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Abstract 

A variance estimator in a large survey based on jackknife or balanced repeated repli- 

cation typically requires a large number of replicates and replicate weights. Reducing 

the number of replicates has important advantages for computation and for limiting 

the risk of data disclosure in public use data files. In the first part of this thesis, 

we propose algorithms adapted from scheduling theory to reduce the number of repli- 

cates. The algorithms are simple and efficient and can be adapted to easily account for 

analytic domains. An important concern with combining strata is that the resulting 

variance estimators may be inconsistent. We establish conditions for the consistency 

of the variance estimators and give bounds on attained precision of the variance esti- 

mators that are linked to the consistency conditions. The algorithms are applied to 

both a real sample survey and to samples from simulated populations, and the algo- 

rithms perform very well in attaining variance estimators with precision levels close 

to the upper bounds. 

Another important issue in survey sampling is the conflict of interest between in- 

formation sharing and disclosure control. Statistical agencies routinely release micro- 

data for public use with stratum and/or cluster indicators suppressed for confidential- 

ity. For the purpose of variance estimation, pseudo-cluster indicators are sometimes 

produced for use in linearization methods or replication weights for use in resampling 

methods. If care is not taken these can be used to (partially) reconstruct the stratum 

and/or cluster indicators and thus inadvertently break confidentiality. In the second 

part of this thesis, we will demonstrate the dangers and adapt algorithms used from 

scheduling theory and elsewhere to attempt to reduce this danger. 
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Chapter 1 

Introduction 

This thesis consists of two related problems raised in survey contexts. The first 

considers issues around replication-based variance estimates in stratified multi-stage 

sampling with many strata and/or many psu's. The methods are demonstrated and 

evaluated on the 1995 National Health Interview Survey (NHIS). The second considers 

the case where the number of strata and/or psu's are small and is motivated by 

issues encountered in variance estimation for the Health and Nutrition Examination 

Survey (NHANES). In both cases issues of performance of resulting variance estimates 

and issues of maintaining confidentiality in publically released micro-data files are of 

importance. 

Replication is commonly used to estimate standard errors from complex surveys. 

In addition to having desirable statistical properties (Rao and Wu, 1985; Krewski and 

Rao, 1981; Shao and Tu, l995), replication methods easily accommodate adjustments 

such as nonresponse, poststratification, raking, or generalized regression weighting ad- 

justments, provided the replicate estimates can be computed from replicate weights. 

However, the full set of replicates for a large survey often numbers in the thousands, 

making the computing time required by end-users for some iterative procedures still of 

practical concern (e.g., see Cohen, 1997; Valliant, 1996; Rao and Shao, 1996). Thus, 

fast and easy methods for reducing the number of replicates without greatly sacri- 

ficing the performance of the resulting variance estimators are of practical interest. 

As these methods typically result in groups of primary sampling units (psu's) from 
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different strata being deleted (or not) together, they have the additional and often 

more important advantage of limiting data disclosure risks in public use data files 

(Yung, 1997). 

We consider stratified multi-stage sampling with nh psu's sampled from each stra- 

tum. Though the methods and algorithms are applicable to general nh, we focus 

primarily on the common special case, nh = 2, to simplify the presentation. The 

replication methods most appropriate for this common survey design are the jack- 

knife and balanced repeated replication (BRR). However, a drawback is too many 

replicates are needed. Although several methods have been proposed to reduce the 

number of replicates for these schemes, the implementation is often ad hoc and not 

always direct. In this thesis, we adapt simple but fast algorithms from scheduling the- 

ory in parallel-processor computer networks to reduce the number of replicates and 

yield efficient variance estimators. We then extend these to account for estimators of 

key analytic domains. 

McCarthy (1966) suggests partially balanced repeated replication (PBRR) as an 

efficient way of reducing the number of replicates in the BRR. Lee (1972, 1973) shows 

the efficiency of PBRR could be improved by ordering the strata before applying 

the partial balancing and proposes algorithms to do so (see Wolter, 1985, pp. 125- 

130). Kalton (1977) describes a combined strata technique that adds flexibility in 

the implementation of PBRR and also makes the method applicable to the jackknife. 

Rust (1986) further develops PBRR and the combined strata method and describes 

the relationship between them. Other methods include the grouped jackknife and the 

delete-d jackknife. These last two, however, are often more appropriate when a large 

number of psu's are sampled within each stratum (see Shao and Tu, 1995 for details). 

Since methods such as PBRR often result in a loss in precision for the variance 

estimate, some practitioners may be reluctant to employ them. However, this concern 

can be unjustified if the proper method is applied, as we demonstrate in the sequel. 

The primary reason for estimating standard errors of survey estimates is to compute 

confidence intervals and tests of significance. For this purpose, a variance estimator 

should be independent of the estimator and have a central X 2  distribution with either 
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a known number of degrees of freedom, r, or with r large enough so that the nor- 

mal approximation is reasonable. Generally, 30 degrees of freedom will retain good 

efficiency for 90 or 95 percent confidence intervals. Thus, in a survey with a poten- 

tially large number of replicates based on jackknife or BRR, reducing the number of 

replicates and the degrees of freedom of the variance estimator may have a negligible 

effect on the width and coverage of resulting confidence intervals. 

Rust (1986) uses the Satterthwaite approximation to propose the degrees of free- 

dom for a variance estimator as r = 2E(v)/Var(v), where v is a variance estimator, 

which in this setting is essentially determined by the variance of the variance estima- 

tor. In a stratified sample it depends on the relative size of the strata, the within- 

stratum variance, and the within-stratum kurtosis of the characteristic (see Hansen, 

Hurwitz and Madow, 1953, Ch. 10). For example, in a proportionate stratified simple 

random sample from a normally distributed population with equal stratum variances, 

the traditional approximation is that r equals the number of psu's minus the number 

of strata. However, deviations from these conditions can result in much lower values 

of r .  

On the other hand, the loss in precision of the variance estimator may be substan- 

tial in some cases, especially if the method of reducing the number is not carefully 

considered (Valliant, 1996; Rao and Shao, 1996). Thus, guidance on appropriate 

methods of reducing the number of replicates is needed, and simple algorithms that 

enable replicate designers to avoid large reductions in r are especially important. 

Reduced replicate variance estimators are most needed for public use files, where 

users with different computing facilities analyze the survey data and avoiding discle 

sure risks is an important issue. Domain estimates and contrasts of estimates across 

domains are often the primary focus of analysis and sometimes are the main reason 

the survey is conducted. A simple procedure for reducing the number of replicates 

is more of an issue for domains and the literature in this area is more limited (see 

Nixon et al., 1998; DiGaetano et al., 1998). The algorithms we present allow replicate 

designers to explicitly ensure the value of r for estimates from key domains are not 

substantially reduced. 

In Chapter 2, we introduce basic notation in surveys and establish the framework 
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for stratified multi-stage sampling. Then we review two major approaches for variance 

estimation within our framework: linearization and replication, including jackknife, 

BRR and bootstrap. We also present procedures for obtaining modified jackknife or 

BRR estimators using some grouping schemes in an effort to reduce the number of 

replicates and hence improve computational efficiency. 

In Chapter 3, we develop conditions under which the resulting combined strata 

variance estimators are consistent, propose algorithms to design reduced replicate 

schemes, without regard to domains. Some theoretical upper- and lower-bounds for 

attainable degrees of freedom are derived, examined and connected to the consistency 

of the resulting variance estimators and most proofs are provided. 

In Chapter 4, we extend the algorithms proposed in Chapter 3 to handle the multi- 

domain situations. h4ore theoretical evaluation on the attainable degrees of freedom 

is accomplished with regard to domains. We also apply the proposed algorithms to 

data from the 1995 NHIS and sorue artificial populations based upon it, and perform 

a limited simulation study. 

In recent years, statistical agencies have noticed increasing demand from a variety 

of external users for the data they collect. Among the typical users are policy makers, 

who need up-to-date social and economic statistics to help them make key decisions, 

and academic researchers requiring more detailed data at the micro level to conduct 

their own statistical analyses. Unfortunately, the potential risk of disclosing individ- 

ual information is real if little care has been taken towards confidentiality concerns 

whenever a data file is publicly released. 

In Chapter 5, we review recent accomplishments on disclosure control in general 

and then examine the issue as it relates to variance estimation motivated by a real 

survey. We will develop a simple method for breaking confidentiality by using only 

the design and replicate weights, without knowledge of what replicate method was 

used, thus emphasizing the extent of the practical problem. In the case where there 

are enough strata and/or psu's to use the methods developed in Chapters 3 and 4, 

the resulting replicate weights do a good job of masking the strata and psu identifiers. 

However, in some cases there are not enough psu's to sacrifice degrees of freedom and 

new methods are needed. This is the problem faced in NHANES. 
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Motivated by this practical problem, we propose some algorithmic approaches in 

an effort to minimize the risk of disclosure. At the end of the chapter, we present 

an application of the proposed approaches to NHANES, including an alteredlmasked 

(to retain confidentiality) version of what was actually used in the recently released 

data. The methodology and programs are currently being used at Westat Inc. 

Chapter 6 discusses future research related to extending the practical and theoret- 

ical developments in Chapters 3 and 4 to more complex survey designs and a broader 

class of estimators of interest. We go on to consider a generalization of the original 

problem and present some preliminary results on what could be termed as approx- 

imately balanced orthogonal multi-arrays (Sitter, 1993) or balanced bootstraps (see 

Davison, Hinkley, and Schechtrnan, 1986; Efron, 1990; Graharn et al., 1990; Nigam 

and Rao, 1996). 



Chapter 2 

Replication Methods for Variance 

Estimation 

Replication is commonly used to estimate standard errors from complex surveys. In 

addition to having desirable statistical properties (Rao and Wu, 1985; Krewski and 

Rao, 1981; Shao and Tu, 1995), replication methods easily accommodate adjustments 

such as nonresponse, poststratification, raking, or generalized regression weighting 

adjustments, provided the replicate estimates can be computed from replicate weights. 

However, the full set of replicates for a large survey often numbers in the thousands, 

making the computing time required by end-users for some iterative procedures still of 

practical concern ( e g ,  see Cohen, 1997; Valliant, 1996; Rao and Shao, 1996). Thus, 

fast and easy methods for reducing the number of replicates without greatly sacrificing 

the performance of the resulting variance estimators are of practical interest. 

We consider stratified multi-stage sampling. To simplify presentation, we focus 

primarily on the common special case of two primary sampling units per stratum with 

discussion on the extension to the more general case. The replication methods most 

appropriate in this case are the jackknife and balanced repeated replication (BRR). 

In this chapter, we introduce basic notation in surveys and establish the frame- 

work for stratified multi-stage sampling. Then we present two major approaches for 

variance estimation within our framework: linearization and replication, including 

the jackknife, BRR and bootstrap. We also present procedures for obtaining modified 
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jackknife or BRR estimators using some grouping scheme in an effort to reduce the 

number of replicates and hence improve computational efficiency. 

2.1 Stratified Multi-Stage Sampling 

In stratified multi-stage sampling, a finite population of N primary sampling units 

(psu's) or clusters, is partitioned into L nonoverlapping strata of N1, N2, . . . , NL PSU'S, 

respectively, where Nl + . - + NL = N. Each psu consists of secondary sampling units 

(ssu's). In two-stage sampling, ssu's are ultimate units. More generally, each ssu con- 

sists of a set of ultimate units in multi-stage sampling. The total number of ultimate 

units within stratum h is Mh = ~2 Nhi, where Nhi is the number of ultimate units 
L in the 1:-th psu within stratum h. Denote M = cL=~ Mh = Ch=l Czl Nhi, the total 

number of ultimate units in the finite population. 

2.1.1 Sampling Scheme 

Suppose that in stratum h, nh clusters are selected from the Nh clusters without 

replacement with inclusion probability lihi ,  xZl 7ihi = nh. The total sample size at 

the psu level is n = nl + - - - + n ~ .  Within each selected cluster, say the (hi)-th psu, nhi 

ultimate units are selected from the Nhi ultimate units according to some sampling 

plan. Note that neither the number of stages nor the sampling plan used after the 

first stage of sampling is specified. The total number of sampled ultimate units is 

m = ml + - + m ~ ,  where mh = CyLl nhi, the number of sampled ultimate units 

within stratum h. A selected sample of ultimate units is then denoted by the index 

set 

S = { ( h i l ) : l = l ; . .  , n h i ; i = l , . . .  , n h ; h = l , . - -  ,L ) ,  

where the subscripts h, i and 1 refer to stratum, psu within stratum and ultimate unit 

within psu, respectively. Note that S is a subset of 

U = {(hil):  1 = I , . . .  ,Nha ; i  = l , . . -  , N h ; h =  l;.. ,L) ,  

the index set of all ultimate units in the finite population. 
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2.1.2 Characteristic of Interest and Point Estimator 

For a measurement, or possibly a vector of measurements, of some characteristic y ,  

let yhil denote the value of y attached to an ultimate sample unit (hil) E S and Yhil 

the value attached to an ultimate population unit in U, respectively. Note that the 

difference between the two indices is that the former one is random and the latter one 

is not even though they are displayed identically. Denote the stratified population 

mean of characteristic y as 

where Yhi = C? Yhil, Yh  = c N ~  Yhi/Mh, and wh = Mh/M. Denote P h i  as an 

unbiased estimator of total Yhi for the (hi)-th selected psu based on sampling at the 

second and subsequent stages. Then an unbiased estimator of the stratum total Y h  

is given by Ph = x:L1 Phi / rh i .  Thus, the unbiased estimator of Y is given as 

 here ~h = x:L1 ~hi/nhr Yhi = Yhi/(Mhrhilnh)l Y = C ( h i l ) E S ~ h i i ~ h i i ,  and "hi1 

is dependent on how Phi is formed. In this thesis, we will typically consider the 

parameter of interest to be of the form 8 = ~ Y ( Y ) ,  expressed as a "smooth" function 

of the population mean Y, and a reasonable (approximately unbiased and consistent) 

estimator to be 8 = &). 

2.1.3 Sampling Weights 

In equation (2.2), we express the sample mean y as a weighted average of the indi- 

vidual sampling units. The sampling weight whil can be thought of as the number of 

individuals in the population represented by the sampled unit (hil). Sampling weights 

are calculated as the inverse of selection probabilities and hence are determined by the 
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sampling design. Ideally, if every sa~npled unit has a response to the survey, the base 

weights, whil, would be sufficient to estimate the population values. However, every 

survey has some level of nonresponse and hence some sort of weighting adjustment 

is needed to account for the appearance of nonresponse. One should note that all 

methods for adjusting nonresponse are necessarily model-based with the assumption 

that the nonrespondents behave similar to the respondents or at least are related to 

respondents in some way. Typically, a nonresponse adjustment procedure consists of 

the following steps: 

1) Determine what characteristics that are related to response propensity. 

2) Separate the data into classes (or cells) defined by these characteristics. 

3) Inflate the weights in each cell by the factor 

Total weight of all cases in the cell 
Total weight of responders in the cell' 

In addition, it is quite common in surveys that certain demographic subgroups, such 

as age, sex and/or race, are over- or under-covered and poststratification is employed 

to control the weighted sample total to known population totals for these groups. The 

ultimate weights used in point estimation and variance estimation are expressed as a 

multiplication of base weights and different weighting adjustment factors. 

2.1.4 Domain Estimation 

In large surveys, it is sometimes desirable to obtain separate estimates of the same 

characteristic of interest for subpopulations, or domains. Suppose there are D do- 

mains. For d = 1 , .  . . ; D, let Ud be the subset of U that are in domain d with 

U = U& Ud, and for a given sample S, let Sd be the subset of S that are in domain 
D d with S = Ud=l Sd. Let M(d) be the number of ultimate population units in Ud and 

m(d) be the number of ultimate sample units in Sd. Suppose we are interested in es- 

timating the mean of a scalar characteristic z for domain d l  & = '&hillcud z ~ ~ ~ / M ( ~ ) .  
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A natural estimator of Zd would be 

An equivalent way of estimating z for all domains is to, for a selected sample S, 
introduce a new sequence of indicator variables t = ( t l ,  . . . , to) and x = (xl,  . . . , xD), 

where 

1 if sample unit (hil) E Sd, 
thil(d) = 

0 if sample unit (hil) $ Sd, 

and xhil(d) = thil(d)~hil,  for d = 1, . . . , D. It is easy to see that Zd is well estimated by 

the ratio estimator 

Without loss of generality, we will use the vector notation for the characteristic of 

interest y to include both cases of multiple characteristics and domains throughout 

this thesis. 

