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Abstract 

In the context of the Anti-de Sitter / Conformal Field Theory correspondence we consider 

the Berenstein-Maldacena-Nastase (BMN) sector of the large-N Super Yang-Mills theory 

and demonstrate explicitly the correspondence of four-impurity operators therein to 

known states in string theory on the pp-wave background obtained as a Penrose limit 

of Ads space. In the corresponding gauge theory we calculate matrix elements of the 

dilatation operator in the BMN operator basis. These matrix elements are found to 

coincide with those of the light-cone string Hamiltonian, which is computed using the 

string field theory vertex in the pp-wave background. Our results are in agreement with 

others' results obtained using gauge-theory three-point functions. 

We next solve perturbative superstring theory on the Nappi-Witten background, 

obtaining the bosonic and fermionic spectra, and find that supersymmetry can be pre- 

served in the Penrose limit. Our results indicate that the high-energy sector of little 

string theory, being holographically dual to  the string theory which we solve, retains a 

supersymmetric spectrum. We perform a semiclassical analysis of strings in the Nappi- 

Witten metric and find that the relationship between energy and momentum coincides 

with the known result for a flat background. 



In the context of Vacuum String Field Theory (VSFT), we put forth some ideas as 

to  how a distinction might be made between 'background7 D-branes, which are encoded 

explicitly in the formulation of split-string field theory, and 'string-field' D-branes, which 

correspond to solitonic lump solutions. 

We use the geometrical surface-state formulation of VSFT to  investigate tachyon 

fluctuations about certain lump solutions, called sliver states, and thereby calculate 

their tensions. We perform this analysis both with and without a background B-field, 

and are able to  reproduce the standard string-theory results for the ratios of D-brane 

tensions. 

We investigate tachyon fluctuations about another state known as the butterfly. As 

would be expected for a D-brane, the equation of motion derived for the tachyon field 

corresponds to the requirement that the quadratic term in the string-field action vanish 

on-shell. We begin a calculation of the tension of the butterfly and conjecture that this 

too will coincide with the standard D-brane expression. 
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Chapter 1 

Strings and Duality 

1.1 Introduction 

String theory has now been around for many years, having first been put forward in the 

late 1960's as a theory of strong interactions. Despite being replaced in this regard in 

the early 1970's in favour of phenomenologically successful QCD, string theory due to its 

ever-increasing richness and depth has remained an active field of study. The motivation 

since that time has been the hope that it will lead eventually to  a consistent 'theory of 

everything', by which is usually meant a unification of quantum field theory and gravity. 

Very early on it was realised that string theory contained in its spectrum a massless spin- 

two particle, which could be interpreted as the graviton. With the advent in the 1970's 

of superstring theory by Wess and Zumino and the GSO projection of Gliozzi, Sherk and 

Olive, a description of fermions was brought to light and the problem of tachyons set to  



rest.' The use of earlier ideas of Kaluza and Klein led to  compactification and acceptance 

that the critical dimension of ten or 26 was not necessarily in conflict with nature. It was 

found in the 1980's that the number of ways in which string theory could be formulated 

was limited, and type I, IIA, IIB, and the two heterotic theories emerged as the five 

separate string theories which seemed t o  exhaust the possibilities. A beautiful field 

theory of strings was constructed by Witten in 1986, which although technically difficult 

in terms of computation, provided an underlying conceptual framework for string theory 

and paved the way for ideas about background independence and the origin of geometry. 

More recent and more rapid progress in the 1990's showed that string theory is not, after 

all, a theory of strings alone; Polchinski's discovery of D-branes enabled non-perturbative 

studies of string theory and led t o  the application of non-commutative geometry to  D- 

brane worldvolumes. Maldacena formulated the AdS/CFT correspondence, bringing 

the idea of holographic duality to  centre stage in string theory and showing that gauge 

theories and string theories were not entirely different entities, but shared the same 

degrees of freedom. Not only were the five known string theories found to  be related 

by an intricate web of dualities, but it is conjectured and believed that all five-string 

theories are also dual t o  eleven-dimensional supergravity, and that all of these six are 

specific limits of the parent M-theory. Progress in the last few years has been spurred on 

by these developments; Vacuum String Field Theory (VSFT) was formulated following 

the conjecture by Sen in 1999 that D-branes could decay via tachyon condensation, 

'Seldom is there only one solution to a problem; tachyons are not considered a 'problem' in Vacuum 

String Field Theory, and fermions may appear in other ways [I]. 



while another recent accomplishn~ent has been the investigation of AdS/CFT beyond 

the supergravity limit using the Penrose limit and Berenstein, Maldacena and Nastase's 

identification of large R-charge operators in Yang-Mills theory with specific string states 

in the dual theory. It has thus come to  pass that the visionary ideas of 't Hooft in 

the early 1970's about string and gauge theory duality have found concrete expression, 

and that the gauge theory of QCD, the original usurper of the strong interactions from 

strings, may indeed be contained in a string theory. In concluding this brief historical 

account, the reader is referred to the the classic text by Green, Schwarz and Witten 121 

and to  the more modern exposition by Polchinski [3]. 

This thesis documents contributions to  string theory made by the author in col- 

laboration with Taejin Lee, R. Parthasarathy, R. C. Rashkov, K. S Viswanathan, and 

Y. Yang. In chapter 2 we overview the ideas of AdS/CFT and specifically the Penrose 

limit of this correspondence in which string theory may be solved, leading to  BMN gauge 

theory and the identification of impurity operators as the duals of string states. Chapter 

3 is based on [4] in which we investigate four-impurity operators within this framework 

and compare with results from string field theory. In chapter 4 we solve string theory 

in the Nappi-Witten background, which is a Penrose limit of an NS5-brane metric; this 

theory is expected to  be dual to  a sector of Little String Theory. This work is contained 

in [5]. In chapter 5 we shift gears somewhat and present an overview of Vacuum String 

Field Theory. In introducing string-field D-branes we exhibit some of our ideas from 

[6] on representing explicit D-brane backgrounds before embarking on an analysis of 

D-brane tension using the sliver state in chapter 6, based on [7]. Chapter 7 follows with 



an investigation of tachyonic fluctuations about the butterfly state, based on [8]. Since 

we began above with a brief summary of the past, we conclude the thesis with a look 

toward the future in chapter 8, where we discuss where some of the developments related 

to  work in this thesis might lead. 

In the remainder of chapter 1 we get some exercise with our notation and conventions 

and provide some short summaries of stringlgauge dualities, AdS/CFT, BMN gauge 

theory and Little String Theory, readying the reader for chapters 2,3 and 4. We then 

summarise some aspects of Cubic String Field Theory and comment on Vacuum String 

Field Theory, in preparation for chapters 5, 6 and 7. 

1.2 Large-N Gauge Theory and Strings 

It was ' t  Hooft who first perceived that there should be a connection between non-Abelian 

gauge theory and strings. Perturbative field theory involving an expansion in powers of 

the coupling constant was understood as a way of dealing with interactions, but 't Hooft 

had the ingenious idea of considering a gauge theory with, say, U(N) symmetry and for 

large N performing an expansion in powers of 1/N. [9, 101 

It was identified that in a large-N gauge theory the quantity X = g& AT, now called 

the 't Hooft coupling, was the proper quantity to treat perturbatively in the usual way; 

in writing down Feynman diagrams the number of loops corresponds to the power of 

A. Each diagram requires a minimum-genus surface on which it can be drawn without 

overlapping propagators, and the genus h of this surface corresponds t o  a factor of 

N-2h. This comes about as follows. Examination of the Yang-Mills Lagrangian for 

5 



fields in the adjoint representation reveals that in Feynman diagrams, each propagator 

will bring with it a factor of g;, = X/N, while each vertex will produce the inverse, 

NIX. I t  is also clear that each contraction of gauge indices produces a factor of N.  

Since the adjoint representation is a matrix field, we think of the propagator in the 

standard 'double-line' notation, where each line corresponds to one index. Following 

such a line around a given diagram, eventually we will be led back to the beginning 

and write a factor of N since such a closed loop represents an index contraction. Now, 

we view each of these closed index loops as tracing around the edge of a single face 

of a simplical-complex decomposition of a Riemann surface with F faces in total. We 

identify the propagators as the edges which border these faces, and denote their number 

by E. Finally, the discretised surface will have V vertices which simply correspond to 

the interaction vertices. The factor associated with such a diagram is, according to the 

above discussion, 

where x = V + F - E is the Euler number of the Riemann surface. For closed, oriented 

surfaces, x = 2 - 2h, and we see that a given quantity C in large-N Yang-Mills theory 

may be written as a double expansion 

where C h , ~  are the expansion coefficients. The power of N in front depends on the 

quantity being considered; a vacuum amplitude and a correlator will have different values 

of c .  In summary, we see in eqn.(l.2) that large-N gauge theory may be formulated as 

a double perturbative expansion: a loop expansion in X and a genus expansion in 1/N2. 

6 



Now, this begs comparison with the case of string theory. Heuristically, one can 

see that  given some complicated mesh of propagators and vertices forming a Feynman 

diagram, it will correspond in the above-mentioned way to a Riemann surface of some 

genus, and this might bring to  mind a string interaction diagram in which the same 

surface represents the worldsheet. A genus-one scattering diagram in gauge theory would 

correspond to a genus-one worldsheet endowed with vertex operators in string theory, 

and this identification would persist for higher-loop contributions in the gauge theory a t  

the same genus. 

This intuitive picture of associating a worldsheet of genus h with a mesh of gauge-theory 

propagators a t  genus h is compelling, but it it non-trivial to promote it to  a precise 

relationship. This was done in 1997 by Maldacena [ll] by considering string theory in a 

specific context. He considered a background of D3-branes and came to  the conclusion 

that type IIB string theory on Ads5 x S5 is precisely dual to 4-dimensional N = 4 Super 

Yang Mills theory, which is a conformal field theory [ll, 12, 131. The worldsheet theory 

is interacting as the background is curved; the worldsheet coupling of the string theory 

is 1,/R where R is the A d s  radius and 1, is the string scale. The relation to  the gauge 

theory is 

We see from this that the AdS/CFT correspondence is a strong/weak duality and that  

the perturbative region of each theory is mapped to  the the strong-coupling regime of 



the other. This makes the still-conjectured duality between strings on Ads and Super 

Yang Mills theory very interesting and potentially powerful, but also difficult to  study. 

The first tests of AdS/CFT were performed by considering the low-energy supergrav- 

ity limit of string theory, suggested in [12]. Correlators of supergravity fields may be 

projected onto the boundary of the anti-de Sitter space and related to  correlators in the 

Yang Mills theory, which may be thought of as living on this projective boundary. Since 

the SYM theory is a conformal theory, correlators can be found exactly and compared 

with those found from the string theory. 

More recently it has been possible to  study the AdS/CFT correspondence beyond 

the supergravity limit; in [14] Berenstein, Maldacena and Nastase identified a sector of 

the Yang Mills gauge theory dual to  string theory on a Penrose limit of Ads space. 

1.2.2 Plane-Waves and BMN Gauge Theory 

The notion of a tangent space underlies Riemannian geometry; identifying a point, one 

may construct a tangent space a t  that point and express the metric in terms of a curva- 

ture expansion about this flat space. The natural extension of this concept of a tangent 

space and curvature expansion is the Penrose limit. To obtain the Penrose limit of a 

geometry, one first identifies a geodesic and then a similar curvature expansion may be 

performed about this line 1151. The resulting metric is known as a plane-wave metric, 

and in some cases a 'plane-parallel wave7 or pp-wave metric [16]. It has been shown 

that string theory is generically soluble in pp-wave backgrounds when formulated in the 

light-cone gauge 117, 18, 19, 20, 21, 22, 231 and this led to the realisation by Berenstein, 



Maldacena and Nastase that string modes in these backgrounds could be identified pre- 

cisely with a certain sector of Yang Mills theory. The limit involved on the Yang Mills 

side of the correspondence is slightly different from the usual 't Hooft large-N limit. 

Berenstein, Maldacena and Nastase [14] considered a particular Penrose limit of 

Ads5 x S5. Since under the full AdS/CFT duality string theory on this space is dual to 

the full N = 4, d = 4 Super Yang Mills theory, this limit on the string side must corre- 

spond to a specific 'BMN limit7 of the Yang Mills theory. The S5 symmetry manifests 

itself as an SO(6) R-symmetry in the gauge theory, and the so-called BMN sector on 

the gauge theory side was found to  consist of operators with large charge under some 

U(1) subgroup of this R-symmetry. These BMN operators are dual to string states. 

Anomalous conformal dimensions on the gauge side translate into light-cone energies in 

the string theory; impurities inserted into these operators correspond to added oscillator 

degrees of freedom. 

This leap in understanding led to  greatly increased interest in AdS/CFT, as prior 

progress had largely been limited to the supergravity limit. Now, proper string states 

could be considered and curvature corrections to the Penrose limit on the string side 

could be expressed as 1/ J corrections in the dual gauge theory, where J is the R-charge 

and is dual to  the angular momentum. 

In chapter 2 we will explain AdS/CFT and the BMN limit in further detail, making 

use of BMN operators in chapter 3 in our investigation and comparison with string field 

theory results. 



1.2.3 Little String Theory 

As mentioned in the last subsection, string theory may be solved in general in pp- 

wave backgrounds, and as a starting point anti-de Sitter space (or the anti-de Sitter 

supergravity solution) is not the only choice. In particular, another background of 

interest is the NS5-brane background, whose Penrose limit is the Nappi-Witten metric. 

Little String Theory is a six-dimensional theory which sports 'stringy' properties 

such as T-duality and a Hagedorn density of states. Although it is not known how to 

formulate such a six dimensional theory directly, since there is no known string theory 

with a critical dimension of six, LST does have a holographic description: String theory 

on the NS5-brane background is dual to LST on the NS5-brane worldvolume. 

Taking a Penrose limit on the string side of this duality brings the NS5-brane metric 

to  the Nappi-Witten form, while on the LST side it isolates the high-energy sector of 

the theory. The holographic description of LST motivates our calculation in chapter 2 of 

the string spectrum in the Nappi-Witten background in chapter 4. The aforementioned 

high-energy sector of LST must have a spectrum dual t o  this, and must also retain the 

supersymmetry, since we find that this is unbroken in the pp-wave limit,. 

1.3 Strings and String Fields 

Most of the progress in understanding string theory has been made using worldsheet 

formulations of the theory; the dynamics of a string are governed by a two-dimensional 

theory living on its worldsheet. This 2-d conformal field theory then leads to amplitudes 



for configurations on Riemann surfaces of vertex operators, defining S-matrix elements. 

As is well recognised, this is rather different from the procedure used to perform S- 

matrix calculations in field theories. Generically, in a field theory there is a quadratic 

part to  the action whence can be derived a propagator and then the higher-order terms 

in the action are used to define interaction vertices. The resulting Feynman rules are 

used to  calculate scattering amplitudes. In string theory we start in some sense with the 

Feynman rules, or even with just the propagator defined by some initial and final states 

a t  either end of a two-dimensional worldsheet, and introduce interactions in a consistent 

way by representing physical states with vertex operators and connecting them with 

such surfaces. The conformal symmetry makes possible explicit calculations since only 

conformally inequivalent surfaces are physically distinct. 

In this procedure one can see several drawbacks from the point of view of a fun- 

damental formulation. One shortcoming is that this construction is perturbative; the 

Feynman diagrams constructed with Riemann surfaces and vertex operators will not cap- 

ture non-perturbative properties. Of course, it may be possible to  define a theory solely 

by its Feynman rules and thereby obtain a construction free from any non-perturbative 

physics, but given the remaining drawbacks of a worldsheet formulation mentioned be- 

low, this is not desirable. To mind come D-branes (solitons), dualities, vacuum structure 

and background geometry as physical properties which may not be understood or con- 

sidered without a t  least acknowledging that there exists some sort of theory for which 

the worldsheet calculation framework constitutes the 'Feynman rules'. 

Another deficiency in the worldsheet formulation of string theory is that one begins 



with a background geometry. This may be something like flat space or a plane wave 

where string theory is soluble or it may be a more complicated curved background like 

anti de Sitter space where the worldsheet theory is highly non-linear, but changes to  the 

background are supposed to  be encoded in the graviton modes that arise in the string 

spectrum. Although the background should be a solution t o  the appropriate low-energy 

supergravity theory, it is not otherwise derivable from the string theory point of view. 

It has not been possible to  formulate a worldsheet description of string theory in some 

more general sense which is not dependent on this geometry. Consistency is obtained via 

the following: String theory a t  low energies corresponds to  supergravity, and solutions to  

supergravity may be found. These are then suitable backgrounds on which to  formulate 

perturbative string theory. At least in principle, one must be able to  describe explicitly 

how a fundamental theory gives rise to  and interacts with the background geometry 

non-perturbatively. 

Finally, combining the above two points, a second-quantised theory of strings is 

desirable in order t o  describe multi-string states. String theory is defined on a space of 

single string states. This is insufficient since coherent states of strings should underlie 

supergravity background geometries, and D-branes should be expressible in a concrete 

way in terms of string solitons. 

Cubic string field theory was introduced by Witten nearly 20 years ago [24] and has 

been successful in rectifying the above shortcomings of the worldsheet formulation. 



1.3.1 Cubic String Field Theory 

In this section we provide a brief summary and introduction to  Witten's open string 

field theory, setting out our notation and conventions. The theory was first introduced 

in [24] and a supersymmetric version was then given in [25]. In these two papers Witten 

initially gave an abstract algebraic formulation which led Gross and Jevicki to  devise an 

explicit operator construction [26, 271. 

Let A be the space of string fields. We will refer to elements of A in an abstract way 

for the moment, and afterwards discuss more explicit formulations. A is taken to  be a 

graded algebra with grading G,  the ghost number. The associative product on A ,  

is called the star product. Under this product the grading is additive. There is a 

differential Q on A which on single-string states acts as the BRST operator of usual 2-d 

worldsheet string theory which computes the cohomology of the Virasoro algebra; 

Q is of course nilpotent, Q2 = 0, and is a derivation with respect to the star product; 

and G(Q) = 1. There is an operation called integration on A ,  

which is distributive with respect to  addition. The integration is graded-cyclic, 



and the integral of a Q-exact state vanishes, 

as does the integral of any state of ghost number other than 3; 

S Q = 0 when GQ # 3. 

The action is given by 

where g is the dimensionless string coupling. The term with the differential Q is to be 

thought of as a kinetic term, while the cubic term encodes the interactions. The action 

is invariant under the gauge transformation 

for any string field A E A. To see this, one can 'integrate by parts,' since Q is a derivation 

and Q = 0. The action (1.11) gives rise to the string-field equation of motion 

Although this equation of motion was presented in 1986 by Witten, we remark that still 

no explicit classical solution has been found; the difficulty arises from the complicated 

structure of the Q operator. 

Point particles classically are objects which may occupy any point x in a manifold 

M. A point-particle field theory involves functions on this space, so that a field is a 

function on M. Since a classical string may be described by its embedding x where 
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x : [0, ;rr] t M, it is natural to define a string field as a functional on the space of 

such embeddings &. In fact, we must define a string field to be a map from the space 

of matter and ghost embeddings to the complex numbers. In this way, a string field 

is a functional of the worldsheet fields. In order to regain conformal invariance in the 

usual way on-shell, we must also accommodate the other worldsheet fields, the ghosts; 

A string field is then a functional @[x; c; b], where x is the string embedding and c and 

b are the ghost fields. We will in this section omit Lorentz indices and write simply x 

when referring to the embedding function whose values are xp(a),  with a E [0, TI .  This 

structure may be extended to superstring field theory [25] but we will not develop any 

need for it. In the calculations we perform in chapter 5 and beyond, will not need to 

deal explicitly with the ghost degrees of freedom, so that we may think of a string field 

as solely a function of the string embedding, Q : E (C. In the present discussion, we 

retain the ghosts for completeness, thus 

where sc,b denotes the space of ghost embeddings for the c and b fields. In addition, it has 

been found convenient to bosonise the ghosts, replacing the fermionic ghost coordinates 

b and c with a single bosonic coordinate $. This bosonisation procedure and many other 

aspects of the ghosts are exhibited in [28]. 

