
EMBEDDING PARALLEL BIT STREAM TECHNOLOGY

INTO EXPAT

by

Qiang Zhang

B.Sc., Vancouver Island University, 2007

a Project submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Qiang Zhang 2010

SIMON FRASER UNIVERSITY

Summer 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

N arne: Qiang Zhang

Degree: Master of Science

Title of Project: Embedding Parallel Bit Stream Technology into Expat

Examining Committee: Dr. Tamara Smyth

Chair

Dr. Rob Cameron, Senior Supervisor

Dr. Anoop Sarkar, Supervisor

Dr. Thomas Shermer, SFU Examiner

Date Approved: 1 lOluI

ii

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Parallel bit stream technology is a novel approach to interpret byte stream data and exploit

data level parallelism by employing single-instruction multiple-data (SIMD) instructions.

Parabix, an XML parser embedded with parallel bit stream technology, performs much bet-

ter than traditional XML parsers that process XML documents in byte-at-a-time fashion.

The project attempts to enhance the performance of Expat, an traditional XML parser, by

embedding parallel bit stream technology into Expat. Most byte-at-a-time loops are identi-

fied and then replaced with bit stream operations. A performance case study is conducted

by comparing the performance result between the original Expat and the parallel bit stream

version.

Keywords: XML, SIMD, Expat, Parabix, Byte-at-a-time, Parallel bit stream technology.

iii

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to all these people

giving me help while my graduate study. I cannot achieve so much without their help.

First, I would like to thank my senior supervisor Dr. Robert D. Cameron. There is no

doubt that my project could not be done without him. He inspires the project with his own

work. His experience, advice and encouragement keep me moving forward. As a project

student, he even offered me partial financial support. His easygoing personality makes him

the nicest supervisor.

Second, I would like to thank my project committee, Dr. Tamara Smyth, Dr. Anoop

Sarkar, and Dr. Thomas Shermer for their time and assistance.

Third, I would also like to extend my gratitude to Dan Lin, another graduate student

of Dr. Cameron. I gained much insight about Parabix from the continuous discussion with

her.

Finally, I want to thank for my parents. So many years, they have stood on my side and

believed in me with all their love.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

1 Introduction 1

2 XML Basics 3

3 Parsers 5

3.1 Expat . 5

3.1.1 What is Expat? . 5

3.1.2 How to use Expat? . 5

3.1.3 How does Expat Perform Compare to other Parsers? 7

3.2 Parabix . 10

3.2.1 What is Parabix? . 10

3.2.2 How to use Parabix? . 11

3.2.3 What is Parabix’s Internal Structure? 12

3.2.4 How does Parabix perform? . 14

4 Adapt Expat to Parallel Bit Stream Technology 17

4.1 The General Ideal of Expat with Parallel Bit Stream Technology 17

4.2 Generating Lexical Item Streams in Expat . 18

4.3 Position the lexical item stream generator in Expat 19

v

4.4 Apply Bit Stream Operations in Expat . 21

4.4.1 Byte-at-a-time Name Scan VS Bit Stream Name Scan 22

4.4.2 Byte-at-a-time Character Data Scan VS Bit Stream Character Data

Scan . 24

4.4.3 Byte-at-a-time Start Tag Scan VS Bit Stream Start Tag Scan 26

4.4.4 Byte-at-a-time Attribute Scan VS Bit Stream Attribute Scan 28

4.4.5 Improvement on End Tags, References, CD Data, and Comments . . . 31

5 Performance Comparisons 32

5.1 Methodology . 32

5.2 Test Platform . 32

5.3 XML Document Characteristics . 33

5.4 Experiment Results . 33

5.5 Analysis . 37

6 Conclusions and Future Work 40

6.1 Conclusion . 40

6.2 Future Work . 41

Bibliography 42

vi

List of Figures

3.1 Comparison of Six XML Parsers Processing Each Test File [18] 9

3.2 SISD VS SIMD [28] . 10

3.3 Parabix Architecture [16] . 12

3.4 Lexical Item Stream [14] . 13

3.5 CPU Cycles Per Byte [16] . 16

vii

List of Tables

3.1 File’s Characteristics . 9

3.2 XML Document Characteristics [16] . 15

5.1 Hardware and Software Configuration . 33

5.2 XML Document Characteristics . 34

5.3 Expat Performance on an 100K Buffer . 35

5.4 Performance Result . 36

5.5 Performance Result with no Newline Character 38

viii

Chapter 1

Introduction

Extensible Markup Language (XML) is a simple, human-readable textual data format de-

rived from SGML (ISO 8897). The initial XML draft is released in November 1996 [3].

There are two current versions of XML: XML1.0 defined in 1998 [5], XML1.1 defined in

2004 [4]. XML1.1 is a minor update to XML1.0 with a few changes for character sets and

encoding.

SGML’s initial design goal is to handle large-scale electronic publishing. XML as a

subset of SGML is specifically made for the simplicity and generality of using it over the

Internet [5]. Also, a great number of XML-base languages is developed, including GML

and XHTML. XML-based format has been used in most office-productivity software like

Microsoft Office, Open Office, and Apple’s iWork [11].

Document-oriented and data-oriented XML are popularly used to distinguish among

XML documents. Document-oriented XML are used for publishing information, whereas

data-oriented XML are used for exchanging database records [21]. Data-oriented XML have

a higher markup density1 than document-oriented XML [16].

XML documents cannot be directly interpreted by machine, an XML parser is need

to extract information from XML documents. XML parsers can be distinguished in two

categories: tree-based and stream-based. Tree-based parsers build a tree representation of

XML documents. Users can interact with XML documents by navigating through the node

of the tree. Stream-based parsers are event-driven stream-oriented parses. Users interact

with XML documents by registering callback functions for events. Usually, stream-based

1Markup density is the percentage of the number of markup item in the total file size.

1

CHAPTER 1. INTRODUCTION 2

parsers consume less memory since they do not need to build the tree representation.

Expat as a stream-based parser has gain its popularity in open-source projects because of

its light weight overhead. Expat like the most traditional parsers processes byte-at-a-time.

Depending on what the current byte is, it starts up appropriate callback functions. Parabix

is a XML parser with a new approach. Instead of parsing byte-at-a-time, Parabix first

transfers byte stream into eight parallel bit streams. Each bit stream is comprised of one

bit of each byte in the byte stream. Then single-instruction multi-data (SIMD) instructions

are applied to the bit streams. 32, 64 or 128 bytes can be processed at a time with bit

stream operations [2], depending on the size of the register.

One case study shows that Parabix run at least 2 times faster than Expat [16]. This

project focuses on whether it is possible to improve Expat performance with parallel bit

stream technology so that the current open-source projects can enjoy the improvement

without modifying their existing code base.

The rest of the project report is constructed in the following way. Chapter 2 briefly

introduces XML production rules (XML syntax). Chapter 3 explains the structure and

usage of Expat and Parabix. The strategy used to embed parallel bit stream technology

into Expat is well explained in Chapter 4. Chapter 5 outlines the performance study. The

last chapter concludes the whole report.

Chapter 2

XML Basics

An XML document encoded in Unicode has two major part: document content and doc-

ument type definition (DTD). Document content is comprised by text item and markup

item. A set of XML production rules defined in [5] is used to produce markup item, in-

cluding start tag, end tag, empty tag, reference, comments, and CDATA. All markup items

except reference should start with a left angle bracket and ends with a right angle bracket.

Start tag, end tag, and empty tag should have exact one tag name, and 0 or more attribute

name/value pairs except end tag. Reference starts with an ampersand and ends with a

semicolon. Reference is either character reference or entity reference. Character reference

has decimal and hex-decimal representation. The following is simple examples of markup

item:

• Start tag: < startTagName attributeName = “attributeV alue”

anotherAttributeName = “anotherAttributealue” >

• Empty tag: < emptyTagName/ >

• End tag: < /endTagName >

• Entity reference: &entityReference;

• Character reference in decimal representation: C

• Character reference in hex-decimal representation: ƫ

• Comments: <!−−comment−− >

3

CHAPTER 2. XML BASICS 4

• CDATA: <![CDATA[cddata]] >

An XML document is well-formed if it meets all production rules. A valid XML doc-

ument has to be well-formed. XML parsers has to report a fatal error and stops parsing

if the XML document is not valid. Document type definition (DTD) defines the format

of markup item. XML parsers can be categorized as validating parsers or non-validating

parsers. Validating parsers not only check for the well-formedness but also report violation

of DTD at user option. Non-validating parsers only check for the well-formedness. Expat

is a non-validating parser, whereas Parabix is a validating parser.

