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Abstract

Human action recognition from realistic videos is a challenging problem in computer vision.

Several intrinsic properties such as intra-class variations, background clutter and partial

occlusion make it difficult to recognize individual person actions reliably.

In this dissertation, we go beyond recognizing individual person actions and focus on

group activities instead. This motivates from the observation that human actions are rarely

performed in isolation, the contextual information of what other people nearby are doing

provides useful cues for understanding the high-level activities. We propose a discriminative

model for recognizing group activities. Our model jointly captures the group activity, the

individual person actions, and the interactions among them. Two new types of contex-

tual information, group-person interaction and person-person interaction, are explored in

a latent variable framework. In particular, we propose two different approaches to model

the person-person interaction. One approach is to explore the structures of person-person

interaction. Different from most of the previous latent structured models which assume a

pre-defined structure for the hidden layer, e.g. a tree structure, we treat the structure of

the hidden layer as a latent variable and implicitly infer it during learning and inference.

The other approach explores the person-person interaction in feature level. We introduce

a new feature representation called the action context (AC) descriptor. The AC descriptor

encodes information about not only the action of an individual person in the video, but also

the behaviour of other people nearby. Our experimental results demonstrate the benefit of

using contextual information for disambiguating group activities.

Keywords: computer vision; group activity recognition; context; latent structured models
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Chapter 1

Introduction

Vision-based activity recognition has broad applications in various aspects of people’s life,

such as surveillance, human-computer interaction, robot learning, sports and entertainment,

etc. At the highest level, the goal is to enable computers to analyze and understand human

behavior. The task is difficult, the appearance of human activities has tremendous variation

due to background clutter, partial occlusion, scale and viewpoint change, etc. During the

last few decades, researchers have developed a number of methods and achieved remarkable

success. However, we still have a long way to go.

Automatic video surveillance is an important application of vision-based activity recog-

nition. Thousands of hours of videos are being captured everyday by CCTV camera, web

camera, surveillance camera, etc. However, the technology of automatic video analysis has

failed to keep pace and all of the task is left to human security personnel currently. This

endeavour requires the analysis of a large amount of video recordings, and this task is not

well suited to humans, as it is labor-intensive and demanding to sift through all the data.

Under this background, a system that can automatically recognize and annotate all the ac-

tivities occur in a video is required. Several state-of-the-art benchmark datasets are trying

to address this issue, a representative one is the TRECVid [37] event detection dataset. The

objective of TRECVid event detection is to automatically detect the observable events in

surveillance videos, which are captured from London Gatwick airport. Typical events in

this dataset include running, embrace, pointing, etc. Note that this task only requires to

locate the frames which contain the pre-defined events, instead of accurate spatial locations.

Around 100 hour video dataset has been released for the development purpose, which con-

sists of the videos from five surveillance cameras in the airport. The representative frame

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Representative Frames of TRECVID event detection dataset.

of each camera view are shown in Fig.1.1.

In many real-world applications, such as surveillance, reliably recognizing each indi-

vidual’s action using state-of-the-art techniques in computer vision is unachievable. One

alternative is focusing on activity over a group of people instead. This motivates from the

observation that human actions are rarely performed in isolation, the actions of individuals

in a group can serve as context for each other. The goal of this dissertation is to explore

the benefit of contextual information in group activity recognition in challenging real-world

applications.

1.1 Background

Group activity recognition: Human activity understanding is of great scientific interest

in the computer vision community. Group activity recognition is an important component of

automatic human activity understanding. The goal of group activity recognition is to classify

a video sequence, clip, or individual frames into several pre-defined categories according to

activities performed by groups of people in the video. Most of the work in human activity

understanding only focuses on single-person action recognition. In this dissertation, we

argue that actions of individual humans often cannot be inferred alone. Look at the two

persons in Fig. 1.2(a), can you tell they are doing two different actions? Once the entire

contexts of these two images are revealed (Fig. 1.2(b)) and we observe the interaction of

the person with other persons in the group, it is immediately clear that the first person is
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(a) (b) (c)

Figure 1.2: Role of context in group activities. It is often hard to distinguish actions from
each individual person alone (a). However, if we look at the whole scene (b), we can easily
recognize the activity of the group and the action of each individual. In this dissertation,
we operationalize on this intuition and introduce a model for recognizing group activities by
jointly consider the group activity, the action of each individual, and the interaction among
certain pairs of individual actions (c).

queuing, while the second person is talking. We instead focus on developing methods for

recognizing group activities by modeling the collective behaviors of individuals in the group.

Before we proceed, we first clarify some terminology used throughout the rest of the

dissertation. We use action to denote a simple, atomic movement performed by a single

person. We use activity to refer to a more complex scenario that involves a group of people.

Consider the examples in Fig. 1.2(b), each frame describes a group activity: queuing and

talking, while each person in a frame performs a lower level action: talking and facing right,

talking and facing left, etc.

Our goal is to perform group activity recognition in challenging real-world conditions,

e.g. surveillance video data. Consider the video frames shown in Fig. 1.3. These are

example frames from a nursing home surveillance video in which we would like to recognize

instances of activities of interest such as residents who fall. The intra-class variation in

activity categories and relatively poor video quality typical of surveillance footage render

this a challenging problem.

The Role of Context: As indicated by psychology experiments, context is critical in

recognition for human visual system [3]. In computer vision, the use of context is also im-

portant for solving various recognition problems, especially in situations with poor viewing

quality. This is because features are usually not reliable in such circumstances, thus analysis

of individual objects alone can not yield reliable results.
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Figure 1.3: Sample frames from a nursing home surveillance video. Our goal is to find
instances of residents falling down.

In this dissertation, we focus on exploring the role of context in group activity recogni-

tion. Contextual information is extracted from the behaviour of all the people in a video

frame, as indicated in Fig. 1.2. As mentioned earlier, activity recognition from surveillance

video data is challenging. With this type of video footage many actions are ambiguous, as

shown in Fig. 1.3. For example, falling down and sitting down are often confused – both

can contain substantial downward motion and result in similarly shaped person silhouettes.

A helpful cue that can be employed to disambiguate situations such as these is the context

of what other people in the video are doing. Given visual cues of large downward motion,

if we see other people coming to aid then it is more likely to be a fall than if we see other

people sitting down.

Here we define two types of contextual information in group activities exploited in this

dissertation. First, the activity of a group and the collective actions of all the individuals

serve as context (we call it the group-person interaction) for each other, hence should be

modeled jointly in a unified framework. As shown in Fig. 1.2, knowing the group activity

(queuing or talking) helps disambiguate individual human actions which are otherwise hard

to recognize. Similarly, knowing most of the persons in the scene are talking (whether facing

right or left) allows us to infer the overall group activity (i.e. talking). Second, the action of

an individual can also benefit from knowing the actions of other surrounding persons (which

we call the person-person interaction). For example, consider Fig. 1.2(c). The fact that the

first two persons are facing the same direction provides a strong cue that both of them are

queuing. Similarly, the fact that the last two persons are facing each other indicates they

are more likely to be talking.
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1.2 Contributions

In this dissertation, we develop a discriminative model for recognizing group activities. We

highlight the main contributions of our model.

• Group activity: most of the work in human activity understanding focuses on single-

person action recognition. Instead, we present a model for group activities that dy-

namically decides on interactions among group members.

• Group-person and person-person interaction: although contextual information has

been exploited for visual recognition problems, ours introduces two new types of con-

textual information that have not been explored before.

• Context descriptor: In terms of person-person interaction, one way is to model it in

feature level, i.e. the feature descriptor for each person could reflect actions of both

the focal person and context simultaneously. We propose a context descriptor encodes

information about an individual person in a video, as well as other people nearby.

• Structure learning: The other way is to model the interaction in structure level. The

person-person interaction poses a challenging problem for both learning and inference.

