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Abstract 

This research presents the design and evaluation of a variety of new constraint-solving algo- 

rithms based on the particle swarm optimization (PSO) paradigm. Constraint satisfaction 

problems (CSPs) can be applied to many practical problems but they are in general NP-hard, 

so developing new algorithms has been a major research challenge. PSO is a relatively new 

approach to A1 problem solving and has just begun to be applied to  CSPs. This research 

modifies and extends the traditional PSOs to solve n-ary CSPs. These new particle swarm 

algorithms are tested on practical configuration problems and the traditional n-queens prob- 

lems. The effectiveness and efficiency of the new algorithms are experimentally compared 

to the traditional PSOs. The performance of the individual algorithms is also assessed. 

The algorithms that combine zigzagging particles and repair-based CSP-solving methods 

perform best among the algorithms studied. 
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Chapter 1 

Introduction 

1.1 Motivation 

Constraint satisfaction problems (CSPs) are a natural abstraction for many computational 

problems, and thus have been a major research topic in A1 for many years [108]. This 

abstraction naturally represents real-world problems. Many problems such as scheduling, 

resource allocation and planning have been described as CSPs, and many techniques have 

been developed to solve those problems. Still, much attention is needed in various aspects 

of CSP research such as the development of new algorithms. In this research, we develop 

and evaluate new algorithms to solve general n-ary CSPs. 

Research in swarm intelligence started in the late 1980s and has been attractive to A1 

researchers because it is simple and robust and offers a new alternative to solve many prac- 

tical problems [4, 1071. As the name suggests, swarm intelligence models swarms of insects 

and birds. Through communication, these swarms are able to adjust their behaviour and 

to achieve their common objectives. Researchers have used these ideas to solve optimiza- 

tion problems [25, 42, 71, 72, 71. Two popular techniques of this paradigm are ant colony 

optimization (ACO) [22] and particle swarm optimization (PSO) [53]. ACO models ants 

and PSO models birds. Both swarm techniques have been applied to solve random binary 

constraint satisfaction problems [89, 90, 991, but not general n-ary CSPs. Although it is 

possible to convert n-ary constraints to equivalent binary constraints [80], depending on 

the nature of the constraints, an n-ary CSP can become more difficult to solve after the 

conversion [102]. Besides, the process of converting an n-ary CSP to its equivalent binary 

CSP can be complicated and, not all the conversions can be done properly and produce 
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semantically equivalent representation [47, 1021. In addition, n-ary constraints provide a 

natural formulation for modelling real-world problems [86]. Thus, we do not want to limit 

our development for solving only binary CSPs. If we want to try something new to solve 

general CSPs, PSO is such a technique with potential not only because of the previous 

research in solving optimization problems and binary CSPs but also because of its nature of 

having multiple "workers" who can work individually and collaboratively to achieve a goal. 

1.2 Research Goal 

The goal of our research is to create new and effective particle swarm algorithms for solving 

general n-ary CSPs. Researchers have applied PSOs to solve various optimization problems 

and random binary CSPs. In this research, we will study these traditional PSOs, understand 

the interplay between the PSOs and CSPs, make the connection between them, and propose 

new techniques to develop new particle swarm algorithms for solving n-ary integer CSPs. 

Through the experimental results, we will answer whether the new particle swarms can 

solve general n-ary integer CSPs more effectively than the traditional ones. If they can 

solve n-ary CSPs, we would like to  find out how we may possibly enhance these algorithms 

in the future. 

1.3 Thesis Overview 

This research combines CSPs and particle swarm optimization techniques, so in chapters 2 

and 3, we review the background of CSPs and PSO respectively. In Chapter 2, we explain 

basic terminology, give CSP examples, review existing CSP problem solving techniques and 

also introduce the Python CSP framework used for this research. In Chapter 3, we look 

at swarm intelligence, review traditional PSO algorithms, and discuss PSO problem solving 

and its applications. Also, we raise our research questions as the goal of this research in 

Section 3.6. In Chapter 4, we specifically describe how to  apply PSO to solve CSPs. We 

first introduce the problem representation to link CSPs and PSO together, explain the 

particle swarm algorithms we developed for solving CSPs and then formulate test problems 

to evaluate the swarm algorithms. In Chapter 5, we illustrate our experiments, evaluate 

our algorithms and analyze the results. In Chapter 6, we conclude our findings and propose 

future directions for further research. 