The XML knowledge introduced here is really limited and is specifically selected for this

project report. The XML1.0 specification is way more complex than what is introduced

here. If there are questions, please refer to the XML1.0 specification at [5].

Chapter 3

Parsers

3.1 Expat

3.1.1 What is Expat?

Expat is a library, written in C, for parsing XML documents. It was first created by James

Clark in 1998, then the project was handed over to a group led by Clark Cooper and Fred

Drake [8]. The latest version, Expat-2.0.1, is released at 5, June, 2007 [27]. As one of the

earliest open-source XML parsers, also because of its light-weight fast parsing, Expat is

very popular in open-source projects like Mozilla, OpenOffice, and Apache [1][6][23]. Also,

a number of programming languages (PHP, Python, Perl, Ruby, Objective-C, etc) binds

Expat as one of their XML parsers through wrapper functions [27].

3.1.2 How to use Expat?

Expat is a stream-oriented event-driven XML parser. It closely follows the requirement

of a non-validating parser specified by XML1.0 specification. The violation of the well-

formedness constraints is reported, but the constraints defined by document type declara-

tions (DTD) are ignored by the parser.

Expat allows user to interact with an XML document via callback functions (function

pointers) that are written by the user. First, the user declares a parser and registers callback

functions. Second, a buffer with XML data is fed into the parser. The buffer can either

contain the whole XML document, or a part of the XML document in the case of the XML

5

CHAPTER 3. PARSERS 6

document that is too large to fit into the memory at once. Then, Expat examines byte-at-

a-time to look for a markup item. The callback functions are called when a markup item

is found. The parser keeps processing in this fashion until it reaches the last byte of the

buffer.

Expat has a rich number of callback functions and options to handle different aspects of

XML like start tags, character data, external entities and so on. The complete set can be

found in the expat.h file of the source code [22]. It could be overwhelming to understand

them all for those who are new to XML and Expat. Here are four fundamental functions

that help the user to do 80% their requests [20].

1. XML_Parser XML_ParserCreate(const XML_Char* encoding)

• A newly created parser is returned to user.

• US-ASCII, UTF-8, UTF-16 and ISO-8859-1 are the four built-in encodings.

2. XML_SetElementHandler(XML_Parser p,

XML_StartElementHandler start,

XML_EndElementHandler end)

• Set start and end tag callback functions that are written by user. Once Expat

processes a full start or end tag, and collects the tag name and the attribute

name/value pairs, the start and end tag callback functions are executed.

3. XML_SetCharacterDataHandler(XML_Parser p,

XML_CharacterDataHandler charhndl)

• Set the character data callback function.

• Reference and newline are treated as separated character data from the rest. For

example, in <charData> firstPart<thirdPart\n1forthPart<charData>, the char-

acter data callback function is executed 4 times with “firstPart”, “<”, “third-

Part”, “\n”, and “forthPart” in this order.

4. int XML_Parse(XML_Parser p, const char *s, int len, int isFinal)

1A new line character

CHAPTER 3. PARSERS 7

• Parse a buffer of XML data. The string “s” is an array of “len” bytes, but without

a null terminator. The “isFinal” flag is used to determine whether it is the last

piece of the XML document. “len” can be any none negative integer, so a large

file can be broken down to smaller pieces in the case of limited memory.

3.1.3 How does Expat Perform Compare to other Parsers?

At the time Expat released, there are other open-source XML parsers available for download.

What distinguishes Expat from the others? Since performance is one of major goals that

Expat struggles for, does Expat achieve its purpose? In [18], Clark Cooper tests Expat

against six other Parsers: C-expat, RXP, Java-XP, Java-XML4J, Perl2, Python3. After the

six parsers are fed in the exact same XML data, an identical statistical report should be

generated with the following information [19]:

• The number of times each element occurs

• The number of one-level-up parents for the element

• The number of one-level-down parents for the element

• The number of a particular attribute for the element

• The number of character data that has at least one non-whitespace characters

• Whether the element is always empty

Below is an example of XML documents and the statistical report in next page.

<foo>

<bar>This is a test

</bar>

<bar>

<alpha><bar>Surprise</bar>

</alpha>

<ref id=“me” xxx=“there”/>

</bar></foo>

2Perl uses XML::Parser that is built on top of Expat.
3Python uses Pyexpat that is built on top of Expat

CHAPTER 3. PARSERS 8

================

foo: 1

Children:

bar 2

================

bar: 3

Had 22 bytes of character data

Parents:

alpha 1

foo 2

Children:

alpha 1

ref 1

=====

2

================

alpha: 1

Parents:

bar 1

Children:

bar 1

================

ref: 1

Always empty

Parents:

bar 1

Attributes:

id 1

xxx 1

The performance is measured based on the actual time used to generate the statistical report.

The measurement is only taken when the parser has loaded in physical memory. Five XML

CHAPTER 3. PARSERS 9

REC chrmed med chrbig big
Size(bytes) 159339 8993821 1264240 3417181 50052472
Markup Density 34% 6% 33% 2% 33%

Table 3.1: File’s Characteristics

documents are used as the test cases: REC-xml-19980210.xml and the four expanded version

of REC-xml-19980210.xml. chrmed.xml and chrbig.xml are only text contents repeated 8

and 32 times respectively, whereas med.xml and big.xml are the root content repeated 8

and 32 times [18]. Table 3.1 outlines the actual size in bytes and the markup density of each

file.

The six parsers are written in three programming languages: C, Java, Scripting. If the

coding quality is in the same level, C version should be the fastest; scripting one should be

the slowest; Java should be in the middle. So, the question becomes whether the testing

result confirms the expectation. Figure 3.1 clearly shows that C version has the absolute

advantage over the others for all five files.

Figure 3.1: Comparison of Six XML Parsers Processing Each Test File [18]

CHAPTER 3. PARSERS 10

3.2 Parabix

3.2.1 What is Parabix?

Parabix is an open-source XML parser written in C++ by Robert D. Cameron. It dramat-

ically improves parser’s performance by employing the SIMD (single-instruction multiple-

data) instructions. The SIMD instructions exploit data level parallelism. It is the simplest

way of parallelism and has becoming the most common way because hardware support for

SIMD is available in modern-day processors like Intel Pentium III, Pentium 4 PCs, and Ap-

ple/Motorola G-4 machines [26]. In figure 3.2, SISD (single-instruction single-data) takes

exact one instruction and one line of data to produce one output, whereas SIMD takes one

instruction and multi-line of data to produce multi-line of result. The main advantage of

SIMD is to process multi data at the same time. If one instruction is need to apply to 64

sets of data, the instruction has to be run 64 times in the SISD model, but the instruction

needs to be run only once in the SIMD model if the register can contain all data.

Figure 3.2: SISD VS SIMD [28]

Traditional XML parsers process XML documents in a byte-at-a-time fashion, whereas

Parabix employs the SIMD technology to advance as many as 128 bytes with a single

instruction [16].

CHAPTER 3. PARSERS 11

3.2.2 How to use Parabix?

User can make use of Parabix through the Parabix interface that can be found in [17]. The

interface can be divided into four categories based on their functionality. The following lists

the most representative functions and explanation for each category:

1. static Parser_Interface * ParserFactory(const char * filename)

• Create a Parabix parser object and return it to user.

• To parse a XML document, all Parabix need is the file. Parabix automatically

detects the encoding scheme based on the byte-order mark4. If there is no byte-

order mark, UTF-8 encoding is implied.

2. void Parse_prolog()

void Parse_DocumentContent()

• Parse the XML documents. Parabix provides validating and non-validating mode

for parsing.

• Parse prolog() has to be called before Parse DocumentContent() in the case of

DTD existence.

3. XML_version get_version()

XML_standalone standalone_status()

• Get information about the XML documents. For example, XML version, byte-

order mark, encoding, etc.

4. void StartTag_action(unsigned char * item, int lgth)

void Text_action(unsigned char * item, int lgth, bool more)

void Prolog_action(unsigned char * item, int lgth)

• Expat allows user to play with the XML documents through callback functions,

whereas Parabix enables user interact with the XML documents with action

routines.

4An unicode character that signals the endianness of the file. If byte-order mark exists, it has to be the
first four bytes of the file.

CHAPTER 3. PARSERS 12

• “item” is pointed at the first character after the opening markup, and “lgth”

indicates the length of the markup content that ends at the character before the

closing markup.