2.1.5 Variance Estimator of the Sample Mean 

Though clusters are typically selected without replacement, for variance estimation it 

is still a common practice to treat the sample as if the first stage clusters are drawn 

with replacement. The incentive for this approximation is to considerably simplify 

the calculation, especially when unequal probability sampling is applied at the first 

stage. Generally this approximation leads to overestimation of variance, but the bias is 

negligible if the first stage sampling fractions nh/Nh are small. Therefore, throughout 

this thesis, we will use the with replacement approximation when considering variance 

estimation. 

The variance-covariance matrix of the stratified sample mean, y, is given by 
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where r h  = E(yhi - Yh)(Yhi - Eh)' is the within-stratum variance of cluster totals. 

The usual unbiased estimator of V(y) is given by 

where rh = c : L ~ ( ~ ~ ~  - yh)(yhi - yh)'/(nh - 1) is an unbiased estimator of rh. 
Two approaches for obtaining the variance estimator of a nonlinear statistic 8 = 

cp(y), linearization and replication, are introduced in the following sections. 

2.1.6 Asymptotic Framework 

So far we have only discussed the population with finite size, even though the total 

number of ultimate population units, M I  may be very large. To be able to present 

some existing and proposed asymptotic results for the variance estimators, we consti- 

tute an asymptotic framework with the assumption that the finite population under 

study is embedded in a series of increasing finite populations Uk, k = 1,2, . . . , drawn 

from an infinite superpopulation. This embedding can give us properties such as con- 

sistency and asymptotic normality. All population quantities L, M ,  N ,  Nh, Nhi, Yhil 

and 6, and sample quantities m, n ,  nh, nhi and yhil depend on the population index k. 

As k increases, the corresponding finite population Uk becomes larger and larger and 

so do these population and sample quantities. Thus, as k + oo, we have Lk + oo, 

Nk + oo and nk + oo. However, for simplicity of presentation, k will be suppressed 

throughout this thesis and all lirniting processes including n, N + oo (n/N + a < 1) 

will be understood to be as the result of k -+ oo. 

2.2 The Linearization Met hod 

Using a Taylor Series expansion, we have 
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where Vp( t )  = (p l  ( t ) ,  . . . , pp(t)) ,  pk ( t )  = dp(t) /dtk with t = ( t l ,  . . . , t p ) '  This lin- 

ear approximation leads to the well known "linearization" variance estimator (some- 

times termed the delta-method) 

2.3 The Jackknife 

With any form of replication, subsamples are repeatedly selected from the full sample, 

the statistic of interest is computed for each subsample, and the variability among the 

subsample or replicate estimates is used to estimate the variance of the full sample 

statistic. 

The jackknife is first introduced by Quenouille (1949) as a method to estimate 

and consequently reduce the bias of an estimator. It has become a more valuable 

tool since Tukey (1958) demonstrated that the jackknife can also be used to construct 

variance estimators. For the jackknife in a stratified multi-stage sampling setting, we 

form n = Ch nh replicates. Each replicate is formed by deleting one of the n sampled 

psu's at  a time, say the j-th psu within stratum k. In survey sampling, for the ease 

of implementing variance estimation, the deletion of a psu is often accomplished by 

creating a vector of adjusted weights for each replicate, called replicate weights. The 

(kj)-th replicate estimate = p ( ~ ( ~ j ) )  and y(kj) are calculated as in (2.2) but with 

whil replaced by replicate weights Whil(kj) = bkjwhil, where 

1 if k # h, 

O if k = h and j = i ,  

a if k =  h but j # i .  nh-1 

The usual jackknife estimator (JKn) of ~ ( 6 )  is given by 
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When n,h = 2 for all h, the jackknife variance estimator requires 2L replicates and 

simplifies to U J K , ~  = ~ i k ~  (8(k) - 8)2. 

An alternative jackknife variance estimator that requires only L replicates is the 

drop all but one jackknife (Rust and Rao, 1996). Here only one replicate is formed 

from each stratum by randomly selecting one psu, say the j-th psu within stratum 

lc, and deleting all other psu's from the stratum. We again calculate the replicate 

estimate O ( k )  = Ip(g(") and d ( k )  as in (2.2) but with whil replaced by 

I Whil i f l c#h ,  

whil(k) = 0 i f l c = h a n d j = i ,  

nhwhil if lc = h but j # i. 
When nh = 2, this jackknife, denoted as JK2, randomly deletes one in each stratum, 

yielding 

The asymptotic properties of jackknife variance estimators, along with the lineariza- 

tion and BRR variance estimators, for smooth functions of a sample mean have been 

established by Krewski and Rao (1981) and Rao and Wu (1988). However, it is well 

known that the usual delete-1 jackknife variance estimator for sample quantiles is 

inconsistent. 

In practice, it is quite common that a set of replicate weights will be generated 

by statistical agencies using some replication method and will then be released along 

with the whole sample and associated sampling weights in a public use microdata file. 

The motivation for supplying replicate weights is to make the end users not only be 

able to obtain the estimates for functions of characteristics they are interested in, but 

also have the freedom to estimate the associated variation with ease. 

2.4 Balanced Repeated Replication 

McCarthy (1966) introduced and developed the balanced repeated replication (BRR) 

method as a variance estimator in stratified sampling. To describe the basic idea of 
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the BRR, we assume that n h  = 2 for all h as this is originally where the BRR was 

applied. We then form a set of balanced half-samples that drop one sampled psu in 

each stratum simultaneously and double the weights on the remaining psu's. The set 

of R balanced half-samples can be defined by an R x L matrix [&I ,  1 5 r 5 R and 

15 h 5 L, where 

+1 if the first sample psu in stratum h is selected in the r-th half-sample, 
6; = 

- 1 otherwise, 
(2.9) 

and xP=, = 0 for all h # h' = 1 , .  . . , L. Such an R x L matrix can be obtained 

from any R x R Hadamard matrix given that R is a multiple of 4 and no less than 

L + 1. Based on [6;1IRxL, we calculate replicate estimate 8') = t p ( ~ ( ~ ) )  and y ( T )  as in 

(2.2) with whil replaced by 

where i = 1,2, h = 1 , .  . . , L and r = 1, , R. The BRR estimator of ~ ( 4 )  is given 

by 

Extensions of the BRR for nh > 2 and unequal exist but involve complicated con- 

structions as the matrix needed must satisfy mixed-level orthogonality and balance 

constraints (see Gurney & Jewett, 1975; Gupta & Nigam, 1987; Wu, 1991; Sitter, 

1993; and under the term balanced bootstrap, Nigam and Rao, 1996). It should be 

noted that,  unlike the jackknife, the BRR variance estimator for sample quantiles is 

consistent (Shao and Wu, 1992). 

2.5 Fay's BRR 

A generalization of the BRR method, called 

Morganstein, 1984), can be similarly defined. 

Fay's BRR method 

By introducing the 

(Dippo, Fay and 

Fay's factor 0 5 
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E < 1, we calculate b(') = (P(y(T)) and y(') as in (2.2) with whil replaced by 

where bi is defined as in (2.9). Note that when E equals zero we get back the regular 

BRR. The Fay's BRR estimator of ~ ( 6 )  is given by 

2.6 The Bootstrap 

Sitter (1992) summarizes various bootstrap methods for variance estimation in com- 

plex surveys (see also Gross 1980, Bickel and Freedman 1984, McCarthy and Snowden 

1985, and Rao and Wu 1988). We only introduce the rescaling method (Rao and Wu, 

1988) here. The basic idea of this method is to draw a resample vector with replace- 

ment from the original sample, rescale each resampled unit and apply the original 

estimator to the rescaled vector. For b = 1 , .  . . , B ,  the steps for obtaining bootstrap 

replicate 6(b) are as follows: 

1) For stratum h, randomly select mz clusters from the nh original sample clusters. 

2) Let mhi(b) be the number of times the (hi)-th cluster is resampled for replicate 

b ,  where xi mhi(b) = mi. Define the bootstrap weights for replicate b as 

3) Calculate the b t h  bootstrap estimate 8(b) = p(y(b)) and y(b) as in (2.2) but with 

whil replaced by whil(b). 

The bootstrap variance estimator for 8 is then given by 

where hi(.) = (1/B) C, 8(b) (or 8). Note that we usually control the resample size of 

m i  to be no greater than nh - 1 so the corresponding bootstrap weights, whil(b), will 

all be positive. 
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2.7 The Combined Strata Grouped Jackknife 

The combined strata technique, among several methods intended to reduce computa- 

tional cost when the number of strata is large, is proposed by Kalton (1977) and can 

be applied to either jackknife or BRR. For the combined strata grouped jackknife, the 

L strata are merged to form G combined strata according to some grouping scheme. 

Denote the index set for the g-th combined stratum as L,, g = 1 , .  . . , G. Again we 

assume that nh = 2 for all h. We then form 2G replicates, with two replicates from 

each combined stratum. For cornbined stratum g, the first replicate is formed by 

deleting one sample psu from each stratum h E L, simultaneously; the second repli- 

cate is formed by deleting the other half of the psu's. We then calculate the replicate 

estimate 8(9i) = &9j)) and y(9j) as in (2.2) but with whil replaced by 

Whil if h 4 Lgl 

if h E Lg and j = i, 

2whil if h E Lg but j # i, 

where j = 1,2 ,  g = 1,. , G. Then the combined strata grouped jackknife estimator 

of ~ ( 0 )  is given by 

The drop all but one combined strata grouped jackknife in this case is easy to 

obtain by forming only one replicate from each combined stratum, 

where &g) = &g)) and y (g )  calculated as in (2.2) with whiz replaced by 

Whil if h 4 Lg , 

if h E Lg a n d j  = i, 

2whil if h E Lg but j # i. 
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There is little literature discussing the asymptotic properties for the combined strata 

grouped jackknife. In this thesis, we will establish its consistency under certain con- 

ditions. 

2.8 The Combined Strata Grouped BRR 

For the combined strata grouped BRR, similar to the combined strata grouped jack- 

knife introduced in the previous section, the L strata are partitioned into G combined 

strata using some grouping scheme with the combined strata denoted as an index 

set L,, g = 1, . . . , G. We obtain an R x G matrix [hi] from columns of any R x R 

Hadamard matrix, provided R is a multiple of 4 and greater than G. We then use 

this matrix to form a set of R balanced replicates by defining 

pw 
(+1 if the 1st psu in each stratum h E L, is selected in the r-th replicate, '' = 1 - 1  if the 2nd psu in each stratum h E L, is selected in the r-th replicate 

and replacing sampling weights whil with replicate weights 

whil[l + (-l)i]bi if h E L,, 
whil(r) = 

whil[l + (- l)i+l]bi otherwise. 

We calculate replicate estimate 8(') = &('.)) and obtain the combined strata grouped 

BRR estimator of v(@, 

In fact, the combined strata technique proposed by Kalton (1977) originates from 

the idea of an earlier approach, partially balanced repeated replication (PBRR) (Mc- 

Carthy, 1966) for reducing the number of replicates with the use of BRR. When each 

group has the same size, Rust (1984) shows that for every PBRR procedure there is a 

combined strata BRR procedure with an identical pattern of half-sample assignment 

values and variance estimator. In this thesis, we consider the combined strata BRR as 
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it is a generalization which allows the possibility of different numbers of strata in each 

combined stratum and hence could potentially increase the precision of the resulting 

variance estimator for a given number of replicates. 

2.9 Some Practical Considerations 

Statistical agencies often release microdata along with sampling weights and replicate 

weights in the form showed in Table 2.1. This will become more important as we 

consider confidentiality and disclosure issues in subsequent chapters. 

Table 2.1: Format for publicly released data 

Sample Variable Sampling Replicate Weights 
Index Values Weights 

For combined strata methods, either jackknife or BRR, the application is not as 

easy as described in the previous sections if the nh are not equal. The only exception 

is JK2 as its delete-all-but-one mechanism makes it fairly easy to implement the 

procedure of simultaneously deleting psu's per stratum within the same group. A 

common scenario in real survey situations is that nh's are unequal and/or greater 

than 2. If they are all even, we can randomly divide the nh psu's in stratum h into 

nh/2 groups with 2 psu's within each group and then apply the proposed combining 

strata methods by treating the constructed nh/2 groups as variance strata to form 

replicates. Otherwise, this can be approximately done. In addition, there exist some 

elegant methods of forming balanced replicates for general nh. Sitter (1993) proposes 

an approach to obtain balanced orthogonal multi-arrays in an eff'ort to increase the 
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efficiency of BRR variance estimator. 

A similar approach, currently used in practice for the unstratified multi-stage 

sampling, is to  split each sample psu into two approximately equal-sized pseudo-psu's, 

and then group the obtained pseudo-psu's into variance strata with two pseudo-psu's 

within each stratum. The main purpose of this approach is to  suppress the original 

psu indicators from the end users for confidentiality concerns, which might be severe 

if the number of original sample psu's is small. 

For important psu's, such as the largest metropolitan areas, it is highly preferable 

to include them into any sample with certainty. This essentially means that for such 

a psu, the psu itself is a stratum and the ssu's are psu's. These are sometimes termed 

self-representing (SR) strata. In this case, the ssu's are randomly paired and the SR 

strata are treated as a larger set of 2-psu strata for variance estimation purposes. 

The impact of either approach on variance estimators varies depending on what 

kind of sampling scheme is undertaken and which replication method is employed. 

But in general, we will restrict to  nh = 2 for simplicity of presentation. 



Chapter 3 

Algorithms for Grouping Schemes 

with Single Domain 

In large surveys, reducing the number of replicates and hence associated degrees 

of freedom of the variance estimator may have negligible effect on the width and 

coverage of resulting confidence intervals provided the reduced number of degrees of 

freedom is still large enough so that the normal approximation is reasonable. Several 

methods have been proposed to reduce the number of replicates for these schemes. 

McCarthy (1966) suggests partially balanced repeated replication (PBRR). Kalton 

(1977) describes a combining strata technique that generalizes the PBRR and that also 

makes the method applicable to the jackknife. Other methods such as the grouping 

and the deleted jackknife are appropriate when many psu's are sampled within a 

small number of strata (Shao and Tu, 1995). In practice, the methods used are often 

ad hoc. 

The loss in precision of the combined strata variance estimator can be substantial 

in some cases (see Valliant, 1996; Rao and Shao, 1996). To examine this concern, Rust 

(1986) uses the Satterthwaite approximation to express the degrees of freedom for a 

variance estimator as r = 2[E(v)12/Var(v), where v is the variance estimator. This 

is essentially determined by the variance of the variance estimator. The traditional 

approximation that r equals the number of psu's minus the number of strata can 

seriously overstate the value of r, especially when strata are combined (see section 
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3.1). 

Reduced replicate variance estimators are most needed for public use files, where 

domain estimates and contrasts of estimates across domains are often the primary 

focus of analysis. The literature for this problem is more limited (see Nixon et al., 

1998; DiGaetano et al., 1998). In this thesis, we first establish the consistency of 

variance estimators based on combining strata under certain conditions and then we 

adapt fast but simple algorithms from scheduling theory in parallel-processor com- 

puter networks to group strata so as to yield efficient and consistent combined strata 

variance estimators. We compare these to existing algorithms available for the sim- 

plest situation, and then extend the proposed algorithms to account for estimators of 

key analytic domains. 

These methods typically result in groups of psu's from different strata being deleted 

(or not) together, and therefore have the additional and often more important advan- 

tage of limiting data disclosure risks in public use data files (Yung, 1997). 

In this chapter, section 3.1 develops conditions under which the resulting combined 

strata variance estimators are consistent. Section 3.2 proposes algorithms to design 

reduced replicate schemes, without regard to domains. In section 3.3, some theoretical 

upper- and lower-bounds for attainable degrees of freedom are derived, examined and 

connected to the consistency of the resulting variance estimators, while most proofs 

are relegated to section 3.4. 