This explicit representation of the string-field algebra [29, 301 may be concretely 



written as follows. Integration is represented as 

x (a )  f o r O < a < n / 2  
where y(a)  - > 

x ( n  - a )  for n /2  5 a  5 n .  

with the star product given by 

x ( a )  for 0  < a  5 n / 2  
where z (a)  = 

y(a)  for n /2  5 a  5 n  

The identity field is 

I [ x ] =  l--J 6 ( x ( a ) - x ( n - a ) ) . .  (1.17) 
O<u17r/2 

In the above it is conspicuous that a midpoint has been chosen in order to deal with the 

two halves of the string. Although this formulation of the star product is not invariant 

with respect to reparametrisations of the embedding, it has been claimed 124, 251 that 

the Q operator takes care of this and produces a theory which is indeed insensitive to  our 

choice of midpoint [31]. This was verified explicitly in the operator formulation which we 

discuss shortly. We refer the reader also to 132, 331 for a further-refined Moyal-product 

formulation of the star product, and also to  [34]. 

Although we have not included ghosts explicitly in the above, the bosonised ghost 

q5 behaves almost exactly like the matter embedding x  with one exception; in the star 

product, there is a 'ghost insertion' a t  the midpoint. Witten's original formulation of 

the star product involves a field theory on a surface which is flat near three boundaries 
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which are endowed with a string-embedding boundary condition (much like the surface 

states we define later in chapter 5). The integrated curvature of this surface provides an 

additional ghost factor, and when the surface is 'contracted' so that the string boundaries 

coincide, that factor appears concentrated a t  the midpoint. The reader is referred to  

the original paper by Witten [24] for details of this construction, and t o  [28] for details 

of bosonised ghosts and the midpoint insertion. 

Construction of a continuum expression of the Q operator is very tedious and proba- 

bly is not the best way to  investigate the theory. In considering quantisation, anomalies 

must be understood and controlled so that the string-field algebra is faithfully repre- 

sented; a continuum formulation such as we have written is unwieldy for this purpose 

and a operator description, first constructed by Gross and Jevicki 126, 271 has been found 

to  be more appropriate. 

We begin by defining the state space; to every string functional Q we associate a state 

I*). We may use the position-embedding single-string basis {lx)) where ( X I  y) = 6[x - y] 

t o  relate the two, so that  

The integration operation corresponds to taking the inner product with the identity 

state, 

So far this amounts to  a translation of notation, but in the state formulation we may now 

express operations using oscillators a and at familiar from string theory in the following 

way. 



The string field Q is a functional of the embedding, and it can just as easily be 

considered as a function of the Fourier components of this embedding; Q[x, c, b] = 

and 

The ghost number is given by 

and the Virasoro generators are 

and 

The BRST charge is given by 

where the combined zero-central charge Virasoro generator is defined by 

In the following discussion of basis and vertex states, we disregard the ghost modes. 

Although they may easily be included in the formulation, and indeed must be, we may 



simplify the discussion somewhat by leaving them out, and as we mentioned above, this 

structure will not be required for our purposes. The interested reader is referred t o  

the papers [26, 271 for 'ghostly' details. The coordinate and momentum modes may be 

written in terms of oscillators, so that 

The string-field basis state may now be written 

1 1 
11) =  XI) [ - 1 ( ~ ~ - 2 1 ~ )  - i h ( a t / E - ' x )  + l ( a t a t i ]  Ii), 

where we have used the vector notation lx) and la) to  denote quantities with components 

xn and a1  with n = O...oo,  and the matrix E is given by 

In the above expression, In) is the vacuum state. The commutation relation [a,, a:] = 

6,, along with consequent relations (the upper label p denotes an exponent) 

t P - -  6 a ~ - l  [am,anl - P mn n 

t [a,, exan] = -Xhnexan 

[aL, exan] = -Xbmnexan 

and 



may be used to show that lz) is an eigenstate of the 2 operator with eigenvalue x, the 

embedding function. Thus 

Inner products correspond to a combination of star products and integration, 

where the vertex squeezed state IVn) - Vn @:=, is an element of the product Fock 

space of n strings. The operator representation of the star product * we denote by *. 

The identity state is given by 

where Cmn = (-)mb,n. We have already seen that Vl = I. V2 is given by 

where C is the same as in eqn.(1.37), and now upper indices on the oscillators indicate 

in which single-string space they act. Gross and Jevicki also derived higher vertex states 

[26, 271, such as 

-L(atiluiilati) 
V 3 = e  2 (1.39) 

where the 'Neumann matrices' U2j  are given by (for an analysis of these matrices, see 

P5I) 



and 

These matrices have the properties 

Finally, X is defined by 

and satisfies 

x=xT=-cxc , x 2 = 1 .  

All higher vertex states may be expressed in terms of V3, since it may also be used 

t o  compute string-field star products, 

Such products are associative and can thus be used t o  build up and vertex state (V,). 



Squeezed states are especially simple to  work with in the operator formalism. To go 

back and forth between the functional and state formulation for such states, we may use 

the following correspondence. A squeezed state of the form 

is described by the string functional 

Clearly this relationship can easily be inverted. The string wave functional of the ground- 

state is obtained by setting S = 0, 

In the operator language, the action (1.11) is written 

1 9 
S = --(QIQQ) - -(*I*  * Q). 

2 3 

The preceding analysis and formulae apply to  a purely bosonic formulation in which 

the ghost degrees of freedom have been ignored. One may not simply disregard the 

ghosts, and therefore this would not constitute a valid formulation of string field theory 

were it not for a famous conjecture by Sen [36]. 

1.3.2 Sen's Conjecture; Tachyons and Vacuum String Field 

Theory 

Bosonic string theory has a tachyon mode, and traditionally this has been viewed as 

a severe drawback of the theory, signaling a misidentification of the vacuum. This 

22 



viewpoint has been significantly broadened by Sen's conjecture [36] that  unstable D- 

brane configurations collapse into stable configurations via condensation of the tachyon. 

In particular, the D25-brane background of open bosonic string theory is expected to  

condense into a non-perturbative tachyon vacuum [37, 381. The study of string theory 

near this properly identified tachyon vacuum has been termed vacuum string field theory, 

and it has a number of properties which make it much simpler to  deal with than regular 

cubic string field theory. In VSFT the usual BRST operator Q, whose cohomology classes 

represent physical states in the full theory, is replaced by a new operator Q which operates 

only on ghost degrees of freedom and has trivial cohomology [39]. Therefore there are 

no perturbative physical states in VSFT, and moreover due to  this simplification it is 

possible t o  find classical solutions to  the string-field equation of motion [40, 41, 42, 431. 

Vacuum String Field Theory [43] has undergone significant development since Sen's 

conjecture, with more recent papers dealing with the so-called rolling tachyon field. In 

Chapter 5 we will review VSFT in more detail and in Chapters 6 and 7 we will deal 

specifically with two solutions to  VSFT, the Sliver and the Butterfly. 



Chapter 2 

In this chapter we review briefly the ideas behind the AdS/CFT correspondence and 

the Penrose/BMN limit. In an effort to  make this thesis self-contained, this is meant to 

prepare the reader for the treatment of four-impurity BMN operators in chapter 3 and 

the quantisation of NSR strings on a pp-wave in chapter 4. 

2.1 Maldacena's Conjecture 

Working with black brane solutions in supergravity and D-branes in string theory Mal- 

dacena was led to his conjecture [ l l]  that S U ( N )  N = 4 d = 4 Super Yang Mills theory 

was exactly dual to  superstring theory on Ads5 x S5.  We here present a summary and a 

few details of this correspondence. For a full treatment, the reader is encouraged t o  enjoy 

the original papers by Maldacena [ l l ]  and Witten [12] and to consult the comprehensive 

review [13]. 

AdS/CFT is an example of a holographic duality. It  had been understood for some 
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time that any quantum theory which includes gravity should exhibit holography duality 

144, 451. One way to motivate this is via the Bekenstein entropy bound 1461. In a 

gravitational theory, a black hole may form, and typically will have an entropy given 

by the area of its event horizon. In black hole formation, involving the collapse of 

some quantity of matter, the entropy is not expected to decrease. This means that 

the region inside the event horizon could not have had higher entropy than the area of 

its boundary, and this is expected to apply to any particular volume in such a theory; 

the number of degrees of freedom in a gravitational theory scales not with the volume 

considered, but with the area of the boundary. It is thus conjectured that all the degrees 

of freedom of a gravitational theory can be understood as 'living on the boundary'. 

Before Maldacena7s conjecture, a concrete example of this was not known. Anti-de Sitter 

space has a projective, flat boundary at  spatial infinity. The statement can therefore be 

made that any quantum gravity theory on AdsdS1 should be expressible in terms of a 

boundary theory on d-dimensional Minkowski space. 

Let us describe a little about the Yang-Mills theory. N = 4 is the maximal number 

of supercharges for the case d = 4. In addition to the gauge fields the theory has 

four fermion fields and six scalars, all in the adjoint representation. The Lagrangian is 

completely determined by supersymmetry. There is an SU(4) R-symmetry which rotates 

both the six scalars and the four fermions. The theory is exactly conformal, and the 

conformal group in d = 4 is the finite-dimensional S0(4 ,2 ) .  

If a string theory is to be dual to this theory, it must share these symmetries; the 

easiest way to ensure this is as follows. The string theory must be in ten dimensions, 



so i t  is natural to begin with the background Ads5 x S5. The isometry group of Ads5 

is S 0 ( 4 , 2 ) ,  matching the conformal group on the boundary, and the isometry group of 

S5 corresponds to the Yang-Mills R-symmetry, since SU(4) N SO(6). Remaining is the 

U(N)  symmetry, which may be accommodated in the string theory using an appropriate 

background of N D-branes. The supersymmetry must also map in some way to the string 

theory, and we remark here that the introduction of D-branes breaks (at least, depending 

on geometry) half of the supersymmetry. A Type I1 string theory has both left- and 

right-moving worldsheet degrees of freedom, and the supersymmetry is split between 

these independent fields. The insertion of a D-brane introduces the possibility of open 

strings, for which the left- and right-movers are no longer independent, implying that 

the maximal supersymmetry is half of what it was with no D-brane. 

At low energies, string theory is represented by supergravity, and Dp-branes then 

correspond to  black pbrane solutions. Black pbranes are called black because they 

possess event horizons. They are sources for RR-form potentials; a p-brane couples to  a 

p + 1-form potential A(P+'), with a p + 2-form field strength F('+~) = dA(pS1). 

A specific supergravity solution with N units of RR-flux sources by a flat black p- 

brane may be found by beginning with the ten-dimensional supergravity action, imposing 

flat geometry in p dimensions and imposing spherical symmetry in the remaining 10 - p 

directions. The condition 

where the integration is over a spatial 8-psphere centred on the p-brane, is the condition 

that the p-brane sources N units of RR flux. 



After solving the supergravity equations of motion, the resulting metric contains an 

extended singularity, which is the black pbrane  itself. This singularity rnay or may not 

be hidden by an event horizon, as determined by parameters which may be adjusted. 

The case where the singularity and horizon coincide is called the extremal case, and in 

particular preserves half the supersymmetry, whereas deviations from the extreme case 

preserve less. This is commensurate with the above remarks on the supersymmetry- 

halving by D-branes. 

Now, in string theory, a single Dp-brane is a source for a single unit of flux for a 

p + 1-form gauge potential; a stack of N coincident D-branes will produce both the N 

units of p + 1-form flux needed to  match the black p-branes, and the U(N) symmetry 

needed to match the Yang-Mills symmetry. This D-brane configuration carries the same 

charge and exhibits the same supersymmetry as the black p-brane considered above. 

The conceptual leap is to see that the low-energy gravitational black pbrane  and the 

string description as a stack of D-branes are two complementary descriptions of the same 

physical object. 

Considering N coincident D3-branes, the near-horizon geometry is then Ads5 x S5 

and the low-energy dynamics on the worldvolume is described by a U(N) gauge theory 

with N = 4 supersymmetry. The radius of curvature of Ads depends on N ,  so that when 

N is large the radius of curvature is also large, and the flat-space limit appears when 

N + m. The perturbative field-theory description of the object is valid when g,N is 

small, so that the field theory is weakly coupled but the radius of curvature, being small, 

means that  the low-energy gravitational pbrane  description is inapplicable. Conversely, 



when the radius of curvature is very large compared with the string scale, g,N is large, 

and the pbrane description is a good one. In this regime, the gauge theory is strongly 

coupled and so does not admit a perturbative description. The correspondence is thus 

between the strongly-coupled gauge theory and the near-horizon gravitational theory of 

the black brane. 

In this way, Super Yang-Mills theory is supposed to provide a non-perturbative de- 

scription of string theory on an Ads background. Since the holographic principle tells 

us that the boundary theory should encode all the physics in the bulk, including grav- 

itational effects, any excitation including black holes is expected to be mirrored in the 

boundary theory, so long as the space is asymptotically Ads. 

Since it has not been possible to verify the AdS/CFT correspondence directly, dif- 

ferent special cases have been considered and elucidated. Initially, most analyses were 

carried out in the supergravity limit; there is a well-defined prescription to relate a field 

theory on Ads to the conformal boundary theory. Suppose $ is a supergravity field in 

the bulk Ads space. There will be a partition function in which $ is the integration 

variable, 

Since Ads has a boundary, this is more carefully written as a function of the boundary 

In the boundary CFT, there will be some operator (3 which couples to the above bound- 



ary field as a source, so that the CFT generating functional is 

The correspondence states that these are t o  be identified: 

This identification has been used extensively to compare correlators in the Ads and 

Yang-Mills theories. Although AdS/CFT is a strong/weak duality, two- and three-point 

functions on the gauge side are fixed completely by conformal invariance and so its 

being strongly coupled is not a hindrance. Other tests have been performed involving 

identification of multiplets and states on either side, other symmetries of the spectrum, 

and Wilson loops. More recently, it has become possible t o  investigate AdS/CFT beyond 

the supergravity limit. 

2.2 The BMN Limit 

The AdS/CFT correspondence is supposed to  be an exact duality, and it is highly 

desirable to  gain understanding by subjecting it to  tests beyond the supergravity limit. 

In doing so, not only do we build our confidence in the duality itself, which after all is 

still a conjecture, but we understand theories and structures better on either side. 

As discussed briefly in section 1.2.2, Berenstein, Maldacena and Nastase identified a 

specific limit of AdS/CFT in which impurity operators on the Yang-Mills side could be 

identified with string states [14]. 



On the string side of the correspondence, a Penrose limit of Ads space is taken, 

producing a plane-wave background[47]. On the Yang-Mills side this corresponds to a 

specific sector of the theory in which both N and J, the R-charge, are taken to  infinity, 

holding N / J 2  fixed. This is known as the BMN double-scaling limit[48, 49, 50, 51, 52, 

53, 541. Nice reviews have been given in [55] and [56]. To leading order in gGMN/ J2 the 

light-cone gauge energy of a string state is given by [22] 

where p is the mass parameter of the Ads space, A is the scaling dimension of the gauge- 

theory operator corresponding to  the string state, and J is its R-charge. Writing the 

exact correspondence in terms of operators, the light-cone string Hamiltonian is given 

by 

3CLC/p= D - J (2.7) 

where D is the dilatation operator in the Yang-Mills theory. 

On the Yang-Mills side, one may write down a perturbative expansion in the effective 

t 'Hooft coupling A' = g t M N / J 2  and in the genus-counting parameter g2 = J 2 / N .  The 

gauge theory sports an SO(6) R-symmetry group with fields q5, transforming in the 

vector representation. One picks two of these, say $5 and &, and defines Z = q55 + i$6 

and 2 = q55 - $6, which have plus and minus unit R-charge respectively. The opera- 

tors in correspondence with oscillator string states in this limit are the BMN operators, 

which are products of traces of powers of Z, sprinkled with 'impurities' which consist of 

the other fields [14, 57, 58, 59, 60, 61, 62, 631. We do not try to  list all relevant papers 

here; they are numerous. In the BMN limit, these powers are taken t o  be large and 
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these operators form a basis in which one can investigate the dilatation operator D and 

obtain information about the light-cone string Hamiltonian. Anomalous dimensions of 

these operators correspond to  light-cone string energies [14, 64, 62, 651. Finding anoma- 

lous conformal dimensions amounts to  diagonalising the dilatation operator, and this is 

made non-trivial by operator mixing [51] when non-planar and one-loop contributions 

are considered. Such investigations may also be carried out by considering two-point 

functions [49, 63, 66, 671. 

Here we review the plane-wave limit and the BMN construction in more detail. We 

leave a description of how t o  find the conformal dimensions of operators, using the 

quantum-mechanical system approach 1521, for the next chapter, where we will use the 

gauge theory to  derive interaction vertices in string field theory. 

2.2.1 Plane-wave Geometry 

A Penrose limit may be taken using any geodesic, and so is not unique. The specific 

pp-wave limit used in the BMN correspondence is the Penrose limit associated with 

a geodesic trajectory around an equator of the S5, corresponding to  a string moving 

with large angular momentum in this direction. The large angular momentum in S5 on 

the string will corresponds to  large SO(6) R-charge on the gauge side. The metric of 

Ads5 x S5 may be written 

ds2 = R~ [ - cosh2 pdt2 + dp2 + sinh2 pdfli(ldS) + cos2 0dq2 + do2 + sin2 ~df l ' : (~ ) ]  (2.8) 

where the coordinates t and p belong to Ads space and $J and 0 belong to  S5. R is 

the common radius of both Ads  space and the sphere. To expand about the trajectory 
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0 = 0, with $( t ) ,  we first introduce the coordinates 

and then perform a scaling 

Taking the limit of large R and writing the metric in terms of x', r and y, 

where r and y are 4-d vectors. Combining r and y into one 8-d vector z ,  and introducing 

the mass parameter p by rescaling once more 

we obtain 

ds2 = -4dx+dx- + p2z2dx+2 + dz2 

The metric in eqr(2.13) is that  of a plane-wave and it will be this to  which we refer 

when naming 'the pp-wave limit'. It  represents the metric which a particle or string 'sees' 

when it is boosted to  high angular momentum, traveling in the + direction. Now, the 

context of the above discussion was in standard Ads5 x S5,  but it applies as well to  the 

supersymmetric extension of this space. In the supersymmetric case, the above Penrose 

limit will give rise to a three-form field strength proportional to  the mass parameter p ,  



The energy and angular momentum generators in the present limit are 

E = idt and J = -id$. 

The momenta are defined by p* - a,*, so that 

+ and - 'indices' on p are raised and lowered in the usual way. On the C F T  side, E will 

correspond to  A, the conformal dimension of an operator in Super Yang-Mills theory, 

while J will be the R-charge. 

String theory may be solved in light-cone gauge on the pp-wave background. The 

string action in the metric (2.13) is given by 

where z has eight-components, representing the transverse degrees of freedom, and $ is 

an SO(8) Majorana spinor. Quantisation of this action gives the light-cone Hamiltonian, 

Here, N, are the occupation numbers, including both bosons and fermions. The n < 0 

modes are left-movers while the modes with n > 0 are right-movers. We have not shown 

the details of this quantisation, but it is analogous to  the quantisation we will perform 

in chapter 4. In terms of the pp-wave quantities defined above , we have 



There is a constraint that the total momentum on the string vanish; 

When only the zero modes are excited, the above produces the massless supergravity 

spectrum, as one would expect. Taking the limit p + 0 reduces the metric (2.13) to  a 

flat-space geometry, and the above to a flat-space spectrum. 

