 0.5216 0.7180 0.6042

Joint & Stem 0.3488 0.3126 0.1874 0.1512 0.5362 0.5273 0.6976 0.6006

Bulge & Joint 0.3479 0.3210 0.1790 0.1521 0.5269 0.5201 0.6957 0.5952

Bulge & Loop 0.3581 0.3460 0.1540 0.1419 0.5121 0.5086 0.7161 0.5948

Bulge & Stem 0.3080 0.2449 0.2551 0.1920 0.5631 0.5570 0.6160 0.5850

Joint & Junction 0.3135 0.2681 0.2319 0.1865 0.5455 0.5391 0.6271 0.5798

Joint & Tail 0.3219 0.3006 0.1994 0.1781 0.5213 0.5171 0.6438 0.5736

External Loop &

Tail

0.3024 0.2597 0.2403 0.1976 0.5427 0.5380 0.6048 0.5694

Stem & Tail 0.2848 0.2171 0.2829 0.2152 0.5677 0.5675 0.5696 0.5685

Bulge & External

Loop

0.3015 0.2681 0.2319 0.1985 0.5334 0.5293 0.6030 0.5637

Bridge & External

Loop

0.2876 0.2328 0.2672 0.2124 0.5547 0.5526 0.5751 0.5636
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External Loop &

Multiloop

0.2783 0.2189 0.2811 0.2217 0.5594 0.5597 0.5566 0.5581

Joint & Multiloop 0.2950 0.2635 0.2365 0.2050 0.5315 0.5282 0.5900 0.5574

Bridge & Joint 0.2941 0.2672 0.2328 0.2059 0.5269 0.5240 0.5881 0.5542

Junction & Stem 0.2579 0.1735 0.3265 0.2421 0.5844 0.5978 0.5158 0.5538

External Loop &

Junction

0.2746 0.2208 0.2792 0.2254 0.5538 0.5543 0.5492 0.5517

Internal Loop &

Tail

0.2681 0.2041 0.2959 0.2319 0.5640 0.5678 0.5362 0.5515

Bulge & Internal

Loop

0.2718 0.2301 0.2699 0.2282 0.5417 0.5416 0.5436 0.5426

Bridge & Stem 0.2495 0.1753 0.3247 0.2505 0.5742 0.5873 0.4991 0.5396

Multiloop & Stem 0.2458 0.1660 0.3340 0.2542 0.5798 0.5968 0.4917 0.5392

Bridge & Internal

Loop

0.2449 0.1763 0.3237 0.2551 0.5686 0.5815 0.4898 0.5317

Internal Loop &

Junction

0.2384 0.1735 0.3265 0.2616 0.5649 0.5788 0.4768 0.5229

Internal Loop &

Multiloop

0.2273 0.1623 0.3377 0.2727 0.5649 0.5833 0.4545 0.5109

Bulge & Tail 0.1818 0.1688 0.3312 0.3182 0.5130 0.5185 0.3636 0.4275

Bulge & Junction 0.1642 0.1178 0.3822 0.3358 0.5464 0.5822 0.3284 0.4199

Junction & Tail 0.1512 0.1011 0.3989 0.3488 0.5501 0.5993 0.3024 0.4020

Bridge & Bulge 0.1558 0.1215 0.3785 0.3442 0.5343 0.5619 0.3117 0.4010

Bridge & Tail 0.1456 0.1011 0.3989 0.3544 0.5445 0.5902 0.2913 0.3901

Bulge & Multiloop 0.1401 0.1058 0.3942 0.3599 0.5343 0.5698 0.2801 0.3756

Multiloop & Tail 0.1271 0.0881 0.4119 0.3729 0.5390 0.5905 0.2542 0.3554

Bridge & Junction 0.1020 0.0399 0.4601 0.3980 0.5622 0.7190 0.2041 0.3179

Multiloop & Junc-

tion

0.0807 0.0232 0.4768 0.4193 0.5575 0.7768 0.1614 0.2673

Bridge & Multiloop 0.0705 0.0269 0.4731 0.4295 0.5436 0.7238 0.1410 0.2360

Table E.98: Structural Element Voting Pair Statistics for Experiment 2. Lists every com-

bination of structural element voting pairs, sorted by descending F-measure.
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[2] Athanasius F Bompfünewerer. RNAs everywhere: genome-wide annotation of struc-
tured RNAs. Journal of experimental zoology. Part B, Molecular and developmental
evolution, 308(1):1–25, January 2007.

[3] Tomas Babak, Benjamin J. Blencowe, and Timothy R. Hughes. Considerations in
the identification of functional RNA structural elements in genomic alignments. BMC
Bioinformatics, 8:33+, January 2007.

[4] B. G. Barrell, A. T. Bankier, and J. Drouin. A different genetic code in human mito-
chondria. Nature, 282:189–194, 1979.

[5] Eugene Berezikov, Edwin Cuppen, and Ronald H. A. Plasterk. Approaches to mi-
croRNA discovery. Nature Genetics, 38 Suppl:S2–S7, May 2006.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition, October 2007.

[7] Terry Brown. Genomes 3, chapter 1. Garland Science, third edition, May 2006.

[8] Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[9] Richard J. Carter, Inna Dubchak, and Stephen R. Holbrook. A computational ap-
proach to identify genes for functional RNAs in genomic sequences. Nucl. Acids Res.,
29(19):3928–3938, October 2001.

[10] Chih-chung Chang and Chih-jen Lin. LIBSVM: a Library for Support Vector Machines,
2001.

[11] Chun-Long L. Chen, Hui Zhou, Jian-You Y. Liao, Liang-Hu H. Qu, and Laurence Amar.
Genome-wide evolutionary analysis of the noncoding RNA genes and noncoding DNA
of Paramecium tetraurelia. RNA (New York, N.Y.), February 2009.

225



BIBLIOGRAPHY 226

[12] Jih-H Chen, Shu-Yun Le, Bruce Shapiro, Kathleen M. Currey, and Jacob V. Maizel.
A computational procedure for assessing the significance of RNA secondary structure.
Comput. Appl. Biosci., 6(1):7–18, January 1990.

[13] Y. W. Chen and C. J. Lin. Combining SVMs with various feature selection strategies.
2005.
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