• User has to write their codes inside the action routines before parsing so that the

action routines can take effect.

3.2.3 What is Parabix’s Internal Structure?

Parabix is broke down into 8 modules in figure 3.3. Now let’s define the functionality

of each module. The XML interface module separates the XML document content from

Figure 3.3: Parabix Architecture [16]

CHAPTER 3. PARSERS 13

the XML declaration and DTD (document type definition). The XML model processor

processes the DTD and stores the validation constraints in the XML symbol table module.

The XML document content is passed to the parallel bit stream module to produce a set

of eight parallel bit streams. The eight parallel bit streams is a new representation of the

byte stream. Each bit of eight bits in a byte is extracted and stored in one bit stream.

Then the parallel bit stream is passed into the character validation module to detect invalid

encoding like incomplete UTF-8 sequence, and illegal characters, like #xFFFE, specified in

XML1.0 specification. Also, the parallel bit streams is passed into the lexical item stream

module to determine the position of XML markups [16]. Figure 3.4 is an example of the

output produced by the lexical item stream module. The LAngle stream marks one at all

occurrence of left angle brackets.

Figure 3.4: Lexical Item Stream [14]

Then the position of all left angle brackets can be calculated from the LAngle stream.

The parser takes the lexical item streams along with the original byte stream to process the

XML document content.The parser first uses bit scan operations5 to detect the position of

the next Markup item starting character (“<”, “&” or “]” for potential of CD data end).

Then, it switches to the byte stream to determine what the exact markup item6 is. The

markup item is parsed with maximum use of bit scan operations since they are far more

5Bit scan operations take one bit stream and one position as input, and return the position of the
occurrence of one in the bit stream after the position from input

6The markup item can be a start tag, an end tag, a processing instruction, CD data section, reference or
an CD data end.

CHAPTER 3. PARSERS 14

efficient than byte-at-a-time parsing [16]. Now let’s walk through < startTag > textData <

/startTag > to show how the parser works 7.

1. The first MarkupStart position 0 is found via bit scan operations in the MarkupStart

stream. Update the current position with 0.

2. Use byte tests to determine it is a start tag. Increase the current position by 1 to

escape <.

3. Found the start tag name length by scanning the NameFollow stream8. Parse the

start stag name, escape >, and update the current position with 10.

4. The second MarkupStart position 18 is found and the current position updates to 18.

5. Determine it is and end tag and increase the current position to 20.

6. Scan the end tag name and parse it. Escape >, and update the current position with

29.

7. End of the XML document content and stop.

While the parser processes the content, the XML symbol table module is involved to

confirm the content following the validation constraints specified in DTD. In the case of

non-validating model, the XML symbol table module is only used for checking the well-

formedness of the name [16].

3.2.4 How does Parabix perform?

The evaluation of Parabix is conducted by comparing three C/C++ based event-driven,

stream-oriented XML parsers: Parabix, Xerces, and Expat [16]. Since Expat does not verify

the validation constraints defined in DTD, the validation feature of Parabix and Xerces are

disabled. The driver used in the performance test is collecting a XML document statistical

report [16]:

7The example is far simper from a real XML document, so the parser is more complicated but the general
idea is the same.

8The NameFollow stream is one bit stream that have marked one at all occurrence of a set of characters
(spaces, left angle brackets, question marks, etc) that indicates it is the end of a name.

CHAPTER 3. PARSERS 15

File Name dewiki.xml jawiki.xml roads.gml po.xml soap.xml
File Size (kB) 66240 7343 11584 76450 2717
Markup Density 0.07 0.13 0.57 0.76 0.87

Table 3.2: XML Document Characteristics [16]

1. The number of occurrence of each type of markup items. For example, the number of

start tags, the number of empty tags, and the number of comments.

2. The average length of each type of markup items.

The performance test is experimented on a 2.1 GHz Intel Core 2 Duo processor desktop

machine with 2 GB memory in Ubuntu 7.10 [16]. The XML documents used in the exper-

iment is listing in table 3.2. dewiki.xml and jawiki.xml are the document-oriented XML

documents. The rest of three are the data-oriented XML documents.

The paper [16] compares the performance based on: instructions completed, processor

cycles, conditional branches, branch mis-predictions, and caches misses. Figure 3.5 shows

the overall performance. Independent of markup density and files, Parabix performs at least

two times faster than Expat, and five times faster than Xerces.

CHAPTER 3. PARSERS 16

Figure 3.5: CPU Cycles Per Byte [16]

Chapter 4

Adapt Expat to Parallel Bit

Stream Technology

Since Expat already gains popularity in open-source community, no open-source project is

willing to switch from Expat to Parabix without seeing a speedup in their own project.

It is understandable because of two reasons: 1. Expat performs relative well, so that the

user is satisfied with the performance. 2. Switching requires modifying their existing code

since Parabix and Expat have different interfaces. Modifying the existing code can be time

and money consuming. Therefore, the likely solution is to employ Parabix with an Expat

interface. Then, the user can enjoy the performance improvement with little changes to

their existing code.

4.1 The General Ideal of Expat with Parallel Bit Stream

Technology

It is difficult to build an identical Expat interface for Parabix because Expat and Parabix

have quite different approaches about their internal design. However, it is possible to bring

the parallel bit stream technology into Expat. Expat parses byte-at-a-time with loops. It

means Expat advances at most one code unit1 in byte stream every time, whereas Parabix is

1Code unit is the minimal bit combination that can represent a unit of encoded text for processing or
interchange. The Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit code units in
the UTF-16 encoding form, and 32-bit code units in the UTF-32 encoding form [9].

17

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 18

able to advance as many as 128 code units at a time with bit scan operations that operate on

lexical item streams. Generating the lexical item streams for 100K data do bring about 2 or

3 cycles per byte overhead [16], but the performance gain from advancing many code units

at once can be greater than the overhead. Therefore, the idea of adapting the parallel bit

stream technology has become substituting all byte-at-a-time loops with bit scan operations.

Since XML DTD is a small part of the XML document, bit scan operations are only applied

to parsing the document content to meet the minimum change to Expat requirement.

4.2 Generating Lexical Item Streams in Expat

Four modules from Figure 3.3 are need to generate the lexical item streams for a valid

byte stream2: the XML interface module, the parallel bit stream module, the character

validation module, and the lexical item stream module. The XML interface module is still

an overkill because many functions are made particularly for the parser module. Therefore,

the interface BitStreamScan is created. The BitStreamScan is responsible for three jobs:

1. Gather encoding and endianness of the XML document. This is done by examining

the first four bytes of the XML data.

2. Allocate an 100K buffer (src buffer) for containing the byte stream data.

3. Allocate and initialize an buffer (lexical buffer) for each lexical item stream 3. Since

each byte in src buffer is represented by one bit in lexical buffer, the size of each

lexical buffer is 12.5K (100K/8).

In order to minimize the cost of generating the lexical item streams, the BitStreamScan

interface should be declared only once in Expat. After the declaration, src buffer and

lexical buffer are reused if the byte stream data is more than 100K. The interface declaration

is made in the XML Parse(XML Parser parser, const char *s, int len, int isFinal) function of

Expat. When the function is called the first time, the first four bytes of “s” is the first four

bytes of the XML document, so it is used to calculated the encoding and the endianness.

Then the BitStreamScan is declared and a flag (bitstream create flag) set to 1 to prevent

the BitStreamScan from getting declared second time.

2A valid byte stream is a byte stream that does not contain illegal XML character and illegal byte sequence
3The lexical item streams can be found in bitlex.h [7]

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 19

The parallel bit stream module is mainly left unchanged, but the buffer strategy is not

compatible with Expat because Parabix takes a file pointer that points to the file containing

all XML data, whereas Expat can parse a part of XML data. The following changes is applied

to the parallel bit stream module:

1. If the byte stream data from Expat is less than 1024 bytes but no more XML data,

parse it anyway. Otherwise, wait for more data until the available XML data is more

than 1024 bytes. this is to minimize cycle per byte overhead introduced by generating

the lexical item streams.

2. Make sure the last byte in src buf is a complete byte sequence. For example, the last

three bytes of the byte stream is 0x5A, 0xD2, 0x81 in UTF-8 encoding. The 0x81 is

not a compete byte sequence because 0xD2 indicates three bytes need to represent the

Unicode but only two bytes are available. Therefore, the byte stream ends at 0x5A is

copied into src buf. The detail information about UTF-8, UTF-16 and UTF-32 can

be found in [10] [24] [25] respectively.