If we naively consider the interaction between every pair of persons, the learning

and inference turn out to be intractable. Ideally, we would like to consider only

those person-person interactions that are strong. To this end, we propose a structure

learning approach that automatically decide on whether the interaction of two persons

should be considered. Our experimental results show that our structure learning

significantly outperforms other alternatives.

1.3 Outline

The rest of the dissertation is organized as follows:

Chapter 2 provides an overview of previous work in both computer vision and machine

learning areas that is most relevant to this dissertation. Relevant work in vision includes

human action/activity recognition and context based visual recognition, work in learning

includes discriminative latent models.

Chapter 3 proposes a discriminative model for group activity recognition. Our model

jointly captures the group activity, the individual person actions, and the interactions among
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them. Context has been extensively studied in scene and object recognition. In this work, we

demonstrate that it is also useful for group activity recognition. We introduce two different

ways to model the person-person interaction, one is on exploring the structures, and the

other is based on a context feature descriptor.

Chapter 4 concludes this thesis and discusses future work.



Chapter 2

Previous work

In this chapter, we give a general overview of previous work that is related to this disserta-

tion.

2.1 Human Action/Activity Recognition

In the last few decades, a lot of work has been done in recognizing human actions/activities

from video sequences or still images. There is a huge literature in this area and we only

focus on the closely related work in this review.

Datasets: Most existing work test their algorithms on standard benchmark datasets, like

KTH [36] and Weizmann [4], which normally only involve a single actor performing certain

actions in a controlled setting with small camera motion and clean background. Many

work has achieved high recognition accuracy in these datasets. Some recent work tests

their algorithms on more complicated datasets that are close to the real-world conditions.

Action recognition “in the wild” is receiving a lot of attentions. Several representative

datasets are Hollywood Human Actions (HOHA) dataset [23], Youtube Action dataset [24]

and Collective Activity Dataset [6]. There is also some work focuses on action recognition

from still images [41, 20, 15, 9], progress made in still images can be directly applied to

videos. Some representative datasets are shown in Fig. 2.1.

Bag-of-words Representation: The feature descriptor in our work employs a bag-of-

words style representation. Bag-of-words representations have been studied extensively

in computer vision, particularly in object recognition. In action recognition, Wang and

Mori [42] track individual people and model co-occurances of the actions in a single track

7
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(a) (b)

(c) (d) (e)

Figure 2.1: Example frames from several representative datasets. From (a)-(e) are: Human-
Object Interaction [15], Hollywood [23], Youtube [24], KTH [36] and Weizmann [4] Dataset
respectively.

with a mapping of frames to visual words. In contrast, the method we present here does

not require tracking, which is challenging in our datasets, and models the actions of mul-

tiple people. Wang et al. [40] analyze far-field traffic video. Low-level atomic events are

described by motion and position features, and hierarchical models are used to capture

the co-occurances of these atomic events over video clips. We explicitly model the spatial

context of an individual person, rather than treating the whole frame in a bag-of-words

representation. Loy et al. [25] develop a structure learning algorithm to model temporal

dependencies of actions across a camera network. Our model focuses on a lower level of

detail, on the actions of an individual.

Group Activity Recognition: Most work on human activity recognition consider activ-

ities of one individual or between two individuals, such as hand-shaking, embracing and

kissing. Relatively few work attempts to model the high-level group activities [31, 22, 50,

29, 21, 27, 35]. Most of the work on group activity focuses on a small range of activities

with clear structural information using sequential models. For example, Vaswani et al. [31]

models an activity using a polygon and its deformation over time. Each person in the group

is treated as a point on the polygon. The model is applied to abnormality detection. Ivanov
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and Bobick [21] divides the recognition problem into two levels. The first level detects the

individual events with HMMs and the second level models the interactions among the events

detected in the first level using a stochastic context-free grammar parsing mechanism. How-

ever, only sequential relations are considered in the parsing mechanism. Moore and Essa [29]

extend the work in [21] for recognizing multitasked activities. The main limitation of this

line of work is that the temporal ordering of the activities has to be strictly sequential.

Thus, only a limited range of activities can be modeled by these approaches. More recently,

Ryoo and Aggarwal [35] proposes a stochastic representation for group activities based on

context-free grammar, which characterizes both spatial and temporal arrangements of group

members. However, the representation of activities are encoded manually by human experts.

Different from the above mentioned approaches, our work employs a latent variable frame-

work that is able to capture the complex structures of various types of group activities, and

the structures of group activities are learnt automatically.

2.2 Recognition with Context

Using context to aid visual recognition has received much attention recently. Some work

clearly demonstrates that contextual information could improve the performance of weak

local detectors [19, 39, 30, 5, 45, 51]. Most of the work on context is in scene and ob-

ject recognition. For example, work has been done on exploiting contextual information

between scenes and objects [30], objects and objects [8, 33, 13, 14], objects and so-called

“stuff” (amorphous spatial extent, e.g. trees, sky) [18], etc.

Most of the previous work in human action recognition focuses on recognizing actions

performed by a single person in a video (e.g. [4, 36]). In this setting, there has been work

on exploiting contexts provided by scenes [26] or objects [17] to help action recognition.

In still image action recognition, object-action context [9, 15, 47, 48] is a popular type

of context used for human-object interaction. In this dissertation, we focus on another

type of contextual information – the interactions between people. Modeling interactions

between people and their role in action recognition has been explored by many researchers.

For example, sophisticated models such as dynamic Bayesian networks [46] and AND-OR

graphs [16] have been employed. Gupta et al. [16]’s representation based on AND-OR

graphs allows for a flexible grammar of action relationships. The sophistication of these

models leads to more challenging learning problems. Other representations are holistic in
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nature. Zhong et al. [52] examine motion and shape features of entire video frames to detect

unusual activities. Mehran et al. [28] build a “bag-of-forces” model of the movements of

people in a video frame to detect abnormal crowd behaviour. The work in [6] is the closest

to ours. In that work, pose-pose context is exploited by a new feature descriptor extracted

from a person and its surrounding area.

2.3 Discriminative Latent Models

Our model is directly inspired by some recent work on learning discriminative models that

allow the use of latent variables [1, 9, 32, 43, 49], particularly when the latent variables

have complex structures. These models have been successfully applied in many applications

in computer vision, e.g. object detection [12], action recognition [43], human-object inter-

action [9]. So far only applications where the structures of latent variables are fixed have

been considered, i.e. a tree-structure in [12, 43]. However in our applications, the latent

structures are not fixed and have to be inferred automatically.

Latent SVM

Among the discriminative latent models, latent SVM [12] is the closest to our model. This

model is extended to solve multi-class classification problem, known as latent structural

SVM [49] or max-margin hidden conditional random field [43]. In [12], latent SVM is

proposed and applied to object detection. The model combines the flexibility of part-based

approaches and global perspective of large-scale features in a unified framework. It is also

an integration of discriminative structural models and max-margin learning principle.

In the latent SVM framework, the models are trained with partially labeled data. In [12],

object locations are labeled while part locations are not labeled and treated as latent vari-

ables during training. The model for an object consists of an appearance model and a spatial

model. An example of the model is shown in Fig. 2.2.

Let x be an example and z be the configurations of x. We assume that z takes the form

of z = (p0, p1, . . . , pK), where p0 is location of the root (the whole object), pi(i = 1, . . . ,K)

is the location of i-th part and K is the number of parts. We use an undirected graph

G = (V, E) to represent the configuration z. In [12], G is defined as a star graph with a root

plus a collection of parts connected to it, where a vertex vi ∈ V corresponds to the location

of the i-th part, and an edge corresponds to the displacement of the j-th part to the root.
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An example x is scored with a function of the following form:

fw(x) = max
z∈Z(x)

w⊤Ψ(x, z) (2.1)

where w is a vector of model parameters and z are latent variables. Z(x) is the set of all

possible latent values for an example x. The model parameters w are simply the combination

of two parts, w = {α, β} and w⊤Ψ(x, z) is defined as:

w⊤Ψ(x, z) =
K

∑

j=0

α⊤φ(x, pj) +
K

∑

j=1

β⊤ϕ(pj) (2.2)

where φ(x, pj) denotes the appearance feature of the root when j = 0 and appearance

feature of the j-th part if j > 0. ϕ(pj) denotes the spatial feature which represents the

displacement of j-th part relative to the root.