Chapter 2 

Constraint Satisfaction Problems 

Since constraint-based ideas were first applied to solve A1 (artificial intelligence) problems in 

the 1960s and 70s, constraint representations have been considered a natural way to describe 

many real-world problems. For decades, constraint satisfaction problems (CSPs) [I081 

have been one of the core research problems in AI, and the Association for Computing 

Machinery (ACM) has recognized constraint programming as one of the strategic directions 

in computer science research [38]. 

Many problems have been described as CSPs such as temporal reasoning, scheduling, 

network routing, DNA sequencing, puzzle matching, resource allocation, floor plan design, 

circuit design, graph problems and other combinatorial problems [108, 571. CSPs are in 

general NP-complete [46, 591 and solving CSPs is hence NP-hard. CSPs typically represent 

problems as a set of variables, domains, and constraints. A domain of a variable is the 

allowable values for that variable, and constraints restrict which domain values the variables 

may simultaneously be assigned. The goal of solving a CSP is to find one or more legal 

assignments that satisfy all the constraints. 

This chapter is organized in four sections. In the first two sections, we will introduce 

the terminology and some examples that we use throughout the chapter. Then a review of 

the existing constraint problem techniques follows. A new CSP framework in Python [20] 

used for this research will be described in the last section of this chapter. 
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2.1 Definitions 

Before giving examples of CSPs, some terminology is needed. A CSP is formally defined as 

a tuple of (V, D, C) namely variables, domains and constraints [108, 21. 

Definition 2.1.1. V, D and C of a CSP are defined as follows: 

0 V = { vl, v2, . . . v,) is a finite set of n variables. Each variable is a 'place-holder' 

that is able to hold an assigned value [61]. 

0 D = { Dl,  D2, . . . D,) is a finite set of domains. Each domain is finite.' For each i in 

(1, 2, . . . n), domain Di represents the set of all possible values {valil, vali2, . . . valib) 

that can be assigned to the respective variable via A variable-value assignment pair,  

<vi, Valij> is also called a label, which assigns domain value Valij to variable vi, where 

Valij E Di. A complete assignment refers to  n such labels (<vl, vall>, <v2, va&, 

. . . cv,, Val,>), one per variable. A part ial  assignment is a subset of a complete 

assignment. The domain of a variable can be a finite set of integers, real numbers, 

Boolean values, or any objects. However, for this thesis, we restrict domains to be 

finite sets of integers. 

In later chapters, we use two terms to describe the structures of CSP domains: a 

consecutive domain and consistent domains. 

1. A consecutive domain is a variable domain in which all the elements can be 

listed as a sequence of consecutive integers; i.e. the elements of a domain are 

consecutive. For example, Dl = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is a consecutive 

domain, whereas D2 = (1, 3, 5, 7, 9) is not. This consecutiveness becomes slightly 

more complicated when we discuss binary encoded domains in Section 4.2.1.2. 

2. If all the domains of a problem are the same, the problem has consistent do- 

mains or the domains of the problem are consistent. For example, we may have 

CSP domains Dl = D2 = D3 = {1,2,3,4); then, domains Dl,  D2 and D3 are 

consistent. On the other hand, we may have CSP domains D4 = {2,4,6,8), D5 

= {1,2,. . . ,4001, D6 = {0,1) and D7 = {1,2,. . . ,101; then, domains D4, D5, 

D6 and D7 are not consistent. 

'Some research considers infinite domains; we only take finite domains into consideration in this thesis. 
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a C = {C1, C2,. . . , Cp) is a set of constraints. For each k in (1, 2, . . . p ) ,  Ck(v1, v2, 

. . . urn) is an m-ary constraint and m can be 1, 2, ... to the size of the problem. 

A constraint is a Boolean function on the variables that restricts what values those 

variables can take simultaneously. If an assignment (vall, va12, . . . val,) causes Ck (vl , 
v2, . . .urn) to return true, the constraint Ck is satisfied by the assignment; otherwise, 

it returns false. If all constraints C1 A C2 A . . . A Cm are satisfied by one assignment, 

the CSP is satisfied and this assignment is consistent. In practice, other than being 

a function, a constraint can also be an equation, a logical relation, a set of all legal 

tuples (i.e. a good list) or a set of all illegal tuples (a bad list) on the variables. 

Definition 2.1.2. An n-ary CSP is a CSP that contains n variables and each of the 

constraints in the problem may involve any number of variables between one and the size 

of the problem n. 

Definition 2.1.3. S = {S1, S2, . . . Sm) is a set of all solutions. Generally, a CSP can 

have 0, 1, or more solutions. A solution Si E S is a complete assignment {<vl, vall,>, <v2, 

valzb>, . . . cv,, valnm>) of all n variables in the CSP, where all the constraints are satisfied. 

A CSP is solvable if IS) 2 1. 