The character validation module and the lexical item stream module is left unchanged.

4.3 Position the lexical item stream generator in Expat

By following Expat execution in GDB, the four-stage runtime is identified.

1. Create an Expat Parser and initialize options and callback functions.

2. Make a local copy of XML data.

3. Parse document type definitions and trigger the corresponding callback functions.

4. Process the document content and execute the corresponding callback functions.

Intuitively, the forth stage should be the candidate location for generating the lexical item

streams. By looking through the source code [12], the function doContent(XML Parser

parser, int startTagLevel, const ENCODING *enc, const char *s, const char *end, const

char **nextPtr, XML Bool haveMore) is found. Algorithm 1 is the pseudocode of the

function. The doContent(...) acts as a driver function to loop through the byte stream

from “s” to “end”. The “haveMore” flag signals whether the current byte stream is the last

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 20

XML data. The XmlContentTok(...) returns a integer value indicating what the current

token is and “next” points the first character after the token. Then the parser switches

the corresponding token case to process the token, and “s” gets updated with the value in

“next”.

Algorithm 1 doContent Function Pseudocode

doContent(..., const ENCODING *enc, const char *s,
const char *end, ..., XML_bool haveMore){

...
for(; ;){

int tok = XmlContentTok(enc, s, end, &next);
switch(tok){

case XML_TOK_NONE:
if(haveMore) return XML_ERROR_NONE
if(start tags one-to-one matches with end tags)

return XML_ERROR_NONE
return XML_ERROR

case XML_TOK_PARTIAL:
if(haveMore) return XML_ERROR_NONE;
else return XML_ERROR;

case XML_TOK_ENTITY_REF:
...

case XML_TOK_START_TAG_WITH_ATTS:
...

case XML_TOK_END_TAG:
...

case XML_TOK_DATA_CHARS:
Execute the character data callback function.

case XML_TOK_COMMENT:
...

}
s = next;

}
}

This process keeps going until a fatal error is encountered or “end” is reached. The

XML TOK NONE indicates that the current byte stream is size of zero. An occurrence of

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 21

a partial markup item4 is signaled by XML TOK PARTIAL. Only a full markup item5 is

processable. In the case of the XML TOK PARTIAL, the parser cannot keep processing,

so it has to make a copy of the partial markup item and waits for more byte stream. All

other tokens are self-explaining. The tokens in the pseudocode is only a subset of tokens

from the doContent(...) function.

The lexical item streams are generated for parsing the document content, so it has

to be in the doContent(...). Since the for loop iterates over the same data byte stream,

it is definitely hurt the performance if the same lexical bit streams calculated repeatably.

Therefore, the lexical bit streams should be positioned in the doContent(...) but right before

the for loop.

4.4 Apply Bit Stream Operations in Expat

In order to apply bit stream operations, byte-at-a-time loops should be replaced with the

bitstream scan(...) function. The bitstream scan(item, pos) takes an lexical item stream

(“item”) and an integer that indicates a position in the byte stream (“pos”), then returns

an integer that indicates the byte stream position of the next lexical item starting from the

“pos”. For example, ... < tag >< \tag > Let LAngle represent the left angle bracket bit

stream. Let the position for the first angle bracket be 10, then the second one is 15. The

bitstream scan(LAngle, 10) returns the integer 10. The bitstream scan(LAngle, 11) returns

15.

CodeUnitPos = (CurrentBytePos− StartBytePos)/BytesPerCodeUnit (4.1)

CurrentBytePos = StartBytePos + CodeUnitPos ∗BytesPerCodeUnit (4.2)

The “pos” in the bitstream scan(...) is a code unit position, but Expat only provides

4A partial markup item is a part of a full markup item. For example, < partialStartTagattribute1 = “bbb.
It only occurs at the end of the byte stream in a well-formed XML document.

5A full markup item is a well-formed markup item that has all XML data from the opening left angle
bracket to the ending right angle bracket. For example, < partialStartTagattribute1 = “bbb” >.

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 22

the byte position. The conversion is made based on the formula 4.1 and 4.2. The code unit

base for UTF-8, UTF16 and UTF32 is 1 byte, 2 bytes, and 4 bytes respectively.The Expat-

PosToParabixPos(...) and the ParabixPosToExpatPos(...) in algorithm 2 are the macro code

for the conversion. The “input ptr” points the start of the byte stream. The MINBPC(enc)

is the code unit base from Expat. The reason of using macro is to shift the conversion cost

to the compile time. Otherwise, the performance gain is less than the cost. After using the

bitstream scan(...), the return value has to be less than “buffer limit pos” (the total code

units in the BitStreamScan buffer). If the value is bigger, it means the BitStreamScan only

has a partial markup item at the end of the buffer. Then, the BitStreamScan hands the

control back to Expat and asks for more XML data.

Algorithm 2 How Bitstream scan works!

#define ExpatPosToParabixPos(enc, expat_pos, parabix_pos)
parabix_pos = (expat_pos - input_ptr)/MINBPC(enc);

#define ParabixPosToExpatPos(enc, expat_pos, parabix_pos)
expat_pos = (input_ptr + parabix_pos * MINBPC(enc));

ExpatPosToParabixPos(enc, ptr, current_pos_parabix);
next_pos_parabix=bitstream_scan(MarkupStart,current_pos_parabix);
if(next_pos_parabix >= global_bitstream->buffer_limit_pos)

return XML_TOK_PARTIAL;
ParabixPosToExpatPos(enc, ptr, next_pos_parabix);

In Expat, most of byte-at-a-time scanning happens in scanning a token. While scanning

a token, Expat checks for the well-formedness of the markup item. The goal is to modify the

functions scanning the following tokens: start tags, end tags, entity references, character

references, comments, CD data, and character data. All these functions are located in

xmltok impl.c [13]. The rest of this section is organized as explanation, the pseudocode of

the Expat version, and the pseudocode of the bit scan operation version.

4.4.1 Byte-at-a-time Name Scan VS Bit Stream Name Scan

Expat does not have a specific function for processing XML name. It is directly located

in functions involving XML names like scanning start tags, end tags and entity references.

The general idea is extracted and written in algorithm 3. Since XML has different character

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 23

sets for the first character of a name and the rest of the name. Expat checks whether the

first character is legal, and checks the rest of characters byte-at-a-time in a loop.

Algorithm 3 Check a Name: Expat Version

checkName(...){
if(at a illegal name start character)

return XML_TOK_INVALID;
move to the next byte
for(;;){

if(at a legal name character)
move to the next byte

else
return XML_TOK_INVALID;

if(at a white space)
break;

}
}

The CheckNameMarco(...) in algorithm 4 has a four-stage schema to verify the well-

formedness of a name:

1. Find the “name end” in the code unit position with the “NameFollow” bit stream.

The “NameFollow” have all non-name character (like white space) marked.

2. Scan to the first “next check” with the “NameStartCheck”. The “NameStartCheck”

have all non-ASCII-start-name character marked. Since most names are composed

of ASCII characters, the “name end” is reached in the most cases. If so, the Check-

NameMarco(...) is done.

3. Scan to the first “next check” with the “NameCharCheck”. The “NameCharCheck”

have all non-ASCII-name character marked. If the “name end” is reached, a valid

name found.

4. The CheckNameMarco(...) most unlikely gets in this stage. The current byte either

a non-ASCII character or an illegal name character. If the later case is found, issue a

fatal error and stop parsing. Otherwise, update to the next code unit point and scan

for the next “NameCharCheck” until reaching the “name end” or finding a illegal

name character.

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 24

Algorithm 4 CheckNameMarco: Bit Stream Version

CheckNameMacro(enc, ptr, end, nextTokPtr){
ExpatPosToParabixPos(enc, ptr, name_start);
name_end = bitstream_scan(NameFollow, name_start);
if(name_end >= global_bitstream->buffer_limit_pos)

return XML_TOK_PARTIAL;
next_check = bitstream_scan(NameStartCheck, name_start);
if(next_check == name_start)

if(a illegal start name character)
return XML_TOK_INVAILID;

next_check = next_check + 1;
if(next_check < name_end){

next_check = bitstream_scan(NameCharCheck, next_check);
while(next_check != name_end){

if(a illegal name character)
return XML_TOK_INVALID;

if(a valid non-ASCII character)
next_check = next_check + 1;

else
return XML_TOK_INVALID;

next_check = bitstream_scan(NameCharCheck, next_check);
}

}
ParabixPosToExpatPos(enc, ptr, name_end);

}

The CheckNameMarco(...) is supposed to be more efficient than Expat version. First, a

XML name rarely has a non-ASCII character. Second, a XML name mostly have more than

three characters. Therefore, in the case of “startTagName”, Expat has to verify each byte

(12 times in total), whereas the CheckNameMarco(...) only uses the bitstream scan(...) one

time.