Given a set of N training examples 〈xn, yn〉 (n = 1, 2, . . . , N), where yi ∈ {−1, 1}, the

model parameter w is trained with the following formulation:

min
w,ξ≥0

1

2
||w||2 + C

N
∑

n=1

ξn (2.3a)

s.t. ynfw(xn) ≥ 1 − ξn,∀n (2.3b)

Note that if the set of latent values Z(x) is fixed for each example x, then the formula-

tion of latent SVM is the same as regular SVM. The latent SVM leads to a semi-convex

optimization problem as defined in [12]: The optimization problem in Eq. 2.3 is convex for

negative examples and non-convex for positive examples. A coordinate descent algorithm

is introduced in [12] to compute a local optimum of Eq. 2.3:

1. Holding w, ξ fixed, optimize the latent variable z′ for each positive example xi:

zi = arg max
z′∈Z(xi)

w⊤Ψ(xi, z
′) (2.4)

2. Holding zi fixed, optimize w, ξ by solving the convex optimization problem:

min
w,ξ≥0

1

2
||w||2 + C

N
∑

n=1

ξn (2.5a)

s.t. ynfp
w(xn) ≥ 1 − ξn,∀n (2.5b)

where fp
w(x) is defined as: fp

w(x) = maxz∈Zp w⊤Ψ(x, z), Zp is obtained by restricting the

latent values for the positive examples according to zi.

We will build on this model in our work.
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(a) (b) (c) (d)

Figure 2.2: Examples of detections obtained by latent SVM model shown in (a). The model
is defined by a root filter with lower resolution (b), several part filters with higher resolution
(c) and a spatial model indicates the relative location of each part w.r.t. the root (d). The
root filter and part filters are the learnt weights for the appearance features of root and
parts respectively. The images are from [12]



Chapter 3

Group Activity Recognition with

Context

As mentioned earlier, human activity recognition in real-world conditions is a very challeng-

ing computer vision problem. In order to reliably interpret the high-level human activity,

it is likely that contextual information of the individual actions under the same scene will

need to be explored.

In this work, two new types of contextual information, group-person interaction and

person-person interaction, are explored in a latent variable framework. Central to our

problem is how to model the person-person interaction, we develop two different approaches

to solve this problem. One approach is to explore the structures of person-person interaction

(Sec. 3.1). Different from most of the previous work in latent structured models which

assume a predefined structure for the hidden layer, e.g. a tree structure, we treat the

structure of the hidden layer as a latent variable and implicitly infer it during learning and

inference. Intuitively speaking, the structure learning approach will automatically decide on

whether the interaction of two persons should be considered. The other approach explores

the person-person interaction in feature level (Sec. 3.2). We propose a context descriptor

which encodes information about not only the action of an individual person in the video,

but also the behaviour of other people nearby. This feature representation is inspired by the

fact that the context of what other people are doing provides very useful cues for recognizing

the actions of each individual.

We assume an image has been pre-processed so the persons in the image have been found.

13
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How to localize people in the video frames is task-specific, and it involves either human

detection [12] or background subtraction. We will describe the details in the experiment

section. From now on, we assume the locations of people are given. On the training

data, each image is associated with a group activity label, and each person in the image is

associated with an action label.

3.1 A Latent Model for Contextual Group Activities

Our goal is to learn a model that jointly captures the group activity, the individual person

actions, and the interactions among them. We present a graphical model representing all

the information in a unified framework. One important difference between our model and

previous work is that in addition to learning the parameters in the graphical model, we also

automatically infer the graph structures (see Sec. 3.1.2).

3.1.1 Model Formulation

A graphical representation of the model is shown in Fig. 3.1. We now describe how we

model an image I. Let I1, I2, . . . , Im be the set of persons found in the image I, we extract

features x from the image I in the form of x = (x0, x1, . . . , xm), where x0 is the aggregation

of feature descriptors of all the persons in the image (we call it root feature vector), and

xi(i = 1, 2, . . . ,m) is the feature vector extracted from the person Ii. Rather than directly

using certain raw features (e.g. the HOG descriptor [7]) as the feature vector xi in our

framework, we employ a bag-of-words style representation for the feature descriptor of each

person’s action. We train a multi-class SVM classifier based on the feature descriptor

of each individual and their associated action labels. For example, if we have 40 action

categories as in the Collective Activity Dataset, then each feature vector xi is represented

as a 40-dimensional vector, where the k-th entry of this vector is the score of classifying

this instance to the k-th class returned by the SVM classifier. The root feature vector x0

of an image is also represented as a 40-dimensional vector, which is obtained by taking an

average over all the feature vectors xi (i = 1, 2, ...,m) in the same image. We denote the

collective actions of all the persons in the image as h = (h1, h2, . . . , hm), where hi ∈ H is

the action label of the person Ii and H is the set of all possible action labels. The image

I is associated with a group activity label y ∈ Y, where Y is the set of all possible activity

labels.
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(a) (b)

Figure 3.1: Graphical illustration of the model in (a). The edges represented by dashed
lines indicate the connections are latent. Different types of potentials are denoted by lines
with different colors in the example shown in (b).

We assume there are connections between some pairs of action labels (hj , hk). Intuitively

speaking, this allows the model to capture important correlations between action labels.

We use an undirected graph G = (V, E) to represent (h1, h2, . . . , hm), where a vertex vi ∈ V

corresponds to the action label hi, and an edge (vj , vk) ∈ E corresponds to the interactions

between hj and hk.

We use fw(x,h, y;G) to denote the compatibility of the image feature x, the collective ac-

tion labels h, the group activity label y, and the graph G = (V, E). We assume fw(x,h, y;G)

is parameterized by w and is defined as follows:

fw(x,h, y;G) = w⊤Ψ(y,h,x;G) (3.1a)

= w⊤
0 φ0(y, x0) +

∑

j∈V

w⊤
1 φ1(xj , hj) +

∑

j∈V

w⊤
2 φ2(y, hj) +

∑

j,k∈E

w⊤
3 φ3(y, hj , hk) (3.1b)

The model parameters w are simply the combination of four parts, w = {w1, w2, w3, w4}.

The details of the potential functions in Eq. 3.1 are described in the following:

Image-Action Potential w⊤
1 φ1(xj , hj): This potential function models the compatibility

between the j-th person’s action label hj and its image feature xj . It is parameterized as:

w⊤
1 φ1(xj , hj) =

∑

b∈H

w⊤
1b 1(hj = b) · xj (3.2)

where xj is the feature vector extracted from the j-th person and we use 1() to denote the

indicator function. The parameter w1 is simply the concatenation of w1b for all b ∈ H.

Action-Activity Potential w⊤
2 φ2(y, hj): This potential function models the compatibility

between the group activity label y and the j-th person’s action label hj . It is parameterized
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as:

w⊤
2 φ2(y, hj) =

∑

a∈Y

∑

b∈H

w⊤
2ab 1(y = a) · 1(hj = b) (3.3)

Action-Action Potential w⊤
3 φ3(y, hj , hk): This potential function models the compati-

bility between a pair of individuals’ action labels (hj , hk) under the group activity label y,

where (j, k) ∈ E corresponds to an edge in the graph. It is parameterized as:

w⊤
3 φ3(y, hj , hk) =

∑

a∈Y

∑

b∈H

∑

c∈H

w⊤
3abc 1(y = a) · 1(hj = b) · 1(hk = c) (3.4)

Image-Activity Potential w⊤
0 φ0(y, x0): This potential function is a root model which

measures the compatibility between the activity label y and the root feature vector x0 of

the whole image. It is parameterized as:

w⊤
0 φ0(y, x0) =

∑

a∈Y

w⊤
0a 1(y = a) · x0 (3.5)

The parameter w0a can be interpreted as a root filter that measures the compatibility of

the class label a and the root feature vector x0.