Now, we may write 

Since AdS/CFT requires R4 = 7rg&Ncd2, in the large-J limit we have 

2.2.2 Classical Solutions 

Gubser, Klebanov and Polyakov [68] performed a semi-classical analysis of string solitons. 

In this paper they consider string theory in the full Ads5 x S5 background. Although 

the resulting worldsheet theory is rather non-linear, classical solutions corresponding to  

particularly symmetric string motions may be found. These classical solutions sport 

conserved quantities such as energy, angular momentum and spin, and these may be 

considered as large quantum numbers. It is then possible to  relate them to  operators in 

the super Yang Mills theory. The original analysis of [68], which contained calculations 

of three distinct string configurations in Ads5 x S5, has since been extended in various 

ways [69, 70, 71, 711. There are now very many papers on the subject, and we do not 



try to  give a comprehensive list here. In the next section we go into some detail as to 

how perturbative string excitations are mapped to SYM operators. When looking at 

classical solutions on the string side, one may pick out in particular solutions with some 

maximal spin to energy ratio (the leading Regge trajectory). Typically some intuition is 

used for this, and a 'once-folded' string configuration is analysed (the closed string looks 

like a propeller). We perform a brief classical analysis along these lines in section 4.5, 

relating the energy, angular momentum and spin in a classical treatment and comparing 

the relation with that obtained by quantising the theory in a pp-wave background. 

2.2.3 Impurity Operators and String Excitations 

The BMN limit consists of the following. A Penrose limit is taken on the string side, 

giving the geometry (2.13), while on the gauge side gGM is held fixed and small. J2 /N 

is held fixed, while the large-N limit is taken. .A - J is kept fixed and finite, which is to 

say that operators are considered which have large R-charge, but fixed 'defect charge'. 

To derive a the prescription for associating light-cone string states with gauge-theory 

operators, BMN began with the identification 

As mentioned earlier, the quantity Z is defined by 

so that we have chosen the SO(2) subgroup of SO(6) which rotates the 5-6 plane to 

be the R-charge SO(2). The operator tr[ZJ] is the only operator with A - J=O, and 
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so uniquely should correspond to the string ground-state. The normalisation factor 

l/dm is obtained by the consideration of twepoint functions. The next step is the 

representation of string excitations, with which the spectrum can be built from the 

ground state (0, p + ) .  This can be done by inserting impurities into the state tr[ZJ].  

Available for this purpose are the other four scalar fields, gilf=,, four derivatives of 

Z in those directions, DiZ ,  and the eight positive-J components of the gaugino field, 

8 
x;  la=^ . On the string side, excited states are built using the bosonic and fermionic 

transverse oscillators at"' n i=l and gbnl;=, . The identification between string excitations 

and impurities is then as follows: 

This identification is fine as it stands for the zero modes, but it remains to specify 

in general how the oscillator numbers (which we have not written above) are to be 

represented in the Yang-Mills operators. We introduce the notation 

so that the Yang-Mills operator we identified above in eqn.(2.24) is (3 J. To represent an 

operator with h impurities, let us write 

where the q represent impurities, bosonic or fermionic; each is either a 4, DZ or X. We 



then define an 12-impurity momentum basis state by 

This expression warrants some explanation. The total R-charge of the operator has 

been set to Jo, so that  the number of fields inside the trace is Jo + h. The normalisation 

factor in front is again found via consideration of two-point functions. With J (and 

Jo) large, we have replaced the discrete pi with continous coordinates xi = p i / J .  The 

integration domain is an h-dimensional generalisation of a sort of triangle, and is a 

natural choice for a Fourier transform; it may be thought of as an integration over a 

simple h - 1-dimensional cube of side length p = Jo/ J in the coordinates xl , xl +x2,  . . . , 

X I +  x2 + + xh-1, SO that  n, are the momenta with respect to  these coordinates. The 

summation is taken so that we include all operators with cyclically inequivalent impurity 

orderings, which will be different under the trace. We are free to  put the number '1' 

impurity first inside the trace. a' denotes the cyclicity of those impurities which are 

fermionic. 

We can now state the duality clearly: The h-impurity momentum state defined in 

eqn.(2.31) is in correspondence with a string state with h excitations as set out in (2.26), 

(2.27) and (2.28), with the oscillator numbers n l  , nz , . . . , nh-1 and - Ern n,, so that the 

total oscillator number vanishes, satisfying the constraint (2.21). 

Operators of the form (2.31) do not have well-defined conformal dimension to all 



orders. Written in a basis of such operators, the dilatation operator is diagonalised to  

one-loop and planar order. At higher loops and higher genera, there will be operator 

mixing. In chapter 3 we will investigate these operators in the case of four impurities 

and compute order-gz off-diagonal elements of the dilatation operator. These matrix 

elements are in correspondence with amplitudes for three-point functions in the dual 

theory. We make use of the string field theory cubic vertex to  confirm this relationship. 

Other analyses comparing super Yang-Mills matrix elements with the string field 

theory vertex have been performed in [72, 73, 74, 751. Another method is that of con- 

sidering the Yang-Mills operator as a spin-chain [76, 73, 771 and using the Bethe Ansatz 

to  solve it [78]. 



Chapter 3 

Four-Impurity Operators and BMN 

Correspondence 

As discussed in the previous chapter, although the AdS/CFT correspondence repre- 

sents a deep and important relationship between string and gauge theories, it has only 

been possible to test it in certain circumstances where the calculations are tractable. 

AdS/CFT has not been proven, but the evidence uncovered over the last few years has 

convinced most beyond doubt that  it must be an exact and complete duality. The BMN 

correspondence has been a significant step in this understanding. The present chapter 

is based on the four-impurity BMN-limit calculations of [4]. 

3.1 Dilatation Operator and Impurity Basis 

Here we investigate four-impurity BMN operators, using the dilatation operator to  con- 

struct the string Hamiltonian for level-four states. The method we use here, called "BMN 
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Quantum Mechanics" has been used in the two-impurityl791 and three-impurity[80] cases. 

Since there are only four distinct impurity fields, more impurities cannot be considered 

without taking into account the combinatoric effects of repeated impurities; thus we 

complete the analysis of possible distinct-impurity states by considering the maximal 

four-impurity case. Operators with arbitrary numbers of impurities have been considered 

using Yang-Mills perturbation theory[67] in which matrix elements can be extracted from 

three-point functions. This method has been used for various combinations of scalar and 

vector impurities[81, 67, 59, 60, 611 and for the case of two fermion impurities[82]. Our 

results using BMN Quantum Mechanics will be found to  agree with these perturbative 

Yang-Mills computations. Using the perturbative approach it was possible for the au- 

thors of [81] and [67] to  consider an arbitrary number of impurities; from our experience 

with the four-impurity calculation, it seems tedious to consider higher-impurity states 

using the quantum-mechanical method. In contrast, it should be mentioned that since 

in the perturbative approach the three-point function is used to  obtain matrix elements, 

the quantum-mechanical approach may lend itself more readily to  the consideration of 

multitrace states with more than two traces. 

We construct the string Hamiltonian by first diagonalising the dilatation operator 

a t  leading order and planar level, and then using this basis to  write genus-one dilata- 

tion operator elements a t  one-loop order. The calculations, although analogous to  two- 

and three-impurity cases, are very lengthy and tedious in comparison. The resulting 

Hamiltonian, expressed in terms of its matrix elements in the four-impurity state basis 

is expected to  be in correspondence with the three-string light-cone interaction vertex 



calculated in String Field Theory. We calculate this vertex for level-four string states and 

find precise agreement with the gauge-theory calculation; the string interaction Hamil- 

tonian of three string states with a total of four excitations is verified t o  correspond 

t o  the matrix dilatation operator on the gauge-theory side between the corresponding 

four-impurity BMN operators. 

String Hamiltonian 

We wish to  find the string Hamiltonian, given by 

H =  lim (D - J), 
N+oo,N/J2fixed 

( 3 4  

in the basis of states of the form (2.31). As explained in [80, 791 this is not automatically 

Hermitian, so that H found in this way may not be directly interpreted as the string 

Hamiltonian. To remedy this, one begins by defining the inner product using the planar 

free theory, 

( a  1 b)  ( o a  o b )  free, planar. (3.2) 

H is not Hermitian with respect t o  this product, but with respect to  the product defined 

by the full non-planar free correlator 

where S is Hermitian with respect to  the original planar product. A new basis state 

may be defined by the non-unitary transformation 



Now, a hew' Hamiltonian H may be defined by[83, 66, 84, 851 

so that 

is Hermitian in the original basis and should correspond to  the light-cone string Hamil- 

tonian XLC, up to a possible unitary transformation. Now, since (a(S1b) = (alb),,, S 

is just the full non-planar mixing matrix for basis states. Expanding S and H in the 

genus-counting parameter g2, 

and we may write matrix elements of the string Hamiltonian; 

Here, Ho is just the planar part of D2, the dilatation operator at one-loop order while H1 

is the genus-one part of D2. The dilatation operator is given by [48, 50, 51, 86, 87, 88, 891 

where 

Here, rn and n are SO(6) indices running from 1 to 6, 4 = S/6$ and the normal ordering 

symbol denotes that the enclosed &derivatives only act on fields outside it. For operators 
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containing Z and q5i fields (but no 2 fields), the above expression for D2 reduces to 

1 
D2 = : tr([&, 4j][Ji1 Jj] + 2[&, z][Ji, 21 + ?[h, 6j][4il Jj]) : (3.11) 

where i and j run only over impurity fields, that is from 1 to 4. 

In the following we do not consider so-called 'boundary' terms in which the impurities 

are neighbours. In shuffling around impurities in an operator with J fields in a trace, the 

impurities will only end up next to each other on the order of 1/ J of the time. As the 

number of fields in the operators is taken large, these terms become scarce; contributions 

from boundary terms will be suppressed by a factor of 1/J. Taking the continuum limit, 

'next to each other' loses its meaning and it is valid to neglect these boundary terms. 

Keeping the boundary terms makes diagonalisation of D very difficult in a discrete basis, 

but as in the continuum BMN limit they become unimportant we may safely neglect 

them. 

With this in mind we neglect the first term in eqn.(3.11), which always produces 

these boundary states. Next, since the four impurities we consider are distinct, the third 

term may also be neglected, since it contains a double derivative of a single I$ field. Of 

course, this term would have to be kept in the case of more than four impurities, or 

when some of the impurities are the same. 

When dealing with the BMN correspondence, it is convenient to calculate using U(N) 

as the gauge group, rather than SU(N).  The resultant error will be of relative order 

l / N  so that in the large-N limit this is a safe substitution. The fields are in the adjoint 

representation, and we do not write the generators or the group indices; q!~ denotes I$"Ta 

where Ta  are the generators. 



It  will be helpful to  make note of the following contraction identities. 

t r [ l ]  = N ,  

tr[A$] tr[Bq5] = t r  [AB] ("fusion"), 

tr[A$Bq5] = tr[A]tr[B] ("fission"), 

and the complete contractions 

which are easily obtained from the contraction identities; a t  each genus level, which is 

to  say a t  each power of N, there is some number of ways of contracting all the Z fields 

with the 2 fields one a t  a time, using the three identities (3.12)-(3.14). 

3.3 Two Impurities 

BMN quantum mechanics was first used to  investigate two-impurity operators in [79]. 

Based on this paper, we here exhibit some details from such a two-impurity calculation, 

in preparation for the four-impurity case. 

As we introduced in chapter 2, we use the notation 

for a single-trace operator with h scalar impurities. 
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The basis states for two impurity operators with 1 traces are given by 

1-1 

for the case where both impurities share a trace, and by 

j=1 

for the case of trace-sundered impurities. We assign Jo r pl + p2 .  

Using eqn.(3.11) we can compute the action of Ho on these basis states. We find 

and 

j 

The action of Ho on the continuum states defined in chapter 2 may then be read off; we 

have 

where rj = Jj/J and Xi = p i / J  are thought of as continuum variables in the large-J 

limit. 

We see here, and we will see again in the four-impurity case, that the dilatation 

operator, which is essentially the string Hamiltonian, becomes a second-derivative op- 

erator on the position-basis string states. This looks like the Hamiltonian for a simple 

non-relativistic system of two particles (one for each impurity) on a circle. The one- 

dimensional space is S1 rather than R1 since the trace in which the impurities live is 

cyclic. The positions x are the distances between the particles, so that for h particles 
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we have h - 1 independent variables. These observations [52] will also be easy to  see in 

the following four-impurity calculations. 

The momentum basis state which solves this we read off from (2.31), 

ro - x), 

where there is only one term on the right since there are no other cyclically inequivalent 

orderings of the two impurities. We than have the eigenvalues of Ho for our two basis 

states, 

where Ir) and Is) are single-impurity states. 

The matrix elements of H1 and C may then be found in this basis and used to 

construct the string Hamiltonion as discussed in section 3.2. The off-diagonal elements 

of this Hamiltonian constitute interactions between different string states, and have 

been verified to coincide with string field theory calculations using the cubic vertex IV3). 

In [80] this same method was used for three-impurity operators. We perform such a 

computation and comparison in the case of four impurities later in this chapter [4]. 

Now we turn our attention to  Ho. The above procedure involving H1 is a t  the level 

of a genus-one correction, as can be seen from eqn.(3.7), and the off-diagonal elements 

in H I  may be used to  find corrections to  the anomalous dimensions. This was done to  

first and second order in [52] as follows. The correction to  the anomalous dimension 

(or the string energy) for a state la) may be found using standard quantum-mechanical 
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perturbation theory. Writing the Ho eigenvalue of la) as E('), the first-order correction 

is given by 

In [52] this is computed for two-impurity states, along with the next-order correction 

E ( ~ ) .  We comment on these corrections in the four-impurity case in section 3.6. 

3.4 Four-Impurity BMN Operators 

Since there are six &fields and two are used to  define Z and 2, we can accommodate up 

to  four impurities while keeping them distinct. In the present chapter we are interested 

in investigating four-impurity operators; there are five ways of spreading four impurities 

among different traces, so that 1-trace four-impurity BMN operator basis elements may 

be written 

where (3, simply indicates an operator with no impurities, tr[ZP]. We shall use the in- 

dicated labels '4'' '31'' '22') '211' and '1111' as a short-hand way of referring t o  these 



operators. It may be noted that the superscripts in the above, in addition to indicating 

which impurities are present, also denote the order of the impurities. In general, cycli- 

cally inequivalent impurity orderings within a trace produce distinct operators. In the 

case of two impurities there is only one possibility. We write Jo = pl + p2 + p3 + p4 so 

that J = Cj2, Jj  is the total R-charge of the operator. Taking the continuum BMN 

limit J + oo with xi = pi/ J and ri = Ji/ J ,  we now write string states corresponding to  

the above. According to  the map discussed in chapter 2, these string states are 

These states are orthonormal generalisations of the discrete states. Their normali- 

sations may be understood by examining their tree-level planar two-point functions[80] 

which are to  be identified with their inner products. The discrete states (3.28)-(3.32) 

are orthogonal, and give Kronecker S functions when two-point functions are computed. 

These Kronecker S functions combine with factors of J which have been included in the 

continuum states produce 6-functions of x.  There will be a factor of NJ+4 (at the planar 



level) which has been absorbed into the continuum states. We have thus 

1 2 3 4 ( ~ 1 ,  x2,53, x41y1, y2, y3, ~ 4 ) ~ ~ ~ ~  = S(x - y) 

4 
~ 3 1 ~ 1 ,  ~ 2 ,  Y ~ ) ~ ~ ~ I Y ~ ) ~  = b(x - y) 

34 
~ 2 ) ~ ~ ~ j y 3 ,  ~ 4 ) ~ ~  = S(x - y) 

4 
( ~ 4 1 ~ ( ~ 3 1 ~ ~ ( ~ 1 , ~ 2 1 ~ 1 ,  ~ 2 ) ~ ~ l ~ 3 ) ~ l ~ 4 ) ~  = S(x - y) 

4 ( x ~ I ~ ( x ~ ~ ~ ( x ~ I ~  (XI 1 ~ 1 ) ~  1 ~ 2 ) ~ 1 ~ 3 ) ~ l y 4 ) ~  = b(x - y). (3.38) 

Other relative impurity orderings may or may not vanish a t  planar order; one must anal- 

yse the associated two-point function to  determine this. We investgate other impurity 

orderings for the states we need in section 3.4.4. These states are operators in the Yang- 

Mills theory, in the limit of infinitely many fields. We will refer t o  them as string basis 

states, as they are in correspondence with states on the string side of the correspondence 

as well. In the following section we will use these to  define the momentum basis states 

which are directly identifiable as string states via the mapping presented in section 2.2.3. 

As we discussed in section 3.3, the dilatation operator written in this basis will lead us 

to  a string Hamiltonian governing the quantum mechanics of four particles on a circle. 

3.4.1 Matrix Elements of Ho 

Our first step is to  operate with Ho on the discrete basis (3.28)-(3.32). Operating with 

D2 and identifying the terms which do not alter the number of traces, we find 

+ (three other cyclic permutations of abcd), 
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+ (two other cyclic permutations of abc), (3.40) 

+ (abcd + cdab) , (3.41) 

In the continuum limit these become (x123 denotes xl  + 2 2  + 23 ,  etc.) 

- 
A' 34 

- --((axl - + a:,) lxl, x2)121x3, ro - ~ 1 2 3 )  
87r2 

In the above expressions, we have suppressed the factor nj Irj) since it is unaffected 

by Ho. We confirm that the cyclic symmetries in these expressions match the cyclic 

structures of the operators. Once again, Ho acts on the states as four particles moving 

on a circle; they are the four impurities moving within the trace. 



The above eigenvalue equations are solved by defining appropriate momentum-basis 

states[49, 631 as follows. Making use of the string-state formula (2.31) for the cases of 

four-, three- and two-impurity states, we write 

12 3 1 
In;ro - s - t) Is) ltj4 = d m  

while zero-impurity states are normalised as Ir) - 'O(r). Here, O(x) simply denotes fi 

the continuum version of the discrete operator basis (3.28)-(3.32). &abc) denotes a 

summation in which abc takes on each of the six permutations of 123, and similarly for 

x ( a b ) .  That is, included are all cyclically inequivalent permutations of the impurities 

within each operator; the superscripts now indicate only which impurities are contained 

in each trace. Reading them off from the expressions (3.44)-(3.47) for Ho, the above 



momentum states have the energy eigenvalues 

Again, these do not depend on whether or not the states n Irj) are present; Ho will not 

operate on such factors. These eigenvalues may be compared with the energies obtained 

by quantising string theory in the pp-wave background. Expansion of the square-root in 

eqn.(2.23) to  order A' yields the same energies when the same excitations are included, 

according to the map given in section 2.2.3. The momentum states (3.48)-(3.51) are 

orthonormal, so that 

and similarly for the remaining states (3.49)-(3.51). These properties are a consequence 

of the inner products a t  the end of section 3.4. 

3.4.2 Matrix Elements of H* 

We must now calculate explicitly HI and C in the above Ho-eigenstate basis. For clarity, 

we follow the convention of writing H1 = H+ + H-, where H+ increases and H- decreases 



the number of traces when acting on a basis state. 