Effective Degrees of Freedom and Consistency 

Rust (1986) derives the variance of a combined strata jackknife variance estimator of a 

scalar linear statistic from a stratified sample with two psu's sampled with replacement 

in each stratum as 

where ~2 = E(yhi - Y h ) 2  and Ph = E(yhi - Y h ) 4 / 4  are respectively the population 

variance and kurtosis in stratum h for the cluster estimates. A combined stratum is 
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denoted by g and contains Lg original strata. In single stage samples, a: and ,Oh are 

the population variance and kurtosis for the variable being estimated. In multi-stage 

samples, these quantities are the corresponding parameters of the distribution of the 

cluster estimators, and thus depend on the sample design within clusters as well as 

the element variance of the variable (see Kish, 1965; pp. 289-291). Based on (3.1), 

Rust (1986) suggests the following as an approximation to the effective degrees of 

freedom, 

The accuracy of this approximation depends on the asymptotic normality of y and 

hence how well the distribution of its variance estimator vc(y), after appropriate scal- 

ing, can be approximated by a chi-square distribution. In addition, the normality of 

within-stratum cluster estimate yhi, (corresponding to Dh = 3), will also help increase 

the overall attainable degrees of freedom in equation (3.2), as will be discussed in de- 

tail in section 3.3. Note that we mainly use df [vc(y)] as a reference measurement in an 

effort to demonstrate that the proposed algorithms outperform their competitors by 

a noticeable margin. Also, a moderate bias of df [vc(y)] will have very limited impact 

in the resulting confidence interval of y. 

In both (3.1) and (3.2), 

and the second term of the righthand side is the increase in the variance of the variance 

estimator due to combining strata. Lee (1972) points out that different PBRR schemes 

could affect the precision of the variance estimator if ah = Wia:/nh are not equal for 

all strata. 

Rust (1984) and Nixon et al. (1998) discuss the properties of the combined strata 

variance estimator. In general, they claim any grouping procedure will perform rea- 

sonably and generate consistent variance estimators if any single combined stratum 
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is not dominantly larger than the others. We formalize their claims in Theorem 3.1 

below. First, note that the consistency of the regular jackknife and BRR variance 

estimators are established in Krewski and Rao (1981) under regularity conditions: 

C 1 )  c:=, WhE1yhi - YhI2+' = O ( 1 )  for some 6 > 0; 

C 5 )  Y + p = (pl, .. . , pp)'; and 

C 6 )  The first derivative c p k ( . )  of p(.) are continuous in a neighborhood of p. 

Let ah = ( a h l ,  ..., ahp)', where ahk = W z a i k / n h  and is the k-th diagonal element 

of rh and, for any given grouping scheme, let 

We formalize the Nixon et al. (1998) claims in the following theorem. 

Theorem 3.1 Under conditions C1- C6, for any combining strata procedure satisfying 

the resulting combined strata grouped variance estimator of 4 = cp(g), v,(8), either for 

the jaclclcn2fe or BRR, is consistent, i.e., 

Proof. See section 3.4. 

This theorem supports Rust (1984)'s deduction that an optimal combining p r e  

cedure is the one that results in combined strata that are equal in terms of Sgk = 

ChELg ahk for g = 1, ..., G. In practice such groupings are done in some ad hoc fash- 

ion while attempting to balance multiple goals. However, there are three algorithms 
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given in Wolter (1985, pg. 128) applicable to the simplest situation of scalar y,  ah, and 

8 = y, where Sgk are simplified as Sg. These algorithms restrict the search to group- 

ings with approximately equal number of variance strata in each combined stratum 

while forming combined strata with approximately equal S,. One should notice that 

although Theorem 3.1 itself accommodates the more complex multi-domain situation, 

it is not clear what kind of combining strategy is most beneficial in resulting effective 

degrees of freedom. We will discuss this issue in more detail in chapter 4. 

Whether for the BRR or jackknife, one can rewrite the first algorithm in Wolter's 

book as 

Semi-Ascending Order Arrangement(SA0A) Algorithm (Lee, 1972, 1973): 

1. Arrange the L strata in ascending order of ah. 

2. Re-arrange the last L/2 ((L - 1)/2 if L is odd) strata in descending order 

of ah. 

3. Form G groups of size 17 = L/G as follows: 

assign stratum g, g + G, ..., g + (17 - l )G  to the g-th group for g = 1, ..., G. 

The other two algorithms are similar in spirit and will not be discussed further. The 

idea is simple minded. It rests on the principle that if one orders ah from smallest 

to largest and groups by taking every G-th item then the total in each group will be 

similar. 

All three procedures force each combined stratum to have an approximately equal 

number of original strata. Rust (1986) developed theory without this restriction 

and provided some practical guidelines for constructing combined strata to equalize 

the Sg, but did not pursue algorithmic development to complement. He made the 

practical recommendation to construct combined strata primarily based on the values 

of Wh, with some precautions. In making this recommendation he noted that Wh 

are known, whereas a: usually cannot be estimated accurately and differ by variable. 

Furthermore, Wh often have greater relative variability than a: and thus ensuring that 

Ch W a n h  are nearly equal ensures Ch w ; 0 2 ~ / n ~  are nearly equal for k = I,  ...,p. 

Rust also suggests that keeping the group sizes approximately equal makes the method 
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more robust for domain estimates and estimates for a variety of characteristics from 

the survey which were not considered when forming groups. Intuitively, avoiding 

combinations that place a large number of strata in one (or a few) combined strata 

should reduce the likelihood of having a very unequal distribution of the A, for a 

particular domain or characteristic. 

3.2 Algorithms Adapted from Scheduling Theory 

The problem of strata grouping is essentially a maximization problem over possible 

groupings. If we let R be the set of all possible groupings of the L original variance 

strata into G groups, and let df(y) be the effective degrees of freedom (or in general 

any measure of the quality of the variance estimator) resulting from a particular 

grouping y = {yl, . - , yG) E fl, then we wish to find the particular grouping y* E f 2  

such that 

df(y*) = m=df(y). 
y d 2  

(3.5) 

In principle, one could search over all y E R to find the optimal solution, however, this 

is infeasible in most practical situations due to the huge number of possible groupings. 

A class of algorithms which has not been considered in this setting were originally 

used to solve the famous multiprocessing problem in scheduling theory. This problem 

can be formalized using notation paralleling our grouping problem as 

Definition 3.1 ('Multiprocessing Problem) Given a finite set of L computation 

jobs, a nonnegative duration time ah for each h = 1,. . . , L, and a number G 2 2 of 

processors, the goal is to obtain a grouping y* = {y;, ,761 E Cl of the L jobs, such 

that 

where Cma,(y) = maxis,; 1 5 g 5 G ) .  

In other words, we wish the final completion time, Cmax(y), to be minimized. 

A good grouping scheme for problem (3.6) will also be a reasonable choice for 

problem (3 .5) ,  considering that a minimized deviation of the maximum S, from the 
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L average group size, Eh=, ah/G, implies small deviation of S, for any group g from 
L E h = ,  ah/G. As L becomes large both should tend to zero. 

The first algorithm we propose is an adaptation of the so called Longest Processing 

Time Algorithm (ALPT) in scheduling theory (see Parker, 1995, pg. 88) to directly 

address (3.5). As will be demonstrated later, ALPT can also be easily extended to 

handle the more complex multiple-domain situation where Lee's algorithms and the 

others have difficulties. The idea of ALPT is to first arrange all jobs (variance strata) 

in decreasing order (longest processing time or L P T  order), and then, whenever a 

processor (group) becomes available, assign the first available job (unassigned variance 

stratum), consecutively, from largest to smallest, to some group so as to minimize C,,, 

for the currently assigned jobs. 

In (3.5) we have L variance strata with al ,  , . . , a~ (ah = Wial /nh)  to be assigned 

to G groups. For h = I , . . .  , L and j = I , . . .  ,G ,  let 

[ 1 if the h-th stratum is in the j-th group, 
Xhi  = 

" (0  otherwise. 

Clearly, c:=, xhj = 1 for all h, as each variance stratum will be assigned to exactly 

one group. 

ALPT Algorithm: 

1. For j = 1, - . .  , G ,  let xjj = 1 and sjG) = aj. Let h = G. 

2. If h < L, let jh+1 = argmin sjh) and let xh+1,jhil = 1; otherwise stop. 
l < j < G  

3. Let h = h + 1. Repeat Step 2. 

Denote, for each h, 

and df(h) as the effective degrees of freedom obtained by allocating the largest h 

variance strata, a l ,  - .  - ,ah, to G groups. From (3.2) we know that 
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where cr) = (ELl ai)' and cj") = (114) E:', a?(Pi - 3). If we denote df(h+l)l' as the 

degrees of freedom computed by assigning the next stratum (ah+l) to group j given 

the previous grouping scheme, or letting xh+l = 1, we get 

To adapt the ALPT strategy to problem (3.5) we let 

As h approaches L - 1, we obtain the final effective degrees of freedom, df = df(L). 

More formally, 

Algorithm 1: 

1. Let x, = 1 and SjG) = aj, j = l;.. ,G. Let h = G. 

2. If h < L, let jh+' = argmax df(h+l)lj and let ~ h + ~ , ~ , + ,  = 1; otherwise stop. 
l<j<G 

3. Let h = h + 1. Repeat Step 2. 

Algorithm 1 is simple and extremely fast. Its basic strategy is to take the stratum with 

the largest ah from all remaining strata and place it in the group which maximizes df. 

In fact, in the single-domain case, Algorithm 1 is equivalent to the ALPT algorithm 

in the sense that the procedure of maximizing the left hand side of expression (3.8) 

is the same as finding the minimum sjh) and allocating ah+' to it. However, the 

simplicity in concept allows us to easily extend Algorithm 1 to the multi-domain case 

by replacing the objective function, df(h)j, with a more complex functional form, as 

will be described in detail in chapter 4. In addition, the algorithm can also be modified 

to meet the equal number of strata per group restriction, if desired. Let L* = L/G 

be the number of strata required in each group. We only need to change Step 2 of 

Algorithm 1 so that only groups with less than L* strata are allowed to accommodate 
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the stratum to  be assigned, i.e. 

Algorithm 2: 

1. Let xjj = 1, d j  = L. - 1 and sjG) = aj ,  j = 1,. . . , G, L* = L/G. Let h = G. 

2. Let I = (1 I j I G : d j  > 0). ~f h < L,  let jh+l = argmax d f ( h + l ) d ,  
j € I  

X h + l r j h f l  = 1 and djh+, = djh+, - 1; otherwise stop. 

3. Let h = h + 1. Repeat Step 2. 

3.3 Some Theoretical Evaluations 

One motivation for using a combined strata grouped variance estimator is to save 

computational resources for the end-users by using fewer replicates. That is to say, 

given the number of replicates, one wants efficiency. We therefore establish a series of 

upper- and lower-bounds for attainable degrees of freedom for the purpose of compar- 

ing the performance of algorithms. More than that, as the upper- and lower-bounds 

can be expressed as functions of the numbers of original and combined strata as well 

as some measurement describing the behavior of the variance strata, we can also use 

them to  help us determine how many replicates are needed to achieve the required 

precision even before applying any of these grouping algorithms, and thus reduce any 

exploratory work in determining the number of groups to consider. 

An upper-bound for the degrees of freedom that results from (3.2) directly is 

given in the following lemma. It is practically important in many situations, as the 

upper-bound is often nearly attainable by the proposed algorithms. 

Lemma 3.1 For a complex sampling design with known stratum quantities Wh,  g i  
and ,Oh 2 3, h = 1, . -  , L, the degrees of freedom for a combined strata grouped 

variance estimator obtained by  applying a combining strata scheme and using (3.2) 

satisfy 

( E L  w x )  
df  [vc(~)] 2 mi. {G, '1 . EL1 W&f 
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ProoJ Notice that x;=, xhELg W:oZ = xkZl W ~ Z O Z ,  and thus 

Furthermore, ~ f = = ,  W:ot(Ph - 3) 2 0 if Ph 2 3 for all h = 1, , L. Therefore, from 

(3.2) we have 

2 
G cf=l (ChELg W:.:) > Cg=l ChELgW:gt  = Ck=l Wh4gtj it  follow^ 

2 

) < ~ t o i )  / xk=, W:ot, and the result follows. 

Note that the second term inside the minimum in Lemma 3.1 is the degrees of 

freedom of the full jackknife when Ph = 3.  It seems obvious that the attainable degrees 

of freedom cannot exceed the number of replicates, G. However, there are cases 

when the assumption of Ph 2 3 does not always hold in a realized finite population, 

the resulting degrees of freedom calculated from formula (3.2) could then be slightly 

larger than the number of groups. This is of little practical concern as we primarily 

use degrees of freedom as a reference criterion for judging the quality of candidate 

grouping schemes. 

Lower-bounds can be of interest as they are associated with individual grouping 

schemes and thus show how much we may avoid losing by applying a good one. 

They also give some insight into what aspects of the situation impact an algorithm's 

performance. 

Lemma 3.2 For variance strata a l ,  . . , a ~ ,  the degrees of freedom obtained from 

Algorithm 1 satisfy 
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Proof. See section 3.4. 

Note that the second term of the denominator in the above lower bound, depending 

on the behavior of ah's, will be negligible for most practical situations and has at most 

an order of O(1). Hence, Lemma 3.2 demonstrates two points: 

1. The attained degrees of freedom by applying Algorithm 1 will be the same 

magnitude as the number of groups, a natural upper bound for df provided in 

Lemma 3.1; 

2. The consistency of the corresponding variance estimator is also essentially as- 

sured as the ratio V[vcj(g)]/Var2(y), the inverse of df, will go to zero as the 

number of groups becomes large. 

Theorem Proofs 

3.4.1 Proof of Theorem 3.1 

We will outline the proof for vcj using JK2. The proof parallels that of Krewski and 

Rao's (1981) proof for the delete-1 jackknife and BRR without combining strata. The 

proof for JKn and BRR are similar in spirit and thus are not presented. 

We first prove that the theorem holds for the linear case, that is, n{vc(y) - 

V(y))  5 0 as G + oo. Denote 

where yhi represents a randomly chosen unit from stratum h, zh = Wh(yhi - Y h ) ,  and 

(Y(9) - Y ) ( Y ( ~ )  - - y)' = e zh - e z; = e zhz; + e zhz;,. 

Thus, the combined strata grouped JK2 variance estimator can be expressed as 
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where v, = c:=, zhz;L is an unbiased and consistent estimator of V(ji).  Thus, we 

need only show that nd  + 0 ,  where 

Since y - Y + 0 in probability, it suffices to show that, for any E > 0 and j ,  k = 

as G + co. Applying Chebyshev's Inequality on the left hand side of (3.9), we have 

max S . max, Sgk 
5 Y m a x  ~2 l<h<L n h ) 2 ( n 2 ~ . j ~ . k )  ( ij 93) ( sk ) =o($) ,  

under conditions C2, C4 and (3.3). Then (3.9) follows. 

Now we consider 0 = ~ ( 9 ) .  Only the case p = 1 is considered in detail; extension 

to p > 1 is relatively straightforward. Let Xh(g) = LWh(yh(g) - Y ~ ) .  Under C l  and 

~ 3 ,  it follows that L-' ~k~~ E I X ~ ( ~ ~  1 2 + 6  = 0(1)  Since 

and E(X(,)) = 0, by the law of large numbers for independent and non-identically 

distributed random variables (see Krewski and Rao, 1981, Lemma 3.2 and related 

references therein), for A > 0, 
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Thus, 

rnax ~ i j ( ~ )  - Y I > Aj2) 5 x ~ { l e ( g )  - Y 1 > Aj2) 
P{15g5G - 9 

as G , L  + oc (G 5 L). Since t - Y  + 0 and Y + p,  we have 

P{all y(g) ,  y E ( p  - A, p + A) simultaneously) + 1. (3.10) 

For all k(g), t in I = ( p  - A, p + A), a Taylor expansion can be used to express 

where $9) lies between y(g) and t .  Let $(t) = pl(t) - pt(p). Because of its continuity at 

t = p, for any E > 0, there exists some A, > 0 such that, for any t E ( p  - A,, p + A,), 

l4(t)l < E. Thus, by (3.10) 

max l$(<(g))l < E) 2 P{all jj(,), y E I, simultaneously) + 1, 
P{15g5c 

that is, the rnax, I$($g))l t 0. Therefore, 

g=l 

= n ~ ~ ( y ) p l ( p ) ~  + remainder. 

The first term on the right-hand side t a2 = pt(p)2V(y) in probability, while the 

remainder goes to zero since max, I$($g))l + 0. This completes the proof. 

3.4.2 Proof of Lemma 3.2 

Using the notation of section 3.2, 
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Hence, for h =  G , . . .  , L -  1, 

as jh+1 is determined such that s::i1 = min, sjh) ) S(h).  By  induction, 

Therefore, 

2 (3.12) 
1 + [G x z l ( a ,  - a ~ ) ~  + (G - 1) xf=G+l a?] / ( ~ ~ a ' ) '  

This completes the proof. 