Inspired by the latent SVM [12], we define the following function to score an image x

and a group activity label y:

Fw(x, y) = max
G

max
h

fw(x,h, y;G) = max
G

max
h

w⊤Ψ(x,h, y;G) (3.6)

The group activity label of the image x can be inferred as:

y∗ = arg max
y

Fw(x, y) (3.7)

Notice that in Eq. 3.6, we explicitly maximize over the graph G. This is very different from

previous work which typically assumes the graph structure is fixed.

3.1.2 Learning and Inference

We now describe how to infer the label given the model parameters, and how to learn the

model parameters from a set of training data. If the graph structure G is known and fixed, we

can apply standard learning and inference techniques of latent SVMs. For our application, a

good graph structure turns out to be crucial, since it determines which person interacts (i.e.

provides action context) with another person. The interaction of individuals turns out to
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be important for group activity recognition, and fixing the interaction (i.e. graph structure)

using heuristics does not work well. We will demonstrate this experimentally in Sec. 3.3.

We instead develop our own inference and learning algorithms that automatically infer the

best graph structure from a particular set.

Inference

Given the model parameters w and an example x, we can enumerate all the possible y ∈ Y

and predict the activity label y∗ of x according to Eq. 3.7. For a graph structure Gy, we

need to solve the following inference problem of finding the best hy:

h∗
y = arg max

hy

fw(x,hy, y;Gy) = arg max
hy

w⊤Ψ(y,hy,x;Gy) (3.8)

We use the subscript y in the notations hy and Gy to emphasize that we are now fixing on a

particular activity label y. Note that the graph structure Gy might be different for different

y’s.

However, since we do not know the graph structure Gy, we simply treat it as yet another

latent variable and maximize over it, i.e.

(h∗
y,G

∗
y) = arg max

hy ,Gy

w⊤Ψ(y,hy,x;Gy) (3.9)

The optimization problem in Eq. 3.9 is in general NP-hard since it involves a combinatorial

search. We instead use an coordinate ascent style algorithm to approximately solve Eq. 3.9

by iterating the following two steps:

1. Holding the graph structure Gy fixed, optimize the action labels hy for the 〈x, y〉 pair:

hy = arg max
h′

w⊤φ(x,h′, y;Gy) (3.10)

2. Holding hy fixed, optimize graph structure Gy for the 〈x, y〉 pair:

Gy = arg max
G′

w⊤φ(x,hy, y;G
′) (3.11)

The problem in Eq. 3.10 is a standard max-inference problem in an undirected graphical

model. Here we use loopy belief propagation to approximately solve it. The problem in

Eq. 3.11 is still an NP-hard problem since it involves enumerating all the possible graph

structures. Even if we can enumerate all the graph structures, we might want to restrict

ourselves to a subset of graph structures that will lead to efficient inference (e.g. when
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using loopy BP in Eq. 3.10). One obvious choice is to restrict G′ to be a tree-structured

graph, since loopy BP is exact and tractable for tree structured models. However, as we will

demonstrate in Sec. 3.3, the tree-structured graph built from simple heuristic (e.g. minimum

spanning tree) does not work that well. Another choice is to choose graph structures that are

“sparse”, since sparse graphs tend to have fewer cycles, and loopy BP tends to be efficient

in graphs with fewer cycles. In this dissertation, we enforce the graph sparsity by setting a

threshold d on the maximum degree of any vertex in the graph. When hy is fixed, we can

formulate an integer linear program (ILP) to find the optimal graph structure (Eq. 3.11)

with the additional constraint that the maximum vertex degree is at most d. Let zjk = 1

indicate that the edge (j, k) is included in the graph, and 0 otherwise. The ILP can be

written as:

max
z

∑

j∈V

∑

k∈V

zjkψjk (3.12a)

s.t.
∑

j∈V

zjk ≤ d,
∑

k∈V

zjk ≤ d, zjk = zkj , ∀j, k (3.12b)

zjk ∈ {0, 1}, ∀j, k (3.12c)

where we use ψjk to collectively represent the summation of all the pairwise potential func-

tions in Eq. 3.1 for the pairs of vertices (j, k). Of course, the optimization problem in

Eq. 3.12 is still hard due to the integral constraint in Eq. 3.12c. But we can relax Eq. 3.12c

with a linear constraint 0 ≤ zjk ≤ 1 and solve a linear program (LP) instead. The solution

of the LP relaxation might have fractional numbers. To get integral solutions, we simply

round them to the closest integers.

Learning

Given a set of N training examples 〈xn,hn, yn〉 (n = 1, 2, . . . , N), we would like to train the

model parameter w that tends to produce the correct group activity y for a new test image

x. Note that the action labels h are observed on training data, but the graph structure G (or

equivalently the variables z) are unobserved and will be automatically inferred. A natural

way of learning the model is to adopt the latent SVM formulation [12, 49] as follows:

min
w,ξ≥0,Gy

1

2
||w||2 + C

N
∑

n=1

ξn (3.13a)

s.t. max
Gyn

fw(xn,hn, yn;Gyn) − max
Gy

max
hy

fw(xn,hy, y;Gy) ≥ ∆(y, yn) − ξn,∀n, ∀y (3.13b)
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where ∆(y, yn) is a loss function measuring the cost incurred by predicting y when the

ground-truth label is yn. In standard multi-class classification problems, we typically use

the 0-1 loss ∆0/1 defined as:

∆0/1(y, y
n) =

{

1 if y 6= yn

0 otherwise
(3.14)

The constrained optimization problem in Eq. 3.13 can be equivalently written as an uncon-

strained problem:

min
w,ξ

1

2
||w||2 + C

N
∑

n=1

Rn (3.15a)

where Rn = max
y

max
hy

max
Gy

(∆(y, yn) + fw(xn,hy, y;Gy)) − max
Gyn

fw(xn,hn, yn;Gyn)(3.15b)

We use the non-convex bundle optimization in [10] to solve Eq. 3.15. In a nutshell, the

algorithm iteratively builds an increasingly accurate piecewise quadratic approximation to

the objective function. During each iteration, a new linear cutting plane is found via a

subgradient of the objective function and added to the piecewise quadratic approximation.

Now the key issue is to compute the subgradient of Eq. 3.15 for a particular w. Since

∂w(1
2 ||w||

2 + C
∑N

n=1R
n) = w + C

∑N
n=1 ∂wR

n, all we need to do is to figure out how to

compute ∂wR
n.

Let (y∗,h∗,G∗) be the solution to the following optimization problem:

max
y

max
h

max
G

∆(y, yn) + fw(xn,h, y;G) (3.16)

The inference problem in Eq. 3.16 is similar to the inference problem in Eq. 3.9, except for

an additional term ∆(y, yn). Since the number of possible choices of y is small (e.g.|Y| = 5)

in our case), we can enumerate all possible y ∈ Y and solve the inference problem in Eq. 3.9

for each fixed y. Similarly, let Ĝ be the solution to the following optimization problem:

max
G′

fw(xn,hn, yn;G′) (3.17)

The problem in Eq. 3.17 can be approximately solved using the LP relaxation of Eq. 3.12.

Then we can show that the subgradient ∂wR
n can be calculated as ∂wR

n = Ψ(xn, y∗,h∗;G∗)−

Ψ(xn, yn,hn; Ĝ). Using this subgradient, we can optimize Eq. 3.13 using the algorithm in

[10].
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3.2 A Context Descriptor

As mentioned earlier, our second approach explores the person-person interaction in feature

level. Note that this approach still utilizes the latent SVM framework, however, we don’t

consider any pairwise connections between variables h in the hidden layer, but focus on

attaching contextual information into feature descriptors x.