Besides finding perfect solutions as the above, a good enough solution to  a CSP where 

only most of the (critical) constraints are satisfied, or an optimal solution to a CSOP 

(constraint satisfaction optimization problem) may also be possible depending on the nature 

of the problems [2]. 

Definition 2.1.4. A penal ty function is a function that takes an assignment as its input 

and returns zero for a satisfiable assignment,2 or returns a value greater than zero to penalize 

an unsatisfiable assignment. 

It is a common technique in CSP research to  evaluate the quality of an assignment. The 

smaller the penalty, the better the quality. Counting the number of constraint violations and 

estimating the distance from a potential solution to  a satisfiable solution are some examples 

[go, 631. Michalewicz et al. indicate that adaptively combining the maximum completion 

cost3 with the expected completion cost can render a better penalty function [63]. 

2~ satisfiable assignment is a potential solution that is feasible and does not violate any constraints. 

3A completion cost is the cost to complete or obtain a satisfiable solution from a given assignment. 
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2.2 Examples 

A CSP can be as simple as a one-variable arithmetic problem or as complex as a university 

scheduling problem with thousands of variables. What CSPs are and how a problem can 

be modelled as a CSP will become clear by the examples below. One should however know 

that the representations of a problem may not be unique, and different representations may 

affect the efficiency of finding solutions [27]. 

2.2.1 A warm-up example 

Suppose we want to find a number between 1 and 10 that is an even integer. One obvious 

way to  represent this as a CSP is: 

Variables: v 

Domains: D, = {1,2, . . . l o )  

0 Constraints: 

- even(v) returns true if val E D, is even for an assignment v = val. 

There are 5 solutions: v = 2, v = 4, v = 6, v = 8 and v = 10. 

2.2.2 Pythagorean triple example 

If we want to  find the integer lengths of a right triangle where LC = 90" and 0 < a,  b, c 5 30 
-- 

are the respective integer lengths of the three sides BC, AC and AB shown in Figure 2.1: 

Variables: a ,  b and c 

0 Domains: D, = Db = Dc = {1,2, . . .30) 

0 Constraints: 

- pythagorean(a, b, c) returns true if a = val,, b = Valb and c = val, satisfy a2  + 
b2 = c2 relation where val, E D,, Valb E Db and val, E D,. 

There are 22 solutions and one of them is a = 3, b = 4 and c = 5. 
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Figure 2.1: A Pythagorean triple example in Section 2.2.2. 

2.2.3 8-queens problem 

In the &queens problem, the problem is to  place 8 queens on an 8-by-8 chessboard such that 

no two queens attack each other; in other words, no two queens can be placed on the same 

row, column or diagonal. One possible representation of this problem is to have 8 variables 

for the queens' row positions and one queen per column. To avoid queens being placed on 

the same row, the values of the variables must be all different. For every queen-pair, the 

row (Manhattan) distance should not be equal to the column distance so that the queens 

will not sit on the same diagonal as shown in Figure 2.2. 

Variables: q l ,  q2 . . . 48 for the positions to place queens on column 1, 2, . . . and 8 of 

the chessboard respectively. 

Domains: for each i E {1,2,. . .8), domain Dqi = {1,2, . . .8 )  for variable qi is a set of 

the possible row positions to place a queen on column i. 

Constraints: 

- a l l -d i f f  (ql, qz, . . . q8) returns true iff the values of ql, q2, . . .q8 are pairwise 

different. 

- for every pair of queens (qi, qj), undiagonal(qi, qj) returns true only if Vali E 

Dqi and Valj E Dqj S U C ~  that I qi - qj I # l i - j l holds. 
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(a) bad position (b) good position 

Figure 2.2: Queen positions in a kqueens problem. 

Figure 2.3: A sample solution of the 8-queens problem. 

Figure 2.3 shows one of the 92 solutions., where ql = 1, qz = 3, qs = 5, q4 = 7 ,  qs = 

2, q6 = 4, q7 = 6 and qs = 8. 

2.2.4 send-more-money Puzzle 

The send-more-money problem shown in Figure 2.4 is an example of cryptarithmetic 

puzzles.4 In this problem, we want to find a unique digit (0-9) for each letter s, e, n, d, 

m, o, r, y and satisfy the equation SEND + MORE = MONEY with no leading zeros (i.e. s 

4 ~ h e r e  is a lot of information on the web, and http://www.clps.de/html/protcl/protcl/node62.html is 
one of them. 
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and m cannot be zero). 

s e n d  9 5 6 7  
+ m o r e  - + 1 0 8 5  

m o n e y  1 0 6 5 2  

Figure 2.4: A send-more-money puzzle and its solution. 