Chapter 4 

Algorithms for Grouping Schemes 
with Multiple Domains 

Most sample surveys are multi-purpose and reliable estimation for domains is an im- 

portant goal. Designing reduced replicate schemes that perform well across a range of 

measured characteristics and/or domains is a more difficult problem. To handle esti- 

mators from different domains, or more generally a p x 1 vector of characteristics, we 

must consider a h  = (ahl, ..., ah,)', where ahk = W;aEk/nh is specified for characteristic 

or domain k. As previously discussed, the a;, often have smaller relative variability 

across strata than the W; do when considering different characteristics and thus a 

practical solution for dealing with multiple characteristics is to apply the methods of 

section 2 with the aEk replaced with 1. However, when considering different domains 

such a practical solution may not work well if only a portion of the variance strata 

is represented from a particular domain. In this situation, the Wh distributions are 

different for different domains. Nevertheless, if information is available and a need 

determined, multiple characteristics and/or domains can be accommodated. For sim- 

plicity, from now on we focus only on domains and will treat the population as if it 

consists of p domains with the value of ahk different for each domain. The degrees of 

freedom for a variance estimator for the k-th estimator is still given by (3.1). For the 

multivariate situation, the problem is to determine an appropriate formulation of the 

univariate maximization problem described above. 
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In practice, combining strata in such a way as to account for multiple domains is 

a difficult problem that is often handled using ad hoc procedures. When the rationale 

for a combining scheme is given, it may involve some judgement about the relative 

importance of the precision of variance estimators for different domains. For example, 

if region is an important domain, then it might be reasonable to combine strata so 

strata from the same region are not placed in the same combined stratum, to the extent 

possible, so that each deletion removes units from multiple domains. If estimates for 

other domains such as urbanity and race of the respondent are also required, the 

procedure for combining is more complex and guidelines are difficult to describe. For 

some examples see DiGaetaeno et al. (1998), Nixon et al. (1998), Little et al. (1997), 

and Parsons, Chan and Curtin (1990). 

4.1 Proposed Algorithms 

The difficulty lies in trying to jointly reduce V(v,(fjk)) for all k simultaneously. One 

way to approach the problem is to merely state it as an optimization problem in 

a similar way to (3.1). That is, let ( I G  be the set of all possible groupings of the 

L original variance strata into G groups, and let dfk(y) be the effective degrees of 

freedom for domain k resulting from a particular grouping y E R. Then we wish to 

find the particular grouping y* such that 

for all k simultaneously. This is an intractable problem in most situations, so one 

might replace it with 

where df  = (dfl, ..., df,)' and f (.) is some function which measures a type of average 

degree of freedom over the p domains. The simplest examples might be f (df)  = 

zk dfk/p or more generally, f (df)  = zk wkdfk where wl, ... , wk are weights represent- 

ing the relative importance of the domains, or perhaps f (df) = min{dfi, . . . , df,), 
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in an effort to keep the degrees of freedom needed for each key domain above a 

reasonable level, say 30. 
Once f (.) has been defined, denote 

Furthermore, denote 

-(h) 2 

[ 
2 . ($h+l) 2 G2 . (Sk ) and d f ( h + l ) j  = df(.) = [ (h) .] k 1 

cLcsa, ) ,,, (h) E Z ~ ( S ~ ) ~  + 2ah+l.kSjk -t 4 + 1 , k  1 ,,I I 

Then one only needs to modify Step 2 of Algorithms 1 and 2 in section 3.2 to obtain 

the following algorithms: 

Algorithm 3: 

1. Let xjj = 1 and s::) = ajk, j = 1 , s . .  ,G.  Let h = G. 

2. If h < L, let jh+1 = argmax f (df(h+l) j)  and let xh+l J ~ + ~  = 1; otherwise stop. 
l< j<G 

3. Let h = h + 1. Repeat Step 2. 

Algorithm 4: 

1. Let yj = 1, dl = q - 1 and s$) = ajk, j = 1, - , G. Let h = G. 

2. Let I = (1 I j < G : dj > 0). ~f h < L, let jh+1 = argmax f(df(h+l)lj), 
j€I 

xh+l,jh+, = 1 and djh+, = djh+, - 1; otherwise stop. 

3. Let h = h + 1. Repeat Step 2. 

Notice that the ordering of variance strata in this situation is a bit more complex, as 

well. Empirical investigations suggest that ranking strata entry in terms of the value 

of f (ahl, . + . , ah,), h = 1, . . , L, performs fairly well. One can use a similar approach 

to extend SAOA by ordering the strata via f (ahl, . . , ah,). We will see in section 4 

that this extension of SAOA does not perform very well, however. 
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4.2 Some Theoretical Results for Multiple Domains 

Firstly, the upper-bound given in Lemma 1 can be easily extended to multiple do- 

mains. Assume that UB1,  - . . , UB,  are upper-bounds for the vector of degrees of 

freedom, d f  = ( d f l ,  . . - , df,)', respectively. Then f (UB1, . . . , UB,) will be an upper- 

bound of f ( d f )  given that f (.) is monotone. In fact, it is shown in our simulation 

that the attained f ( d f )  is quite close to this upper-bound, demonstrating that the 

proposed algorithms work very well. On the other hand, the lower-bound of f ( d f )  

cannot be obtained in the same way, as the grouping for different domains conflict. 

The following lemmas take into account the correlations among domains and give 

lower-bounds for f ( d f )  for two basic forms of f (.). 

Lemma 4.1 For variance strata {ahk : h = 1,. . . , L, ; k = 1,. . - , p), the resulting 

average degrees of freedom over all domains obtained by using Algorithm 3 satisfies 

(up to second order) 

where b:) = uk, c:) = 0 and, for g = 1, . . . , L - G, b!") = b?) - 2 ( ~  + l ) u ~ a 2 , + , , , / ~ ~  
2  2  4 (9) 2  and C!+l) = c!) + (G - 1) ukah+l,k/G3 - G - lbk ah+l,k/G. 

Proof. See section 4.6. 

Lemma 4.2 For variance strata {ahk : h = 1 , .  , L, k = 1,. . - , p } ,  the resulting 

minimum degrees of freedom from all domains obtained b y  using Algorithm 3 satisfies 

f ( d f )  = min dfk  = min 
(c,"=, S d 2  

1 5 k 5 ~  l 5 k l p  CG S? 
j=1 jk 

where iig = zG1 aik/G, k = 1, . , p. 

Proof. See section 4.6. 
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Application and Empirical Investigation 

In this section we apply the algorithms presented above to data from the 1995 National 

Health Interview Survey (NHIS) and some artificial populations based upon it, and 

perform a limited simulation study. 

4.3.1 The NHIS Survey 

The NHIS is an annual household survey that profiles the health characteristics of the 

civilian noninstitutionalized population of the United States. The National Center for 

Health Statistics (NCHS) is responsible for the survey, and the Census Bureau collects 

the data. The NHIS uses a relatively typical multistage, stratified sample design. 

For the 1995-2004 NHIS design, the United States was partitioned into about 2,000 

psu's, which are individual counties, groups of adjacent counties or metropolitan areas. 

All psu's were assigned to either self-representing (SR) strata or nonself-representing 

(NSR) strata. As is discussed in section 2.9, a SR stratum contains only one psu, 

meaning that the psu will be drawn into any sample with certainty. On the other 

hand, a NSR stratum contains more than one psu and will have two psu's selected in 

an annual sample. 

4.3.2 Current Replication Methods in NHIS 

The NHIS public release file documentation does not contain the complete stratum 

and psu identifiers because of confidentiality concerns. Even if the complete identifiers 

were released, the full jackknife variance estimator would result in thousands of sets 

of replicate weights. The documentation instead gives two approximate methods 

for estimating variances from the design data on the file (for the rationale for these 

methods see Parsons and Casady, 1986; Parsons, Chan, and Curtin, 1990). The 

first method (Method 1) has 187 variance strata, each with exactly two psu's. The 

second method (Method 2) has many more strata. They suggest Method 2 can be 

used with linearization variance estimation software. The main difference between 

two methods involves handling self-representing (SR) psu's. In Method 2, the SR 
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psu's are partitioned into substrata based on racelethnicity, with the substrata used 

as variance strata. Each secondary sampling unit (ssu) in a SR unit is treated as a 

separate psu rather than pairing them into pseudo-psu's as is done in Method 1. Nixon 

et al. (1998) discuss these methods and introduce Method 3. Method 3 attempts to 

produce stable variance estimates for national and domain estimates while reducing 

the number of replicates. In this method, 70 variance strata were created using the 

combined strata approach and allocating the existing variance strata in Method 2 

roughly proportionate to the population total within each of the four regions (a  key 

domain). This is an example of an ad hoc approach that explicitly considers domains. 

The ad hoc nature requires a high level of expertise and intuition, and a great deal of 

time and effort. 

The variance strata for the three methods were evaluated for national estimates, 

and for estimates of the following domains: region, poverty status, metropolitan sta- 

tus, and racelethnicity. Nixon et al. (1998) shows that all three methods provide 

variance estimates with adequate degrees of freedom for national estimates using vjkn, 

although Method 1 (MI) has 187 replicates, Method 2 (M2) has 2,167 replicates, 

and Method 3 (M3) has only 70 replicates. For a 95 percent confidence interval, the 

appropriate t-value for Method 2 is 1.97, and for methods 1 and 3 it is 1.99. They 

further show that Method 1 performs poorly for many of the domains, whereas the 

other two methods generally do well. Even though Method 3 only has 70 replicates, it 

produces at least 30 degrees of freedom for each domain (See Table 4.1, reproduced in 

part from Table 2 of Nixon, et al., 1998). Note that we treat the 2,167 variance strata 

of Method 2 as true strata which makes Method 2 essentially the full jackknife for 

our comparisons. The values for Method 2 in Table 4.1 were recalculated and differ 

slightly from those presented in Nixon et al. (1998). 

4.3.3 A Quick Comparison of Different Methods 

Before doing any indepth comparison of methods, we applied Algorithm 3 (A3), using 

the sum of degrees of freedom across all domains, to  this situation and obtained the 
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second to last column in Table 4.1. The algorithm takes only a few seconds of real- 

time on a laptop. Algorithm 4 performed similarly (discussed later). We should note 

that Lee's SAOA, even when ordered on the sum of degrees of freedom, did not even 

out perform Method 3, and did very poorly relative to proposed Algorithm 3 (details 

later). 

Table 4.1: Method Comparison: Estimated df's with upper bound 

National 
Region 1 
Region 2 
Region 3 
Region 4 
Poverty 

Nonwhite 
Hispanic 

MSA 
Non-MSA 

Number of Replicates 187 2,167 70 70 

4.3.4 Some Hypothetical Populations 

To make a more indepth comparison of methods we consider three populations. Pop- 

ulation 2 is the NHIS public release files used in Table 4.1. Populations 1 and 3 are 

based upon the NHIS keeping the same domain weights and number of variance strata, 

but altering the Wh values to consider the impact of various patterns. Populations 1 
and 3 used W,' = W;.' and W,'* = Wi.75 to mimic more and less extreme situations, 

respectively. Figure 4.1 presents the distribution of variance strata ah = W;ai/nh for 

all three populations. The shapes are reasonably typical. 
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Population 1 Population 2 Population 3 

Figure 4.1: Distribution of ah's for three populations 
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4.3.5 Comparison of Algorithm Performance 

We first apply Lee's SAOA and Algorithm 1 to the National values, using G = 50 

and 70 groups, and examine the performance on the domains to see the potential 

impact of ignoring key domains when creating grouped replicates. The results are 

summarized in Table 4.2, rounded to the nearest integer for ease of presentation. 

Table 4.2: Attained df's for SAOA, Proposed Algorithms 1 and Method 3 

Population 1 Population 2 (NHIS, 1995) 

Domain SAOA A 1 SAOA A1 M3 
G = 50 70 50 70 50 70 50 70 70 

National 
Region 1 
Region 2 
Region 3 
Region 4 
Poverty 

Nonwhite 
Hispanic 

MSA 
Non-MSA 

Population 3 

SAOA A1 
50 70 50 70 

The last column under Population 2 repeats the results for Method 3 of Nixon et al. 

(1998) from Table 4.1, only for Population 2 and G = 70 (for ease of comparison). We 

see that using SAOA or Algorithm 1, and ignoring domains yields poor performance 

relative to Method 3 of Nixon et al. (1998) for Population 2, for some domains. 

To make SAOA comparable to proposed Algorithm 3, we apply SAOA to the 

ordered average df's, or f (df) = xk dfk/p in the simplest attempt to account for 

domains, denoted SAOA2. The performance of both SAOA2 and Algorithm 3 on the 

same three populations are presented in Table 4.3 for group size G = 50. 

As can be seen, Algorithm 3 outperforms both SAOA2 and Method 3 by a wide 

margin, on average about 10 df's greater with G = 70. In addition, the attained 
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degrees of freedom for Algorithm 3 are fairly close to the theoretical upper bounds, 

denoted UB(A3) in Table 4.3, indicating that there is little motivation to look for 

more sophisticated algorithms. The results for proposed Algorithms 2 and 4 were not 

included in Table 2 as they were essentially equivalent to those of Algorithms 1 and 

3, respectively. 

Table 4.3: Attained df's for SAOA2, Proposed Algorithms 3 and its Upper Bound 

Population 1 Population 2 Population 3 
Domain 

SAOAz A3 UB(A3) SAOA2 A3 UB(A3) SAOA2 A3 UB(A3) 

National 
Region 1 
Region 2 
Region 3 
Region 4 
Poverty 

Nonwhite 
Hispanic 

MSA 
Non-MSA 

This brings up the issue of Rust's (1986) recommendation to create approximately 

equal sized groups. Intuitively, avoiding combinations that place a large number of 

strata in one (or a few) combined strata should reduce the likelihood of having a 

very unequal distribution of the A, for a particular domain or characteristic which 

has not been controlled for. The essentially equivalent performance of Algorithms 

1 and 3 to Algorithms 2 and 4 seems to contradict this intuition. The explanation 

is related to the nature of the algorithms. Since Algorithms 1 and 3 assign the 

largest ah's to groups first and add them to groups with the smallest current total, 

the algorithms tend to automatically create groups of approximately equal size. For 

example, A1 applied to the full population with G = 70 had 12%, 78% and 10% of 
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groups with sizes 30, 31 and 32, respectively. Also, the groups will clearly tend to have 

similar ah distributions with some large, medium and small sizes. This should help 

in terms of maintaining confidentiality by making it more difficult to reconstruct the 

psu indicators from resulting replicate weights, since psu's of likely disparate make-up 

are deleted together. We discuss such issues in more detail in Chapter 5. 

4.4 Simulation Study 

To evaluate the performance of variance estimators and confidence intervals resulting 

from grouping with Algorithm 3, we perform a simulation study to compare it to 

the full jackknife applied to all 2,167 strata. For each of the three populations, we 

generated S = 10,000 independent stratified simple random samples with replacement 

with equal sample size for each stratum, nh = 2. 

A series of quantities are introduced as the criteria for evaluating the performance 

of the resulting variance estimators after grouping via Algorithm 3 as compared to  

the full jackknife. For a variance estimator v, its relative bias was measured by 

rel. bias = 
C, v,/S - MSE 

MSE 

The precision of a variance estimator v is measured by its relative instability, defined 

by 

The confidence intervals are also compared in terms of their error rates in lower (L) and 

upper (U) tails, corresponding to  5% nominal error rate in each tail, and standardized 

lengths. The error rates and standardized lengths were calculated as 

error rate in the lower tail = (no. of samples with 6, < 6,1,)/S, 

error rate in the upper tail = (no. of samples with 6, > Oas)/S, 

and 

standardized length = Cs 131s 
2 ~ , , ~  d E  ' 
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respectively. The results of the simulation study are reported in Table 4.4. We see 

that reducing the number of replicates from over 2000 to 50 or 70 does not impact 

the performance of resulting variance estimates and confidence intervals greatly. 

4.5 Summary 

In the first part of this thesis, we have formalized conditions under which combined 

strata grouped jackknife and balanced repeated replications schemes will lead to con- 

sistent variance estimators in stratified multi-stage surveys. We then construct algo- 

rithms based on those used in scheduling theory for multi-processor computer net- 

works to develop such replication-based variance estimation strategies that reduce the 

number of sets of replicate weights with least impact on resulting degrees of freedom 

overall and for some key analytical domains. This reduces the computational burden 

on less sophisticated end-users of public release data sets. 