We develop a novel feature representation called the action context (AC) descriptor. Our

AC descriptor is centered on a person (the focal person), and describes the action of the

focal person and the behavior of other people nearby. For each focal person, we set a spatio-

temporal context region around him (see Fig. 3.2(a)), only those people inside the context

region (nearby people) are considered. The AC descriptor is computed by concatenating

two feature descriptors: one is the action descriptor that captures the focal person’s action,

and the other one is the context descriptor that captures the behaviour of other people

nearby, as illustrated in Fig. 3.2(b,c).

Here the feature descriptor of each person’s action is computed by a bag-of-words style

representation as introduced in Sec. 3.1.1. We represent the action descriptor of the i-th

person as: Fi = [S1i, S2i, . . . , SKi], where K is the number of action classes, Ski is the score

of classifying the i-th person to the k-th action class returned by the SVM classifier.

Given the i-th person as the focal person, its context descriptor Ci is computed from

the action descriptors of people in the context region. Suppose that the context region

is further divided into M regions (we call “sub-context regions”) in space and time, as

illustrated in Fig. 3.2(b), then the context descriptor is represented as a M×K dimensional

vector computed as follows:

Ci =

[

max
j∈N1(i)

S1j , . . . , max
j∈N1(i)

SKj , . . . , max
j∈NM (i)

S1j , . . . , max
j∈NM (i)

SKj

]

(3.18)

Where Nm(i) indicates the indices of people in the m-th “sub-context region” of the i-th

person.

The AC descriptor for the i-th person is a concatenation of its action descriptor Fi and

its context descriptor Ci: ACi = [Fi, Ci]. As there might be numerous people present in a

video sequence, we construct AC descriptors centered around each person. In the end, we

will gather a collection of AC descriptors, one per person.

Fig. 3.3 shows examples of the action context descriptors on the nursing home dataset.

Fig. 3.3(a) and Fig. 3.3(b) are two frames that contain falling. The persons in the red
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Figure 3.2: Illustration of construction of our action context descriptor. (a) Spatio-temporal
context region around focal person, as indicated by the green cylinder. In this example, we
regard the fallen person as focal person, and the people standing and walking as context. (b)
Spatio-temporal context region around focal person is divided in space and time. The blue
region represents the location of the focal person, while the pink regions represent locations
of the nearby people. The first 3-bin histogram captures the action of the focal person, which
we call the action descriptor. The latter three 3-bin histograms are the context descriptor,
and capture the behaviour of other people nearby. (c) The action context descriptor is
formed by concatenating the action descriptor and the context descriptor.



CHAPTER 3. GROUP ACTIVITY RECOGNITION WITH CONTEXT 22

bounding boxes are trying to help the fallen residents. Fig 3.3 is a frame that does not

contain the falling action. The person in the red bounding box is simply walking across the

room. For our application, we would like to distinguish between the high-level activities in

Fig. 3.3 (a,b) and Fig. 3.3 (c). However, this is difficult (even for human observers) if we

only look at the person in the bounding box, since all three people are walking. But if we

look at the context of them, we can easily tell the difference: people in Fig. 3.3 (a,b) are

walking to help the fallen residents, while the person in Fig. 3.3 (c) is simply walking. This

can be demonstrated by the action context descriptors shown in Fig. 3.3 (d)-(f). Here we

use a 20-dimensional action context descriptor and visualize it as a 4 × 5 matrix so it is

easier to compare them visually. We can see that Fig. 3.3 (d) and Fig. 3.3 (e) are similar.

Both of them are very different from Fig. 3.3 (f). This demonstrates that the action context

descriptor can help us to differentiate people walking to help fallen residents under a fall

activity from other actions, such as walking under a nonfall activity.

The key characteristics of our action context descriptor are in two aspects: 1) instead

of simply using features of the neighboring people as context, the action context descriptor

employs a bag-of-words style representation which captures the distribution of actions of

people nearby. 2) In addition to static context, our descriptor also captures dynamic infor-

mation, i.e. the temporal evolution of actions extracted from both the focal person and the

people nearby.

3.3 Experiments

Most previous work in human action understanding uses standard benchmark datasets to

test their algorithms, such as KTH [36] and Weizmann [4] datasets. In the real world,

however, the appearance of human activities has tremendous variation due to background

clutter, partial occlusion, scale and viewpoint change, etc. The videos in those datasets

were recorded in a controlled setting with small camera motion and clean background.

The Hollywood human action dataset [23] is more challenging. However, only three action

classes: HandShake, HugPerson and Kiss have more than one actor, but these are not

contextual – the two actors together perform the one action. (One person does not perform

HugPerson by himself.) In this work, we choose to use two challenging datasets to evaluate

our proposed method. The first dataset is a benchmark dataset introduced in [6] to study

collective human activities. The second dataset consists of surveillance videos collected from
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Examples of action context descriptors. (a,b) Sample frames containing people
falling and other people (shown in red bounding boxes) trying to help the fallen person. (c)
A sample frame contain no falling action. The person in the red bounding box is simply
walking. (d-f) The action context descriptors for the three persons in bounding boxes.
Action context descriptors contain information about the actions of other people nearby.

a nursing home environment by our clinician collaborators.

In our proposed model, we have adopted two approaches to model the person-person

interaction: one is in structure level and the other is in feature level, which we call structure-

level approach and feature-level approach respectively from now on. In order to comprehen-

sively evaluate the performance of the proposed model, we compare it with several baseline

methods. The first baseline (which we call root+SVM ) is a SVM model with linear kernel

based on the root feature vector x0, i.e. ignoring the individual actions. The other base-

lines are within our proposed framework, with various ways of setting the structures of the

person-person interaction. The structures we have considered are illustrated in Fig. 3.4(a)-

(c), including (a) no pairwise connection; (b) minimum spanning tree; (c) graph obtained by

connecting any two vertices within a Euclidean distance ǫ (we call it ǫ-neighborhood graph)

with r = 100, 200, 300. Note that in structure-level approach of our proposed model the

person-person interactions are latent (shown in Fig. 3.4(d)) and learned automatically. The

performance of different structures of person-person interaction are evaluated and compared.

We also report the performance of the proposed AC descriptor. In the implementation, we

use the AC descriptor to replace the feature vector xi(i = 1, 2, . . . ,m) in the latent SVM

framework. Since the AC descriptor already encodes the person-person interaction, we adopt
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(a) (b) (c) (d)

Figure 3.4: Different structures of person-person interaction. Each node here represents a
person in a frame. Solid lines represent connections that can be obtained from heuristics.
Dashed lines represent latent connections that will be inferred by our algorithm. (a) No
connection between any pair of nodes; (b) Nodes are connected by a minimum spanning tree;
(c) Any two nodes within a Euclidean distance ǫ are connected (which we call ǫ-neighborhood
graph); (d) Connections are obtained by structure learning. Note that (d) is the structure
of person-person interaction of the proposed structure-level approach and our feature-level
approach employs the structure of (a).

the structure without any pairwise connections, as shown in Fig. 3.4(a). The parameters

of the proposed AC descriptor and multi-class SVM are set according to cross-validation in

the training set. The regularization constant C in Eq. 3.13 is set emprically in the range of

0.1 to 1.

Person Detectors: As mentioned earlier, how to localize people is task specific. For the

Collective Activity Dataset, we apply the pedestrian detector in [12] to find all the candidate

regions corresponding to people. The pedestrian detector performs very well on this dataset

with only a few false positive detections (see Fig. 3.6(a)). For the Nursing Home dataset,

however, pedestrian detectors are not reliable, as shown in Fig. 3.6(b). We instead extract

moving regions from the videos as our detected people. First, we perform background

subtraction using the OpenCV implementation of the standard Gaussian Mixture Model

(GMM) [38] to obtain the foreground regions. Then, we extract all the 8-connected regions

of the foreground from each frame, which are considered as moving regions. Moving regions

with size less than a threshold Th are deemed unreliable and therefore ignored. People’s

locations in the training set are labeled with bounding boxes, while person detectors are

used to localize each person in the test set.