Variables: s, e, n,  d, m, o, r and y 

Domains: D, = Dm = (1, 2, . . .9) and D, = D, = Dd = Do = DT = D, = (0, 1, 2, 

. . .9) 

Constraints: 

- all-diff (s, e, n,  d, m, o, r, y) returns true only if the values of s, e, n, d, m, o, 

r, y are pairwise different. 

- An equation (s  x 1000 + e x 100 + n x 10 + d) + (m x 1000 + o x 100 + r 
x 10 + e) == m x 10000 + o x 1000 + n x 100 + e x 10 + y must hold. 

The unique solution of this problem is s = 9, e = 5, n = 6, d = 7, m = 1, o = 0, r = 

8 and y = 5. 

2.2.5 Graph colouring 

The problem in graph colouring is to assign one colour for each region on a map from a 

selection of colours and the adjacent regions cannot be in the same colour. Assume we have 

red, green and blue to colour the map in Figure 2.5(a). 

Variables: rl, 7-2, r3, r 4 ,  and 7-5 

Domains: DTi = {red, green, blue) for i - 1, 2, 3, 4, 5 

Constraints: 

- For every pair (ri, r j ) ,  ri # r j  must hold if ri  and rj are adjacent. 

There are 6 solutioils in the problem of Figure 2.5(a) and Figure 2.5(b) shows one, 

where rl = blue, r 2  = red, r3 = blue, 7-4 = green and 7-5 = red. 
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(a) a sample graph colouring problem (b) a sample solution 

Figure 2.5: A sample graph colouring problem with 3 colours. 

2.3 Problem Solving Techniques 

Many techniques to  solve CSPs have been developed; some originate from solving other 

types of problems and some are specifically for solving CSPs. Basic CSP solving techniques 

include: search algorithms, problem reduction, and (hybrid) heuristic strategies. Some 

well-known techniques are described below. 

2.3.1 Basic search algorithms 

Search is a fundamental technique in A1 problem solving.5 The basic search algorithms 

mentioned here are simple and serve as a core to other sophisticated search methods. In 

this section, we will follow the convention to  divide search algorithms into systematic and 

stochastic search. Generate-and-test [2, 573 and simple backtracking [36] are the examples of 

systematic search. Random guessing and random-walk algorithms are two stochastic search. 

2.3.1.1 Basic systematic algorithms 

2.3.1.1.1 Generate-and-test (GT) assigns values to variables and obtains a complete 

assignment; and then, it checks whether the assignment satisfies all the constraints. This 
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brute-force method tries all values to all variables one by one and checks for the consis- 

tency of the current assignment. Because no value is pruned or removed from the do- 

main during the consistency checks, the complexity of the algorithm in the worst case is 

)Dl x Dz x - - . x DnI = O(dn). Since GT eventually checks all possible combinations, it 

is a complete algorithm and all solutions can be found (given enough time) if there is 

any solutions. Because of the completeness, it can also be used to prove that a CSP is 

unsatisfiable, i.e. no solution exists. 

2.3.1.1.2 Chronological backtracking (CBT or BT) systematically traverses the en- 

tire search space in a depth-first manner. It  instantiates one variable at a time until it either 

finds a solution or runs out of instances and proves no solutions exist. Smarter than GT, the 

algorithm stops and backtracks as soon as it finds the partial assignment inconsistent. More 

specifically, if the instantiated variables so far do not violate any constraint, the algorithm 

keeps going on to the next variable; otherwise, it backtracks to the previously assigned vari- 

able and reassigns an untried value. Backtracking is sound and complete,6 but it can be 

inefficient because of thrashing. It does not identify the actual culprit of the inconsistency 

so it may keep failing and backtracking for the same reasons again and again [57]. 

Chronological backtracking can be effective for simple problems; what is more important, 

the strategy is so useful that most systematic search algorithms (as opposed to stochastic 

methods) extend or derive from it to improve the performance. 

2.3.1.2 Basic stochastic algorithms 

2.3.1.2.1 Random guessing algorithm is the most naive stochastic search. Like 

blindly throwing darts, it repeatedly 'guesses' a complete assignment and checks if the 

assignment satisfies the constraints until it finds a solution or reaches timeout (or some 

maximum number of iterations). Since the algorithm assigns variables in a non-systematic 

way, it neither avoids checking for the same assignment repeatedly, nor guarantees to verify 

all possible assignments. Because it does not guarantee to check all possible assignments, 

the algorithm is incomplete and so it cannot guarantee a solution or prove no solutions. 