The nature of the proposed algorithms ensures the resulting jackknife and/or bal- 

anced repeated replication variance estimators have good performance. As well, they 

provide a set of publicly released replicate weights which provide protection against 

disclosure of psu and strata identifiers and thus maintain confidentiality. 

A few things to note. First, there are many existing algorithms for grouping items 

in many varying contexts that could in principle be adapted to solve this problem 

(e.g. more sophisticated algorithms from scheduling theory, simulated annealing and 

also evolutionary and/or genetic algorithms for structured data). However, the per- 

formance of the simple algorithms given here suggests that in this context a more 

complicated strategy is not necessary. Second, there are situations where the number 

of strata and psu's is not large enough for grouping to be a viable strategy as there are 

insufficient degrees of freedom to sacrifice any, and yet confidentiality is still impor- 

tant. In these cases alternate strategies for creating replicate weights are necessary. 

This will be considered in Chapter 5. 
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Table 4.4: Lower(L) and upper(U) tail error rates for Alg. 3 and full jackknife 

5% tail error rate 
Domain Method Group Rel.Bias Rel.Instab St.Len. 

L TJ L+TJ 
-- -- - 

30 5.1 5.1 10.2 3.85 0.28 1.01 
National Algo. 3 50 5.6 5.1 10.7 4.05 0.22 1.01 

70 5.1 5.5 10.6 4.68 0.19 1.02 
Full jack. - 5.2 5.1 10.3 4.03 0.08 1.02 

30 4.7 7.0 11.7 -1.48 0.25 0.98 
Region 1 Algo. 3 50 4.6 6.6 11.2 0.2 1 0.20 1 .OO 

70 4.7 6.0 10.7 0.77 0.17 1 .OO 
Full iack. - 4.0 6.6 10.6 0.24 0.11 1 .OO 

30 5.6 6.0 11.6 -0.01 0.27 0.99 
Region 2 Algo. 3 50 4.9 5.7 10.6 -0.44 0.20 0.99 

70 4.8 5.3 10.1 -0.15 0.18 1 .OO 
Full jack. - 4.5 5.3 9.8 -0.07 0.13 1.00 

30 4.7 5.3 10.0 2.50 0.27 1.00 
Region 3 Algo. 3 50 4.6 5.2 9.8 1.65 0.20 1.00 

70 4.8 5.0 9.8 1.75 0.17 1.01 
Full jack. - 4.5 5.0 9.5 1.86 0.12 1.01 

30 5.1 6.1 11.2 -0.89 0.25 0.99 
Region 4 Algo. 3 50 5.4 5.5 10.9 -0.53 0.20 0.99 

70 5.4 5.5 10.9 -1.01 0.18 0.99 
Full jack. - 5.1 5.3 10.4 -0.75 0.14 0.99 

30 5.9 5.5 11.4 0.82 0.25 1.00 
Poverty Algo. 3 50 6.1 4.7 10.8 1.86 0.21 1.00 

70 5.9 4.7 10.6 1.87 0.18 1.01 
Full jack. - 5.7 4.7 10.4 1.52 0.11 1.01 

30 6.2 5.0 11.2 -3.16 0.26 0.98 
Nonwhite Algo. 3 50 6.4 5.0 11.4 -2.36 0.20 0.98 

70 5.4 4.6 10.0 -2.46 0.16 0.98 
Full jack. - 5.9 4.7 10.6 -2.60 0.11 0.99 

30 5.3 6.0 11.3 3.94 0.30 1.01 
Hispanic Algo. 3 50 4.5 5.8 10.3 3.79 0.26 1.01 

70 4.5 5.4 9.9 4.39 0.24 1.02 
Full jack. - 4.3 4.9 9.2 3.95 0.20 1.02 

30 5.6 5.3 10.9 2.55 0.27 1 .OO 
MSA Algo. 3 50 5.5 5.1 10.6 2.06 0.21 1.01 

70 5.0 5.2 10.2 2.85 0.18 1.01 
Full jack. 5.3 5.2 10.5 2.29 0.07 1.01 

30 6.0 5.9 11.9 -4.85 0.26 0.97 
Non-MSA Algo. 3 50 6.2 5.7 11.9 -3.98 0.21 0.97 

70 6.0 5.5 11.5 -4.11 0.18 0.97 
Full jack. - 6.1 5.5 11.6 -4.11 0.18 0.98 
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4.6 Theorem Proofs 

4.6.1 Proof of Lemma 4.1 

It then follows that for h = G, . . . , L - 1 and g = L - h, 
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D G 2 G 

= [c k= 1 {% [[c j=l ( T ' ) )  '1 - b?+l) [c j=1 (T$)) + 

where f j h )  is defined in Step 2 of Algorithm 2. 

By induction, we have 

The result follows. 
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4.6.2 Proof of Lemma 4.2 

For h = G , . . .  , L -  1 a n d k =  I , . . .  ,D,  

+2 l<j<G min { l<k<D max [ukah+l,k (s$) - st)) ] } 

By induction, 

G 2 L 

mar 1 uk (s;:) - 3::)) max uk (ajk - + uka&] . 
l<k<D l<k<D j=1 j=1 i=G+l 

Therefore, we have 

d L i n  = min dfk = min 
(c,"= sj k) ' 

l l k < D  l < k l D  zG S? j=1 j k  

This completes the proof. 



Chapter 5 

Disclosure Control and Variance 

Estimation 

In recent years, statistical agencies have seen a noticeably increasing demand from 

a variety of external users for the data they collect. Among the typical users are 

policy makers, who need up-to-date social and economic statistics to help them make 

key decisions, and academic researchers requiring more detailed data at the micro 

level to  conduct their own statistical analyses. Unfortunately, the potential risk of 

disclosing individual information will also increase dramatically if little care has been 

taken towards confidentiality concerns whenever a data file is publicly released. In 

this chapter, we will review recent accomplishments on disclosure control in general. 

We will then examine the issue as it relates to variance estimation motivated by a real 

survey. We will develop a simple method for breaking confidentiality by using only 

the design and replicate weights, without knowledge of what replicate method was 

used, thus emphasizing the extent of the practical problem. We will propose some 

algorithmic approaches in an effort to minimize the risk of disclosure. At the end 

of the chapter, we will present an application of the proposed approaches to  a real 

survey. 
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5.1 Basic Concepts of Disclosure Control 

In President's Commission on Federal Statistics (1971), confidentiality is explained 

as: it is prohibited to release data in a manner that would allow public identification 

of the respondent or would in any way be harmful to him. Disclosure occurs when 

confidential information is revealed. There are three types of disclosure: identity dis- 

closure, attribute disclosure and inferential disclosure. In this thesis, only identity 

disclosure is considered because our major concern is to limit the disclosure of con- 

fidential information through public use data files, where identification is generally 

regarded as disclosure. In principle, information that directly or indirectly reveals the 

identity of the respondents has to be suppressed. As a basic practice, strata and psu 

identifiers are not released as they are not needed for many point estimates provided 

the design weights are available. In addition, a number of basic data manipulation 

techniques can be used to accomplish the goal of disclosure control: 

1)  Top and/or bottom coding some key variables. The tails of continuous distri- 

butions for ordinal variables or the end categories for categorical variables have 

much higher risks to be identified as fewer cases fall into those regions. Top 
and/or bottom coding, or collapsing those regions reduce such risks. 

2 )  Collapsing response categories (global coding). This technique is a generaliza- 

tion of top/bottom coding as it collapses any adjacent regions which have rare 

observations and subsequently high identification risks. 

3) Locally suppressing information of some variables. For some variables blocking 

values of outliers from external use is the only feasible way to protect confiden- 

tiality. Subsequent information loss may be partially compensated by imputa- 

tion at later stages. 

More sophisticated and systematic approaches on disclosure control will be discussed 

in detail throughout this chapter. 
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5.2 Methods on Disclosure Control in General 

In this section, we review recent literature on disclosure control methods appropriate 

to microdata. 

5.2.1 Additive Noise Methods 

Fuller (1993) considers a variety of masking methods by adding error to data elements 

prior to release. These fall generally within the class of measurement error methods. 

Kim and Winkler (1997) presents a two-stage disclosure limitation strategy, applied to 

matched CPS-IRS data. Moore (1996a) provides a critical examination of the degree 

of confidentiality protection and analytic usefulness provided by the Kim and Winkler 

(1997) method. Winkler (1998) compares the effectiveness of a number of competing 

disclosure limitation methodologies to preserve both confidentiality and analytic use- 

fulness. The methods considered include the additive-noise and swapping techniques 

of Kim and Winkler (1997) and the additive-noise approach of Fuller (1993). Duncan 

and Mukherjee (1998) derives an optimal disclosure limitation strategy for statistical 

databases - i.e., micro-databases which respond to queries with aggregate statistics. 

Evans et al. (1998) presents an additive-noise method for disclosure limitation which 

is appropriate to establishment tabular data. Pursey (1999) discusses the disclosure 

control methods developed and implemented by Statistics Canada to release a Public 

Use Microdata File of financial data from small businesses. 

5.2.2 Multiple Imputation and Related Met hods 

Rubin (1993) is the first paper to suggest the use of multiple imputation techniques 

for disclosure limitation for microdata analyses. His radical suggestion - to release 

only synthetic data generated from actual data by multiple imputation - is moti- 

vated by the increase in the demand for public use microdata, and increasing concern 

about the confidentiality of such data. Later Fienberg (1994) proposes a method of 

confidentiality protection in the spirit of Rubin (1993). Whereas Rubin (1993) sug- 

gests generating synthetic microdata sets by multiple imputation, Fienberg (1994) 
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suggests generating synthetic microdata by bootstrap methods. This method retains 

many of the desirable properties of Rubin's (1993) proposal - namely disclosure risk 

is reduced because only synthetic data are released, and the resultant microdata can 

be analyzed using standard statistical methods. In a series of articles, Kennickell 

(1991, 1997, 1998, 2000) describes the Federal Reserve Imputation Technique Zeta 

(FRITZ), used for both missing value imputation and disclosure limitation in the 

Survey of Consumer Finances (SCF). The SCF is a triennial survey administered by 

the Federal Reserve Board to collect detailed information on all household assets and 

liabilities. 

5.2.3 Data Swapping Methods 

Moore (199613) presents a brief overview of data swapping techniques for disclosure 

limitation, a more sophisticated technique than found elsewhere in the literature and 

an algorithm for a controlled data swap based on the rank-based proximity swap of 

Greenberg (1987). Moore (1996~) also suggests modifications to the Confidentiality 

Edit, the data-swapping procedure used for disclosure limitation in the 1990 Decennial 

Census and presents two measures of the degree of distortion induced by the swap, and 

an algorithm to minimize this distortion. Takemura (2002) proposes local recoding 

and record swapping based on the optimum matching of the records, where pairs of 

close records are formed and observed values are recoded or swapped within each pair. 

Disclosure Control and Variance Estimation 

All disclosure limitation methods introduced in the previous section focus on data 

disclosure via viewing only the design weights and the data when providing record 

level microdata for public use. There is little literature available on how to protect 

confidentiality when statistical analysis is being conducted by the end users and valid 

variance estimation is needed, for user-constructed estimators. Mayda et al. (1997) 

examines the relationship between variance estimation and confidentiality protection 
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in surveys with complex designs. In consideration of the Canadian National Popula- 

tion Health Survey (NPHS), a longitudinal survey with a multi-stage clustered design, 

they present two concerns which occurred in the process of releasing a microdata file 

for public use from such a complex survey: 1) specific design information such as 

stratum and cluster identifiers should be removed from the data due to the extremely 

detailed level of geographic information they represented; 2) providing cluster in- 

formation could allow users to reconstitute households, increasing the probability of 

identifying individuals. However, it is easy to see that, without knowing the stratum 

and cluster identifiers, the external users will not be able to correctly compute vari- 

ances using a linearization method. This reflects another aspect of the conflict between 

providing high quality data and protecting confidentiality. They propose an approach 

to resolve the conflict. Specifically, strata and clusters are collapsed to form "super- 

strata" and "super-clusters". Only the super-strata and super-cluster identifiers are 

included in the public use file, which allows researchers to obtain unbiased variance 

estimates under certain conditions while protecting confidentiality. This approach is 

similar in spirit to the replication reduction proposed in the previous chapters for 

creating replicate weights and if done using the methods proposed there, as we have 

already demonstrated, when the number of strata is large, the loss in precision of 

variance estimates could be limited. However, in practice there are sometimes only a 

small number of strata available for the purpose of variance estimation, in which case 

the collapsing strata strategy will be inappropriate as the loss of degrees of freedom 

in this case could greatly affect the precision of variance estimates. This was the case 

in the National Health and Nutrition Examination Survey (NHANES) which will be 

described and considered in the next section. 

Because of these concerns, it is very tempting for statistical agencies to generate 

and release a set of replicate weights along with the raw data to the end users without 

providing the stratum and psu identifiers. Hopefully, the end users can utilize the 

replicate weights to obtain variance estimates and yet are unable to discover any con- 

fidential information. That is, release the data much like in Table 2.1. This is not so, 

as has been pointed out for specific replication methods. In light of this, Yung (1997) 
proposes an approach that constructs a set of average bootstrap replicate weights in 
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an effort to obtain valid variance estimates from the public use microdata files while 

still respecting confidentiality constraints. However, as we will demonstrate, the repli- 

cate weights, thanks to their specific deletion structure, no matter which replication 

method is applied, can still be used to reconstruct the stratum and psu identifiers. 

In the next section, we will discuss the connection between replicate weights and 

stratum/psu identifiers, examine existing methods for reconstructing these identifiers 

from replicate weights that are specific to a particular replication method and then 

develop a simple clustering approach applicable to any replication method. 

Replicate Weights and Stratum/psu Identifiers 

The connection between replicate weights and stratum/psu identifiers is embedded 

in the way the replicate weights are originally generated. We create Table 5.1 by 

calculating the ratios of replicate weights and design weights for all R sets of replicates. 

Table 5.1: The Replicate WeightslDesign Weights Ratio 

Sample Replicate 
1 2 . . . R 

5.4.1 Jackknife Replicate Weights 

For jackknife replicate weights formed by (2.6), the r-th column of weight ratios from 

Table 5.1, corresponding to the r-th replicate, will only consist of three different values: 

0, 1 and a positive constant, say c,(> 1). We can easily conclude the following: 
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1) all the sample units associated with 0 are from the same psu; and 

2) all the sample units associated with c, are from the same stratum as the psu's 

in 1). 

This means that we can easily determine all cluster (psu) and stratum identifiers by 

examining all R sets of replicate weightlsampling weight ratios, respectively. 

5.4.2 BRR Replicate Weights 

For BRR replicate weights generated by (2.10)' it seems more difficult to reconstruct 

the stratum and/or psu identifiers as each BRR replicate consists of half of the sampled 

psu's from each stratum. In other words, there will be replicate weights of zero 

from all strata and half of the sampled psu's simultaneously. However, Shah (2001) 

presents an algorithm which will accurately reconstruct stratum and psu identifiers 

provided that no adjustments to weights such as non-response, post-stratification or 

other calibration to known totals are made. The basic idea of Shah's approach is to 

modify Table 5.1 and create a new table (see Table 5.2) with its cells, 6,(,), defined as 

1 if w,(,) > 0, 
6s(r) = 

0 otherwise, 

where w,(,) is the corresponding replicate weight introduced in Table 2.1. 

Table 5.2: The Matrix Representation of the Indicator Variable 

Sample Replicate 
1 2 . . .  R 
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We can easily conclude the following 

1) if any two rows of Table 5.2 are identical, then the two corresponding sample 

units are from the same psu; and 

2) if any two rows of Table 5.2 are complementary to each other, meaning that 

the sum of two rows is a vector of 1's) the two corresponding units are from the 

same stratum. 

5.4.3 Bootstrap Replicate Weights 

For bootstrap replicate weights generated by (2.12), it seems even more difficult to 

reconstruct the stratum and/or psu identifiers than the case of BRR or jackknife. 