Upon writing out the matrix elements of H+ and H- we will notice that for matrix 

elements not involving a '4'-state, the calculation effectively reduces to  the case of fewer 

impurities. The matrix elements between our '311, '211' and '1111' states therefore need 

not be considered further, since they correspond to  the three-impurity case already stud- 

ied in [80] or to  the two-impurity calculation of [79]. Moreover, upon careful inspection 

we note that the '22-22' matrix element of H1 simply involves two copies of the '2-2' 

element from the two-impurity case studied in [79]. 

We first calculate the action of H1 on the discrete basis states (3.28)-(3.32) and then 

find the matrix elements of H1 in the momentum basis (3.48)-(3.51). Analogous to  the 

calculation of Ho, we operate with D2 and identify the terms which increase or decrease 

the number of traces. We find 

(3 bcd 

+(three other cyclic permutations of abcd), 



1 -A1 
- a abcd 

J, (';?jJ,-l , P ~ , P C , P ~ + ~  Pa+ J i j ~ b , ~ c . ~ d  

abcd - 
+(3Pa+1rPb,Pc ,Pd+Jz- l  

+(three other cyclic permutations of abcd). (3.59) 

P a - 1  

- abc 

8r2 i = l  
P a - i - l # b , ~ c + l  + ';?--i--1,pb+l,pc 2'pa-i ,pb,pc) o:d'i 

+(two other cyclic permutations of abc), 

- d bca +C ( a : ~ ' i - l ? p b ~ p c , p d + i + l  a p a - i , P b , P c , p d + i  

adbc 
+ C ( ' ; F ~ - l , p a + i , p b , p c + l  - ~ p d - i , p a + i , p b , p c  

+(two other cyclic permutations of abc). 



, then + ( a  * b )  , then + ( c  - d )  . (3.63) 

+(c - d ) ,  then + ( a  tt b) ,  

- cba 
b,pc+i  ' p a - i - l , p b , p c + i + l  

+(c * d ) ,  then + ( a  - b).  (3.65) 



+(I1  other permutations of abcd), (3.67) 

As with the case of Ho, we now write the continuum forms. In order to  save space, 

we will not write out all the permutations, instead using the convention that  in the 

following the permutations must first be carried out, and then xd set to  TO - xabc and 

ad set to zero. We will use abcd = 1234, so that X I ,  xz and x3 are the independent 

coordinates. Since they are unaffected by H+, we have no need of writing the factors of 

nj O(T,) in the expressions for H+. 

We find: 

'4' 

+(three other cyclic permutations of abcd) 



1 

1 ri(ad - &)(oabCd(xa + ril xbl xcl 21) - oabCd(xal xbl xcl xd + ri)) n o(rj) 
i=l j# i  

+(three other cyclic permutations of abcd) (3.69) 

+(two other cyclic permutations of abc) (3.70) 

+(two other cyclic permutations of abc) 

+(a tt c ,b  d),  then + (a  H b) ,  then + (c tt d) 
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+ ( a d  - a,)aCbad(xa - Y ,  xb, xc + y, xd)] n O ( r j )  
j 

+(a H C ,  b H d ) ,  then + ( a  ++ b),  then + ( c  ++ d)  

+(c H d ) ,  then+ (a  ++ b) (3.74) 



+(eleven other permutations of abcd) (3.77) 

We point out that the elements not involving four-impurity states are very similar 

to those calculated in the study of three-impurity states in [80], the only difference 

being that there appears an additional single-impurity state which, like the zero-impurity 

states, is unaffected by H1. As discussed in the beginning of this section, we need only 

consider elements involving '4' states. We now restrict our attention to the novel '4-4', 

'4-31' and '4-22' matrix elements, and express these in the momentum-state basis. 

The '4-4' component of H+ may be obtained from the four permutations of the first 

line of eqn.(3.68). Substituting momentum states and performing the derivatives, this 

may be written 

where Da = % To - a. T ~ - S  Here, we have not yet added states where the impurities 2 ,3 ,4  



are permuted along with the three momenta. We can express this component of H+ in 

terms of the basis state (3.48) by adding these permutations. In this case, this involves 

adding five more terms, in which the impurities 2 ,3 ,4  are permuted, along with the 

momenta n l  , n2, n3 and also the momenta m l  , m2, m3. We postpone this to save space. 

Rearranging so that the x-integrals are innermost, we have 

Performing the x-integrations we obtain 

to  which we still must add the five permutations of ml,2,3 and n1,2,3. After adding these 



and simplifying, our final result for the '4-4' matrix element of H+ is given by 

- -A' 1 7rsnl 7rsn2 7rsn3 
- sin (-) sin (-) sin (-) sin (- 

"-0 "-0 "-0 "-0 

X 
mlDl f m2D2 + m3D3 + m 1 2 3 0 1 2 3  

("-0 - s)DlD2D3D123 
n a  m a  where Da = - - - 
ro ro - s 

where we have taken an inner product from the left. We have rewritten the definition of 

the D symbols here for convenience; in the following, we shall use the notations Da and 

Di differently in each case. We comment that  this expression and the others that follow 

do not leap to  the page quickly; what is described in the preceding paragraph requires 

significant time and care to  calculate. 

The other components of H+ and H- are calculated in similar fashion using the 

continuum forms (3.68)-(3.77). We continue to omit the product nj lrj) of zero-impurity 

states which we omitted in the above, with the understanding that this product may 

appear in each of the following states without affecting the calculation. The '4-4' element 

of H- is found to  be 

- A' 1 7rsm1 r sm2  7rsm3 -- sin (-) sin (-) sin (-) sin (7rSm123)  
27r4 \/- "-0 "-0 "-0 "- 0 

n a ma where D, = - - -. (3.82) 
ro - s ro 



For the '4-31' elements of H+ and H- we find 

-A' -- 1 7rsn1 7rsn2 7rsn3 Tsn123 

27r4 
sin (-) r o sin (-) r o sin (-) "-0 sin (-) r o 

b na mb where Da = - + - 
ro TO - s 

and 

A' 1 7rsml 7rsm2 7rsm3 
- - - sin (-) sin (-) sin (-) sin (7rSm123)  

27r4 7-0 r 0 r 0 r 0 

b a mb where Da = - + -. (3.84) 
ro - s ro 

Finally, the '4-22' elements are 

-A' 1 7rsn1 7rsn2 7rsn3 
- - Tsn123 sin (-) sin (-) sin (-) sin (-) 

27r4 Jm r 0 r 0 r 0 r 0 

1 n a  ml 2 n a  m2 where Da = - + ---- and Da = - + - 
ro ro - s ro S 



and 

- A' 1 rsml rsm2 rsmg - rsm123 sin (-) sin (--) sin (-) sin (-) 
2r4 Jm "-0 r 0 "-0 r 0 

n1 where D! = - 
mb b n2 mb + - a n d D 2 = - + - .  

r o  - s r o  S To  

3.4.3 Matrix Elements of C 

Here we consider matrix elements of C in the momentum-state basis; these are found 

by first calculating simple two-point functions in the original discrete basis and then 

transforming. For the present calculation, we need to  find the matrix elements of C 

corresponding to  those calculated in the previous section for H+ and H-. Since C is 

Hermitian in the momentum-state basis, we do not need to  distinguish between trace- 

number increasing and decreasing parts (which other authors have labeled C+ and C-) 

since these are simply related by conjugation. 

The '4-4' component of C is found by considering the correlator 

In this correlator, other relative impurity orderings contribute only a t  higher order in 

1/N. Consulting eqn.(3.17) we see that  to  genus-one order this is given by 



Taking the continuum limit, we replace p and q with x and y. We arrive a t  the expression 

(Da are defined below) 

where the '4' indicates that we are only, for the moment, interested in the '4'-state part. 

Were we to include the zero-impurity states nj lrj) which we have been neglecting to 

write, we would obtain another term on the right-hand side of eqn.(3.89) corresponding 

to the splitting of one of these states into two such states. Bringing the s-integration 

outside, and performing the x-integrals, a procedure similar to that used to calculate 

the elements of H+ and H-, we obtain 

- 1 ~ s n 1  ~ s n 2  7rsn3 - sin (-) sin (-) sin (-) sin (- 
T4 d w  To To To Tsn123 ) To 

n a ma where Da = - - -. 
7-0 r o  - S 

Using the same method, the '4-31' element may be found from the correlator 



giving 

- 1 7 r s n 1  7 r s n 2  7 r s n 3  
- X s n 1 2 3  sin (-) sin (-) sin (-) sin (-) 

7r4 d m  To To To "-0 

n a  mb where D: = - + -, 
7-0 7-0 - S 

and the '4-22' element from the correlator 

so that 

- 1 7 r s n 1  7 r s n 2  7 r s n 3  
- T s n 1 2 3  sin (-) sin (-) sin (-) sin (-) 

7r4 Jm TO TO TO TO 

n a  ml where DA = - + - 2 n a  m 2  and Da = - + -. 
7-0 7-0 - S To s 

3.4.4 Impurity Orderings 

In the results in the previous section, other impurity orderings may be accommodated by 

considering appropriate permutations of the momenta. All orderings would be needed, 

for instance, in a decay calculation such as that done for three-impurity states in [80], or 

in a perturbative calculation of corrections to the conformal dimensions which are the 
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eigenvalues of Ho, as in section 3.6. In a sum over final states in a decay calculation, 

or intermediate states in a perturbation calculation, all impurity orderings must be 

included. These permutations are found using the definitions of the momentum states 

(3.48)-(3.51). Let I ) a b c d  be any single- or multi-trace state containing the four impurities 

abcd. We wish to find the matrix element of some operator M between this state and 

the '4'-state, 

a b c d ( I ~ l n l ,  n2, n3; T O ) ,  (3.95) 

given that we already have this quantity for the case abcd = 1234; 

To emphasize that on the right-hand side we have included simultaneous permutations 

of 234 and n l ,  n2, n3 in the definition of the basis state (3.48), let us temporarily write 

expression (3.95) as 

abcd (IMlnl, n2,n3;r0)la. (3.97) 

Clearly, since we retain contractions between like impurities, this is the same as 

Now, we have reduced the problem to learning how to manipulate the impurity order 

within the 'ket' state. 

Since the permutations of n1,2,3 are linked to the permutations of b, c, d, it is easy to 

accommodate all orderings with a '1' in the first position; simply setting a = 1 we have 



Now, considering instead b = 1, appearing in the definition of the basis state (3.48) will 

be the factor (it will be sufficient to consider only one of the six terms) 

which may be written with redefined x1,2,3 as 

and we see that the necessary replacement to obtain this from the original state is 

n1 t n2, np t n3 and n3 t -n123. This amounts to 

We can permute a '1' in the third or fourth position to the second by using eqn.(3.99) 

and then to the first position using eqn.(3.102). This gives 

Making use of formulae (3.99), (3.102), (3.103) and (3.104) in eqn.(3.98), the different 

instances of eqn.(3.95) may now be written. For T E S3 and abc = ~ ( 2 3 4 ) ,  



3.4.5 String Hamiltonian 

Now we are in a position to  calculate the string Hamiltonian H, assembling Ho, H I  and 

C using eqn.(3.8). The '4-4' element of the genus-one correction to  H is given by 

which may be calculated either using C and H+ from eqn.(3.90) and eqn.(3.81), or C 

and H- from the conjugate of eqn.(3.90) and eqn.(3.82). It  may easily be verified that 

these give the same result, showing that H is Hermitian as it should be, and serving as 

a check on the calculations. The result is 

na ma where Da = - - -. 
ro ro - s 

Of course, the genus-zero '4-4' component is simply given by Ho in eqn.(3.52). The 

'4-31' element is similarly obtained using C from eqn.(3.92) and H* from eqn.(3.83) or 

eqn. (3.84) to  calculate 

b na mb where Da=-+-, 
ro ro - s 



and the '4-22' element by using eqn.(3.94) and eqn.(3.85) or eqn.(3.86), giving 

1 na ml where Da = - + - 2 na m2 and Da = - + -. 
TO TO - s "-0 S 

With the order-g2 string Hamiltonian now in hand, we turn to the computation of 

the string field theory vertex with which it is expected to correspond. 

3.5 Comparison with String-Field Vertex 

Now, having completed our calculation of matrix elements on the Yang-Mills side, we 

would like to see if we can reproduce these results from the string side. We can perform 

the appropriate computations using string field theory. 

The number of impurities of a BMN operator on the SYM side of the correspondence 

is identified with the number of oscillator excitations of the corresponding state on the 

string side. Light-cone String Field Theory in the plane-wave background has been 

developed in [go, 91, 92, 93, 94, 95, 961, and the Neumann coefficients necessary for 

computations have been found in [97] with further results in [98, 991. 

We shall consider a three-string interaction, with a total of eight oscillator excitations 

distributed among the three strings. A multi-string state with 2k excitations is given by 



where r j  are the string numbers, I j  label the transverse Ads directions (i.e. the impurity 

coordinates), and mj are the oscillator numbers. For our purposes, we set k = 4. 

In the case of our '4-4' interaction, we consider the three-string state 

where excitations are absent for string number two; it corresponds to a zero-impurity 

state. In [58] it is shown how to calculate the interaction vertex V3, as discussed in 

section 1.3.1, between the strings in this state. We find 

where 

where the string frequencies are w(,), = d m .  The a(,) are the fractions of 

outgoing light-cone momentum carried by each string, and in the present case these are 

a(l)  = 1 - s, a(2) = s and a(3) = -1. The Neumann coefficients for the plane-wave 



geometry are given by [97], and we display them here for convenience (m, n > 0) :  

Expanding to  leading order in 1/p, the Neumann matrices become (for the cases we 

need) 

Substituting into our expression (3.117) for the '4-4' string amplitude, we obtain 

n a  m a  where Da = - - -. 
ro ro - s 

Apart from normalisation, this is in complete agreement with the '4-4' matrix element 

(3.110) of the string Hamiltonian H calculated on the SYM side. It  is an impressive and 

satisfying result that the long calculation leading to  the matrix element on the Yang- 

Mills side of the correspondence is indeed able perfectly to  reproduce the interaction 



found using the cubic string field theory vertex. Similar agreement and satisfaction is to  

be found in the other elements which follow. A calculation similar to the above leads to 

which upon substitution of the expanded Neumann matrices (3.124) leads to 

b na mb where Da = - + ----. 
TO ro - s 

Again, this is in perfect agreement with the gauge-theory result (3.111). Finally, we 

calculate the '4-22' interaction 



and find 

rsnl rsn2 rsn3 r S n 1 2 3  
x sin(-) sin(-) sin(-) sin(------) 

To ro To To 

1 n a  m~ 2 n a  m2. where Da = - + - and Da = - + -, (3.129) 
T o  T o  - s T o  s 

agreement with eqn.(3.113) obtains. 

We see that the string Hamiltonian H calculated on the Yang-Mills side for four- 

impurity BMN states reproduces the light-cone string field vertex between four-excitation 

string states. 

3.6 Anomalous Dimension Corrections 

In section 3.3 we mentioned that corrections to  the anomalous Yang-Mills dimensions, 

or what is the same, the string energies, may be found via standard non-degenerate 

perturbation theory as in eqn.(3.27). Here, in the case of four impurities, we may use 

eqn.(3.27) t o  write, for example, the first-order correction t o  the anomalous dimension 

of the '4' state. The summation is then over the various '4', '317, and '22' intermediate 



states: 

where the backslash denotes exclusion. We note that intermediate states differ in their 

impurity orderings now, with the matrix elements obtained using the results of section 

3.4.4. The matrix elements involved are given by equations (3.81) - (3.86). Although 

it was possible in [52] to perform such summation and integration for the two-impurity 

case, here it seems very tedious. 

3.7 Discussion 

We have used the dilatation operator on the gauge-theory side of the correspondence in 

the basis of four-impurity BMN operators to derive an expression for the corresponding 

Hamiltonian on the string side. Four-impurity operators, as in the t w e  and three- 

impurity cases, may be considered to have distinct impurities, and this fact has been 

used to simplify the calculations. Nevertheless, to obtain the gauge-theory matrix ele- 
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ments and transform to  the momentum-state string basis requires many tedious pages 

of calculation. This is rewarded by the precise agreement between these and the matrix 

elements obtained directly from the string field theory vertex in the plane-wave back- 

ground. Our results are also in agreement with the perturbative gauge theory analysis 

in 167, 811. One could follow the analysis presented in 1801 and calculate decay widths 

using our matrix elements of H, although it seems that  only special cases may be treated 

analytically. 

Our analysis gives further evidence of the correspondence of BMN operators to string 

oscillator states, and demonstrates the use of BMN Quantum Mechanics for the maximal 

number of four different scalar impurities. It  would be interesting to  understand in detail 

what the effect of repeated impurities would be, and to  extend our calculations explicitly 

to  consider more than four. In this case, there will be more possible contractions of the 

gauge-theory operators, since there will no longer be a unique contraction of the impurity 

fields. These calculations could be compared against the arbitrary impurity-number 

calculations of [67, 811. 



Chapter 4 

String Theory in Nappi-Witten 

Background 

4.1 Introduction 

Of recent interest have been consistent six-dimensional non-local theories which do not 

contain gravity, but which exhibit stringy properties such as T-duality and a Hagedorn 

density of states [loo]. These so-called Little String Theories (LSTs) [101, 102, 103, 1041 

are thus interesting examples of theories which are 'in-between' field theories and string 

theories, and are expected to shed light on both the interpretation of non-local field 

theory and string theory. A very complete review of all the main points of little string 

theories has been given in [105]. We here mention a few basic properties; for further 

detail the reader is referred t o  that review and references therein. 

Generically, little string theory is defined by first considering some background of 



NS5-branes in type-I1 string theory. Taking a limit in which the string coupling g, 

goes to  zero while the string mass M, is held fixed leads to  a free theory in the bulk, 

decoupled from a theory living on each NS5-brane; this is the LST 1106, 1071. The string 

scale M, = 1/1, is the only defining parameter for the LST, and is important in the 

following way. NS5-branes are obtained from M-theory 5-branes by compactifying on 

a transverse circle S1. The resultant string theory with NS5-branes exhibits T-duality 

with respect to  this circle, and an NS5-brane wrapping the circle of radius R will map in 

the dual theory to  an NS5-brane wrapping a circle of radius l/RMZ. Now, from either of 

these theories can be defined a little string theory by taking the limit mentioned above, 

and the LST will inherit the T-duality from the string theory. This is an indication that 

the resulting theory will be non-local on the scale of M,, and it is somewhat surprising 

that a non-gravitational theory can exhibit such T-duality. 

In type-I1 theories, NS5-brane solutions break half of the supersymmetry. Ten- 

dimensional supersymmetry, dimensionally reduced to  a six dimensional world-volume, 

will result in a chiral theory with (2,2) supersymmetry. The NS5-brane solution may 

break this in either of two ways, resulting in either (2,O) or (1,l) supersymmetry for 

type IIA or IIB string theory, respectively. Considering N NS5-branes, at low energies 

LST must reduce t o  a superconformal (2,O) theory on N M5-branes for the first case, 

or a (1,l) U(N) gauge theory in the second, with GYM = l /Ms. 

LST has a holographic description [108], which turns out t o  be useful for explicit 

computations of, for instance, the spectrum and the density of states. This description 

involves first considering a background of M5-branes, in the secalled linear dilaton 



form,[l08] in which g, goes as the exponential of some coordinate 4. 4 t oo is then the 

'boundary,' where the limit g, + 0 obtains, and a holographic LST may be constructed 

in this way. In particular, the string theory may be used to  calculate the spectrum 

of states in the LST, and, for example, correlation functions in the (2,O) LST may be 

obtained from supergravity. 