Person Descriptors: We also use different feature descriptors to describe people for the

two datasets. HOG descriptor [7] is used for the Collective Activity Dataset. For the

nursing home dataset, standard features such as optical flow or HOG [7] are typically not

reliable due to low video quality. Instead, we use a feature representation similar to the one
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Figure 3.5: Illustration of the local spatio-temporal (LST) feature representation for de-
scribing a candidate region. u is a vector of percentage of static foreground pixels, v is a
vector of percentage of moving foreground pixels

introduced in [25], which has been shown to be reliable for low resolution videos. The feature

descriptor is computed as follows. We first divide the bounding box a detected person

into N blocks. Foreground pixels are detected using standard background subtraction.

Each foreground pixel is classified as either static or moving by frame differencing. Each

block is represented as a vector composed of two components: u = [u1, . . . , ut, . . . , uτ ] and

v = [v1, . . . , vt, . . . , vτ ], where ut and vt are the percentage of static and moving foreground

pixels at time t respectively. τ is the temporal extent used to represent each moving person.

As in [25], we refer to it as local spatio-temporal (LST) descriptor in this dissertation.

Fig. 3.5 illustrates the LST descriptor. Note that rather than directly using raw features (e.g.

HOG [7] or LST) as the feature vector xi in our framework, we use the method discussed

in Sec. 3.1.1 to reduce feature dimension.

3.3.1 Collective Activity Dataset

This dataset contains 44 video clips acquired using low resolution hand held cameras. In

the original dataset, all the persons in every tenth frame of the videos are assigned one of

the following five categories: crossing, waiting, queuing, walking and talking, and one of

the following eight pose categories: right, front-right, front, front-left, left, back-left, back

and back-right. Based on the original dataset, we define five activity categories including

crossing, waiting, queuing, walking and talking. We define forty action labels by combining

the pose and activity information, i.e. the action labels include crossing and facing right,

crossing and facing front-right, etc. We assign each frame into one of the five activity

categories, by taking the majority of actions of persons (ignoring their pose categories) in
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(a) (b)

Figure 3.6: Typical results of running a state-of-the-art pedestrian detector [12] on the
two datasets used in the experiments. On the collective activity dataset (a), the detector
performs very well. But on the more challenging nursing home dataset (b), the detector is
not reliable since the videos are captured by a fish eye camera, so persons in the videos are
not in upright positions. In addition, the video quality is very poor.

that frame. We select one fourth of the video clips from each activity category to form the

test set, and the rest of the video clips are used for training.

We summarize the comparison on the performance of our approaches and the baselines

in Table 3.1. Since the test set is imbalanced, e.g. the number of crossing examples is

more than twice that of the queuing or talking examples, we report both overall and mean

per-class accuracies. As we can see, for both overall and mean per-class accuracies, our

methods (structure-level approach and feature-level approach) achieve the top two perfor-

mances. The proposed model significantly outperforms root+SVM. The confusion matrices

of our methods and the baseline root+SVM are shown in Fig. 3.7. We can see that by incor-

poration contextual information (Fig. 3.7(b),(c)), the confusions between crossing, waiting

and walking are reduced. This is because the relative facing directions (poses) in a group of

people provides useful cues for disambiguate these activities: people always cross street in

either the same or the opposite directions; people always wait in the same direction, they

rarely wait facing each other; the poses in walking are not as regular as in the previous two

activities, people can walk in different directions. These can be further demonstrated by

the learned pairwise weights for the five activity classes, as visualized in Fig. 3.8. Besides

the poses within the same action class, we can also get which actions tend to occur together

in an activity. Generally speaking, the model favors seeing the same actions with different

poses together under an activity class, e.g. actions of crossing with different poses are fa-

vored under the activity label crossing. However, in some cases, several different actions are
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(a) (b) (c)

Figure 3.7: Confusion matrices for activity classification on the collective activity dataset:
(a) root+SVM. (b) Structure-level approach. (c) Feature-level approach. Rows are ground-
truths, and columns are predictions. Each row is normalized to sum to 1.

also favored under the same activity class, e.g. the actions of talking and walking could be

together under the activity label talking. This is reasonable since when a group of people

are talking, some people may pass by.

We visualize the classification results and the learned structure of person-person inter-

action by structure-level approach in Fig. 3.9. Some interesting structures are learnt, like

a chain structure which connects people facing the same direction for the queuing activity,

pairwise connections between people facing the same direction for waiting and people facing

each other for talking. Note that in the correct classification example of talking, there is a

line connects the person in blue and the person in black who are facing the same direction.

This is because we made an incorrect prediction of the pose of the person in blue, which are

predicted as front. Thus, according to our prediction, the connected people (the person in

blue and the person in black) are facing each other, thus the learned structure of the talking

example is reasonable.

3.3.2 Nursing Home Dataset

Our second dataset consists of videos recorded in a dining room of a nursing home by a low

resolution fish eye camera. Typical actions happening in nursing homes include walking,

standing, sitting, bending, and falling. During training, each person is assigned into one of

the five action categories. Based on the action categories, we assign each frame into one of

the two activity categories: fall and non-fall. If a frame contains fallen people, then it is

labeled as fall, otherwise nonfall. Our dataset contains one 30-minutes video clip without

falls and another thirteen short clips with falls. We divide the dataset into 22 short video
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Method Overall Mean per-class

root + SVM 70.9 68.6

no connection 75.9 73.7
minimum spanning tree 73.6 70.0

ǫ-neighborhood graph, ǫ = 100 74.3 72.9
ǫ-neighborhood graph, ǫ = 200 70.4 66.2
ǫ-neighborhood graph, ǫ = 300 62.2 62.5

structure-level approach 79.1 77.5

feature-level approach 78.5 77.5

Table 3.1: Comparison of activity classification accuracies of different methods on the col-
lective activity dataset. We report both the overall and mean per-class accuracies due to
the class imbalance. The first result (root+SVM) is tested in the multi-class SVM frame-
work, while the other results are in the framework of our proposed model but with different
structures of person-person interaction. The structures are visualized in Fig. 3.4.

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Visualization of the weights across pairs of action classes for each of the five
activity classes on the collective activity dataset. Light cells indicate large values of weights.
Consider the example (a), under the activity label crossing, the model favors seeing actions
of crossing with different poses together (indicated by the area bounded by the red box).
We can also take a closer look at the weights within actions of crossing, as shown in (f). we
can see that within the crossing category, the model favors seeing the same pose together,
indicated by the light regions along the diagonal. It also favors some opposite poses, e.g.
back-right with front-left. These make sense since people always cross street in either the
same or the opposite directions.
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Crossing Waiting Queuing Walking Talking

Figure 3.9: (Best viewed in color) Visualization of the classification results and the learned
structure of person-person interaction on the collective activity dataset. The top row shows
correct classification examples and the bottom row shows incorrect examples. The labels
C, S, Q, W, T indicate crossing, waiting, queuing, walking and talking respectively. The
labels R, FR, F, FL, L, BL, B, BR indicate right, front-right, front, front-left, left, back-
left, back and back-right respectively. The yellow lines represent the learned structure of
person-person interaction, from which some important interactions for each activity can
be obtained, e.g. a chain structure which connects persons facing the same direction is
“important” for the queuing activity.
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clips, we select 8 clips to form the test set, and the rest of the clips are used for training. In

total, there are 2990 annotated frames in the dataset, approximately one third of them have

an activity label of fall. We demonstrate the recognition of people falling on this dataset,

since this is the most interesting and relevant activity for clinicians.