Yung (1997) considers a simple case of m i  = nh - 1 and claims that the cluster 

membership can be identified in this case. In fact, for any bootstrap replicate b, at 

least one cluster from each stratum, say the i-th cluster within each stratum h, will 

have bootstrap final weights equal to zero, that is, whil(b) = (nh/(nh - l))mhi(b) whil = 0 

when mhi(b) = 0. By introducing an indicator variable identical to the one in Table 

5.2, Yung (1997) argues that the cluster identifiers can be obtained by examining all 

B bootstrap replicate weights using a similar approach as that of Shah (2001). Yung 

(1997) then goes on to propose a mean bootstrap method in an effort to hide the cluster 

identifiers from the end users. The key idea is to repeat the resampling procedure for 

each bootstrap replicate enough times, say S times. Denote the number of times the 

(hi)-th cluster is drawn as mhi(b),, where s = 1 , .  . . , S. Then let m;li(b) = Cs mhi(b),/S 

and use it to replace the previous mhi(b) in (2.12). Therefore, all the final bootstrap 

weights will be nonzero provided at least some mhi(b), are positive for each replicate 

b. 

5.4.4 Using Clustering to Reconstruct Psu Identifiers 

So far we have discussed existing methods for breaking confidentiality through repli- 

cate weights provided that we know which replication method is applied to generate 

such replicate weights. We will demonstrate that at least the psu identifiers can be 
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easily reconstructed even if we do not have that information. An important fact is 

that,  no matter which replication method is applied, the relative change of design 

weights for any replicate will be the same for all sampled units within the same psu, 

or, in other words, the values of elements in the same column of Table 5.1 will be 

the same if they are from the same psu. Although we cannot uniquely identify all 

sampled units of a specific psu in one replicate, we are able to accomplish this by 

viewing all R sets of replicate weights. In fact, one can argue that two rows in Table 

5.1 are identical if and only if the associated sampled units are from the same psu, 

provided the number of replicates is comparable to the number of clusters. Note that 

Yung's mean bootstrap method will not help protect confidentiality based on this 

argument because the averaged number of times a cluster is sampled from the r-th 

replicate, even greater than zero, is still a constant subject to a fixed replicate and 

cluster combination, resulting in the same value in Table 5.2 for sampled units from 

the same cluster. In fact, it is even worse. By averaging the number of times a cluster 

is sampled in the same replicate, Yung's approach inflates the chance of differenti- 

ating one cluster from the others, meaning that we need a much smaller number of 

replicates to  identify cluster memberships. 

Another important issue is that in practice, the replicate weights will likely be 

adjusted for nonresponse and poststratification, making the psu reconstruction pro- 

cedure a little more complex. Inspired by this, one might consider whether or not the 

additive-noise technique, described in the previous section, would also help protect 

confidentiality when applied to replicate weights. 

Combining all these thoughts, we will view the problem a bit differently. Treat 

the rows in Table 5.1 as points in an R dimensional space, and the nL sampled units 

will shrink to replicates of n distinct points in that space provided that no weight 

adjustments have been made. If we add some noise or perturbation to the original 

replicate weights, including nonresponse and poststratification adjustments as special 

cases, it is very likely that we will still observe n distinguishable clusters in the R 
dimensional space as the magnitude of the perturbations should be small relative to 

that of the distance between any two originally distinct points. If this is not so, then 

intuitively the magnitude of the added variability due to these random perturbations 
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will be comparable to the variability measured by the replication method. 

Knowing little about clustering algorithms other than that they exist, we explored 

Splus for such and found a command called "hclust" which stands for hierarchical 

clustering. This function takes multi-variate data and forms cluster trees. We did 

not try any thing more sophisticated to make the point that even someone with 

rudimentary skills and tools could do this. We applied this algorithm to a 3 year set 

of NHANES data which had had Fay's BRR replicate weights created. Reweighting 

had been done as had some collapsing of a few psu's so as to  be able to  apply the 

BRR, and one large psu was split into 3. Using only the adjusted design weights and 

the 24 sets of replication weights the program assigned the 5,000 sampled units to  

psu's with only a 6% error rate. By closely examining the 6% sampled units with 

the misspecified psu identifiers from reconstruction, we learned that it was caused by 

splitting the large psu into 3 psu's. 

We also considered the introduction of a random noise E to replicate weights. We 

can express the perturbed replicate weights as 

where bhil(r) = w ~ ~ ~ ( ~ ) / w ~ ~ ~  are the elements in Table 5.1 and &hil are identically dis- 

tributed with mean 0 and variance a2. For simplicity, we let u(-A,  A)  for 

A = 0.1,0.2,0.3,0.4,0.5, and applied it to  the same 5,000 sampled units as above. 

The resulting percentages of misspecified psu identifiers were 6%, 5%, 6%, 26% and 

50%, respectively. This result means that, unless we perturb the weights by a t  least 

35% N 40%, we will not be able to effectively protect the original psu identifiers. We 

consider this further in Chapter 6. 

To illustrate our point that Yung's method not only fails to add confidentiality pro- 

tection but in fact makes it much easier to reconstruct the original cluster identifiers, 

we designed the following simulation study: 1) create 100 sets of bootstrap weights, 

each of which was the average of 20, precisely as was done in the Yung (1997) paper; 

2) then apply the method using only 2000 of the weights and only 2, 3, 4, and 5 of 

the replicates. It turns out that the error rate for assigning units to  original psu's is 

2.5% using 2 replicates and 0 using 3 or more replicates, respectively. We repeat the 
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simulation without averaging weights, that is using the ordinary bootstrap method. 

The error rates are 47.5%' 28%, 5.5% and 1.5% using 2 to 5 replicates, respectively. 

The clustering algorithm performs very well in terms of reconstructing original psu's 

in both cases. 

In summary, it is evident that the replicate weights, no matter how they are 

created, with or without weight adjustments, can be used to reconstruct the original 

psu identifiers quite easily, which essentially eliminates statistical agencies' hope to 

provide the replicate weights in the publicly released data file and motivates the 

research interests in new approaches to disclosure control on variance estimation. 

Another point to make is that the stratum identifiers will be harder to reconstruct, 

when little is known about the replication method. We will discuss possible ways of 

reconstructing stratum identifiers in the future research section of this thesis. One 

should note, however, that confidentiality of stratum indicators may be less important 

in many cases. For example, as we will describe in the next section, for the NHANES 

survey the psu's are counties or metropolitan areas. Thus psu census data is available 

from other sources. 

5.5 Disclosure Control in the NHANES Survey 

After the previous detailed consideration of the connection between replicate weights 

and stratum/psu identifiers, we realize that supplying replicate weights with publicly 

released data sets is not a solution to confidentiality protection. In this section, we 

review some currently used techniques for disclosure control in the National Health 

and Nutrition Examination Surveys (NHANES) and evaluate the resulting effect on 

variance estimation. 

5.5.1 The NHANES Survey 

NHANES is a continuous, ongoing, annual survey of the noninstitutionalized civilian 

population of the U.S. To meet the objectives of the Survey Integration Plan of the 

Department of Health and Human Services (DHHS), the NHANES 1999 to 2001 
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surveys are being linked to the 1995 NHIS at the primary sampling unit (PSU) level as 

well as the content (i.e., questions and questionnaire sections) level. Starting with the 

2002 survey, NHANES will be linked to the NHIS at the content level only. Each single 

year and any combination of consecutive years comprise a nationally representative 

sample of the U.S. population. This design will facilitate potential linkage to other 

health and nutrition surveys that provide yearly estimates and will allow aggregate 

level national estimates from NHANES each year. 

A four-stage sample is selected for NHANES. Within each of the selected psu's, 

an average of 24 segments are selected and a subsample of the households within 

these segments are selected and screened. Within the screened households, members 

of particular racelethnicity-sex-age subdomains are identified as potential sampled 

persons; all other members of the household are excluded. 

5.5.2 Psu-Splitting 

Table 5.3: Baseline Replication Design 

Certainty I 
PSU 

status 

Noncertainty 

psu's 

21'22 4th seg 
. . .  

A 

B 
. . . 

Certainty 

psu's 

Replicate 

21'22 lSt seg 

Z1,Z22ndseg 

Z1,22 3rd seg 

Because no explicit stratification was used to select the psu's from the two panels 

of NHIS and because of the small number of psu's in the sample, the delete-1 jackknife 

was used to create replicates for variance estimation for the analysis of the NHANES 
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1999-2000 data; for noncertainty psu's, the psu is the variance unit, and for the 

certainty psu's, two variance units were formed by alternating segments. Table 5.3 

(reproduced from Figure 1 of Dohrmann et al., 2002) depicts the creation of replicates 

in the baseline design. The x area denotes that in creating the given replicate, the 

particular psu or the particular segment was dropped. 

Various methods for splitting each psu into two creating a total of 52 pseudo-psu's 

to which the delete-1 jackknife could be applied were considered and the impact on the 

performance of the resulting jackknife variance estimates and on disclosure of original 

psu indicators was examined (see Dohrmann et al., 2002, for more detail). The final 

chosen method for the 1999-2000 NHANES release (termed the clustered-split psu 

alternative in Dohrmann et al.) entailed ordering the ssu's on minority density and 

then assigning the first half within a psu to one pseudo-psu and the second half to 

another, as depicted in Table 5.4 (reproduced from Figure 3 of Dohrmann et al., 2002). 

Due to the ordering on minority density one expects that the resulting pseudo-psu's 

formed from this method will not have the same characteristics as the full psu. In 

addition, the order of the replicates is then scrambled to  further ensure confidentiality. 

There is little practical difference in terms of confidentiality between supplying 

the end-user the 52 sets of jackknife replicate weights or giving the pseudo-psu indi- 

cators, as one can easily obtain one from the other via the method of the previous 

section. The questions are: i) is it now easy to re-match units to  original psu's; and ii) 

will the resulting jackknife variance estimate still perform reasonably well on various 

characteristics. 

The conclusions in Dohrmann et al. (2002) are mixed. The protection of confiden- 

tiality seemed more satisfactory than did the performance of the resulting variance 

estimator. On the 70 characteristics investigated, the jackknife variance estimates 

were on average 20% low and showed a rather striking pattern when compared to  the 

baseline design effect (see Figure 7 of Dohrmann et al., 2002). We will only consider 

the first aspect in this thesis. For the second aspect, the pattern is related to the 

properties of design effects (Inho Park (2004), unpublished Westat report) and will 

not be discussed, except to say that the pattern is to be expected and a better plot for 

evaluation would be to plot the estimated standard errors before and after splitting. 
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Table 5.4: Clustered-split PSU Replication Design 

Certainty 

status 
~ ~ - p ~ ~  

Noncertainty 

psu's 

Certainty 

psu's 

PSU 

A lSt seg 

A 2nd seg 
. . . 

A 1 2 ~ ~  seg 

A 1 3 ~ ~  seg 

A 1 4 ~ ~  seg 
. . . 

A 24th seg 
. . . 

21'22 lSt seg 

21'22 2nd seg 

Z1,Z2 3Td seg 

21'22 4th seg 
. . . 

Replicate 

5.5.3 The Evaluation of Psu-Splitting Effect 

Before examining the various aspects of psu-splitting, we will discuss the method 

of variance estimation decided upon for the 2001-2002 NHANES and subsequent re- 

leases, as a decision to change the basic methodology was made. Instead of using a 

delete-1 jackknife, the noncertainty psu's were paired to form variance strata and the 

ssu's within certainty psu's were similarly treated to form L variance strata. If this 

pairing is done randomly, it is not difficult to show that, for the purposes of variance 

estimation, treating the design as if it were a stratified multistage design with 2 psu's 

per stratum selected with replacement and applying a BRR or jackknife will yield 

unbiased variance estimates for linear estimators provided the first-stage sampling 

fraction is negligible (see Rao and Shao, 1996; and Rust and Rao, 1996 for related 
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discussion). 

With this in mind, to examine the observed underestimation using psu-splitting, 

we will consider a general stratified multi-stage design with nh = 2 psu's selected with 

probabilities phi with replacement, where h = 1, ..., L denote the strata and i = 1,2 

indicate the sampled psu's. Let Y = Chi, whikyhlk be a linear unbiased estimator of 

population total Y, where k E Ghi and Ghi represents the set of sampled ultimate 

units. 

Consider the BRR. To construct a BRR variance estimator for Y ,  we need to 

create R sets of replicate weights. The r-th set of replicate weights are defined as 

W h ~ k ( ~ )  = (1 + bTh)whlk and Whak(r) = (1 - brh)wh2k, for h = 1, ... , L and k E Ghi, 

where the bTh is the element in the r-th row and h-th column of a matrix of ones and 

negative ones with orthogonal columns, as was described in Chapter 2. Typically, 

this matrix is comprised of a set of L columns from an R x R Hadamard matrix with 

L 5 R 5 L + 3. In this case, half the replicate weights in each replicate are twice 

the original weight and half are zero. Often in practice, the more general Fay's BRR 

method is applied instead of BRR with regard to weight adjustment (Judkins, 1990). 

Replacing Whik by the Fay BRR weights ~ h ~ k ( ~ )  in Y we get qT) and the BRR 

variance estimator is given by 

L We can write Y = ChZl ~ h ,  where h = (rhl + rh2)/2 and r h i  = CkEGhj Zwhikyhik. ~t 

is then not difficult to show that (see section 5.9) 

In fact, it is not difficult to show that the usual linearization variance estimator 

and the JK2 jackknife variance estimator are equal to UBRR-F in this case. Thus, we 

will evaluate the impact of psu-splitting on U(Y) in (5.3) without further specifying 

variance estimation methods the end-user might choose. 

To perform psu-splitting in this context, the hi-th psu is split into two sets of 

ultimate units, Ghi,l and Ghi,2 say, where Ghi,1 U Ghi,2 = Ghi One from each of 
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these pairs are placed together to form a new variance strata of two pseudo-psu's, 

thus creating two new variance strata from each original variance stratum. Then 

r h i  = C k E G h i , ,  nhWhikYhik + CkEGhi,P nhwhikyhik = 

r2 ,h2)  + ( ~ 2 , ~ ~  + T ~ , ~ ~ ) ]  in obvious notation, and 

variance strata and pseudo-psu's yields 

r l , h i  + r2,hi '  and y = ~ k = ~ [ ( r l , h l  + 
applying Fay's BRR to these new 

The performance of the split-psu replication method will depend upon the second 

term in (5.4) which depends upon how the psu's are split. One could attempt to split 

the psu's so as to make the second term on the right hand side of (5.4) as small as 

possible, or at least positive to be conservative. A similar result can be obtained for 

the delete-1 jackknife used in the 1999-2000 NHANES release and partially explains 

the under-estimation reported in Dohrmann et al. (2002). More careful consideration 

of the second term has the potential to reduce the problem. However, the NHANES 

survey, as with most other surveys, has many characteristics of interest and it would 

be difficult to ensure this generally for all of them. Even if it were possible, it may 

not be best to create more pseudepsu's and/or variance strata than there were in 

the original survey as the end-user may then be over-confident as to the degrees of 

freedom of the resulting variance estimator. 

An obvious alternative is to recombine the split psu's with each other. That is, 

let G;1, = Ghl,1 U Gh2,1 and Gi2 = Gh1,2 U Gh2,2 be the two recombined pseudo-psu's 

for stratum h and apply Fay's BRR. It is not difficult to show that the result is 

The proof of (5.5) is given in section 5.9. Thus, a similar strategy for splitting the 

psu's would be recommended before recombining. 

The key point to realize is that this strategy of psu splitting and recombining 

is merely one method of changing ssu assignment to psu's. If the total of the ssu's 
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swapped between h l  and h2 are equal, i.e., r l , h2  = r2 ,h l ,  the variance estimator 

will be unchanged. However, as with psu-splitting, it will be difficult to ensure this 

holds on a large number of characteristics. This idea can be generalized to include 

swapping ssu's or in the case of multi-stages even ultimate units between different 

psu's, when constructing the replicate weights or pseudo-psu's for the purpose of 

variance estimation. By doing so, we may be able to  do less swapping and have a 

better chance to  limit the possibility of data disclosure while disturbing the variance 

estimator less. 

5.6 Proposed Approaches 

From the previous section we have learned that psu splitting and recombining can 

be interpreted as a special case of an ssu swapping approach, which still has a lot of 

potential for improvement. We summarize that a good ssu swapping algorithm should 

meet the following criteria: 

1. Since one of our major goals is to hide the original psu indicators from the end 

users, a considerable portion of ssu's should be switched from each original psu, 

making it unidentifiable for any cluster analysis of ssu patterns. Furthermore, 

in any formed pseudo-psu, the number of ssu's from any original psu should not 

be inordinately large. 

2. Another goal is to limit the resulting bias of the variance estimator. As demon- 

strated in the previous section, we could achieve this goal by maintaining ap- 

proximately equal r j ,  j = 1,. . , n, for the pseudo-psu's. 