4.4.2 Byte-at-a-time Character Data Scan VS Bit Stream Character Data

Scan

Expat version in algorithm 5 starts up a markup item scanning operation (the scanLT(...)

or scanRef(...)) if the first character is a markup item start (< or &). Otherwise, scan for

character data until a markup item start or a CD data end (]] >) found. The running time

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 25

of the while loop depends on the number of character data.

Algorithm 5 contentTok Function Pseudocode: Expat Version

static int PTRCALL
PREFIX(contentTok)(const ENCODING *enc, const char *ptr,

const char *end, const char **nextTokPtr)
{

if(empty byte stream)
return XML_TOK_NONE;

switch(BYTE_TYPE(enc, ptr)){
case ‘‘<’’:

return PREFIX(scanLt)(...);
case ‘‘&’’:

return PREFIX(scanRef)(...);
case illegal character or invalid encoding sequence:

return XML_TOK_INVALID;
}
while(ptr != end){

switch(BYTE_TYPE(enc, ptr)){
case ‘‘<’’:
case ‘‘&’’:

return XML_TOK_CHAR;
case ‘‘]’’:

if(CD data end (‘‘]]>’’) occurred)
return XML_TOK_INVALID;

case illegal character or invalid encoding sequence:
return XML_TOK_INVALID;;

}
}
return XML_TOK_CHAR;

}

However, bit stream version in algorithm 6 accomplishes the same result by performing

one time of the BIT STREAM SCAN(...)6. Since character data should count for a great

percentage of a XML documents, the performance gain here should be significant.

6the process described in 2.

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 26

Algorithm 6 contentTok Function Pseudocode: Bit Stream Version

static int PTRCALL
PREFIX(contentTok)(const ENCODING *enc, const char *ptr,

const char *end, const char **nextTokPtr)
{

if(empty byte stream)
return XML_TOK_NONE;

switch(BYTE_TYPE(enc, ptr)){
case ‘‘<’’:

return PREFIX(scanLt)(...);
case ‘‘&’’:

return PREFIX(scanRef)(...);
case illegal character or invalid encoding sequence:

return XML_TOK_INVALID;
}
BIT_STREAM_SCAN(ptr, MarkupStart);
return XML_TOK_DATA_CHARS;

}

4.4.3 Byte-at-a-time Start Tag Scan VS Bit Stream Start Tag Scan

Expat in algorithm 7 first determines what the markup item is, and accordingly chooses

one operation from the scanComment(...), scanCdataSection(...),, scanPi(...) or scanEnd-

Tag(...). Otherwise, an start tag is found. Then the start tag name is parsed in byte-at-a-

time fashion. If an attribute is occurred, the scanAtts(...) is called. Instead, the bit stream

version in algorithm 8 parses the name in one step. The performance gain here depends on

the length and frequency of a start tag name.

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 27

Algorithm 7 ScanLt Function Pseudocode: Expat Version

static int PTRCALL
PREFIX(scanLt)(const ENCODING *enc, const char *ptr,

cosnt char *end, const char **nextTokPtr){
switch(BYTE_TYPE(enc, ptr)){

case ‘‘<!-’’:
return PREFIX(scanComment)(...);

case ‘‘<![’’:
PREFIX(scanCdataSection)(...);

case ‘‘<?’’:
return PREFIX(scanPi)(...);

case ‘‘</’’:
return PREFIX(scanEndTag)(...);

case a valid name start character:
ptr = ptr + MINBPC(enc);

}
while(not end of the byte stream){

switch(BYTE_TYPE(enc, ptr)){
case the occurrence of an attribute:

return PREFIX(scanAtts)(enc, ptr, end, nextTokPtr);
case an valid name character:

ptr = ptr + MINBPC(enc);
case ‘‘>’’:

return XML_TOK_START_TAG_NO_ATTS;
case ‘‘/>’’:

return XML_TOK_EMPTY_ELEMENT_NO_ATTS;
default:

return XML_TOK_INVALID;
}

}
}

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 28

Algorithm 8 ScanLt Function Pseudocode: Bit Stream Version

static int PTRCALL
PREFIX(scanLt)(const ENCODING *enc, const char *ptr,

cosnt char *end, const char **nextTokPtr){
switch(BYTE_TYPE(enc, ptr)){

case ‘‘<!-’’:
return PREFIX(scanComment)(...);

case ‘‘<![’’:
PREFIX(scanCdataSection)(...);

case ‘‘<?’’:
return PREFIX(scanPi)(...);

case ‘‘</’’:
return PREFIX(scanEndTag)(...);

case a valid name start character:
ptr = ptr + MINBPC(enc);
break;

}
CheckNameMarco(enc, ptr, end, nextTokPtr);
if(the occurrence of an attribute)

return PREFIX(scanAtts)(enc, ptr, end, nextTokPtr);
if(at ‘‘>’’)

return XML_TOK_START_TAG_NO_ATTS;
if(at ‘‘/>’’)

return XML_TOK_EMPTY_ELEMENT_NO_ATTS;
}

4.4.4 Byte-at-a-time Attribute Scan VS Bit Stream Attribute Scan

Once again, Expat version in algorithm 9 scans the attribute in byte-at-a-time according to

the XML attribute production rule: processes the attribute name, looks for a equal sign,

looks for the opening quote, scans the attribute value and processes any reference in the

attribute value, and seeks for a matching closing quote. The scanning process repeats until

the markup item end is found. In algorithm 10, the byte-at-a-time parsing of the attribute

name and value is replaced with bit stream operations. Also, the optimization is made for

the high frequency of the quote immediately after the attribute name and the opening quote

immediately after the equal sign.

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 29

Algorithm 9 scanAtts Function Pseudocode: Expat Version

static int PTRCALL
PREFIX(scanAtts)(const ENCODING *enc, const char *ptr,

const char * end, const char **nextTokPtr){
while(not end of the byte stream){

switch (BYTE_TYPE(enc, ptr)){
case a valid name case:

ptr = ptr + MINBPC(enc);
case a white space:

skip all white space
case the occurrence of an equal sign:

skip all white space
store the start quote
for(;;){

if(ptr matches with the start quote)
break;

switch(BYTE_TYPE(enc, ptr)){
case illegal characters or encoding sequence:

return XML_TOK_INVALID;
case ‘‘&’’:

PREFIX(scanRef)(...);
case ‘‘<’’:

return XML_TOK_INVALID;
default:

ptr = ptr + MINBPC(enc);
}

}
skip all white space
switch(BYTE_TYPE(enc,ptr)){

case ‘‘>’’:
return XML_TOK_START_TAG_WITH_ATTS;

case ‘‘/>’’:
return XML_TOK_EMPTY_ELEMENT_WITH_ATTS;

case an valid name start character
break;

default:
return XML_TOK_INVALID;

}
default:

break;
}

}
}

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 30

Algorithm 10 scanAtts Function Pseudocode: Bit Stream Version

static int PTRCALL
PREFIX(scanAtts)(const ENCODING *enc, const char *ptr,

const char * end, const char **nextTokPtr){
do{

CheckNameMarco(enc, ptr, end, nextTokPtr)
if(at an equal sign){

//optimize for = immediately after the attribute name
}else{

BIT_STREAM_SCAN(ptr, NonWS);
if(not at an equal sign)

return XML_TOK_INVALID;
}
if(at a start quote){

store the start quote
}else{

BIT_STREAM_SCAN(ptr, NonWS);
if(not at a quote)

return XML_TOK_INVALID;
else

store the start quote
}
for (;;) {

BIT_STREAM_SCAN(ptr, Quote);
if (ptr matches the start quote)

break;
switch (BYTE_TYPE(enc,ptr)) {

case ‘‘&’’:
PREFIX(scanRef)(...);
if(error in scanning reference)

return XML_TOK_INVALID;
case ‘‘<’’:

return XML_TOK_INVALID;
default:
ptr += MINBPC(enc);

}
}
BIT_STREAM_SCAN(ptr, NonWS);
if(at ‘‘>’’)

return XML_TOK_START_TAG_WITH_ATTS;
if(at ‘‘/>’’)

return XML_TOK_EMPTY_ELEMENT_WITH_ATTS;
}while(1);

}

CHAPTER 4. ADAPT EXPAT TO PARALLEL BIT STREAM TECHNOLOGY 31

4.4.5 Improvement on End Tags, References, CD Data, and Comments

Bit stream operations are applied the same way as described above with different markup

item streams to end tags, references, CD data, and comments. The XML name of end tags is

parsed with the “NameFollow”, as well as entity references. Character references are parsed

with either the “NonDigit” or “NonHex” depending on decimal or hex representation of the

character code point. The “NonDigit” has all non-decimal marked, whereas the “NonHex”

has all non-hex marked. The while loop for finding the CD data end is replaced with the

“CD End check”. In parsing comments, the while loop for finding a hyphen is replaced with

the “Hyphen”.