Our work on activity classification on the nursing home dataset is directly inspired by

the application of fall analysis in nursing home surveillance videos. Our clinician partners

are studying the causes of falls by elderly residents in order to develop strategies for pre-

vention. This endeavor requires the analysis of a large number of video recordings of falls.

Alternatives to vision-based analysis for extracting fall instances from a large amount of

footage, such as wearable sensors and self-reporting, are inconvenient and unreliable.

We summarize the comparison on the performance of our approaches and the baselines in

Table 3.2. Since the test set is imbalanced, i.e. the number of non-fall examples is more than

twice that of the fall examples, we report both overall and mean per-class accuracies as in

the first experiment. As we can see, for both overall and mean per-class accuracies, our first

approach on exploring the latent structures achieves the best performance. The proposed

model significantly outperforms root+SVM. Also, our second approach on contextual feature

descriptor outperforms the original feature descriptor in the same model (no connection).

Please note that since we don’t consider any pairwise connections in feature-level approach, it

is not directly comparable to other numbers achieved with different structures of the hidden

layer. The learned pairwise weights for the two activity classes are visualized in Fig. 3.11.

Several important observation can be obtained such as: under the activity label nonfall,

the model favors seeing action of sitting together with standing or walking; while under

the activity label fall, the model favors seeing actions of walking, standing and bending

together, which happens when clinicians come to help a fallen resident stand up; the action

fall typically does not happen together with fall, since there is at most one fall in each frame

in this dataset.

This dissertation mainly deals with multi-class and binary classification problems, where

the performance of an algorithm is typically measured by its overall accuracy, and the learn-

ing approach used is to directly optimize the overall accuracy by 0-1 loss ∆0/1 defined in

Eq. 3.14. However, if the dataset is highly imbalanced, the overall accuracy is not an appro-

priate metric to measure the performance of an algorithm. A better performance measure is

the mean per-class accuracy. In this work, we adopt a new loss function introduced in [44]

which properly adjust the loss according to the distribution of the classes on the training
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data:

∆bal(y, y
n) =

{

1
mp

if y 6= yn and yn = p

0 otherwise
(3.19)

where mp is the number of examples with class label p. Suppose that we have N training

examples, it is easy to verify that
∑N

n=1 ∆bal(y, y
n) directly corresponds to the mean per-

class accuracy on the training data. When we use the new loss function ∆bal(y, y
n), the

learning algorithm defined in Eq. 3.13 will try to directly maximize the mean per-class

accuracy, instead of the overall accuracy. Our task is to classify the two activity categories:

fall and non-fall, and the dataset is biased towards non-fall. If we optimize the overall

accuracy, more examples will tend to be classified as the dominant class, i.e. non-fall. This

is not compatible with our goal, since the clinicians want to extract a large amount of falling

examples from surveillance videos even if some non-fall examples are included. The bias

towards non-fall examples would lead to missing of many falls. Consequently, we also report

the classification results with ∆bal, which are summarized in Table 3.3. We can reach similar

conclusions as from Table 3.2. In particular, the mean per-class accuracies of our models

are significantly better. It is also interesting to notice that in most cases, models trained

with ∆bal achieve lower overall accuracies than trained with ∆0/1 but higher mean per-class

accuracies, which is exactly what we expect.

For the classification task, given a test image x, our models (also the baselines) return

|Y| scores Fw(x, y), where y ∈ |Y|. We can use these scores to produce Precision-Recall and

ROC curves for the positive class, i.e. fall. The score assigned to x being the class fall can

be defined as f(x) = Fw(x, fall)−Fw(x, nonfall). Fig. 3.10 shows the Precision-Recall and

ROC curves of our approaches and the baselines for the fall activity class. The comparison

of the corresponding Average Precision (AP) and area under ROC (AUC) measures are

summarized in Table 3.4. We can see that for both AP and AUC measures, the proposed

structure-level approach achieves the best performance, and our feature-level approach per-

forms significantly better than the baseline under the same model with the original feature

descriptor (no connection). The loss function we used here is ∆bal which is more suitable to

our task than ∆0/1 as argued in the previous paragraph. Please note that we could incorpo-

rate any loss function (e.g. F-measure, area under ROC curve in Pascal VOC challenge [11])

into our learning algorithm defined in Eq. 3.13 depending on different tasks.

We visualize the classification results and the learned structure of person-person in-

teraction by structure-level approach in Fig. 3.12. From the correct classification examples
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Method Overall Mean per-class

root + SVM 52.6 53.9

no connection 58.6 56.0
minimum spanning tree 64.1 60.6

ǫ-neighborhood graph, ǫ = 100 69.6 56.2
ǫ-neighborhood graph, ǫ = 200 69.9 61.4
ǫ-neighborhood graph, ǫ = 300 69.4 62.9

structure-level approach 71.2 65.0

feature-level approach 63.4 57.7

Table 3.2: Comparison of activity classification accuracies of different methods with ∆0/1

on the nursing home dataset. We report both the overall and mean per-class accuracies
due to the class imbalance. The first result (root+SVM) is tested in the multi-class SVM
framework, while the other results are in the framework of our proposed model but with
different structures of person-person interaction. The structures are visualized in Fig. 3.4.

(Fig. 3.12(a)-(h)), we can see that in many cases, the fallen person can’t be detected because

of camera placement as in Fig 3.12(a), occlusion as in Fig 3.12(c),(d), and so on. However,

we can still correctly classify the high-level activity by using contextual information. That is

to say, given some people standing or bending together, we could predict that there is a fall

even without seeing the fallen person. In the incorrect classification examples (Fig. 3.12(i)-

(p)), many mistakes come from incorrect predictions of actions, e.g. standing people close

to the camera are easily predicted as sitting because of the change of aspect ratio, as shown

in Fig. 3.12(i),(l), people far from the camera could not be reliably recognized due to low

resolution, as shown in Fig. 3.12(j),(o),(p). These observations demonstrate a limitation of

our approach: our approach does not show reliable predictions for single person’s actions,

e.g. Fig. 3.12(i),(j),(m),(p), thus when someone falls by himself and nobody around him,

we could not expect accurate predictions.

3.3.3 Discussion

There are several important conclusions we can draw from these experimental results:

Importance of group-person interaction: In the experiments on both of the datasets,

no connection between any pair of nodes clearly outperforms root+SVM, it is even the best

result of the baselines in the experiment on collective activity dataset. It demonstrates the

effectiveness of modeling group-person interaction, i.e. connection between y and h in our

model.
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Method Overall Mean per-class

root + SVM 48.0 52.4

no connection 54.4 56.1
minimum spanning tree 66.9 62.3

ǫ-neighborhood graph, ǫ = 100 72.7 61.3
ǫ-neighborhood graph, ǫ = 200 67.6 61.1
ǫ-neighborhood graph, ǫ = 300 68.6 64.2

structure-level approach 71.5 67.4

feature-level approach 57.3 60.3

Table 3.3: Comparison of activity classification accuracies of different methods with ∆bal

on the nursing home dataset. We report both the overall and mean per-class accuracies
due to the class imbalance. The first result (root+SVM) is tested in the multi-class SVM
framework, while the other results are in the framework of our proposed model but with
different structures of person-person interaction.

Method AP AUC

root + SVM 43.3 0.57

no connection 35.8 0.58
minimum spanning tree 45.8 0.65

ǫ-neighborhood graph, ǫ = 100 42.8 0.56
ǫ-neighborhood graph, ǫ = 200 40.2 0.63
ǫ-neighborhood graph, ǫ = 300 45.7 0.67

structure-level approach 46.6 0.68

feature-level approach 43.0 0.64

Table 3.4: Comparison of Average Precision (AP) and area under ROC (AUC) measures of
different methods on the nursing home dataset. The first result (root+SVM) is tested in the
multi-class SVM framework, while the other results are in the framework of our proposed
model but with different structures of person-person interaction.
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(a)

(b)

Figure 3.10: (Best viewed in color) Comparison of performance for the fall activity of differ-
ent methods in terms of (a) Precision-Recall curves and (b) ROC curves. The comparison
of Average Precision (AP) and area under ROC (AUC) measures are shown in Table 3.4.