Based on these criteria, we present two types of approaches: one is a two stage 

approach. In the first stage we pair like segments together from different psu's; at 

stage two we select a user-specified proportion of those paired segments and swap 

them between psu's. The second type is to sequentially search for the most like pair 

of segments from different psu's available at the current step and swap them; repeat 

this procedure until a required proportion of segments has been swapped. This is 
more like the grouping algorithms of Chapters 3 and 4. 
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5.6.1 Match-and-Swap Approach 

One approach to swapping ssu's is to adapt methods for local record swapping which 

have been proposed for the purpose of disclosure control on the micro data set itself, as 

described in section 5.2.3. For example, Takemura (2002) suggests using an algorithm 

due to Edmonds (1965)' or an approximation to it, to pair elements in the data on 

the basis of a distance measure between records (vector of y characteristics). Then 

elements of the so paired records could be swapped. This could be quite easily adapted 

to our problem as follows. We add the psu indicator as one of the components of the 

record. We then adjust the distance measure so that if two records have the same 

psu indicator value, i.e. they are from the same psu, the measure of distance becomes 

extremely large. This prohibits records from the same psu being paired together. We 

then apply the pairing algorithm. Once pairs have been formed, we choose a% of the 

pairs and switch their psu indicator. 

There are a number of possible algorithms for matching. We chose to use a publicly 

available implementation of a version of Edmonds' algorithm called WMATCH (see 

Gabow, 1973). With the matching obtained and Criterion 2 met, now the question is 

which pairs should be switched in order to satisfy Criterion 1. We propose a linear 

programming approach aiming to balance the proportion of switched pairs of ssu's over 

all psu's. Let ni be the number of ssu's in the i-th psu, i = 1, . , n ,  and no = C ni/2 

be the number of matched pairs. We then let (ail, ai2), i = 1,. . - ,no denote the 

matched pairs, (pil , pi2) be their psu indicators and dl, - . , d,, their corresponding 

distance measures. Then solve the linear programming (LP) problem, 

The optimization procedure will be accomplished through indicator variables z j ,  j = 

1,. , no, which determine whether the matched pairs of ssu's are being switched or 

not. It is easy to recognize that any feasible solution will satisfy the requirement of 

a% switching proportion for all psu's and the optimal solution will further minimize 

the overall distance of switched pairs of ssu's. 
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The outline of steps for the entire algorithm is given as follows: 

Algorithm 1 

Step 1. Define a distance measure; 

Step 2. Apply a matching algorithm to pair ssu's from different psu's; 

Step 3. Solve the LP problem (5.6) to obtain a %  switching. 

The following points should be noted: 

1. In the previous description, we assume that all ssu's can be paired (called com- 

plete matching) in a matching algorithm. This is not quite true in practice, 

because: (a) The computational time can be extremely large. Thus, we take 

Takemura's suggestion to consider only the K nearest neighbors of each ssu 

for matching, which implies that a complete matching may not exist; and (b) 

the free source code (WMATCH) we obtained usually cannot achieve complete 

matching, especially when only K nearest neighbors of each ssu are included. 

2. If, in practice the required switching percentage a %  is small, we may not need a 

complete matching. There will be enough matched pairs to choose an adequate 

switching. From our experience, if the ratio no/ C ni is no less than a ,  it is 

almost assured that enough switches can be made. Note that no here, as the 

total number of matched pairs, will be less than C n i / 2  if we do not have a 

complete matching. 

3. If a complete matching is needed, we can still modify the proposed algorithm 

to meet the requirement. In fact, we can replace Step 2 with: 

Step 2.1 Obtain a list of all ssu's associated with K nearest neighbors and 

then apply a matching algorithm to the list to obtain the matching. 

Step 2.2 If the obtained matching is complete, go to Step 3. Otherwise, recon- 

struct a list of all unmatched ssu's with K' 5 K nearest neighbors among 

them. 
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Step 2.3 Apply the matching algorithm to the current list and repeat Step 2.2. 

One could use other matching strategies/algorithms. In fact, when we described 

the general match-and-swap approach to methodologists at Westat Inc., for practical 

reasons, they chose to use software based on record-linkage to match and to randomly 

choose matched pairs for swapping. This will be described in detail in section 5.8. 

5.6.2 Sequential Swapping Approach 

The performance of the match-and-swap approach is heavily dependent on how well 

the matching is accomplished. When the number of ssu's is large, or if we want to 

extend this approach to record level swapping, we may face severe computational 

burden at the matching stage. In addition, the lack of flexibility at the swapping 

stage also makes the match-and-swap approach less than attractive. For example, if 

an a% swapping is needed, we may like to have the proportion of ssu's from each psu 

to be swapped to as many other psu's as possible and subsequently reduce the risk of 

identifying certain swapping patterns between any two psu's. However, such a goal is 

hard to achieve if the match-and-swap approach is applied as the number of candidate 

pairs of ssu's is limited even when a complete matching is available. Thus, we also 

propose a sequential swapping algorithm in an effort to resolve these concerns. 

An idea of sequential swapping is that, instead of swapping a proportion of matched 

pairs of ssu's at the same time, we establish a rule to determine the best pair of ssu's 

for swapping under some optimality criterion at the current step and then repeat the 

swapping steps until enough ssu's have been swapped while the criteria mentioned 

above are all satisfied. This is more in the spirit of the algorithms used for grouping 

in Chapters 3 and 4. The question is, how to find a good rule in order to swap ssu's 

between psu's. Firstly, to satisfy the requirement for the a% swapping for each psu, 

we would like to choose the psu with the least current swapping percentage (i.e. the 

highest percentage of original ssu's remaining) as one of the two psu's to be swapped 

and set up our stopping criterion as: no psu still retains more than (1 - a)% of its 

original ssu's. Then, we choose the best pair of ssu's out of all possible pairs which 

consist of one from the chosen psu's and the other from any other psu in terms of 
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distance measure for the pairs. Denote li = La * nil + 1 as the minimum number of 

ssu's to be swapped from psu i and uij = LP * li] as the maximum number of ssu's 

to be swapped from psu j to psu i ,  where 1.1 stands for the operation of truncating 

a number to the largest integer less than or equal to it and ,!j' is a tuning parame- 

ter which prevents the swapping rate between any two psu's from being inordinately 

large. 

The steps for this algorithm are given as follows: 

Algorithm 2 

Step 1 Preparation 

Step 1.1 Compute the distance Dij for any pair (i, j) of ssu's; 

Step 1.2 Calculate li, uij, i ,  j = 1, . . - , n; 

Step 1.3 Let Li = 0 and Uij = uij, i ,  j = 1 , .  . . , n; 

Step 2 Determine the first psu indicator as io = arg minl<i<n - - Li: 

Step 2.1 Among other psu's in J = {j # io : Uioj > 0}, choose jo such that 

the distance between the pair of ssu's from psu io and jo, respectively, is 

minimized. 

Step 2.2 Remove both ssu's from the current list; 

Step 2.3 Let Lio = Lio + 1, Ljo = Ljo + 1 and Uiojo = Uiojo - 1. 

Step 3 If Li > li for all i = 1, . - , n,  stop; otherwise, repeat step 2. 

Algorithm 2 is simple in concept and very fast because there are only a limited number 

of comparisons needed for each ssu pair swapping step. Its simplicity also makes it 

very flexible to accommodate different constraints or requirements if needed. These 

properties are preferable in practice because a real data swapping procedure takes 

a lot of time and effort and needs to be repeated many times in order to obtain 

a satisfactory final swapping result, since typically only some of the characteristics 

are used for matching, and one must examine the resulting performance of variance 

estimators on all characteristics. In the next section, we will use a small simulation 

study to demonstrate these properties. 
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5.7 A Small Simulation Study 

Because the proposed approaches are motivated by real survey problems, we find 

the best place to apply the proposed algorithms and evaluate their performance is 

the NHANES survey, where the problems originally occurred. However, this involves 

some sensitive information and we have to be very careful with our evaluation p r e  

cedure. Because of our collaborations with Westat Inc., we are able to obtain the 

NHANES raw data under strict confidentiality agreements. One major difficulty is 

that we are not allowed to take the data away from Westat's computers, not even to 

a laptop in the same room for just a temporary simulation run. On the other hand, 

because of the software licensing issue, Westat methodologists are unwilling to use any 

software from out of the company, including the free matching package WMATCH 

we recommended in our proposed Algorithm 1. Restricted by these practical con- 

cerns, we design our algorithm performance evaluation procedure in two stages. In 

this section, we apply the proposed algorithms to the NHANES 1999-2000 Sample 

Person Demographics File, currently released for public use, to compare the speed, 

similarity of swapped units and flexibility for both algorithms, which we consider as 

factors that help protect confidentiality. In the next section, we compare the results 

using the matching software AutoMatch, available at Westat, originally used for find- 

ing matching records, in Algorithm 1 so that we can apply both algorithms to the 

raw data and compare their performance in variance estimation. 

In this section, we choose three variables for our simulation. The variables are: 

age in years (RIDAGEYR) , racelethnicity (RIDRETHl) and gender (RIAGENDR) . 

RIAGENDR is coded as 1 or 2. RIDRETHl is coded as 1, 2, 3 or 4. The value of 

RIDAGEYR ranges from 0 to 85. There are 9,965 individual records in this data set, 

each of which is associated with a psu identifier numbered from 1 to 52. Our goal 

is to apply the proposed approaches for swapping a certain percentage of individual 

records, instead of ssu's, between different psu's without noticeably changing values 

or categories of the variables. 
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5.7.1 Distance Measure 

Using the selected variables, denoted as a ,  r and g, respectively, we define the distance 

between any pair of records, (i, j ) ,  as: 

if i and j are from the same psu; 
51(ri,rj)+51(gi,gj)+lai-aj1/5 

30 otherwise, 

where I ( a ,  b) = 1 if a = b and 0 otherwise. The distance will range from 0 to 1. The 

smaller the distance is, the more similar the two corresponding records are to each 

other. Therefore, with the way we define the distance, we like to obtain a matching 

or swap records associated with small distances in our simulation study. Because we 

only use 3 variables in our simulation, two of which are categorical with the other one 

discrete, perfect matches are often possible, as shown in Table 5.7. 

5.7.2 Results for the Match-and-Swap Approach 

Our first step is to use WMATCH to obtain a desired matching. However, in our 

first pass, we were only able to obtain a partial matching in which the percentage of 

matched pairs of records, y, ranged from 16% to 65%, depending on the number of 

nearest neighbors K chosen. Consequently, the condition of a% switches for each psu 

could not be met for some large values of a. Table 5.5 summarizes approximate com- 

Table 5.5: Elapsed CPU time (in seconds) and achieved average distance 

putation times and achieved average distances in which NA's represent unattainable 
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switches in the above sense. As discussed previously, we modified our algorithm to 

obtain a complete matching. Table 5.6 shows the improved results. 

Table 5.6: Elapsed CPU time (in seconds) and achieved average distance 

5.7.3 Results for the Sequential Swapping Approach 

For the sequential swapping approach, we have better control during the swapping 

process in terms of the source of swapped ssu's in any specific psu. In addition to 

a%, the required proportion of ssu's to be swapped in any psu, we define another 

quantity, /3%, as the upper limit of ssu's swapped from any other psu to the target 

psu. By introducing /3, we tend to monitor the component for each formed pseudo-psu 

such that the swapped ssu's in it are from a variety of original psu's. This will be 

beneficial for confidentiality concerns. The result for each combination of cu and /3 
levels is attainable in our simulation. Table 5.7 provides Algorithm 2's performance 

under different conditions: 

5.7.4 Summarizing Results 

The above results show that the minimum distance has been attained in all cases, 

meaning that both approaches perform well in reducing the bias of the variance esti- 

mator for the demographic variables chosen as swapping criterion. Furthermore, we 

notice that even though we introduce another control factor /3 in Algorithm 2, it is 
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Table 5.7: Elapsed CPU time (in seconds) and achieved average distance 

still faster than Algorithm 1. From the simulation result, we find no obvious pat- 

terns between any two pseudo-psu's, which is favorable for confidentiality protection. 

It also shows that the second approach is fairly flexible for meeting most practical 

requirements. 

5.8 Application to NHANES and Evaluation 

As described previously, we are able to apply both proposed algorithms to the 1999- 

2003 NHANES data at segment (ssu) level with some modification to Algorithm 1 

due to practical concerns. Once the segments are swapped, the SUDAAN program 

for calculating variance by Taylor series is used and the results are evaluated. Wes- 

tat methodologists used an altered Algorithm 1 in the 2001-2003 NHANES release. 

Because the software Westat methodologists used to obtain the matching of segment 

pairs is based on the record linkage technique, we summarize this matching strategy 

before applying our swapping procedures to the NHANES data. 

5.8.1 Matching Adapted from Record Linkage Technique 

A modification to the match-and-swap approach at the matching stage is to apply 

probability-based record linkage techniques to identify optimal swapping partners. 

The theory for record linkage given by Fellegi and Sunter (1969), and Winkler (1995) 

discusses the implementation and parameter estimation. In the basic setup, the match 
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weight assigned to a record pair is derived from a likelihood ratio that accounts for 

the closeness of the matching fields being compared. We use r for a record pair, v 

for a field (or variable) compared where there are v = 1, . . . , V fields. The weight of a 

record pair w, is: 
- I (5.7) 

where m, = P(fie1d v agrees in pair rlr E M ) ,  M is the set of matches, u, = 

P(fie1d v agrees in pair rlr E U), U is the set of non-matches, and z,, = 1 if field v 

agrees and 0 otherwise. 

The match weight w, can be interpreted as a type of log-odds or log-likelihood 

ratio. By taking the anti-log of w,, we have 

2Wr = 
L(z,lr E Dl) 

L(zrlr E U) 
= LR(zr), 

where z, is the vector of 0's and 1's for disagreements and agreements of the component 

fields in pair r. L(z,lr E M )  = n:=, m ? ~ ( l  -m,)l-zru is the likelihood of a particular 

configuration of agreement and disagreement outcomes among the fields given that 

the pair is a true match, and L(z+/r E U) = n:=, u?(1 - u,)'- '~~ is the likelihood 

of the same configuration given that the pair is a true non-match. The transformed 

weight, a likelihood ratio LR(z,), is a measure of the strength of evidence that a pair 

is a match. In general, a likelihood ratio greater than 1 is evidence that the pair is 

more likely to be a correct match than a non-match, while a likelihood ratio less than 

1 indicates the opposite. 

Due to in house access to the software, Westat methodologists used the software 

AutoMatch (Matchware Technologies, Inc., 1996) for implementation (see Winglee 

et al., 2000; and Gomatam et al., 2002; for applications with this package). This 

software requires the user to estimate the conditional matching probabilities m, and 

u, for each matching field and calculates the log-odds weights for all possible record 

pairs. It then determines the optimal set of pairs by taking the set with the greatest 

sum of weights. An iterative procedure can also be used to refine the values of the 

conditional matching probabilities. 

In summary, the modified algorithm includes two steps: 
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Algorithm la 

Step 1. Apply record linkage techniques to  conduct complete matching of the seg- 

ments. Matching uses constraints to prohibit the pairing of segments from the 

same psu, and apply a weight threshold to avoid poor matches (segments with 

no good matching partners are not swapped). 

Step 2. Sample a fixed percentage of the matched segments within each psu for 

swapping. Sampling controls the maximum number of segments for swapping 

(i.e., the swapping rate) per psu. 

5.8.2 Conditional Matching Probabilities 

For all proposed approaches, we use six variables describing various demographic char- 

acteristics (for example, a percentage of the segment of a particular race or ethnicity) 

to determine segment pairs, denoted as X I ,  x2, 23, xq, x5 and 26. TO obtain the nec- 

essary parameters for the modified match-and-swap approach, AutoMatch was run 

several times to refine the m, and u, values that should be used for each field (see 

Table 5.8). The first four fields ranged from 0 to 100, and were matched numerically. 