Although many theories are expected t o  be holographic, the AdS/CFT correspon- 

dence is still the most tested and trusted example. String theory on Ads5 x S5 is dual to  

d = 4, n/ = 4 SYM theory. Taking the Penrose limit of the 'left-hand side' of this duality 

is equivalent to  selecting a specific sector of large-dimension and large-charge operators 

in the SYM theory [14]. As explained in chapter 1, string theory on an NS5-brane back- 

ground corresponds to  LST on the NS5-brane worldvolume. Generally it is not possible 

t o  solve string theory exactly in an NS5-brane background, but solubility obtains in the 

pp-wave limit. It  was first identified in [I091 that taking a Penrose limit in this case will 

reduce the NS5-brane metric to  the Nappi-Witten form [110, 111, 112, 1131, and this in 

turn corresponds to the high-energy sector of the LST [114, 1151. 

With this correspondence in mind, we wish in the present paper t o  consider type-I1 

string theory in the Nappi-Witten background. The bosonic case has been analysed in 

detail in [20], and we here treat the full supersymmetric theory. In light-cone gauge, the 

theory is found to  be completely soluble, and the Hamiltonian is calculated, giving the 

spectrum. The high-energy sector of the LST corresponding to  the parent theory on the 

NS5-brane metric is expected to  share this spectrum. In particular, this means that  a t  

least this sector of the LST must be supersymmetric. 



In the following section, we summarise some aspects of the NS5-brane geometry of 

interest and its pp-wave limit. In section 4.3 we perform the above computations and 

obtain the spectrum. In section 4.5, we compare the resulting energy-spin relation with 

that  obtained by semi-classical methods along the lines of [69]. 

4.2 Type IIA NS5-brane background and pp-wave 

limit 

In this section, we briefly review some important aspects of NS5-brane background 

geometries. For further detail, in the context of little string theory, the reader is referred 

to  the comprehensive review [105]. As we mentioned, the type IIA NS5-brane background 

may be described as an M-theory 5-brane transversely compactified on S1. From 1116, 

1081, we see that  the supergravity background corresponding t o  N coincident extrenlal 

M5-branes is 

with 

where the llth dimension is the compact S1 with radius Rl l ,  and 1, is the 11-dimensional 

Planck length. x is six-dimensional. Defining new scaled coordinates by 



the metric becomes 

with 

' is the 'coupling constant' for the theory on the brane, which is decoupled where 1, mg 

from the bulk theory. 

For U << ft, the summation in eqn.(4.5) may be approximated by the n = 0 term; 

in this case the metric (4.4) assumes the form of Ads7 x S4.  on which string theory is 

dual to  the six-dimensional (2,O) SCFT. [I081 

Conversely, for U >> h, the summation in eqn.(4.5) effectively becomes an integration 

[108, 1071. The metric of N coincident extremal NS5-branes is then obtained; (up to a 

conformal factor and without the dyfl term) 

ds& = dx2 + A (u) (du2  + u2dn:) , (4.6) 

e2@ = g , 2 ~  (U) (4.7) 

with 

We see that  the energy scale f i l s  is important here. The background possesses an 

asymptotically flat region U >> @L connected to  a semi-infinite flat tube $ << U << 
1; 

a, with the topology of R+ x S3 x R6. In this case, rather than a SCFT, the linliting 
1; 

theory on the brane will be little string theory [108]. 



We now turn our attention to the pp-wave limit of the above geometry. The near- 

horizon limit of the NS5-brane metric (4.6) can be written in the linear dilaton form 

d i '  + cos2 0 d i 2  + do2 + sin2 0d02 + c) + dx:, str U2 (4.9) 

where x = (t,x,), p = 1 , .  . . ,5 ,  and t = nlSt. Introducing new coordinates and 

keeping 4 and xu unchanged, 

By taking the large-N limit and keeping the rescaled coordinates fixed, [114] 

where XA = (y, xp) and dx: = dx2 + x2d02. This is the Nappi-Witten background [ I l l ]  

which was studied in the context of a WZW model generalising Poincar6 symmetry. 

Here we have also a time-dependent B-field. The gauge transformation 

with X i  = ;ueijzj takes the B-field to 

We can relate the light-cone energy and momentum to the original energies and momenta 

as measured in the linear dilaton metric [114]. Recalling that d, = &ai, 



We will study string theory in the N -+ cc limit, with E N a, J N N ,  while keeping 

a1,~ - J finite. 

4.3 a-model and spectrum 

In this section we apply light-cone quantisation to the NSR string in the Nappi-Witten 

background. The worldsheet fields in the light-cone gauge are as follows. The bosonic 

fields are xi with i = 1,2 ,  xA with A = 1...6, u and v. The corresponding fermionic 

fields, which are real Majorana worldsheet spinors, are $*, $u and $". We use the 

conventions p" = (p :) , pr = (g ;) , p3 = pupr, qrr = -vuu - - -1, erU = +I ,  and 

4 = $+pi, with the components of a spinor labeled as $ = ($;). 

We begin with the NSR action in a curved background [117, 1181, 

where T = d B  is the field strength for B, and D denotes the covariant derivative defined 

by 

D&/" = a,$, + r;,a,xU$? (4.17) 

This action is worldsheet supersymmetric for arbitrary k and arbitrary background. The 

existence of spacetime supersymmetry of course depends on the background, as well as 

the value of the parameter k. We will find in the Nappi-Witten background considered 

next that we must have k = 47r to produce a supersymmetric spectrum. 
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The original Nappi-Witten background [ I l l ]  is specified by the metric 

xi2 
A2 ds2 = GIWdxPdxY = dx + dxi2 - 2dudv + (b - -)du2 

4 
(4.18) 

and the B-field 

In the above metric, we shall be interested in the case b = 0; it does no harm to  consider 

b # 0 for now, and in fact the b-dependence will turn out to  be inconsequential, merely 

adding a constant term to  the Hamiltonian. Substituting this background, the action 

(4.16) becomes 

where we have used the 

taken over values of both 

index notation xilA to  indicate that  the summation is to be 

i and A. Varying this action with respect to 4" and v leads 

to  the equations of motion 

p . d g U = O  and d 2 u = 0  

so, a s  in [2] (pg.211) we may choose the light-cone gauge 



where we have now made the choice 1, = 1. Imposing this gauge, and also gap = qap, 

we obtain the light-cone gauge action 

. itt 

This action may be transformed to a massless form when the constant k is chosen to be 

47r. We 

The 

remark further on this point in section 4.5. 

canonical momenta conjugate to the x and fields are 

The field u is gauged away, while the term ptdTv may be dropped as it is a total time- 

derivative. The Hamiltonian is thus 

Varying the light-cone-gauge action (4.23) to obtain the equations of motion, 

pt2 k 6xi + ((a - -1s. - - p + e a  xj 
4 47r 23 a , 

The equations of motion for the i-labeled coordinates may be decoupled by defining 

xf = x' 5 ix2 and +* = 5 z $ ~ ,  giving 



and 

kP+ 
,3 . a$* = ~i-,3',3~$*. 

87r 
(4.31) 

Expanding in modes, we find that the frequencies for bosons and fermions match only 

when k = 47r. Adopting this choice, we have 

with X: = x t t  and pA = pAt,  and 

In the fermionic sector, we have 

and 

where d t  = d t t  and dt = dtt. The summation in the fermionic sector may be over either 

integer or half-integer values of r ,  corresponding to  the Ramond and Neveu-Schwarz 

sectors; for half-integer values, the zero modes are to be omitted. 
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We impose canonical quantisation relations 

which in terms of oscillators become: 

[ x t  , pB] = dAB 

A B t  - A  - B t  
[an,  am ] = [an , am ] = &,JAB {d,A,d ,~~} = {@,2:t} = &JAB (4.40) 

k *t  [a,, a, ] = [a;, a;t] = an, {d:, d:'} = {d ; ,  (i:t} = 

The mode expansions and commutation relations for the bosonic fields agree with those 

found in [20] for the case of the bosonic string. 

The Hamiltonian may now be written 

d + d ) ,  (4.41) 

where r = n or r = n + 1/2 for the Ramond or Neveu-Schwarz sectors, respectively. 

As dictated by supersymmetry, both the zero point energies and divergent terms cancel 

among bosonic and fermionic sectors. 

Defining bosonic and fermionic number operators Nn = aka, + 2iL2in and NT = 

dLdT + $&, we have as our final expression (setting pA = 0) 



where the same convention is used for the index r as in the previous expression. Super- 

symmetry is clearly evident in this expression; this is significant in that it demonstrates 

that  the corresponding states of the dual LST must also fall into supersymmetric mul- 

tiplets. 

Writing this in terms of the original energy and momentum with eqn.(4.15) we can 

relate the energy to  the angular momentum. Defining = ~ / f i  we have 

where 

We emphasize here that N does not depend in the A-indexed modes. We see from this 

expression that states for which N = 0 will exhibit the standard relation between energy 

and angular momentum, while states with N # 0 shift E and J, 'trading' one for the 

other a t  order 1 1 0 .  

In the following section we shall compare this result with the relation obtained via 

semi-classical analysis of a rotating once-folded string [69]. 

4.4 Semi-classical Analysis 

As we discussed in section 2.2.2, a semi-classical method can be used, which allows for 

more general computations than those done in the pp-wave limit [68]. In Ads5 x S5, the 

semi-classical method has been used to  first order, with a point-like string boosted in 

an S5 direction, to  reproduce the result obtained via a pp-wave computation such as in 
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the previous section [69, 701. Here, following this example, we apply the semi-classical 

method to  the case of the NS5-brane and compare with our pp-wave results. 

We start with the linear dilaton metric 

where t = nl,i  and 

Using the bosonic string action 

with the above metric, the equation of motion may be obtained; to find a classical 

solution, we make the Ansatz 

which describes a string stretching along the directions p and U, rotating around the 4 

and cp directions. The action (4.48) becomes 



and the resulting equations for p and U  are 

with the constraint 

Ut2 
T++ = T-- = - N K ~  + pt2 + wZp2 + N -  + N y 2  = 0. 

U 2  

The solution is 

where 00 is an integration constant. 

We consider the once-folded string configuration, with the string split into four seg- 

ments; for 0 < a < ~ / 2 ,  the function p ( a )  increases from 0 to its maximal value po. 

Then, 

Calculating the energy and angular momentum, 



The relationship between E, S and J is thus 

Imposing the periodicity condition 

we find w = 1. Thus we obtain 

In the case 6'0 = 0 this expression for the energy of the string undergoing the motion 

described above is the same as in the case of a flat background [69]. 

Identifying the order n = 1 oscillator state with the spin S, as explained in ref. [69], 

we may apply our BMN formula (4.43) (in the bosonic sector) to  obtain (reinstating a') 

where N1 refers to  the n = 1 contribution to  N. In the large-N limit this coincides 

with the relation (4.62). The reader is also referred to  [119, 1201. We conclude that  the 

string theory in the pp-wave limit of the NS5-brane background is dual to  a sector of 

LST which has states in correspondence to states of this free worldsheet theory. 

4.5 Discussion 

In the Penrose limit, we are considering energy of order fia'l,  in the sector with 

J N N. In the Ads5 x S5 case, the pp-wave light-cone worldsheet action contains a 
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'mass term'. The mass term x2/2 makes it different from string theory in flat space- 

time. In the present case of an NS5-brane, the action (4.23) contains both a mass term 

and antisymmetric B-field. These two terms can be removed from our action by the 

following field redefinition with the choice k = 47r, which also is the choice which ensures 

space-time supersymmetry. We redefine 

the action becomes 

with the boundary conditions 

xA (o + 27r) = xA (o) , A = 1,.  . . , 6 ,  

Z (o + 271) = einp+ z (o ) , 

a+ (o + 2a) = feinp+'pf+ (o) , 

(o + 27r) = f e-"p'@- (o) . 

We end up with a free worldsheet theory very similar to  that of NSR strings in flat 

spacetime. The difference in this case is that two of the fields have twisted boundary 

conditions. This is, of course, what we found in the direct calculation of previous sections. 



Chapter 5 

VSFT, Tachyon Condensation and 

Tachyon condensation, Sen conjectured, would begin with a D25-brane background and 

lead t o  a non-perturbative vacuum previously unidentified in string field theory. Analyses 

could then be made of the theory near this vacuum. For a thorough discussion of many 

aspects of VSFT, the review 1431 is recommended t o  the reader. In this chapter we 

review some of the developments leading t o  the resulting vacuum string field theory. 

These developments underlie the work done in chapters 6 and 7 on D-brane tension and 

tachyon fluctuations. 



5.1 Sen's conjecture and Vacuum String Field The- 

ory 

Sen in 1999 made the conjecture [36] that condensation of the tachyon field in bosonic 

string theory [I211 would lead to  some final state with D-branes. Interest in string field 

theory had waned somewhat in the years before, partly due to  the difficulty of analysing 

a theory where although the action (1.11), gauge symmetry (1.12) and equation of 

motion (1.13) were known, no classical solution could be identified, obstructing the use 

of perturbation theory and providing no example to  solidify intuition. 

As we mentioned in section 1.3.2, the key to  solubility in Sen's non-perturbative 

tachyon vacuum is the purely ghost nature of the BRST operator Q. Rastelli, Sen and 

Zwiebach [38] identified certain properties the tachyon vacuum is expected t o  have, and 

thereby were able t o  construct the pure-ghost BRST operator, which we will denote 

Q. In particular, in addition to depending only on ghost fields, Q must have vanishing 

cohomology, H4(Q)  = 0, and must be independent of background. That is to  say, Q must 

be independent of the particular conformal field theory used to  define physical states. 

Given the vacuum BRST operator, the string-field equation of motion (1.13) 

admits solutions which are factorisable into matter and ghost parts. Assuming such a 

factorisation 



with @,[XI and Q,[c, b], the equation of motion (5.1) becomes 

The solution to the ghost equation (5.3) is thought to  be universal for all D-brane 

vacua [37, 381. Although a solution is known, this universality means that many proper- 

ties of D-brane vacuum solutions, for example ratios of D-brane tensions, are dependent 

only on the matter solution Qm to eqn.(5.4). For this reason, the ghost sector of the 

theory [122, 1231 will not play a prominent role in the remainder of this chapter. 

5.2 Solution to the Matter Equation of Motion 

Kosteleckg and Potting first found a solution to  the matter string-field equation of motion 

(5.4) algebraically in the form of a squeezed state [40]. Soon after, Rastelli, Sen and 

Zwiebach generalized the solution somewhat to  have Gaussian dependence on the zero 

modes, producing localization in some number p of space-time directions [38]. They 

identified these states as Dpbranes. 

In the operator formulation, the star product of two states is found by means of the 

three-vertex state IV3), as in eqn.(l.51). In [40] a squeezed-state Ansatz was made and 

a form was found satisfying the requirement of star-squaring t o  itself, using this vertex 

operator and some clever techniques of changing squeezed-state bases. (progress has also 

been made with squeezed states in [124].) Here we exhibit the D-instanton state of [38]. 



Using the notation introduced in chapter 1, it is given by 

- -+(atl~Jat) lzl) = e I %  

Here, 

The state IZ1) may be verified to  satisfy the equation of motion. 

5.3 Split-String Formulation 

In [41, 281 Gross and Taylor develop a split-string formalism, first suggested by Witten[24], 

in which the string field is considered as a functional of the embeddings of the 'left7 and 

'right' halves of strings. This method proves useful due to a correspondence between full- 

string wave functionals and operators on the space of half-string embeddings. The star 

product on full-string functionals is thereby mapped to  ordinary operator multiplication. 

In [41, 281 a specific mode expansion of the full- and half-string degrees of freedom is 

used, compatible with the Neumann boundary condition, and demonstrate a solution to  

the string-field equations of motion. This solution is interpreted as a D-instanton. 

5.3.1 Half-Strings 

In this section we introduce the split-string formalism of [41] and exhibit the correspon- 

dence between operators and functionals in such a way that it does not depend on a 
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specific boundary condition or mode expansion. A string state IP) is represented by 

a functional @[XI of the string embedding ~ ( o ) .  We can write the string functional in 

terms of the left and right halves of the string embedding function, defined by 

l o )  = ( )  T ( ) = ( - )  f o r O < o L ~ / 2 .  (5.8) 

Half-string states are thus described by functionals of half-string embeddings h(o). 

Ghosts may be incorporated as in the full-string formalism, bosonised or not. As before, 

we shall not need to  discuss the ghost sector. 

We define the half-string spaces as the spaces spanned by these basis states, and the 

full string space by 

A priori this full-string space has no relation to the full-string space with which we 

started out, aside from containing the same states. The point of the half-string formu- 

lation is that  we may now introduce a new inner product on this space which causes the 

* operation to  take a simple form in terms of operators. We define the inner product 

between half-string states through 

(hlh') 6[h - h']. (5.10) 

We can express the fundamental string operations in terms of half-string functionals as 

follows: Integration is written 

and the star product is given by 



Then the identity is just a delta functional 

To every string 

half-string states, 

I[1, r] = 6[1 - r] .  (5.13) 

functional Q [ x ]  = Q[1, r], we associate an operator $ on the space of 

The following correspondence then obtains between operations with string functionals 

and half-string operators. 

Recalling eqn.(5.4), the matter part of the full-string wavefunction satisfies the equa- 

tion of motion Q * Q = Q. A full-string state satisfying this equation corresponds to  a 

half-string operator satisfying the projection equation 

Such projection operators in the split-string formalism can be classified by their rank r .  

A rank-one projection operator may be written Px = Ix)(xI where (x) is a half-string 

state. Corresponding to x[h] is the full-string functional 



Let us suppose that the rank one projection operator may be represented by a gaus- 

sian functional in the half-string basis and let us find its representation in the full-string 

basis. We write the half-string functional ~ [ h ]  as 

7F12 
x[h]  = exp (- i 1 h(n)  M ( n ,  a') h(a1)dodo' (5.18) 

Since the half-string embedding is related t o  the full-string embedding linearly, the cor- 

responding full-string representation of the rank one projection operator will also be 

given by a gaussian functional, 

where L is symmetric under exchange of a and a'. We write the full-string functional as 

which may be written in terms of half-string degrees of freedom; 

7F12 * 11, r ]  = exp ( - 2 1 dado' [ ~ ( o )  ~ ( o ,  a') l(ol)  + r(of)L(rr - a,  ol ) l (ol )  

Requiring that this represent a half-string projection operator of the form (5.19) and 

eliminating M gives the relations 

L(a,  a')  = M ( a ,  a')  = L(7r - a,  7r - a') ,  (5.22) 

L(7r - a,  a')  = L(a,  7r - a')  = 0, (5.23) 

for 0 5 a,  a' 5 7r/2. Discrete versions of these equations are solved in the sections which 

follow. The normalisation of a gaussian state may formally be obtained as follows. Using 
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I@) = Dx+[x](x) and the orthonormality of the full-string basis states, we find 

5.3.2 Left and Right Half-String Modes 

In chapter 1, for the full-string case, we introduced a mode expansion of the embedding 

(1.20) and considered the string field as a function of the Fourier modes xn of the 

embedding, rather than of x(a) .  We proceed to  do the same with half-string embeddings. 

This formulation was devised by Gross and Taylor in [41, 281, and we base the following 

discussion on these papers. We adopt the left- and right-string expansions 

satisfying Neumann boundary conditions. Recalling the expansion (1.20) for x(a) ,  the 

full-string modes {x,) and half-string modes {12n+l, ~ 2 n + l )  are related by 

where 



The inverse also we can write, 

The matrix defined by 

is symmetric and orthogonal 

owing to the completeness relations 

and will be convenient in what follows. When working with these matrices, care must 

be given to  convergence properties; in particular, matrices we define here are not always 

associative. 