CHAPTER 3. GROUP ACTIVITY RECOGNITION WITH CONTEXT 35

(a) (b)

Figure 3.11: Visualization of the weights across pairs of action classes for each of the two
activity classes on the nursing home dataset. Light cells indicate large values of weights.
Consider the example (a), under the activity label nonfall, the model favors seeing action
of sitting together with standing or walking. These make sense since what usually happen
in a non-fall activity are clinicians walking to the sitting residence and standing beside
them to offer some help. Typical examples can be referred to Fig. 3.12(e)-(h). Under the
activity label fall, as shown in (b), the model favors seeing actions of walking, standing and
bending together. These usually happen after a residence falls and clinicians come to help
the residence stand up. Typical examples are shown in Fig. 3.12(a)-(d). Please note that
there is at most one fall in each clip of our dataset, so the action fall never happen with
fall, this is captured by the dark cell in the bottom right corner.

Importance of structure learning of person-person interaction: In Table 3.1, the

pre-defined structures such as the minimum spanning tree and the ǫ-neighborhood graph do

not perform as well as the one without person-person interaction. We believe this is because

those pre-defined structures are all based on heuristics and are not properly integrated with

the learning algorithm. As a result, they can create interactions that do not help (and

sometimes even hurt) the performance. In the experiment on the nursing home dataset,

the pre-defined ǫ-neighborhood graph achieves better performance than other baselines, as

indicated by Table 3.2. We believe this is because of two reasons: first, when a resident

falls in a nursing home, most people in the same scene are related to him/her. A common

scene is nurses walking to the fallen resident and standing or bending beside the resident

to help him/her stand up. Thus a ǫ-neighborhood graph is potentially suitable to this

task. Second, the nursing home dataset is collected from real-world surveillance videos, so

the video quality is extremely low. Consequently, we could only roughly label five action

classes (there are fourty detailed action labels in the collective activity dataset). This would

produce fewer outliers that are mistakenly connected by ǫ-neighborhood graph as in the

collective activity dataset. If we consider the graph structure as part of our model and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.12: (Best viewed in color) Visualization of the classification results and the learned
structure of person-person interaction on the nursing home dataset. The first two rows
show correct classification examples and the last two rows show incorrect examples. We
also show the predicted activity and action labels in each image. The yellow lines represent
the learned structure of person-person interaction, from which some important interactions
for each activity can be obtained.
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directly infer it using our learning algorithm, we can make sure that the obtained structures

are those useful for differentiating various activities. Evidence for this is provided by the big

jump in terms of the performance by our approach. Even in the experiment on the roughly

labeled nursing home dataset, our structure learning algorithm (structure-level approach)

also achieves better performance than ǫ-neighborhood graph which is potentially suitable for

this task.

Importance of contextual feature descriptor: In the experiments on both of the

datasets, the proposed contextual descriptor significantly outperforms the baseline under

the same model with the original feature descriptor (no connection).



Chapter 4

Conclusion and Future Work

In this dissertation, we have presented a discriminative model for group activity recognition

which jointly captures the group activity, the individual person actions, and the interactions

among them. The goal of this dissertation is to demonstrate the effectiveness of contextual

information in recognizing group activities. We have exploited two new types of contextual

information: group-person interaction and person-person interaction. In particular, we

have proposed two different ways to model the person-person interaction, one way is in

structure level, we have introduced a structure learning algorithm that automatically infers

the optimal structure of person-person interaction in a latent variable framework. The

other way is in feature level, we have introduced an action context descriptor that encodes

information about action of an individual person in a video, as well as behaviour of other

people nearby. In the following, I will briefly highlight the limitations of the current work

and several directions for future research.

4.1 Limitations

There is general agreement that context is helpful for visual recognition. However, among

all types of contextual information, a great deal of them contribute rather trivial for recogni-

tion tasks. Moreover, some of them can be unreliable and ambiguous, thus may not always

provide positive effects on visual recognition. How to select the useful context remains un-

clear. For the two approaches proposed in this dissertation, we will highlight the limitations

as follows.

In terms of the structure level approach, our proposed learning algorithm is capable

38
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of learning and optimizing the structure of the hidden layer, which moves a step forward

over the most previous latent structured models which assume a predefined structure for

the hidden layer, e.g. a tree structure. However, there are still some limitations. For

example, as discussed in Sec. 3.1.2, the problem of optimizing graph structures in Eq. 3.11

is NP-hard since it involves enumerating all the possible graph structures. In this work,

we enforce the graph sparsity that will lead to more efficient inference (e.g. when using

loopy BP). However, this method still could not overcome the intractability because of

cycles. Also, several extensions like modeling temporal structures and involving human-

object interactions could be explored, detailed discussions are presented in Sec. 4.2.

In terms of the feature level approach, there are two limitations in general. First, the

size of contextual regions are set by cross-validation. However, there is no criterion that

evaluates how much contextual information should be included that is useful to our task.

Second, the useful types of context vary much in different situations: it can be appearance

feature of a whole person, a small patch, some attributes, and so on. In this work, we only

use the distribution of actions of people nearby as context, in the future, we could also

consider other types contextual information and select the most discriminative ones.

4.2 Future Work

The work presented in this dissertation leads to two important directions for future research.

Modeling Complex Structures: The first obvious direction for future work is to solve

problems in computer vision that involve complex structures. Latent SVM presents a nice

way in modeling structural information of data, for both structured outputs y and structured

latent variables h. Consider the problem of human activity recognition. Suppose an activity

could be represented by a three-layer model. On the top most layer is the activity y. We

could model the structure of y, i.e. the co-occurrence of pairs of activities. Each activity is

composed of several actions h, which forms the intermediate layer. The bottom layer is the

input video frames x.

The intermediate layer usually involves rich structures. For example, in a baseball

activity, typical actions include pitching, hitting, missing, running, catching and throwing.

There are temporal dependencies among the actions: e.g. hitting or missing happens after

pitching, if batter missed the ball, catching and throwing couldn’t happen. Most previous

approaches have heavily utilized graphical models with fixed structures. However, the fixed
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structures severely limit the adaptability of such models in real-world conditions. The

occurrence of actions may not subject to the pre-defined rules, the set of given actions at

any given time may vary substantially. In this dissertation, we move a step forward and

treat the structure of the intermediate layer as a latent variable and implicitly infer it during

learning and inference. Our approach provides a framework of modeling such problems by

automatically inferring the optimal structures. As pointed out by the previous section,

this framework could be extended in several directions: 1) Temporal dependencies among

actions could be modeled. 2) We could introduce the prior structural information into the

model that may lead to more efficient inference, e.g. the temporal order of actions as in the

baseball game, a chain structure tends to appear in queuing activity, etc. 3) In this work,

we only consider the interactions among persons. However, in some cases, the interactions

between person and object, person and scene could also provide useful information.

Contextual Feature Descriptors: The sophistication of graphical models leads more

challenging learning problems. On the other end of the spectrum, modeling context through

feature descriptors is another prominent direction. Our proposed context descriptor encodes

information about action of an individual person in a video, as well as behaviour of other

people nearby. However, as discussed in Sec. 4.1, there are still several problems that deserve

to be addressed in the future. A descriptor that can flexibly encode the discriminative

context with a criterion that evaluates the usefulness of different types of context is an

interesting direction of future research.

In conclusion, I believe that using context to aid visual recognition is promising in

many computer vision applications. It allows us to go beyond single-instance recognition,

and explore the mutual dependencies among instances and complex structural information

inherent in vast amount of visual data.
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