Chapter 5

Performance Comparisons

5.1 Methodology

In Expat benchmark [18] and Parabix performance study [16], both of them use the XML

document statistical report generator as their driver because the internal structure and API

of parsers are different. The comparison base line is achieved by making the parser accom-

plished the same task. However, the two versions of Expat in this project have no change

to the internal structure and API, so a driver that simply checks for the well-formedness of

XML documents with no call back functions suits for the purpose. Furthermore, the longer

the driver runs, the higher chance that an OS interrupt happens and corrupts the result.

The performance test collects three sets of data based on processor cycles per byte be-

tween original Expat and Expat with parallel bit stream technology: 1. The overall running

time of each XML document. 2. The processor time spending on XmlContentTok(...). 3.

The processor cycles for generating lexical item streams.

5.2 Test Platform

All tests are operated on Ubuntu 7.10 (Linux x86) with Intel Core 2 Duo processor 6400

desktop. The source code is complied with GCC 4.1.3 with O2 optimization. Since there is

no significant performance difference between the original Expat compiled with gcc and the

original Expat complied with g++, but Parabix is written in C++, both versions of Expat

are compiled with g++. The detailed hardware and software information is in table 5.1.

BOM Profiler (Binary Order of Magnitude Execution Time Profiler) is a lightweight

32

CHAPTER 5. PERFORMANCE COMPARISONS 33

CPU Name Intel Core 2 Duo processor 6400
System Bus MHz 1066
CPU MHz 2128
FPU Integrated
CPU(s) enabled 4 core, 2 chip, 2 cores/chip
Primary Cache 32 KB I + 32 KB D on chip per core
Secondary Cache 2048 KB (I+D) on chip
Memory 2 GB DIMM
OS Ubuntu 7.10 (Linux x86)
Complier GCC 4.1.3
Base Pointers 64-bit
Peak Pointer 64-bit
Other Software BOM Profiler

Table 5.1: Hardware and Software Configuration

multi-platform execution time profiling utility based on processor cycle counters. It not

only detects processor cycle pattern for processing a fixed small number of bytes1, but also

rules out the inaccuracy caused by OS interrupts and processor cycle overflow [15].

5.3 XML Document Characteristics

Seven XML documents are chosen for the experiment. dewiki.xml, jawiki.xml and ar-

wiki.xml are the document-oriented documents, whereas roads.gml, po.xml, soap.xml and

worst.xml are the data-oriented documents. The markup density [16] spreads from as low

as 0.07 to as high as 1. The detail information can be found in table 5.2. None of these

files has CDATA and comments but it does not matter much because they are rarely used

in XML documents.

5.4 Experiment Results

Each test case executes five times before collecting data in order to escape from the over-

head of bringing the driver and the whole XML documents into main memory. Then

BOM Profiler collects the processor cycle per byte pattern on the test case. An python

11024 bytes are recommended.

CHAPTER 5. PERFORMANCE COMPARISONS 34

File Name dewiki.xml jawiki.xml arwiki.xml roads.gml po.xml soap.xml worst.xml
Empty Tag 5814 903 23139 6907 0 10000 0
Avg. Lgth
of Empty
Tag

9 10 10 11 0 25 0

Start Tag 197582 36538 661502 41454 2317055 80002 10000001
Avg. Lgth
of Start Tag

9 9 9 37 12 16 3

Total At-
tribute

18806 3527 62745 55265 463396 19999 0

Attribute
Name

18806 3527 62745 55265 463396 1999 0

Avg. Lgth
of Attribute
Name

8 8 8 6 7 5 0

Attribute
Value

18806 3527 62745 55265 463396 19999 0

Avg. Lgth
of Attribute
Value

7 7 7 5 5 7 0

End Tag 197582 36538 661502 41454 2317055 80002 10000001
Avg. Lgth
of End Tag

8 8 8 17 10 9 4

Text Item 1153459 153736 1833224 89827 4632574 170014 0
Avg. Lgth
Of Text
Item

50 39 47 21 4 2 0

Reference 796851 89949 555377 0 0 0 0
Avg. Lgth
of Refer-
ence

4 4 4 0 0 0 0

File Size
(kB)

66240 7343 113082 4175 76450 2717 68359

Markup
Density

0.07 0.13 0.21 0.55 0.76 0.87 1.00

Table 5.2: XML Document Characteristics

CHAPTER 5. PERFORMANCE COMPARISONS 35

File Name dewiki.xml jawiki.xml roads.gml po.xml soap.xml
Cycles Per Byte 16.502 18.777 36.846 46.021 51.254

Table 5.3: Expat Performance on an 100K Buffer

program automatically picks the patterns consisting of 99% of the whole to avoid inaccu-

racy from OS interrupts and processor cycle overflow. This process is executed 20 times

and the average is used as the final processor cycle per byte pattern.

Since the test platform is identical from [16], it would be interesting whether it is pos-

sible to re-generate Expat performance in figure 3.5. The original Expat with no callback

functions is tested. An preloaded 100K buffer is fed into the XML Parser(...) each time until

the end of the whole XML document. BOM Profiler starts right before the XML Parser(...)

and ends right after the function. The final result is in table 5.3. All cases except dewiki.xml

run slightly faster than the figure 3.5. It is desirable because the figure 3.5 includes the cost

of the callback functions for producing the statistical report.

In order to prove the speedup of Expat with parallel bit stream technology, 9 experiments

in total are designed based on three criteria: which version (BitStreamScan or Expat), the

size of the input buffer (1024 bytes, 99968 bytes or the whole document), the size of the

BitStreamScan internal buffer (1K or 100K). The result is in table 5.4. Here is how to

comprehend the table:

• The version is distinguished with the word “Bitstream” or “Expat”. The size of

the input immediately follows the version word. The size of the BitStreamScan in-

ternal buffer comes last except the 3 Expat experiments. For example, the “Bit-

stream 1024 1k” means the BitStreamScan version parses 1024-byte XML data every

run with a 1K internal buffer. The “Expat all” means the Expat version processes a

buffer containing all XML data.

• The “Bit”, “Tok” and “Total” are cycles per byte for the time of generating lexical

item streams, the processing time of the XmlContentTok(...), and the runtime of the

XML Parse(...) respectively.

• The “Func↑” is the speedup in cycles per byte from the XmlContentTok(...) compare

to the Expat version configured with the same input size. Since the producing lexical

CHAPTER 5. PERFORMANCE COMPARISONS 36

B
it

st
re

am
10

24
1k

B
it

st
re

am
10

24
10

0k
E

xp
at

10
24

C
yc

le
s

P
er

B
yt

e
P

er
ce

nt
ag

e
C

yc
le

s
P

er
B

yt
e

P
er

ce
nt

ag
e

C
yc

le
s

P
er

B
yt

e
F

ile
N

am
e

B
it

T
ok

T
ot

al
Fu

nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
B

it
T

ok
T

ot
al

Fu
nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
T

ok
T

ot
al

ar
w

ik
i.x

m
l

3.
21

3
3.

88
0

22
.5

04
9.

14
0

10
.6

38
56

%
32

%
4.

04
5

3.
90

5
23

.4
91

8.
28

3
9.

65
1

51
%

29
%

16
.2

33
33

.1
42

de
w

ik
i.x

m
l

3.
08

6
4.

38
3

19
.9

28
4.

07
9

6.
08

7
35

%
23

%
3.

75
8

4.
36

8
20

.3
20

3.
42

2
5.

69
5

30
%

22
%

11
.5

48
26

.0
15

ja
w

ik
i.x

m
l

3.
46

7
5.