5.3.3 Projection Operators 

In section 5.3.1 we discussed the rank one operator of gaussian form in the split-string 

formulation without using a specific mode representation. Here we construct the rank one 

operator for the string with Neumann boundary condition, using the modes { / 2 n + l ,  r2n+l)  



we defined in the previous section. We choose the half-string functional to  be of squeezed- 

state form, 

which is a discretized version of eqn.(5.18). The full-string functional, analogous to  

eqn.(5.19), we write as 

Making use of eqn.(5.22), we find that L must satisfy 

These equations may be solved for L, giving the conditions under which the full-string 

functional (5.37) corresponds to  a half-string projection operator. The requirements on 

L are of course 

together with eqn. (5.40). 

Gross and Taylor showed that the solution of Kosteleck? and Potting [40] and the 

extension made in [38] do indeed satisfy these requirements. The solution with zero- 

mode dependence in all space-time directions they identified as the D-instanton state 

IC1), which we exhibited in section 5.2. The change-of-basis matrix X is identified with 

the matrix X which we defined there. The satisfaction of the string-field equation of 
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motion depends only on the properties of the matrix X; specifically, X is orthogonal, 

symmetric, and anticommutes with C. 

5.4 Explicit 

In the present section, 

Background D-branes 

based on the work [6], we show that  the split-string formalism is 

not limited to  the case of a Neumann boundary condition and can be applied equally 

well using a Dirichlet boundary condition and corresponding mode expansion. Such a 

formulation would correspond to a string field in the presence of an explicit background 

D-brane. We find that solutions t o  the equations of motion of the kind shown in [41, 421 

and in the previous section correspond in a simple way to  solutions constructed using 

the Dirichlet expansion. Such solutions in this case represent additional D-branes within 

the D-brane background. 

Our motivation is twofold. Firstly, as mentioned in the introduction, an explicit 

background D-brane built into the theory should allow easy representation of systems 

involving D-branes within other D-branes[41], such as the D 1-D5 system[l25]. Secondly, 

since in string theory the T-duality transformation interchanges Neumann and Dirichlet 

boundary conditions, we expect that the split-string formalism also may be useful when 

formulated with the Dirichlet boundary condition. We expand the string coordinate as 

B - A  00 

z(o) = A + -o + J ? x z n s i n n o  
7r 

where A and B are constants. We would expect the above Dirichlet mode expansion 

t o  be appropriate if we wish to  consider two flat D-branes a t  positions A and B. For 
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simplicity, we set A = B = 0. 

We here emphasize the important point that any particular choice of mode expansion, 

such as the above, simply restricts the domain on which we subsequently consider string 

functionals. Generically the string field 9 is a map on the space of all string embeddings, 

and certain features of *[XI might best be seen using a particular mode expansion. The 

point of view taken here is that while the string field will not contain a D-brane as a 

result of the above choice, it may be taken t o  represent strings in the presence of such a 

D-brane, treating it as a background. 

The procedure which follows is exactly analogous to  that of Gross and Taylor which 

we presented in he previous section, while using a Neumann boundary condition. As in 

that case, the xn can be written in terms of oscillators, 

i t x, = -(a, - a,). 
6 

We note that there is now no zero mode, in contrast to  the Neumann case. Although 

we now use the same vector notation, in this section it signifies components n = l . . . ~ .  

We split the full string function x(a) ,  satisfying Dirichlet boundary conditions a t  

a = 0, .ir into its left and right halves as in eqn.(5.8). Here l(a)  and r(a) obey Dirichlet 

boundary conditions a t  both ends, a = 0,.ir/2. Mode expansions of the left and right 

halves of the string may be written 

1(a) = J;i C 12, sin 2na, r ( a )  = J;i C T~~ sin 2no. 
n= 1 n= 1 



Relating the full- and half-string modes, we find 

where 

This can be inverted; 

Analogous to the matrix X which we defined in section 5.3.2, we define a matrix of 

coefficients relating the modes, 

We have also the set of con~pleteness relations 

valid for p E Z. In section 5.3.2 we found that analogous completeness relations (5.34) 

and (5.35) held in the case with Neumann boundary condition, but for p E N. 



5.4.1 Projection Operators in the Dirichlet case 

We treat the Dirichlet half-string modes as we did the Neumann modes in section 5.3.2. 

We choose the half-string functional 

corresponding to a full-string functional 

Again using eqn.(5.22), we find the constraints on L, 

These conditions are seen to  be identical in form to  those for the case of Neumann 

boundary condition if the role of even indices is interchanged with that of odd indices. 

It  follows from this observation that we can construct the following state as a solution 

to  the projection equation, which is analogous to  the D-instanton state (El). 

with 



The state I=") is of a form very similar to  the D-instanton state, which we now 

denote with a superscript N by I=?,). The state I?,) is independent of the zero modes 

of the string function x(a), while IE") is not, being a localized state. In order to describe 

a Dpbrane background we need to  construct a string functional which is independent 

of the (p + 1) zero modes of the string coordinates in the longitudinal directions. In [41] 

Gross and Taylor obtained such a functional from the D-instanton functional by shifting 

L to set all coefficients Lzj+,,, to  zero in (p+l)  of the longitudinal space-time dimensions. 

In contrast to  IE!,), the state IF!,) is independent of the zero modes by construction. It 

seems we thus have two ways of describing a given Dpbrane; Representing the D-brane 

as a solitonic state string field state allows the investigation of its properties using string 

field theory, whereas formulating string field theory on a D-brane background would 

focus on the behaviour of string modes in the presence of a fixed D-brane. 

As is well-known the T-dual transformation in string theory interchanges the Neu- 

mann boundary condition with the Dirichlet boundary condition. Hence, (ZN,) and 

IZD,) should be related by some T-dual transformation. To understand what this state 

may describe, we suggest that the state is a D-instanton state in the baclc- 

ground of a D25-brane. Recall that we employ the Neumann boundary condition for 

every direction of the string coordinate when we construct the state ( I z N , ) ) ~ ~ .  Let us 

then change the boundary condition to  Dirichlet along (p + 1) directions. This is much 

like a T-dual transformation since the background D25-brane turns into a D(25 -p  - 1)- 

brane. Thus, the state (IZ!1))25-p@ (lZD,))p+l describes a string state in the background 

of a D(25 - p - 1)-brane. We see that this state is localized in (25 - p) directions since 



it carries (25 - p) zero modes only, contained in ( I Z ! , ) ) 2 5 - p .  

5.4.2 Discussion 

In string field theory, D-branes may be constructed as classical solutions to  the equations 

of motion; all degrees of freedom are contained within the string field itself. One might 

call such a solution a 'string-field D-brane'. In introducing their split-string formulation, 

Gross and Taylor used a mode expansion corresponding to  Neumann boundary condi- 

tions. One may interpret this as constructing the string field on the background of a 

D25-brane. We have shown here that  the split-string formalism may be used equally 

well to  describe a string field using a mode expansion corresponding to  Dirichlet bound- 

ary conditions, which we interpret as an explicit Dp-brane background; in contrast to  a 

string-field D-brane this would be a 'background D-brane'. 

We have seen that classical D-brane solutions from the usual Vacuum SFT can be 

translated over and remain solutions to  the projection equation. The main difference is 

that when using the Dirichlet prescription, there is no dependence on the zeremode. 

The paper [126] appeared somewhat after our thoughts on the curent discussion 

of Dirichlet conditions for string fields. In [I261 the authors use boundary condition- 

changing twist fields t o  implement Dirichlet conditions and in much the same way as 

we have described interpreted the resulting state as a D-brane. They did not use an 

algebraic mode expansion, but instead performed their analyses using surface states, 

which we describe in what follows. 



5.5 Surface States 

In the surface state formulation of string field theory, also called the geometrical formu- 

lation, a state is represented by a Riemann surface. It is the geometry of this surface 

which determines the structure of the state. Although not all string-field states are sur- 

face states, it is believed that  string states which are not expressible as surface states are 

not physically relevant. In the following, it will become clear that surface states form a 

sub-algebra of the string field algebra. 

A surface state is defined by a combination of a twedimensional surface and a confor- 

mal field theory. The conformal field theory and associated boundary conditions depend 

on the background and need not be specified t o  introduce the surface-state formalism; 

in this sense it is background-independent. 

Figure 5.1: defining a surface state 

Let the fields in the 2-d C F T  be denoted collectively as p. Referring to  fig.5.1, we 

allow the surface state IT) to  be defined by the combination of the surface T and the 

unshaded 'local patch' A (or alternatively the mapping w )  in the following way. We 
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consider the conformal field theory of cp on the surface Y with boundary condition cpo on 

the 'string boundary' y ,  which stretches from A through M t o  B. The boundary value 

cpo(a) depends on the a coordinate which is taken to  parametrise y such that  a = 0, 

7r/2 and 7r correspond to  points A, M and B. The boundary condition on the remainder 

of dY is taken t o  be the standard boundary condition of the conformal field theory; 

that  is, it depends on the background. The analytic map w takes the canonical upper 

half-disc HU in the [ plane to  the local patch A in the z coordinate system, and the 

string boundary y in the z plane is the image under w of the upper half-circle I[) = 1. 

The quantity 

is a functional of the string-boundary function cpo. We identify @[cpo] as the wavefunction 

associated with the surface Y. At the 'puncture' P we insert a local operator 4. We 

define the state 

This state can also be expressed as a functional, analogous to  @[pol above; the integral 

is now over the field cp on the local patch surface H U ,  

Next, we define the product of states as 

where the one-point function is now computed on the surface D = Y U A (the whole 

surface) in the z system. We have denoted by w o +(0) the operator in the z system 
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corresponding to  4 in the [ system a t  P. In the case that 4 is a primary operator, this 

transformation is simple; 

where h is the conformal dimension of 4. States are thus defined in reference to the 

arbitrary local operator 4 inserted a t  the puncture in the coordinate system in which 

the local patch is the canonical half-disc, and a state IT) may be specified by means of 

(TI4). 

Figure 5.2: star product of surface states 

To take the star product of two states, we 'glue' the left-string dependence of one to  

the right-string dependence of the other, as in eqn.(l.l6) or eqn.(5.12). This is shown in 

fig.5.2. The two states Q and @ are shown with their string boundaries emphasized in 

heavier lines. The solid line is the left-string boundary of Q and the dashed line is the 

right-string boundary of a. The dotted lines are to be glued together and this results in 

the surface representing Q * @. Conformal mapping of the surfaces to a new coordinate 
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system may be necessary in order to  geometrically glue them together. A new local 

patch has been attached; in order to  compare surface states, they must of course be 

specified with respect t o  the same local patch geometry. 6, and 6 * in the figure 

could be directly compared by remapping each of them so that the local patch consists 

of the canonical half-disc. 

5.6 Wedge states 

Here we discuss the set of 'wedge states', which forms a sub-algebra of the surface-state 

algebra. The function 

maps the upper unit half-disc to a unit half-disc 'pointing' to  the right (shaped like a 

'D'). This function is such that between the two half-discs the straight and curved sides 

are interchanged in the mapping. Now, the function 

2ln 4i un(t) = h2In = (3) = exp (- tan-' t) 
n 

maps the canonical unit half-disc to  a wedge shape with unit radius and opening angle 

2;rrln as shown in fig.5.3. Let us consider the state defined by taking this wedge as the 

Figure 5.3: mapping for wedge state 

local patch and taking the rest of the disc as the state surface. Referring back to  the 
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general case, fig.5.1, this corresponds t o  assigning A to  the wedge shape in fig.5.3, D to  

the unit disc, and T = D\A. The mapping function w is w, given in eqn.(5.68). We 

refer to  this state as a wedge state, Iw,) [127]. We now represent Iw,) by a surface with 

a local patch of uniform geometry by using the mapping 

which maps the wedge state surface to a rectangular region in the 5 plane which we call 

C,. As shown in fig.5.4 C, is the cylinder Jm 5 > 0, -n/4 < %e 5 < (2n - 1)7r/4 where 

Figure 5.4: the surface C, 

the left and right sides a t  %e 5 = -n/4 and %e 5 = (2n - 1)n/4 are identified. The local 

patch is the portion of Cn satisfying %e 5 < n/4 and the puncture P is a t  the origin 

[ = 0. The left and right string boundaries border the local patch in the left and right; 

they meet a t  the midpoint which is a t  5 = oo. 

The [ coordinate system allows us to  see clearly and intuitively that the star-product 

of two wedge states is again a wedge state. Two wedge states (w,) and Iw,) are repre- 

sented in the plane by surfaces Cn and C,. Taking the star-product of the two involves 
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removing the local patch from each, gluing the remaining surfaces together using the left 

half of one string boundary and the right half of the other, and attaching a new local 

patch. This results in a wedge state defined by the surface Cm+n-l. We thus have 

(up to normalisation). We first notice that the wedge state with n = 1 is special; it 

star-squares to itself. This is in fact the identity state [I) = Iwl), as shown on the 

left of fig.5.5. The figure is meant to  illustrate that the local patch takes up the entire 

unit disc, with the two string boundaries coinciding. We see that in the wn coordinate 

system, the two halves of the string are identified; the identification represents the 6 

function of eqn.(l . l7) or eqn.(5.13). Now, it also turns out that the limiting wedge state 

Figure 5.5: identity and sliver wedge states 

n t cm, which we label )E) = Iw,) exists, and star-squares to  itself (notwithstanding 

lim,,, 2n - 1 # n).  This state is called the sliver state [128, 129, 130, 1311 and is 

exhibited in the w, coordinate plane on the right of fig.5.5. The local patch is reduced 

to  an infinitesimal sliver, while the state surface Y takes up the whole unit disc. 

The sliver state may be used to  represent a D-brane [132, 1311, and in chapter 6 we 

investigate tachyon fluctuations about this state t o  derive brane tension. We mention 
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that the sliver state also has a supersymmetric generalisation [133]. 

5.7 Butterfly 

The geometrical fornlulation of the star product shown in fig.5.2 provides an intuitive 

way to  think about the projection equation 9 = 9 * 9. We only need imagine a surface 

which, when joined to itself in the appropriate way, retains the same shape. In this 

way we can intuitively see how wedge states star-multiply and that they form a closed 

sub-algebra. The surface in C, (not the local patch) in fig.5.4 also has this property, a t  

least heuristically; an infinitely large rectangle glued to  another infinitely large rectangle 

produces what might be expected to  be a similar infinite rectangle. 

Figure 5.6: surface states 23 and 23 * 23 

Along these intuitive lines, we may present another state which obviously star-squares 

to  itself. The butterfly state 23, shown on the left in fig.5.6, exhibits this property in 

a trivial way. Some papers dealing with the butterfly state are [122, 124, 134, 135, 

136, 137, 1381. The wavefunction factorises into left and right string functionals. When 

the star product is taken, two of these 'wings' form a new butterfly, and the other two 
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contribute to normalisation; the second surface in 73 * 73 has no string boundary or local 

patch. 

The butterfly state is localized in the same way as is the sliver, that is to say it has 

gaussian dependence on the zero modes. If it is to be interpreted as a brane-type object, 

possibly a D-brane, it must exhibit tachyon fluctuations and tension similar to the sliver 

state. This will be the subject of chapter 7. 



Chapter 6 

Sliver Brane Tension 

6.1 Introduction 

The problem of tachyon fluctuations and the resulting D25-brane tension in the context 

of VSFT was first considered by Hata and Kawano [139], and by Rastelli, Sen and 

Zwiebach [140]. In the former paper the D25-brane tension did not seem to be compatible 

with the standard result, and in the latter doubt was expressed as to the validity of the 

linearised equations of motion for the tachyon perturbation, when the BPZ-product with 

the perturbation state (which is slightly outside the Fock-space) is taken. The analysis 

in [I411 clarified the limiting procedure involved when taking star- and BPZ-products, 

and showed that the linearised equation of motion is indeed valid in the 'strong' sense, 

obtaining a result for the D25-brane tension compatible with the assertion that the sliver 

solution represents a single D25-brane. 

The single tachyon-vertex insertion of [I391 was thought for some time to be the 



proper representation of the tachyon state in VSFT. Although it is possible t o  perform 

calculations using this state, such as our tension calculation of the present chapter, 

the situation was later clarified by Okawa [142], who introduced the line-integrated 

vertex operator prescription which we use in chapter 7 to  analyse the butterfly state. 

The main difference is that  surface states defined using the formulation of Okawa, in 

which the vertex operator providing the field degrees of freedom is integrated along the 

boundary of the string surface, have proper conformal transformation properties, whereas 

defining states using the single insertion method of Hata and Kawano and others is not 

a conformally-invariant state-definition method and thus not strictly correct. 

Here we consider tachyon fluctuations about a Dp-brane solution for arbitrary p and 

in this way evaluate the tension of the D-brane. We make use of boundary condition- 

changing twist operators, as suggested in [126], in the 'geometrical' conformal field theory 

approach. We find the correct ratios of tensions between branes of differing dimension. 

Our results may be compared t o  those found in the paper [143] which were obtained 

using the algebraic (oscillator) [144, 26, 271 approach. We also investigate the effect of 

a B-field and again obtain the expected ratios of tensions. 

This chapter is organised as follows. In section 6.2 we discuss the construction of 

perturbative states around a D-brane solution, in particular focusing our attention on the 

tachyon field. Next, in section 6.3 we construct this perturbative tachyon state around 

a Dp-brane configuration and evaluate the resulting tension. Section 6.4 contains an 

analysis of the effect of a B-field background [145, 146, 1471, and we again obtain the 

standard expression for the tension of a non-commutative D-brane. We conclude with 



some comments in section 6.5. 

6.2 Dpbrane 

In Fock-space notation, as used in the geometrical approach of Rastelli, Sen and Zwiebach 

[43], the action is given by 

and the equation of motion is written 

As discussed in the previous chapter, in VSFT the operator Q affects only the ghost 

sector of the theory; the equation of motion thus factorises and the matter part becomes 

It is conjectured that the ghost part of the solution is universal [36]. 

We have already seen one solution E to the matter equation of motion, the sliver 

state, and it is believed to correspond to a D25-brane. We showed how this state was 

defined by 

(El$) = 71-03 lim N(f o 4(0))cn (6.4) 

where on the RHS the brackets denote a correlation function in the matter boundary 

CFT on the semi-infinite cylinder C,, shown in fig.5.4. 4 is an operator representing an 

arbitrary state in the Fock space and 14) is the corresponding state obtained by inserting 

q5 at z = 0 in the 'local patch' -7r/4 < 3 e  z < 7r/4. 
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In order to extend this to the case of a Dp-brane, we need to  introduce boundary 

condition-changing twist operators [126, 1441. These are a+ and a- and are inserted 

a t  z = f 7r/4 f E. This effectively imposes Neumann boundary conditions on -7r/4 < 

z < 7r/4 and Dirichlet conditions on the rest of the boundary, 7r/4 < z < (2n - 1)7r/4. 

The correlator in eqn.(6.4) is taken over the 26 independent conformal fields X p .  In this 

case, we define 

( ~ ~ 1 4 )  = n+cc lim N(f 4(0))::~ (6.5) 

where the superscript indicates the presence of the a operators in the 25-p Dirichlet 

directions, while the p + 1 Neumann directions are unchanged. The state (Dp) so defined 

represents a Dp-brane [126] and it satisfies the equation of motion (6.2), provided that 

it is renormalised as follows. When we take the star-product of the sliver with itself, we 

will obtain a short-distance singularity from the proximity of a+ from one sliver, and a- 

from the other. As noted in [126], the leading term of the operator expansion will have 

no operator content, and so this singularity will only contribute ( 1 1 2 ~ ) ~  to the product, 

where h depends on the conformal dimensions of the a-operators. This divergent factor 

may simply be absorbed into the definition of the sliver state. 