An extra parameter, d, was included that allowed the weight to be prorated if it 

differed by a certain amount. For example, if the values for XI differed between two 

segments by 1 percent, the weight for that pair would be slightly less than the full 

agreement weight, rather than the full disagreement weight. Only if the difference 

was over 10 percent would the pair be given the full disagreement weight. The last 

two fields had much smaller ranges, and were matched by comparing the percentage 

difference between the segment pairs. Again, an extra parameter was used to  allow 

for small disagreements between the pairs. For example, if one segment had a value 

of 2.0 for x5 and another had 2.1, that field would have a 5 percent difference, and 

would get weight between the agreement and disagreement weights, instead of the full 

disagreement weight. 
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Table 5.8: Conditional Matching Probabilities 

Field m, u, d Agree Disagree 
Weight Weight 

5.8.3 Distance Measure 

For the use of Algorithm 2, a distance measure is defined using these demographic 

variables. Note that all variables have been standardized so that they range from 0.0 

to 1.0. We also penalize the distance between segments from the same stand (psu) 

in an effort to avoid such pairing. The distance between any two segments i and j is 

then defined as: 

if i and j are in the same psu, 
D(i,  j )  = 

- xjk)2 if i and j are not in the same psu. 

Thus, the distance will range from 0.0 to 6.0 for segments from different stands. The 

smaller the distance between two segments is, the more alike they are. Again, we 

would like to swap segments associated with small distances in our simulation study. 

5.8.4 Swapping Procedures 

Another practical restriction is that segments should be swapped between certain 

pairs of psu's. More specifically, only segments from psu's with high disclosure risk 

need to be swapped to the rest of psu's with low disclosure risk, essentially forming 

the following swapping procedures: 
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Procedure 1: use Automatch to match segments ignoring the psu structure; ran- 

domly select a segments from each of b psu's which are considered as having the highest 

disclosure risk; swap selected segments with their best available pairings which are 

not in any of the b high disclosure risk psu's. 

Procedure 2: sequentially select the best available pair of segments between high 

risk psu's and low risk psu's and swap them until a segments from each of the high 

risk psu's have been swapped. 

5.8.5 Evaluation 

After applying two swapping procedures to the segment level NHANES data, SU- 

DAAN is run to obtain the point estimates, standard errors and design effects of all 

variables for each swapping procedure. Several descriptive statisics are calculated for 

each procedure's standard error and design effect relative to those of baseline design. 

Ideally, these values would be close to 1, meaning that the standard error and design 

effect will not be greatly affected by the swapping procedures. Table 5.9 shows the 

descriptive statistics by procedure for the standard error ratio and the design effect 

ratio, respectively. 

Table 5.9: Ratio of SEs and DEFFs by Method to Baseline Design 

Swapping Descriptive Statistics 
Procedure Mean Std.Dev Kurtosis Skewness Min Median Max 

Ratio of Standard Errors 

1 0.983 0.106 4.747 0.801 0.519 0.986 1.559 
2 0.975 0.096 2.777 0.076 0.602 0.985 1.531 

Ratio of Design Effects 

1 0.974 0.219 8.641 1.778 0.269 0.971 2.430 

2 0.959 0.188 4.987 0.812 0.362 0.969 2.345 
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To help visualize the potential pattern caused by either swapping procedure, we 

plot the standard errors and design effects of all variables obtained by either swapping 

procedure against those from baseline design in Figure 5.1 and 5.2, respectively. 

Figure 5.1: Distribution of Ratios of Standard Errors by Procedure 

In summary, both procedures perform well, with procedure 2 generating lower 

variation and skewness among all variables. Also note that procedure 2 runs much 

faster (within seconds for ssu level swapping) than procedure 1 and has a great deal 

of flexibility to accommodate the necessary adjustments which may occur after an 

initial swapping. For example, we could easily include some variables that did not 

perform well in our distance measure and observe the impact immediately. However, 

for procedure 1 it will not be as easy because we have to re-evaluate the conditional 

matching probabilities. 

5.9 Proof of (5.3) and (5.5) 

5.9.1 Proof of (5.3) 

The r-th replicate estimate is given by 
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Figure 5.2: Distribution of Ratios of Design Effects by Procedure 

where bTh = +1 or - 1 depending on whether the first or the second psu of the h-th 

stratum is in the r-th half sample such that c:=, hTh = 0 for all h and 

R 

C 6 T h 6 T h t  = o for any h +  hl. 
r= 1 

since I'(,) - Y = ( 1  - E )  ~ k = ~  dTh(rhl - rh2) /2  and 6:h - 1 for any h, r ,  we have 

The result (5.3) follows from (5.9) 
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5.9.2 Proof of (5.5) 

which completes the proof. 



Chapter 6 

Future Research and Concluding 

Remarks 

6.1 Consistency of Replication Based Variance Es- 

t imators 

In this thesis, we proved the consistency of the JK2 combined strata grouped variance 

estimator when 8 is a smooth function of means and there are 2 psu's per stratum, 

though a similar proof is available for JKn and the BRR. Rao and Shao (1996, The- 

orem 3) consider a different problem, where there are only a few strata with many 

psu's in each stratum. In their situation, the psu's within a stratum are randomly 

paired into pseudo strata and then a large BRR applied. There is no grouping of 

strata. This is much like the way that SR strata were handled in Chapter 4. They 

establish the consistency for smooth functions of means and show that the method 

performs well for quantiles in a simulation study, as the minimum nh gets large. The 

general problem is exemplified by the NHIS survey of Chapter 4 where there are 

many strata with small number of psu's and a few strata with many psu's (SR), and 

one randomly pairs the psu's in the large (SR) strata to form a much larger set of 

pseudo strata and then applies the combined grouped BRR to this set consisting of 

the original strata with small number of psu's and the pseudo strata created from the 
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large psu's. Though we ignored this aspect in our evaluations, as the original data 

was unavailable, we expect that the method will perform well in this case, given the 

results in our simulations, in Rao and Shao's simulations and the Rao and Shao proof 

of consistency in their context. In fact, under reasonably straight-forward conditions, 

it is quite clear that the method will remain consistent for smooth function of means. 

For example, assume that there are a small number of large strata (SR) and a large 

number of strata with 2 psu's. The Rao and Shao (1996) proof of consistency applies 

to the group of large strata while the Krewski and Rao (1981) proof applies to the 

large number of 2 psu strata, which will imply consistency, without grouping of strata. 

Our Theorem 1 will then imply that grouping of strata will go to the same limit and 

thus the desired consistency results. For SR strata this is a reasonable asymptotic 

framework as the SR strata is really a psu sampled with certainty and its "psu's" 

are really the ssu's within the certainty psu, the number of which are often large, i.e. 

nh + a. We hope to develop a general set of conditions under which this variance 

estimator will be consistent, using BRR, JK2 and JKn. 

In addition, it is likely that the theoretical results on the consistency of the BRR 

for non-smooth estimators such as quantiles should be extendable to the above general 

method of combined group BRR after random pairing of psu's in a few large strata. 

Rao and Shao's simulations on quantiles for their situation showed good performance. 

We hope to develop consistency results for the BRR in this situation and relate the 

performance back to the method of grouping into combined strata. 

Also, it may be possible to develop a methodology that will work for non-smooth 

estimators using JK2 and JKn. It is well-known that the delete-1 jackknife is not 

consistent for non-smooth estimators. However, in the combined strata approach 

more than one psu is deleted in each replicate. This means there is potential to use 

the delete-d jackknife theory of Shao and Wu (1989) to establish consistency. We 

would like to investigate this, as well as, the connection to how one should do the 

grouping and can the same grouping simultaneously establish consistency for smooth 

and non-smooth estimators. 
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6.2 Replicate Weight Perturbat ion 

As described in Chapter 5, consider introducing a random noise E to replicate weights 

and express the perturbed replicate weights as 

Denote the replicate estimate as p;T) = C(hil)Es w ; ~ ~ ( ~ ) ~ ~ ~ ~ / M .  The variance estimator 

of y after perturbation is then given as 

-. 

- - 
+ cn x(~:r) - ~ ( r ) ) ~  + ~ C R  x(ptr) - fj(r))(fj(r) - p ) ,  w) 

R where v = C R  Cr=l(p(r) - y)2  is the usual replicate variance estimator and CR varies 

depending on which replication method is employed. Denote E, as the expectation 

with respect to  iid random variables &hil. We have 

2 2 Since CR c:=~ b&,) is a term of order O(1) and C(hil)Es whilYhil/M2 should have 

the same order as the replication variance estimator v under some conditions, the 
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left hand side of (6.3) will not disappear unless a2 goes to zero, hence generating a 

noneligible bias in variance estimation. On the other hand, as we showed in our small 

simulation in section 5.4.4, the clustering algorithm will reconstruct psu identifiers 

with high accuracy for any moderately small a2. We feel this issue is interesting and 

is worth a more indepth investigation. In the future, we would like to explore the 

connection between the variance of added noise and the resulting bias of the variance 

estimator, both through simulation and theoretical development. We would also like 

to try different distributions on E in our simulation. The outcome for this research 

direction will be either discovering a new method for masking psu identifiers from 

replicate weights or demonstrating that there is no feasible way to do so. We expect 

the latter. 

6.3 General Approaches to Replicate Weight Con- 

struct ion 

This thesis considers some specific solutions to a problem in replication based variance 

estimation which can be more generally characterized as follows. 

We wish to  construct a set of replicate weights as depicted in Table 2.1 where 

R is not too large and the resulting variance estimator is consistent. Chapters 3 

and 4 use the approach of grouping strata and applying existing replication methods 

simultaneously to all strata in a group. For example, the BRR when so applied can 

be viewed as assigning every stratum in a group to the same column of a Hadamard 

matrix. This has advantages and disadvantages depending upon the context. For 

example, if confidentiality is an issue, as it often is, then grouping strata will help mask 

suppressed psu and strata identifiers. On the other hand, the variance of the resulting 

variance estimator will increase. Chapters 3 and 4 discuss method to limit this impact. 

If, however, confidentiality is not of concern, this can be viewed as a method of 

reducing end-user effort. If so, in general, we could consider how to  construct two- 

way arrays with small R satisfying a set of conditions which ensure desirable statistical 

properties of the resulting variance estimator. They should be able to  handle general 
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nh and ensure consistency, and efficiency of resulting variance estimators of smooth 

and non-smooth functions of means. Meanwhile, the construction procedure should 

be easy and fast to implement. 

There already exists such a set of conditions for BRR-type methods which in 

part satisfy these requirements, as described in Sitter's (1993) definition of a balanced 

orthogonal multi-array (BOMA). However, they are difficult to construct with small 

R. When you have one, you can in principle classify multiple strata to the same 

column, to get a combined strata BOMA. Because of the difficulty in constructing 

such mixed-level BOMA's, a better approach might be to sacrifice the orthogonality 

or balance to get an approximate BOMA that still ensures consistency and may be 

more efficient in terms of variance of the variance estimator than combining strata, 

which essentially can be viewed as allowing columns in the array to be completely 

confounded. 

Consider a simple example of a matrix (see Table 6.1) that could be used for this 

purpose. 

Table 6.1: Construction of a 14 x 8 Array 

This matrix was obtained by taking the 8 run factorial, folding it over and then 
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removing the row of +'s and the row of -'s. Note that the 14 sets represented 

by keeping the row numbers corresponding to +'s in each row form a resolvable 

BIBD. Now, if we let each row define a resample by keeping two copies of each yj 

which has a + below it, then each row defines a resample of size n. For example, 

row 2 defines the resample { yl , yl , Y 6 , Y 6 , ~ 7 , ~ 7 , ~ 8 ,  38). Thus, this matrix defines 14 

resamples that are balanced in such a way that if the estimator were 8 = y, then 

(1114) x:ll(& - d)2 = s2/n, where 8; is calculated from the r-th replicate. 

First, consider the iid case, where we wish to avoid any rescaling. Let X = {xij) 

be an R x n matrix consisting of 1's and 0's which replace all the +'s and -'s in Table 

6.1, respectively. Let cri = x:==, xij, the number of 1's in row i .  Then the matrix 

must satisfy three conditions: 

1) xEl xij/ai = R/n for each j = 1, ..., n; 

2) xi3/cr: = 2R/n2 for each j = 1, ..., n; 

3) x i 3 x i k / ~ f  = R(n - 2)/[n2(n - I)] for each j f k = 1, ..., n. 

In fact, in the example of Table 6.1, conditions 1 and 2 are equivalent as a balanced 

array condition. Condition 3 is a BIBD- type condition. This set of conditions mimic 

the BOMA definition in Sitter (1993). 

The fold-over approach can be used to construct arrays satisfying BOMA con- 

ditions with R = 2(n - 1) for n,  a multiple of 4, by using folded-over Hadamard 

matrices. However, because the number of columns, which represents the number of 

units, has to be a multiple of 4 for such an array, we still need to answer the following 

question: is it possible to apply an array obtained by using the fold-over approach to 

the cases where the number of sampled units is not constrained to a multiple of 4? 

This actually leads to a more general question: if there is no easy way to construct an 

array perfectly satisfying this set of conditions, can we satisfy them approximately? 

By approximately, we mean to establish a criterion to evaluate how closely these con- 

ditions can be satisfied for an array. On the other hand, we would also like to know 

how good an approximation we need, to retain the consistency of the resulting vari- 

ance estimator. We try to answer both questions by considering an objective function 
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such as 

R where Aj = C,=l  wij/R, Bj = ~ : , ( w , ~  - I ) ~ / R ,  Cjk = ~ : ~ ( w ,  - l)(wik - 1)/R, 

and wij = nbij/ai. If the three conditions are satisfied, g(x) = 0. By defining such 

a function and having some construction ideas, we have made some modest progress 

on this more general problem, though with the restriction to the iid case. This could 

be classified as a balanced bootstrap (see Davison, Hinkley, and Schechtman, 1986; 

Efron, 1990; Graham et al., 1990; Nigam and Rao, 1996). The first step is to introduce 

the following lemma. 

Lemma 6.1 For n + t = n' = 4m, 0 5 t 5 3, R = 2n' - 2, the two-way array 

X(R,  n), built by folding an n' x n' Hadamard matrix, and then removing t columns, 

satisfies the B O M A  conditions exactly for t = 0 or 1 and the following nearly B O M A  

conditions for t = 2 or 3. 

The proof of Lemma 6.1 is given in section 6.4. Naturally, the next step would be to 

investigate whether or not, with the BOMA conditions approximately satisfied, the 

resulting variance estimator retains its consistency and has satisfactory performance. 

We realize that the extension to stratified multi-stage sampling with general nh 

is still quite challenging, including both algorithmic approaches to find arrays and 

theoretical consideration. If all strata are large and of the same size, then one could 

use an array constructed as in Lemma 6.1 and its complement constructing a multi- 

array via Kronecker products as shown in the example below reproduced from Sitter 

(1993, Example 5.1). 
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Example 5.1: Let L = 7 and p = 4. Then 

p = 4 units per stratum in R = 24 replicates. These were obtained using the 

Hadamard matrices given in Wolter (1985) p. 322. So A = B @ C is obtained 

by replacing the +'s and -'s in B with + C  and -C. Note that C has p = 4 columns 

and that C and -C together could be obtained via the fold-over method applied to 

the 4 run factorial design matrix. If we label the columns 1 through 4, then each row 

Table 6.2: A BOMA(24, 47; Z7) 
h 

1 2 3 4 5 6 7 

of C can be used to define a 2-subset of the 4 units by keeping the units with a + sign 
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in their column. So the 3 rows of C become the 3 subsets (1,3), (1,4), and (1,2), and 

similarly the 3 rows of -C become the 3 subsets (2,4), (2,3), and (3,4). Doing this 

throughout A we obtain the BOMA(24, 47; 27) given in Table 6.2, reproduced from 

Sitter (1993, Table I ) ,  which gives a balanced half-sample technique for L = 7 strata 

with 

6.4 Proof of Lemma 6.1 

It is easy to examine that all conditions hold exactly for the case of t = 0 , l .  So do 

the conditions 1 and 2 for the case of t  = 2. Here we will only show that all conditions 

hold when t = 3, which is the case where we delete three columns from an original 

array with 4m columns, obtained by using the fold-over approach, to form X(R, n) .  

Note that ai = Cj xij, i = 1 , .  . . , R, only take 4 different values, ranging from 

2m - 3 to 2m. Without loss of generality, we assume that the 3 columns to be deleted 

have the patterns as shown in Table 6.3 and then we introduce the following notation: 

We see that the Sirj's and Titjk's satisfies, from the orthogonality of Hadamard ma- 

trices, t he equations, 

and 
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Table 6.3: Patterns of Deleted Columns (n' = 4m, R = 2n' - 2 = 8m - 2) 

Row C l  C2 C3 a, 
- 

Row C1 C2 C3 a, 
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1) From Table 6.3, we know 

and some related terms can be expressed as 

and 

Therefore, 

On the other hand, 
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2) Since 

we have 

On the other hand, 

3) Since 
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we have 
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