

Performance Analysis of RIP, EIGRP, and OSPF using OPNET

Don Xu and Ljiljana Trajković

Simon Fraser University
Vancouver, British Columbia
{donx, Ijilja}@sfu.ca

http://www.ensc.sfu.ca/~ljilja/cnl/

Roadmap

- Introduction
- Dynamic routing protocols overview:
 - Routing Information Protocol (RIP)
 - Enhanced Interior Gateway Routing Protocol (EIGRP)
 - Open Shortest Path First (OSPF)
- OPNET models of routing protocols
- Simulation scenarios
- Simulation results
- Conclusions
- References

Introduction

- Routing is the process of selecting paths in a network
- Routing protocols are key elements of modern communication networks
- Interior Gateway Protocols (IGP): within an Autonomous System (AS)
 - RIP, EIGRP, and OSPF
- Exterior Gateway Protocol (EGP): between ASs
 - Border Gateway Protocol (BGP)
- Metrics: cost, bandwidth, maximum transmission unit (MTU), packet delay, and hop count
- OPNET Modeler was used to compare performance of RIP, EIGRP, and OSPF

Dynamic Routing Protocols

- Dynamic routing protocols:
 - an important role in today's networks
 - router dynamically advertise and learn routes
 - determine available routes and identify the most efficient routes to a destination
- Advantages of dynamic routing protocols:
 - better scalability and adaptability
 - less administrative overhead
 - capability to maintain failure or topology change
- Distance vector (DV) vs. link state (LS) routing:
 - short distance vs. the best path
 - DV routing protocol: RIP, IGRP
 - LS routing protocol: EIGRP, OSPF, and IS-IS

Routing Information Protocol (RIP)

RIP:

- distance vector routing protocol
- using UPD port 520
- maximum hop number: 15
- distance metric: number of hops
- exchanged every 30 seconds
- convergence time: 30 to 60 seconds
- less power and memory
- suitable for all types of routing devices

Enhanced Interior Gateway Routing Protocol (EIGRP)

- EIGRP (Enhanced Interior Gateway Routing Protocol):
 - CISCO proprietary routing protocol
 - Diffusing Update Algorithm (DUAL)
 - Metrics: reliability, MTU, delay, load, and bandwidth
 - Three tables:
 - neighbor's table
 - topology table
 - routing table
 - Loop-free and fast convergence

Open Shortest Path First (OSPF)

- Open Shortest Path First (OSPF):
 - Publicly available
 - Uses Link State algorithm:
 - topology map at each node
 - route computation using Dijkstra's algorithm
 - Link State Advertisement (LSA)
 - Link State Database (LSD)
 - Scalabe and has faster convergence
 - More complex, processor intensive, and increased memory demands

OPNET Models of Routing Protocols

- OPNET 14.0A
- Network:
 - five subnets connected with PPP DS3 (44.736 Mbps)
 - subnets: Cisco 7200 routers, 3600 switches, Ethernet server, 100BaseT LANs

OPNET Models of Routing Protocols

- Six simulation scenarios
 - Subnet1 and Subnet5 fail at 300 s and recover at 500 s
- Application configurations
 - Four applications:

Scenario name	Routing protocol	Failure link	Fail time	Recovery time
RIP no fail	RIP	N/A	N/A	N/A
EIGRP no fail	EIGRP	N/A	N/A	N/A
OSPF no fail	OSPF	N/A	N/A	N/A
RIP	RIP	Subnet1-5	300 s	500 s
EIGRP	EIGRP	Subnet1-5	300 s	500 s
OSPF	OSPF	Subnet1-5	300 s	500 s

Email	High load
НТТР	HTTP 1.1, heavy browsing
Video Conferencing	15 frames/s, 128x240 pixels
Voice	IP telephony and silence suppressed

Simulation Scenarios: (Network Convergence & Routing traffic)

Without failure

- 1. Network Convergence: EIGRP is the shortest, OSPF is the longest
- 2. Routing traffic: RIP is the smallest, OSPF is the highest

With failure

- 3. After failure, NC: EIGRP is the shortest, OSPF is the longest
- 4. After failure, RT: RIP is the smallest, EIGRP is the highest

Simulation Scenarios with failure: (Ethernet delay & Email upload response time)

Ethernet delay:
 EIGRP is the lowest
 RIP the highest

 Email upload response time:
 OSPF is the shortest before failure and the highest after recovery

Simulation Scenarios with failure: (HTTP page response time & Video packet delay)

- HTTP page response time:
 OSPF is the lowest
 RIP is the highest
- Video conferencing packet delay:
 OSPF is the lowest
 RIP is the highest

Simulation Scenarios with failure: (Voice packet delay)

Voice packet delay:
 RIP is the lowest, OSPF is the highest

Analysis of Simulation Results

RIP

- better in voice packet delay
- simple routing protocol and less protocol traffic
- slower convergence time

EIGRP

- better in network convergence, routing traffic, and Ethernet delay
- less CPU and memory and short Convergence time
- only using for Cisco

OSPF

- better in HTTP page response time and video conferencing delay
- little bandwidth without change
- fast converge, better for large network
- more complex

Conclusions

- Routing protocols are key elements of communication networks
- Use OPNET Modeler as a powerful tool for network planners
- Design various scenarios and topologies
- Simulate within specific terms an metrics
- Analyze the performance of RIP, EIGRP, and the OSPF
- Select the most suitable routing protocol
- Optimize network operation efficiency

References

- S. G. Thornier, "Communication service provider's choice between OSPF and IS-IS dynamic routing protocols and implementation criteria using OPNET simulator," in *Proc. Second International Conference on Computer and Network Technology (ICCNT)*, Bangkok, Thailand, Apr. 2010, p. 38–42.
- S. G. Thornier, "Dynamic routing protocol implementation decision between EIGRP, OSPF, and RIP based on technical background using OPNET Modeler," in *Proc. Second International Conference on Computer and Network Technology (ICCNT)*, Bangkok, Thailand, Apr. 2010, pp. 191–195.
- B. Fortz, J. Rexford, and M. Thorup, "Traffic engineering with traditional IP routing protocols," IEEE Communications Magazine, vol. 40, no. 10, pp. 118–124, Oct. 2002.
- A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, "Netscape: traffic engineering for IP networks," *IEEE Network Magazine*, vol. 14, no. 2, pp. 11–19, Mar. 2000.
- Cisco, Enhanced Interior Gateway Routing Protocol [Online]. Available: http://docwiki.cisco.com/wiki/Enhanced_Interior_Gateway_Routing_Protocol.
- H. Newton, Newton's Telecom Dictionary 24th Edition. New York: Flatiron Publishing, 2008, p. 683.
- B. Fortz and M. Thorup, "Optimizing OSPF/IS–IS weights in a changing world," IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 756–767, May 2002.