23
0

22
.1

41
6.

35
7

8.
77

5
42

%
28

%
4.

23
0

5.
24

0
22

.8
74

5.
58

4
8.

04
2

37
%

26
%

15
.0

54
30

.9
16

ro
ad

s.
gm

l
3.

09
0

6.
20

0
40

.1
22

3.
94

9
5.

80
1

30
%

13
%

4.
80

5
6.

31
2

42
.7

73
2.

12
2

3.
15

0
16

%
7%

13
.2

39
45

.9
23

po
.x

m
l

2.
93

8
14

.1
95

59
.8

18
3.

59
1

3.
81

7
17

%
6%

4.
94

1
14

.4
11

62
.0

81
1.

37
2

1.
55

4
7%

2%
20

.7
24

63
.6

35
so

ap
.x

m
l

2.
95

4
15

.2
41

65
.9

63
4.

07
1

5.
11

9
18

%
7%

5.
33

2
15

.2
78

69
.3

82
1.

65
6

1.
70

0
7%

2%
22

.2
66

71
.0

82
w

or
st

.x
m

l
2.

93
1

31
.1

91
90

.2
77

-7
.6

20
-2

.7
25

-2
9%

-3
%

5.
07

3
31

.3
01

92
.1

67
-9

.8
72

-4
.6

15
-3

7%
-5

%
26

.5
02

87
.5

52

B
it

st
re

am
99

96
8

1k
B

it
st

re
am

99
96

8
10

0k
E

xp
at

99
96

8
C

yc
le

s
P

er
B

yt
e

P
er

ce
nt

ag
e

C
yc

le
s

P
er

B
yt

e
P

er
ce

nt
ag

e
C

yc
le

s
P

er
B

yt
e

F
ile

N
am

e
B

it
T

ok
T

ot
al

Fu
nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
B

it
T

ok
T

ot
al

Fu
nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
T

ok
T

ot
al

ak
w

ik
i.x

m
l

3.
63

9
4.

00
7

21
.6

53
8.

27
4

10
.8

81
52

%
33

%
3.

39
6

3.
89

8
21

.5
22

8.
62

6
11

.0
12

54
%

34
%

15
.9

20
32

.5
34

de
w

ik
i.x

m
l

3.
48

9
3.

79
5

20
.2

86
4.

41
5

5.
62

6
38

%
22

%
3.

34
4

3.
80

1
19

.9
54

4.
55

4
5.

95
8

39
%

23
%

11
.6

99
25

.9
12

ja
w

ik
i.x

m
l

3.
80

2
5.

06
4

22
.0

66
5.

95
3

7.
74

9
40

%
26

%
3.

54
2

4.
99

5
21

.5
11

6.
28

2
8.

30
4

42
%

28
%

14
.8

19
29

.8
15

ro
ad

s.
gm

l
3.

28
3

6.
03

1
39

.4
71

3.
44

4
5.

24
7

27
%

12
%

3.
20

6
6.

15
8

40
.3

20
3.

39
4

4.
39

8
27

%
10

%
12

.7
58

44
.7

18
po

.x
m

l
3.

29
0

14
.1

15
59

.7
98

3.
07

8
3.

06
8

15
%

5%
3.

11
3

14
.3

08
59

.6
35

3.
06

2
3.

23
1

15
%

5%
20

.4
83

62
.8

66
so

ap
.x

m
l

3.
06

0
14

.7
61

65
.8

89
3.

48
7

3.
78

9
16

%
5%

3.
17

6
14

.6
97

66
.8

70
3.

43
5

2.
80

8
16

%
4%

21
.3

08
69

.6
78

w
or

st
.x

m
l

3.
19

8
31

.2
47

89
.1

04
-8

.1
68

-2
.4

59
-3

1%
-3

%
3.

10
0

31
.4

39
89

.8
53

-8
.2

62
-3

.2
08

-3
1%

-4
%

26
.2

77
86

.6
45

B
it

st
re

am
al

l
1k

B
it

st
re

am
al

l
10

0k
E

xp
at

al
l

C
yc

le
s

P
er

B
yt

e
P

er
ce

nt
ag

e
C

yc
le

s
P

er
B

yt
e

P
er

ce
nt

ag
e

C
yc

le
s

P
er

B
yt

e
F

ile
N

am
e

B
it

T
ok

T
ot

al
Fu

nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
B

it
T

ok
T

ot
al

Fu
nc
↑

Fu
ll↑

%
Fu

nc
↑

%
Fu

ll↑
T

ok
T

ot
al

ak
w

ik
i.x

m
l

3.
62

1
3.

97
6

16
.6

94
8.

33
3

10
.0

54
52

%
38

%
3.

54
4

3.
91

8
16

.5
98

8.
46

8
10

.1
50

53
%

38
%

15
.9

30
26

.7
48

de
w

ik
i.x

m
l

3.
49

0
4.

26
8

15
.5

19
3.

93
3

5.
88

1
34

%
27

%
3.

49
4

4.
10

0
15

.3
48

4.
09

7
6.

05
2

35
%

28
%

11
.6

91
21

.4
00

ja
w

ik
i.x

m
l

3.
81

7
5.

12
5

18
.7

92
5.

92
9

7.
79

0
40

%
29

%
3.

67
8

4.
97

5
18

.4
34

6.
21

8
8.

14
8

42
%

31
%

14
.8

71
26

.5
82

ro
ad

s.
gm

l
3.

34
9

6.
08

0
35

.4
58

3.
94

2
5.

55
7

29
%

14
%

3.
34

4
6.

18
9

35
.3

55
3.

83
8

5.
66

0
29

%
14

%
13

.3
71

41
.0

15
po

.x
m

l
3.

29
8

14
.4

18
N

/A
2.

80
0

N
/A

14
%

N
/A

3.
29

6
14

.2
91

55
.5

42
2.

92
9

N
/A

14
%

N
/A

20
.5

16
N

/A
so

ap
.x

m
l

3.
26

2
15

.0
90

62
.7

75
2.

97
3

2.
97

6
14

%
5%

3.
36

6
15

.2
74

61
.9

25
2.

68
5

3.
82

6
13

%
6%

21
.3

25
65

.7
51

w
or

st
.x

m
l

3.
29

5
31

.0
63

N
/A

-8
.1

03
N

/A
-3

1%
N

/A
3.

27
9

31
.3

96
N

/A
-8

.4
20

N
/A

-3
2%

N
/A

26
.2

55
N

/A

T
ab

le
5.

4:
P

er
fo

rm
an

ce
R

es
ul

t

CHAPTER 5. PERFORMANCE COMPARISONS 37

item streams is pulled out of the XmlContentTok(...), the real XmlContentTok(...)

time for the BitstreamScan version should be the sum of the “Bit” and “Tok”. The

“Full↑” is the speedup of the XML Parse(...). The “%Func↑” and “%Full↑” are the

percentage of the improvement.

• The “N/A” indicates the data is not available.

5.5 Analysis

Generally speaking, the speedup of the XmlContentTok(...) (under %Func↑) is from 13%

to 56%, while the speedup of the BitStreamScan version (under %Full↑) is from 4% to 38%.

The only slowdown case is worst.xml. Actually, it is supposed to happen because the nature

of the document. worst.xml is constructed by repeating “< a >< /a >”, so the bit stream

operations are forced back to byte-at-a-time operation. However, the cost associated with

the bit stream operations, generating lexical item streams and the conversion between byte

position and code unit position, becomes the absolute overhead that there is no way to

recover. On the other hand, the original Expat is the optimistic solution because it is in

byte-at-a-time fashion. Two points are worth mentioning here.

1. Even in this absolute nightmare for BitStreamScan, the slowdown is only about 3%.

2. This case should never happen.

One might question why the runtime of the “Expat 99968” is longer than the table 5.3 even

though they have the same configuration. The slowdown comes from setting a timer before

and after both the lexical item stream generating process and the XmlContentTok(...).

Without these two timers, they are the same.