6.3 VSFT Perturbations and Dp-brane Tension 

We wish to  start with a background string-field solution Qo = Qghost 8 Q and consider 

perturbations parametrised by fields. We follow here the procedure used in [141], gen- 



eralised to  a the case of a Dpbrane. As in [140], we use the perturbative expansion 

where IT) is a tachyon excitation and terms corresponding to  vector and higher excita- 

tions follow. The tachyon perturbation is 

with T(k)  the momentum-space tachyon field. We use kll  to  refer to directions longitu- 

dinal to the D-brane, and kl for transverse directions. 

We may insert this expansion for I*) into the action (6.1) to obtain 

whence the linearised equation of motion for IT) can be obtained; 

In this section we take as the background solution the Dpbrane state I @ )  = IDp). It  

was shown in [I411 that the linearised equation of motion for a perturbation ~ ( k )  about 

the sliver state holds even when the BPZ-product with another solution ~ ( k ' )  is taken, 

that is 

Equation (6.9) has been referred to as the 'weak' equation of motion, with eqn.(6.10) 

being a stronger version, since E and thus x are not quite Fock space states. 

The linearised equation of motion (6.9) for a tachyon perturbation ~ ( k )  about the 

sliver state E was solved in [I391 and this solution was expressed in the CFT language 
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in [140]. In the present case of a Dpbrane, the solution may be written 

(X(k) 1 $) = lim ~ n ~ ~ i  (f 0 $ ( ~ ) e ' ~ . ~  (n~/4));:, 
n-00 

so that the momentum degrees of freedom are carried by a tachyon vertex operator 

inserted diametrically opposite the &insertion puncture. The factor n2k; is inserted to  

-2k2 compensate for a factor n 11 which will come from the correlator. 

Let us now show that the state in eqn. (6.11) satisfies the equation of motion (6.10). 

Computing first the LHS, we find 

a l  
( ~ ( k )  lX(kl)) = N~ lirn n2kim2k'i e'k'X(~)e"'~x ((n + m - 2 ) T ) )  . (6.12) 

n,m+m 4 cm+n-2  

This is calculated in the appendix (section 6.6) and is given by eqn.(6.60), 

Shifting our attention to the RHS of eqn.(6.10), we may express either of the two terms 

as 

2k: 2k'i ( e i k . ~  ( 0 ) e i k ' ~  (& * x(k) 1 x(kl)) = N2 lim n2 n3 
nl,nZ?n3+m 

(6.14) 

Evaluating this correlator in the same way we find 

2k2 k2 (t * x(k) IX(k1)) = X lim n 11 2 1 ( 2 ~ ) ~ ~ 6 ( k ~  + k;)e'xo'(k-'-+k;). 
n+m 

(6.15) 

Substituting eqn.(6.13) and eqn.(6.15) into the equation of motion (6.10), it reduces to 



We see that  the tachyon living on the Dp-brane satisfies the strong equation of motion, 

provided that it  is on-shell. This is t o  be compared with the case of a D25-brane [141]. 

Off-shell we have 

2'-*: ( ~ ( k )  

To calculate the Dp-brane tension, we first examine the quadratic term s ( ~ )  of the 

action (6.8) to  fix the normalisation of the tachyon field T(k). Using e q ~ ( 6 . 1 7 )  we may 

write 

After substituting the product from eqn.(6.13), we have 

Taking T(k) near on-shell, kt = 1, we may write the kI-dependent factor as (ki- l ) 4  log 2. 

We see that a re-definition of the tachyon field 

would cast s (~)  into the canonical form 

The cubic term in the action involves 



Once again mapping to the unit disc, we may use Wick's theorem and the tachyon 

correlator from eqn.(6.58) to find 

Substituting this result into the action, the cubic term s (~ )  is 

which we can write in terms of the D-brane tachyon field (6.20) as 

The three-tachyon coupling can be read off; 

As explained by Polchinski in [148], the Dpbrane tension is inversely proportional to the 

closed-string coupling. The open string coupling is identified with the tachyon coupling 

in the present case, and following [149], we have 

so that using eqn.(6.26) we can recover the standard formula for the ratio of D-brane 

tensions, 

where we have restored a'. 
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6.4 Background B-field 

Here we investigate the effect of a constant background B-field, and compute the tension 

as in the previous section. The worldsheet CFT is given by the action [I501 

where p and v run from 0 t o  25, while for simplicity i and j will take only the values 24 

and 25. That  is, the B-field has non-zero components only in these two directions. This 

action leads us to  the usual Neumann boundary conditions for the first 24 directions, 

while for the last two, we have 

(dijan+Bijat)Xj(z)1 = O .  (6.30) 
ac 

One can see from this expression that the B-field effectively interpolates between Neu- 

mann and Dirichlet boundary conditions. In the following, we concentrate on these two 

directions and often omit explicit indices. The Green function on the unit disc is given 

by 

This can be written [I501 in terms of the open-string metric G and the non-commutativity 

parameter 19. These are related to  the B-field by 

1 e=-- 1 
B- 

1 
and G = - 

1 
1- 

1 + B  1 - B  l + B  1 - B '  

On the boundary, 121 = 1, the correlator (6.31) becomes 



6.4.1 (B, g)-Parametrisation 

In section 6.3, to  define the D-brane state IDp) in eqn.(6.5) and the tachyon perturbation 

[ ~ ( k ) )  in eqn.(6.11), we inserted operators a' to change the boundary condition to 

Dirichlet on part of the cylinder C,. We can accommodate the new boundary condition 

(6.30) by instead inserting new operators pf a t  the same positions. Thus on the cylinder 

C,, we have effectively a Neumann boundary condition on the region -7r/4 < z < 7r/4, 

and eqn.(6.30) will apply to  the rest of the boundary. We will again absorb the various 

singular factors due to  coincident P+ and P- operators into the states. 

Analogous to  eqn.(6.5) we define the sliver state in the presence of a B-field as 

where now the superscript indicates that  we have inserted the operators pf in the 24- 

and 25-directions. 

We now define a tachyon perturbation in the presence of the B-field as 

where kfl refers to  the first 24 directions, and kb contains the last two components of k. 

TB(k) is the tachyon field, and we have used the notation 

As in the previous section, we can write down the solution to the linearised equation of 

motion for the perturbation xB(lc); 



where this time we have inserted the operators P* to  impose the B-field boundary 

condition. Exactly analogously to  the case of the Dpbrane, this state can be shown to  

satisfy the following, 

(Xs(k)lXB(k')) = XJ- lim n 2ki+2kb&kb 2k2+2kb&kb 
n-a2 

2 8  

( 2 ~ ) ~ ~ 4 6 ( k ~  + k;) det (k, + ki) det - 
1 - B2 

(6.38) 

(zB * XB(k)JXB(k')) = xJZ$CGJ lim n 2k;+2kb &7kb2ki+kb h k b  
n--00 

( 2 ~ ) ~ ~ 4 6 ( k n  + ki) det (kb + k;) det - 
1 - B2 1 - B2 

(6.39) 

so that off-shell 

We see that the on-shell condition is now 

to  be compared with eqn.(6.16). In the limit of a large B-field, 1/(1 - B2) -+ 0, and 

we recover the case of a D23-brane with on-shell tachyon condition ki = ki(23) = 1. In 

the B -+ 0 limit, 1/(1 - B2)  -+ 1 and a D25-brane obtains, with ki + kt = kf(?,) = 1. 

Substituting eqn.(6.38) into the quadratic part of the action as before, and considering 

the large-B limit we are led t o  define a 24-dimensional tachyon field by 



The tension of the resulting Dpbrane (now taking Icb t o  represent 25 - p dimensions 

rather than two) is thus given by 

6.4.2 (G, 8)-Parametrisation 

Defining the tachyon, in the presence of the open-string metric G,  we write 

where since G is the effective metric, it is understood that k2 r k~G,,ku. Looking a t  

eqn.(6.32), we see that this normalisation is the same as that used in eqn.(6.35). 

The perturbation is now of the form 

( x N c ( ~ )  14) = n-03 lim 3.1nkz( f o 4 ( 0 ) e " * ~ ( n ~ / 4 ) ) E ,  

and the correlators are found to be 

( ~ ~ e ( k )  l X ~ e ( k 1 ) )  = X- lim nk22k2 ( 2 ~ ) ~ ~ 4 6 ( k  + kt) 
n - w  

(6.46) 

(ZNC * X ~ C ( k )  IXNC(kl)) = X~KG lim n2k22kz(2~)2646(k + kt),  (6.47) 
n - + m  

with off-shell equation of motion 

We now have a 'non-commutative' on-shell condition 



where we have written G explicitly. We substitute eqn.(6.46) into the quadratic part of 

the action and re-define the tachyon field TNC; 

With this, the tachyon action becomes 

where * represents the Moyal product, defined in position-space by 

We identify the cubic tachyon coupling to find the tension of this non-commutative 

D25-brane 

T;"," = GT~~. 

Finally, we identify the ratio 

as demonstrated in the papers [151] and [143]. 



6.5 Discussion 

In [126] it was proposed that in Vacuum String Field Theory a D-brane of arbitrary 

dimension may be represented by inserting boundary condition-changing twist operators 

into the CFT description of the sliver state in the directions transverse to  the D-brane. 

We have calculated the ratio of tensions of D-branes using this approach and obtain 

eqn. (6.28), in agreement with standard string theory. Similar calculations in VSFT have 

been done in [151] and [143], using the algebraic oscillator approach. 

Additionally, in section 6.4 turning on a constant B-field in some directions can be 

represented in similar fashion, by the insertion of operators ,B* which suitably modify 

the boundary condition. In this way, we have shown that a non-commutative D-brane 

solution can also be constructed from the sliver state, for generic constant B-field. 

Of course, for the case of vanishing B-field, we recover the D25-brane solution, while 

in the large-B limit, the boundary conditions become Dirichlet, and we find agreement 

with our tension calculations for the lower-dimensional D-brane in section 6.3. Although 

for finite B there is no clear way to  re-define the tachyon field, in the D25-brane case we 

calculated the tension of a non-commutative D25-brane. 

There was some discussion in [139], [140] and [141] as to  whether the sliver state 

represents a single or multiple D-brane state. Although the quantities calculated here 

do not shed light on this question since they are ratios of tensions, they do provide 

further evidence that we are in fact dealing with a D-brane state, and that the proposals 

of 11261 describe a method of representing D-branes in VSFT. As we mentioned a t  

the beginning of this chapter, it was later realised [142] that a more correct, meaning 
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conformally invariant, way of representing field-parametrised fluctuations about a string- 

field solution is to integrate the corresponding vertex operator around the boundary of 

the string state. We make use of this method in the next chapter, for the case of the 

butterfly state. 

6.6 Appendix 

Here we show the method of calculation of the correlators used in the main text; specif- 

ically, we make an example of eqn.(6.13). The other correlators used in the main text 

may be calculated in a similar way, and the details of the limiting procedure may be 

found in [141]. 

4iz 

Starting with eqn.(6.12), we map C,+,-z to the unit disc using z + e m .  We 

note that  since the zero mode of the expansion for X(z )  contributes to  the conformal 

dimension of the tachyon vertex operator, and this is absent in the Dirichlet case, the 

conformal dimension of eik'X (which is of course normal-ordered) is k i / 2 .  On the disc, 

then, 

The zero mode we mentioned above also produces a 6-function in the correlator, [3] 

giving 



for the tachyon propagator. The X-propagator is given by 

where for Dirichlet and Neumann directions the + and - sign is used, respectively. The 

tachyon correlator on the boundary is thus 

where xo is the Dirichlet boundary condition. Substituting this into eqn.(6.55) we have 

(We absorb factors of into the state ~ ( k ) . )  

2 - 2  ( 4 ) ' ( 4 i  ) 
(X(k)lX(k')) = 3f2 lim n  llm 

R , ~ + C O  m + n - 2  m + n - 2  

Taking the m  + cc limit, we end up with the result 

2k2 2k2 ( ~ ( l c )  1 ~ ( k ' ) )  = X lim n  1 1  2 11 (27r)266(kil + ki()eixO'(kl+k;). 
n-cc 

(6.60) 



Chapter 7 

Butterfly Tachyons 

7.1 Introduction 

There are several known solutions [40, 42, 152, 1261 to the equations of motion of Vac- 

uum String Field Theory (VSFT) [43]. These include the two which we introduced in 

chapter 5: the sliver state [40, 42, 371 and the butterfly state [152]. The sliver state was 

conjectured to represent a D25-brane, and subsequent calculations of its tension based 

on this assumption yielded the correct brane tension. The sliver state construction was 

used also to build solutions corresponding to Dp-branes of arbitrary dimension [126], and 

ratios of tensions were found [143, 71 which were in agreement with the known results 

from string theory. These calculations were based on a field expansion of fluctuations 

about the classical solution, using a tachyon field to find the brane tension. One require- 

ment for the consistency of the interpretation of the sliver brane as a D-brane is that the 

equation of motion for the tachyon must be a consequence of the string field equation of 



motion; an on-shell string field must correspond to an on-shell tachyon. This means that 

the quadratic term in the resulting tachyon action must vanish, as is the case for the 

sliver state.[142] While it has already been assumed in the literature that the butterfly 

can be interpreted as a D-brane, this may have been premature, as the above properties 

had not been verified. Were the tachyon field not to satisfy these requirements, it would 

mean that the butterfly state, although known to  be a brane (ie. localized) solution and 

a rank-one projector, could not be viewed as a D-brane. We show in the present chapter 

that  the butterfly does indeed support a tachyon field with vanishing on-shell quadratic 

term. 

We now turn our attention to  the brane tension. The tension of the brane may 

be obtained from the cubic term in the tachyon action [143, 142, 71, and this has been 

completed for the case of the sliver by Okawa [142]. In that calculation, the evaluation of 

the cubic terms turned out to  be very tedious and lengthy, and in the present case of the 

butterfly we find that it is much more so. Thus rather than attempting a calculation of 

the entire cubic term, we content ourselves with motivating the procedure and conjecture 

how the result should obtain. In this way, we will see how the correct brane tension 

should arise. 

This chapter is structured as follows. In section 7.2 we review the geometrical con- 

struction of the butterfly state as a surface state [43], along with the regularisation 

required for any concrete calculations.[l52] We then in section 7.3 turn to  the expansion 

of deformations of a VSFT solution [142]. In section 7.4 we investigate the quadratic 

term in the tachyon action. This surface-state calculation involves the construction of 



conformal mappings in order to perform star multiplication. In section 7.5 we begin the 

calculation of the ratios of tensions of different butterflies, suggest how this could be 

completed, and comment on the preliminary results. We conclude in section 7.6 with a 

discussion of surface states and the role of regularisation and conformal invariance with 

respect t o  deformations of string fields and definition of fields. 

7.2 The Butterfly State 

We use the geometrical, surface representation of string fields which we introduced in 

chapter 5; thus we specify states using a BPZ product with an arbitrary state 14). 

The butterfly state 1 % )  is a factorisable state, so that it may be decomposed into the 

product of a left-string functional and a right-string functional. The surface C, defined 

by -7r/2 < %e z < 7r/2 and J m  z > 0, used to  define the butterfly is shown in fig.7.1. 

The unshaded region is the local patch, -7r/4 < %e z < 7r/4, J m  z > 0. The dashed lines 

P 

Figure 7.1: the butterfly, defined on the surface C 



which border the local patch are the left- and right-string boundaries, and the solid line 

is the boundary of the surface on which we impose the standard open string boundary 

condition. In the centre of the local patch is the puncture P where we insert the operator 

4, transformed to this coordinate system from the canonical half-disc via the mapping 

f .  Thus the BPZ product of the butterfly with the arbitrary state represented by the 

operator 4 is 

PI4)  = (f W ) ) c ,  ( 7 4  

where the combination of the mapping f and the surface C really only need be defined 

up to  conformal equivalence. This is not strictly true of the states we will define in 

subsequent sections, due to  regularisation of operator short-distance singularities. 

We will also have need of the regularised butterfly IBh), and we borrow the formula- 

tion from [152]. The surface Ch, shown in fig.7.2, is obtained from C by identifying the 

P 

Figure 7.2: the regularised butterfly, defined on Ch 

left and right edges, above some height h. This is the regularisation parameter, and the 
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limit h + oo will be taken to obtain the surface C. The state is now defined by 

The regularised state I'Bh) does not satisfy the string-field equation of motion for finite 

h. 

7.3 Tachyon Fluctuations 

In [I421 an elegant proposition was made regarding both the parametrisation of string- 

field fluctuations by fields and the construction of states representing the coefficients of 

these fields. We here present this briefly, referring the reader to  that paper for details. 

The string-field action is given by 

1 1 
S = --(QIQIQ) - - ( @ I *  * Q). 

2 3 

As we discussed in chapter 5, since the VSFT operator Q is purely ghost, there are 

factorisable solutions Q = Q, 8 Qg satisfying QQg + Qg * Qg = 0 and Q, * Q, = Q,. As 

the ghost part of the solution is thought to be in some sense universal 11491, attention has 

mainly been given to the matter part of the solution. From 11421, a finite deformation 

of the matter solution parametrised by fields { p i }  is given by 

where 8~ refers to the portion of the boundary of C belonging to the state as 

opposed to the reference state 14). { p i }  are fields which parametrise the deformation, 



while (3,2(k) are the corresponding vertex operators. The integral of such a vertex opera- 

tor, which is of conformal dimension one for on-shell physical states, is thus conformally 

invariant. 

In the case of a tachyon deformation, we have 

Expanding in powers of the tachyon field T ,  we have 

where 

One must take care to  regularise these states when taking BPZ products, as short- 

distance singularities will obtain. 

ITo) is nothing but the classical solution IQ,). The next term in the series (7.6) is 

where the tachyon state I x T ( k ) )  is given by the integral of the tachyon vertex operator 

along the boundary of the surface. The linearised equation of motion for the tachyon 

state is then 

I x T ( ~ ) )  = I x T ( ~ )  * Qm> + lQm * X T ( ~ ) ) .  (7.9) 

It is shown in [I421 that in the case of the sliver state Q m  = Em this equation is satisfied 

on-shell not only for the tachyon x T ( k )  but for all physical string states I x P i ( k ) ) .  In the 



case of the butterfly, it is easy to  see that  the linearised equation of motion eqn.(7.9) is 

satisfied. 

Inserting the expansion (7.6) into the action (7.3), the term quadratic in the tachyon 

field is immediately given by 

s'" = - (QglQQg) ITi) + (T2ITo) - (Ti IT1 * To) - (T2(To * To) 

where K(k2)  consists of four pieces coming from the above four contributions; 

In [142], K(k2)  was found to  be identically zero in the case of the sliver state. In the 

following section we perform an analogous calculation for the case of the butterfly. 

Since we wish to  deal with tension in section 7.5, we will also need the part of the 

action cubic in the tachyon, given by 

where V is a function containing contributions from each of the six terms in the action. 

We consider the on-shell case, and write this quantity as 

For the case of the sliver, Okawa 11421 showed 
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that the first five terms together cancel; 



the cubic action is given solely by the sixth term Vlll and thus so is the brane tension. 

We will discuss the case of the butterfly in section 7.5. 

7.4 Quadratic Tachyon Action 

Here we calculate the quadratic term in the tachyon action, and show that it vanishes 

on-shell. From eqn.(7.10) we have four pieces. 