The generating lexical item streams takes about 3 or 4 cycles per byte, which is 1 cycle per

byte greater than the data in [16]. The 1 byte increase is caused by adjusting the last byte of

the internal buffer to be a complete sequence, and the BitstreamScan version generates three

more lexical item streams than [16]. The Bitstream 1024 100K takes even longer because

the 100K internal buffer has never fully used. With only 1024 bytes XML data available

every time, the overhead of managing the 100K buffer is taking on by 1024 bytes instead of

99968 bytes. This configuration should never be used. Comparing Bitstream 99968 1k and

Bitstream 99968 100k concludes that there is no difference between the 1K internal buffer

CHAPTER 5. PERFORMANCE COMPARISONS 38

BitStream 1024 1K Expat 1024
Cycles Per Byte

File Name Bit Tok Total Func↑ Full↑ Full↑ − Func↑ Tok Total
arwiki.xml 3.214 3.883 22.219 6.820 6.615 -.205 13.917 28.834
dewiki.xml 3.104 4.381 19.739 1.040 .713 -.327 8.525 20.452
jawiki.xml 3.455 5.231 21.752 3.628 3.281 -.347 12.314 25.033
roads.gml 3.102 6.219 40.243 2.162 2.242 .80 11.483 42.485
po.xml 2.924 14.189 59.257 4.063 3.861 -.202 21.176 63.118
soap.xml 2.929 15.218 65.686 5.121 6.060 .939 23.268 71.746

Table 5.5: Performance Result with no Newline Character

and the 100K buffer for generating lexical item streams as long as the internal buffer can

be fully used.

With the same internal buffer (1K or 100K), the speedup gradually increases as the

size of the coming XML data changes from 1024 bytes to the whole XML documents. The

original Expat has the same increase. This increase is not brought by the BitStreamScan,

but is brought by Expat itself. Since Expat makes a copy of the XML data before any

parsing, it is more efficient to make a whole copy of the document once than many copies

of a part of the document. Also, partial markup item situation is eliminated as well.

Comparing the cycles per byte speedup from the XmlContentTok(...) (under Func↑)
and the whole program (under Full↑), 2-cycle difference is observed. Since all modification

are made in the XmlContentTok(...), one assume the speedup would only come from that

function. However, the original Expat processes a three line character data with six passes,

whereas the BitStreamScan version processes it with only one pass. The less passes reduces

the function call and branching in the doContent(...), which leads to the 2 cycles improve-

ment. The same files with all newline characters removed are re-tested and the result shows

in table 5.5. The difference between Full↑ and Func↑ (under Full↑ − Func↑) is eliminated.

What factors have influence on the degree of the speedup? The speedup under %Full↑
suggests that the speedup has a negative relationship with the markup density. However,

arwiki.xml does not follow the rule since it has a higher markup density and speedup. It

is because dewiki.xml has more percentage of reference over file size than arwiki.xml, 4.8%

for dewiki.xml and 2.0% for arwiki.xml. Compare to other average length in Table 5.2, the

average length of reference is much smaller, so the performance gain from parsing reference

is much smaller. Therefore, markup density is good as a general indicator, but the average

length of markup item, text item and reference along with their percentage over file size is

CHAPTER 5. PERFORMANCE COMPARISONS 39

much accurate indicator of the degree of the speedup.

Chapter 6

Conclusions and Future Work

6.1 Conclusion

Extensible Markup Language (XML) has been popular with recording publishing informa-

tion and web services because of its textual human readable format, simplicity and generality.

However, machine cannot directly understand XML documents. It requires a middle ware,

an XML parser, to interact with XML documents. Since the size of XML documents can

be large from a few bytes to gigabytes, the performance of XML parsers becomes more and

more critical as the size of XML documents grows. Expat does perform better comparing

to the other parsers, but it significantly slower than Parabix. One of the major advantages

of Parabix is parallel bit stream technology.

It is a good idea to embed parallel bit stream technology into Expat so that it can

perform better. The project looks into the source code of Expat and identifies where and

how Expat processes XML document content. The byte-at-a-time parsing strategy of the

original Expat is replaced with parallel bit stream technology.

The experiment result clearly shows that Expat with parallel bit stream technology gains

speedup over the original Expat. In general, the degree of the speedup goes up as markup

density decreases. More accurately, the degree of the speedup depends on XML document

characteristics including the number of reference, and the average length of text item, tag

and attribute name, and attribute value.

40

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 41

6.2 Future Work

Currently, parallel bit stream technology is only applied to XML document content. Later,

it can be applied to document type definition (DTD) but the performance gain should be

small because XML documents normally have no DTD or a fairly small number of DTD.

The parallel bit stream technology used in this project is version 1.0. Currently, the

version 2.0 is under development. The overhead of generating lexical item streams is even

smaller. Also, some well-formedness checking is embedded into lexical item streams. The

version 2.0 should improve the performance more.

Bibliography

[1] Apache2.0. http://httpd.apache.org/docs/2.2/ja/developer/thread safety.html.

[2] Welcome to the Development Home of Parabix - World’s Fastest XML Software.

http://parabix.costar.sfu.ca/.

[3] Development History. http://www.w3.org/XML/hist2002, November 1996.

[4] Extensible Markup Language (XML) 1.1 (Second Edition).

http://www.w3.org/TR/xml11/, September 2006.

[5] Extensible Markup Language (XML) 1.0 (Fifth Edition).

http://www.w3.org/TR/2008/REC-xml-20081126/, November 2008.

[6] FastParser. http://wiki.services.openoffice.org/wiki/FastParser, February 2008.

[7] bitlex.h. http://parabix.costar.sfu.ca/browser/trunk/src/bitlex.h, February 2010.

[8] Expat(XML). http://en.wikipedia.org/wiki/Expat (XML), March 2010.

[9] Glossary of Unicode Terms. http://unicode.org/glossary/, January 2010.

[10] UTF-8. http://en.wikipedia.org/wiki/UTF-8, March 2010.

[11] XML. http://en.wikipedia.org/wiki/XML#cite note-Cover pages list-4, April 2010.

[12] xmlparse.c.

http://expat.cvs.sourceforge.net/viewvc/expat/expat/lib/xmlparse.c?view=markup,

February 2010.

[13] xmltok impl.c.

http://expat.cvs.sourceforge.net/viewvc/expat/expat/lib/xmltok impl.c?view=markup,

February 2010.

42

BIBLIOGRAPHY 43

[14] Ken Herdy Cameron, Rob and Ehsan Amiri. Parallel bit stream technology as a founda-

tion for xml parsing performance. presented at international symposium on processing

xml efficiently: Overcoming limits on space, time, or bandwidth, montral, canada, au-

gust 10, 2009. In Proceedings of the International Symposium on Processing XML Effi-

ciently: Overcoming Limits on Space, Time, or Bandwidth. Balisage Series on Markup

Technologies, volume 4 (2009) doi:10.4242/BalisageVol4.Cameron01.

[15] Robert D. Cameron. BOM Profiler. http://parabix.costar.sfu.ca/.

[16] Robert D. Cameron, Kenneth S. Herdy, and Dan Lin. High performance xml parsing

using parallel bit stream technology. In CASCON ’08: Proceedings of the 2008 confer-

ence of the center for advanced studies on collaborative research, pages 222–235, New

York, NY, USA, 2008. ACM.

[17] Robert D. Cameron and Dan Lin. engine.h.

http://parabix.costar.sfu.ca/browser/trunk/src/engine.h.

[18] Clark Cooper. Benchmarking XML Parsers.

http://www.xml.com/pub/a/Benchmark/article.html?page=1.

[19] Clark Cooper. Using The Perl XML::Parser Module.

http://www.xml.com/pub/a/98/09/xml-perl.html.

[20] Clark Cooper. Using Expat. http://www.xml.com/pub/a/1999/09/expat/index.html,

September 1999.

[21] Bob DuCharme. Documents vs. data,schemas vs. schemas. In XML 2004, Washington

D.C., 2004.

[22] Kwaclaw Fdrake. Expat XML Parser. http://sourceforge.net/projects/expat/.

[23] Guha. XML in Mozilla. http://www.mozilla.org/rdf/doc/xml.html.

[24] F. Yergeau P. Hoffman. UTF-16, an encoding of ISO 10646.

http://www.ietf.org/rfc/rfc2781.txt, February 2000.

[25] F. Yergeau P. Hoffman. UTF-16, an encoding of ISO 10646.

http://unicode.org/faq/utf bom.html#UTF32, February 2010.

BIBLIOGRAPHY 44

[26] W.P. Petersen and P. Arbenz. Simd, single instruction multiple data. In Introduction

to Parallel Computing: A practical Guide with Examples in C, page 85, the United

States, 2004. Oxford Universitt Press.

[27] Sourceforge.net. The Expat XML Parser. http://expat.sourceforge.net/.

[28] Jon Stokes. SIMD architectures. http://arstechnica.com/old/content/2000/03/simd.ars,

March 2000.