For the term Kl l ,  we use the mapping shown in fig.7.3 to  map the surface obtained 

Figure 7.3: mapping for two-state BPZ product 

by gluing together two copies of Ch onto a cone of circumference T .  The boundary of 

the first and second copies of Ch will be denoted y and y*. They are shown in the figure 

as heavy dashed and solid lines. From the appendix, section 7.7, the mapping is given 

by 

1 
cos 20 = - COS 22, (7.16) 

r7 



where q = cosh2h, so that 

d z ~ ( 8 )  sin 28 
- = s(0) = 
do - cos2 28 

where ~ ( 0 )  denotes the sign of !Re 19. From the previous section, we have 

where by -- we indicate that there this requires regularisation; we see there will be short- 

distance singularities at z = f 7r/4. We thus regularise the state by leaving a gap of 26, 

a t  each of these points. The limit 6, --+ 0 will be taken a t  the end of the calculation. 

Transforming to  the 0 coordinate, we have 

where C, is a cone with opening angle 7r, and 60 is our regulator S,, transformed to the 

theta system; 

The propagator on the boundary of the cone is given by 

and considering the on-shell case, k2  = 1, we have 

Performing the integrals, we obtain 

Kll = -2 log sin 266 



where we have made use of the limit b, -t 0. We see that there is a finite and a divergent 

part to  KI1  for finite q, and also that there is a divergence as q -t oo. We expect the 

part divergent in b, to  cancel between Kll  and Kilo in eqn.(7.12), since products of ITl) 

states must be regularised a t  the endpoints of vertex operator integration, while the IT2) 

state contains a different, independently regularised divergence. 

Turning our attention now to  Kilo, we use the mapping shown in fig.7.4. We may 

Figure 7.4: mapping for three-state BPZ product 

again write 

Recalling the mapping in section 7.7, the relation (7.16) and the derivative (7.17) remain 

unchanged. The mapping is now to  a cone of angle 3 ~ 1 2 ,  so substituting n = 312 into 

the two-point function (7.21), we may write 



Again, performing the integrals, we have 

3 
Kl = - log 3 - 3 log 2 + - log 6, + log q,  

2 
(7.27) 

so that the combination 

is finite, but non-zero. 

In order to  calculate the Kzo and Kzoo contributions, greater care must be taken 

with the regularisation procedure. The ITz) state from e q ~ ( 7 . 7 )  involves the a double 

integral since 

( (- / dze-ik'x (z)) 2 ,  = / dzdzl (e-ik'x ( ~ ) e - ' ~ ' ~  (2')) , 

but this will be divergent when z - z1 

Looking a t  both fig.7.3 and fig.7.4, let us calculate Kzo and K2O0 simultaneously. We 

follow Okawa [I421 and regularise the double integral (7.29) as 

where the z integral is to  be taken along the contour y from 'just after' the beginning 

until the end a t  2 7 ,  and the z1 integral is taken along the y from the beginning a t  23 

until 'just before' the point z. That is, the small quantity E, is equal to  E,  i f ,  -ic and 

E for each segment of y respectively, where real E is then the regularisation parameter. 

Using this formulation in the 0-system, we write 



where 

1 
€0 = - 

s(8) €' 
(7.32) 

so that in the inner integral, the upper limit of integration depends on 8. In order to do 

both calculations at  once, we have introduced the constant w; for the cases of K20 and 

K200, w = 1 and w = 213, respectively. Let us first perform the inner integral, giving 

- [ti d ~ s ( 8 )  - log sin wd 

Substituting s(8) from eqn.(7.17), we have 

S +') tan-' sin 28 dOs(8) = -- 
2 

(7.35) 

We may now evaluate eqn.(7.33), obtaining 

1 sin 204 wn- WE 
Kzo(o) = - - tan-' - logsin - + log -. 

2 2 
(7.36) 

E 

We thus find the contribution 

to (7.12) to be again finite and non-zero, precisely cancelling the contribution (7.28) to 

the quadratic term (7.12). 

7.5 Cubic Tachyon Action and Brane Tension 

We have verified in section 7.4 that the butterfly does indeed support a tachyon field. In 

order to further motivate its interpretation as a D-brane state, the brane tension should 
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also be calculated. This was properly done for the sliver in [142], and we consider the 

same procedure here for the butterfly. 

We recall that the tachyon coupling constant can be identified by first canonically 

normalising the tachyon field using the quadratic term, and then extracting the coeffi- 

cient of the cubic term as we did in the previous chapter. This coupling will be related 

t o  the tension, and the tension may be expressed in terms of the energy density. 

The cubic term in the action contains the quantity from eqn.(7.15), 

These may be calculated as follows. The three-point function on the boundary of the 

cone C,, is given by 

1 I W - W ~ ~  2 -  1W-wlI 
= - Icsc CSC CSC 

n3 n n n 
1 b(kl + k2 + k3). (7.39) 

In the following, as before, we imply the use of fig.7.3 and fig.7.4 for two- and three- 

state products, respectively. We use the same regularisation parameters 649 = 16, and 
11 

€4 = --%, as in the preceding section. 44)  

We begin with Vlll and write 

Regularisation may be carried out as before, so that  

2 2 (:) $1 - 4 2 )  csc -(dl2 3 - 43) csc -(43 3 - dl) .  



The three integrals in this case are independent, (2.e. the integration bounds do not 

depend on the integration variables) and we find that this is identical to Vlll in the case 

of the sliver, calculated in [142], that is 

Moving on to Vzl and Vzlo we may write the unregularised quantity as 

where we have written both states simultaneously using w ,  as we did in section 7.4. We 

regularise as we did with Kzo(0); 

In the 6-system, this becomes 

Here we are using the regulator E just as we did in the previous section. 

Vzlo = Vzol may similarly be expressed as 

Finally, V30 and boo may be written 



which may be regularised and written as 

Here, T is a new regulator, which is used exactly as is r in previous expressions. This 

means that = &T,, and T, 'follows the contour' in the 2-system, as explained for r, 

just before equation (7.31). 

Explicit evaluation of the integrals for V21(o) and V30(0) in equations (7.45), (7.46) 

and (7.48) is not impossible, but very tedious. Primarily this is due to  the complicated 

dependence of the upper limits of the inner integrals on the variables of the outer inte- 

grals. We leave this evaluation for future investigation and here make some comments. 

We first mention that the calculation must be done for fixed, finite q,  taking the limit 

q -+ oo only a t  the very end. The 6 + 0, r + 0 and T + 0 limits may be considered 

while performing the calculation, but care must be taken to keep all divergent terms in 

these regulators. In addition, in individual expressions, these three limits do not always 

commute, and it is only a t  the end where the divergent parts should be seen to cancel. 

Given that  these two regulators are independent, we again expect that the combinations 

V30 - V300 and V21 - V210 - V201 will not be divergent. We also expect that combined, 

they contribute zero t o  the expression (7.13) for the cubic tachyon coupling, through 

eqn.(7.15), leaving the tension dependent only on the term Vlll. Finally, to  calculate 

the tension one must calculate the overall normalisation of the quadratic term, so that  

it may be written canonically and the cubic term normalised appropriately. This calcu- 

lation also is tedious for the case of the butterfly; we do not undertake it here. In fact, 
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although the author did try to undertake it, only limited progress was made due to  the 

complexity and length of the calculation. Although the quadratic normalisation and the 

cubic term evaluation are in principle accessible using the methods here, a full calcula- 

tion of the tension does not seem practical. One way to simplify the problem is to use 

the conformal symmetry and seek coordinate systems in which the surface geometries 

lead to more tractable integrals. 

7.6 Discussion 

We have calculated the on-shell quadratic term in the tachyon action, and found that it 

vanishes. The structure of this calculation is the same as that for the sliver [142]. This is 

compatible with the assertion that the butterfly represents a D-brane state. The tension 

could be calculated by following the procedure outlined in the last section, and we expect 

that this will also agree with the canonical value of unity for a D-brane, matching the 

case of the sliver. Since it is not clear how these two D-brane formulations could differ 

physically, we are led to conjecture that there exists some gauge relationship [153, 1541 

between the butterfly and sliver states. 

Finally, it is interesting to note that when defining surface states with operators on 

the boundary, such as the deformation states in equations (7.4)-(7.7), the definition of 

the state depends on the geometry used [134]. That  is to say, although such specifications 

are formally conformally invariant, the necessary regularisation procedure will break this 

symmetry. When defined using operators requiring regularisation, conformally equiva- 

lent surfaces can correspond to different states. This information is contained in the 
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function which maps the regulator from one coordinate system to another; here this was 

the function s(0) which maps the regulator E ,  in the z-system to  €6 in the 0-system. 

7.7 Appendix: Conformal Mapping to the Cone 

Let 0 be the region of the complex plane given by -7r/4 < !Re z < 7r/4, Jm z > 0. 

First let us construct a map from 0 t o  itself, which transforms the boundary 80 as 

shown in fig.7.5. That  is, the contour given by line segments from z = -7r/4 + i h  down 

Figure 7.5: q cos 20 = cos 22 

t o  z = -7r/4, across to z = +7r/4 and up to  z = +7r/4 + i h  should be mapped to  

the segment of the real line -7r/4 < z < 7r/4, with the rest of the boundary mapped 

accordingly. This map is given implicitly by the relation 

1 
cos 20 = - cos 22, (7.49) 

5' 

where q = cosh2h. Now, due to  the periodicity of the functions in (7.49), this map in 

fact extends to arbitrarily many copies of the surfaces, as shown in fig.7.6. Each 'bucket' 
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Figure 7.6: 77 cos 28 = cos 22 

of width 7r/2 is folded down onto the real line. We will use the map for two copies of R 

for surfaces corresponding to  K l l  and Kzo, and the three-copy map for Kl lo  and K2O0 

Explicitly, the map (7.49) can of course be written as 

1 cos 22 
= - cos-l - 

2 77 

although we must be careful to  note that the inverse cosine function is not single-valued. 



Chapter 8 

The Future 

In this chapter we conclude by mentioning some more recent directions and develop- 

ments, and also some speculations, related to the research presented in his thesis. 

8.1 BMN Correspondence 

The BMN sector of Super Yang Mills theory consists of the set of large R-charge op- 

erators with impurities. On the string side one considers states with a large angular 

momentum around a compact direction, in correspondence with the R-charge, and with 

oscillator excitations in correspondence with the impurities. The underlying AdS/CFT 

duality is a holographic duality, in that the Yang-Mills theory can be thought of as living 

on the boundary of anti-de Sitter space and describing fully the string theory within. 

One might expect that an analogous structure might be preserved by the limits involved 

in the BMN correspondence. It has been noted that the boundary in the pp-wave case 

is a one-dimensional light-like boundary. It would be interesting to  understand what 
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becomes of the holography in the BMN limit. Presumably, one would think of looking 

for some kind of gauge theory on this boundary. Being only one-dimensional, this field 

theory would really just be some kind of quantum mechanics. Some progress has already 

been made along these lines, and we refer the reader to  [155, 1561. 

Another area which requires attention is that of open strings [157, 158, 159, 160, 1611. 

Investigation of the BMN correspondence has mainly been focused on closed string the- 

ory. Dealing with open strings implies that one must include D-branes; this is a big step 

to  make, since the existence of D-branes on the string side, being non-perturbative, may 

be difficult to  map to  the gauge theory. The BMN correspondence as explained in the 

present work is a mapping identifies between a specific sector of Yang mills operators 

and perturbative string states on the pp-wave. As in flat-space string theory, D-branes 

are connected with compactification and T-dual transformations. In a non-flat back- 

ground, compactification generically makes sense along Killing vector directions, and 

this means that typically the group of T-dual transformations is 'smaller' (the T-dual 

group is usually discrete) in a less symmetric background; the T-dual transformations 

are essentially matched with the isometries. Although D-branes are dynamical objects, 

and in principle can have any geometry, the D-brane backgrounds obtainable from T- 

duality are thus limited in the pp-wave. In addition, the T-dual transformations are not 

guaranteed to preserve the supersymmetry; the supersymmetry algebra may suffer the 

loss (or gain) of some number of supercharges. Some studies on T-duality and D-branes 

in the plane-wave limit may be found in [162, 163, 164, 1651. Clearly, there are many 

questions to  be addressed in this area. 



The correspondence between anomalous dimensions and light-cone energies now has 

been attacked from several angles. The BMN quantum mechanics route which we have 

taken in the present work in chapter 3 is intuitive in that with it one deals directly with 

the dilatation operator, and thus understanding what is happening from the viewpoint 

of conformal field theory is clear. The dilatation operator must still be constructed 

in the first place, and this has been done by primarily diagrammatic means. As we 

have shown, the method of BNM quantum mechanics, although we have successfully 

made use of it for four impurities, is already rather tedious. We commented a t  the 

end of section 3.7 that the extension past the 'natural' four distinct scalar impurities 

would involve considerable complication in terms of counting. In [67, 811, for example, 

using perturbative methods rather than the dilatation operator, the authors were able 

to  consider an arbitrary number of impurities. This would suggest that the use of three- 

point functions, which of course are to  some extent more tractable in a conformal field 

theory, is a more efficient method, a t  least for larger numbers of impurities. One might 

speculate that  the counting techniques used in these papers t o  deal with arbitrary- 

impurity states could be used to  investigate non-perturbative string-field states such as 

the D-brane states investigated in chapters 6 and 7. At the least, this would require an 

infinite number of impurities and one might question whether these operators are well 

defined. The problem, of course, is that although the sliver and butterfly solutions have 

oscillator representations, no such solutions are known for the full string field theory. To 

the author's knowledge, no attempt has been made to  make use of vacuum string field 

theory in a modified BMN correspondence, or in AdS/CFT a t  all. This would be a very 



interesting direction of research, and would shed light on some non-perturbative aspects 

of the duality. 

One idea has been to  find the representation of the dilatation operator on the space 

of gauge-invariant operators in the BMN gauge theory, and attempt to diagonalise it 

completely. It  has been argued that this would enable one to  solve the full gauge theory, 

a t  least in such a BMN sector, through the identification of the dilatation operator with 

the Hamiltonian under so-called radial quantisation [87, 86, 771. As an example of such 

a matrix, considering h impurity states with a certain permutation symmetry (one can, 

say, [antilsymmetrise the ordering of the impurities, or the powers of Z between them) 

one can write down the explicit dilatation matrix elements between such states. This 

was done for two-impurity states in [54] where the resulting tri-diagonal matrices are 

easily diagonalised. Similar matrices may easily be written down [I661 for the cases of 

three and four impurities (and arbitrary J)) but although they were of somewhat similar 

form (one might describe them as  tridiagonal in blocks of tridiagonal matrices) we were 

unable to  achieve diagonalisation for arbitrarily many fields (ie. large J ) .  It did seem 

that similar methods to  those used to  diagonalise the matrices in the two-impurity case 

could have been used to  diagonalise these, one set of blocks at a time. However, this 

method seemed more tedious than the BMN quantum mechanics used in chapter 3, which 

amounts to  a continuum formulation of these matrices in which the tri-diagonal elements 

are expressed as second derivatives. One can neglect 'boundary terms' in such matrices, 

corresponding to  (comparatively rare) elements where impurities are exchanged, but 

this does not result in significant simplification anyway when dealing with, for example, 



symmetrised-impurity states. 

Another area with room for development is the string-bit model [84, 851 in which the 

string is discretised and considered as a large number of 'bits' each with some mass. The 

action for this model is constrained by supersymmetry, and can be constructed so that 

the spectrum matches the standard string-theory free spectrum. This method has been 

useful in the BMN correspondence and yields the prediction that the genus counting 

parameter g2 appears only through the quantity X'g; [52]. 

The semi-classical analysis which we described briefly in section 2.2.2 has yet to  be 

developed as well as the BMN formulation. The BMN analysis focuses on operators 

with large R-charge, which corresponds to large angular momentum on the string side. 

Considering instead large Lorentz spin, S ,  on the string side, as in the 'propeller' ge- 

ometry we mentioned in section 2.2.2, an analogous correspondence could be built up. 

Identifying operators in the gauge theory with large spin is not difficult and presumably 

such states, populated with some kind of impurities, could be related to  fluctuations of 

string states, quantised around classical spinning solutions [68]. 

Finally, we mention the unresolved discrepancy in the correspondence found a t  cu- 

bic order in A'. It  has been possible on both the string and gauge sides of the BMN 

correspondence to  compute 'finite-radius' corrections, which appear as powers of 1 / J .  

On the string side, this corresponds to  moving away from the strict pp-wave limit and 

considering large but finite angular momentum J .  On the gauge theory side, the BMN 

operators have a large number of fields in the trace, but corrections in 1 / J  appear since 

this number of fields is kept finite. This has been referred to  as the 'near-BMN limit'. It 



has been possible to  compute anomalous dimensions of some two-impurity BMN opera- 

tors to  three-loop order in this near-BMN limit. On the string side, introducing a finite 

radius of curvature produces an interacting worldsheet theory, which using the Green- 

Schwarz formalism has been tractable perturbatively. This, too, has been solved up to  

three-loop order and the 1/J corrections do not match those found in the gauge-theory 

computation [54, 1671. This is an important discrepancy, the resolution of which will be 

important for a deeper understanding of the BMN correspondence and for AdS/CFT. 

Little String Theory 

In chapter 4 we solved superstring theory in the Nappi-Witten background and by the 

holographic duality with six-dimensional Little String Theory found the supersymmet- 

ric spectrum of the high energy sector of that theory. Speaking more generally, lower- 

dimensional string theories have been studied for some time [168]. Since they do not live 

in the usual d = 10 background, they have been called non-critical strings [168, 1691. 

Such theories can be consistent; the standard critical dimension, as is well-known, arises 

from the use of worldsheet conformal invariance to  achieve a free worldsheet theory. In 

the non-critical case the issue is somewhat more subtle; in order t o  obtain conformal 

invariance one typically has to  allow the string to  propagate in an extra dimension con- 

taining a tachyon and dilaton, which produces a Liouville interaction on the worldsheet 

[170]. One problem has been to  understand the geometrical interpretation of such the- 

ories, which due to  the extra dimension is not as clear as in the case of critical string 

theory. In [I701 theories for d 5 6 have been investigated and progress made in this 
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geometrical understanding. Little String Theory in particular has attracted attention 

because of its holographic relation to string theory involving NS5-branes [171, 1721, the 

thermal instability indicated by its Hagedorn spectrum [173], and its relation to gauge 

theory [174]. 

8.3 Vacuum String Field Theory 

Vacuum String Field Theory represents a significant step forward in the understanding of 

string field theory. As we mentioned in chapter 1, progress in string field theory had been 

limited by the lack of any classical solutions. Very interesting early work [175, 176, 177, 

178, 179, 180, 181, 182, 1831 had provided hints of a background-independent formulation 

and the dynamical appearance of geometry, along with links between closed- and open- 

string theories, but in a computational sense 'traditional' string field theory had been 

very limited. Closed strings have been studied more recently in [122, 184, 1451. It has 

been fairly well established that the various sliver and butterfly solutions do represent 

D-branes, but how these objects may be related by gauge transformations [183, 185, 1531 

is a difficult and interesting problem. The gauge structure of the theory remains to be 

well-understood, and especially important is its relation to  duality relationships, such as 

T-duality [186]. In VSFT one can write down solutions for various D-branes; it should 

be possible to identify a T-duality operator group on the space of string fields which 

maps these into one another. 

There is also the problem of the actual identification of the vacuum. As we discussed 

in chapter 5, Sen's conjecture [36] allowed the investigation of this putative vacuum, 
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along with the construction and analysis of D-brane states [40]. It has not, however, 

been possible to  derive it from the cubic string field theory. For some recent comments on 

and review of the search for vacua in string theory, the reader is referred to [187]. Some 

progress has also been made with regard to  dynamical solutions to  VSFT. In particular, 

investigation of the 'rolling tachyon' [188, 189, 1901 has led to  some understanding of 

time-evolution in the theory. 
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