On the other hand, the method is so simple and fast that it can be used for a problem 

with many solutions if any solution is acceptable. Also, the randomness can be used to 

61t guarantees that the solution returned must be correct. Also, the algorithm guarantees to find a 
solution if there exits a solution. 
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quickly estimate the solution density of a search space. 

2.3.1.2.2 Random-walk algorithm (RW) is a basic local search technique [83]. It 

initializes all the variables and "walks" through the search space fixing inconsistencies one 

at a time until it satisfies all the constraints or times out. Similar to random guessing, it is 

incomplete and so cannot guarantee a solution or prove no solutions. To prevent the walk 

from wondering too much, many heuristics have been developed. In addition, random-walk 

can serve as a simple strategy for other stochastic search methods to  escape from local 

optima, which will be discussed in Section 2.3.4. 

2.3.2 Problem reduction techniques 

Searching for solutions can be very time consuming, especially if the search space is big 

and the solutions are distributed in a haphazard way. To improve the efficiency, one can 

sometimes trim the size of the search space and simplify the original problems. Problem 

reduction [I081 is such a method that can be used at the beginning of a search or during 

a search. Once a problem becomes smaller and simpler, search algorithms can go through 

the space faster. In some cases, problem reduction can solve CSPs without searching [108]. 

However, some reduction techniques may be too complex and too expensive in practice. 

Often, problem reductions are applied to supplement other search strategies. 

In this section, we will review several common problem reduction techniques such as 

node-consistency and a r c - c o n s ~ s t e n c ~ . ~  Generally, these techniques are derived from the 

idea of a constraint graph [108, 21, where the nodes represent the variables of a CSP and 

the edges are the constraints indicating the relationship among the variables. Any two or 

more connected edges become a path. Figure 2.6 illustrates the constraint graph of the 

graph colouring problem in Section 2.2.5. 

Each of these problem reductions provides a different level of consistency; for instance, 

node-consistency guarantees the consistency in the nodes (i.e. the individual variables). 

Depending on the problems and the level of consistency required, some combination of 

these techniques can be used. 

7 ~ e f e r  to [I081 for other problem reduction techniques such as path-consistency and k-consistency. 
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Figure 2.6: A constraint graph of the graph colouring problem in Section 2.2.5. 

2.3.2.1 Node-consistency and arc-consistency 

The simplest problem reduction techniques are node-consistency (NC) and arc-consistency 

(AC), which prune the inconsistent values from the variable domains. The difference between 

these two is that node-consistency affects individual variables (or unary constraints) whereas 

arc-consistency checks binary constraints between two variables. NC ensures consistency at 

the node level and AC ensures it on the edges on a constraint graph. 

All AC algorithms check binary constraints, but in various ways. Some commonly used 

ACs are noted as AC-1, AC-2, . . . AC-7. The higher number generally indicates that the 

AC provides a higher degree of consistency, but at greater cost. For the effectiveness and 

efficiency of the problem solving, AC-3 and AC-4 [98] are the two most widely used. Another 

AC variant, directional arc-consistency (DAC), performs consistency checks on directed 

edges. In providing consistency level, DAC is not so strong as the ACs above but can be 

quite efficient [log]. 

2.3.3 Strategic search and heuristics 

Because neither basic search nor consistency checks alone can always solve CSPs in a timely 

manner, adding heuristics and using hybrid algorithms are often used to improve perfor- 

mance. This is not only applicable to the systematic search, but also true of the stochastic 

search described in Section 2.3.4. 
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2.3.3.1 Constraint propagations 

Problem reduction techniques in Section 2.3.2 can also be applied to interleave between 

search steps to continuously narrow the search space, which is called constraint propagations 

121. Backmarking, backchecking, backjumping and forward checking are some examples 

of this sort [30, 31, 371. Forward checking (FC) for example, looks ahead and performs 

consistency checks while assigning a value to a variable and removes inconsistent values 

from the unassigned (future) variables. If any future variable has no consistent values 

available, the algorithm backtracks as in chronological backtracking. By looking ahead to 

remove impossible assignments, FC is an efficient general-purpose search algorithm [83]. 

2.3.3.2 Hybrid strategies 

Some algorithms explore multiple branches at the same time [I081 and other techniques mix 

the strength of various algorithms and integrate different search strategies. To list a few, here 

are some examples that combine forward search with backtrack search: backtracking with 

backjumping (BMJ), backtracking with conflict-directed backjumping (BM-CBJ), FC-BJ, 

FC-CBJ, MAC-BJ and MAC-CBJ [73, 741. 

2.3.3.3 Variable-orderings and value-orderings 

Another common strategy is to vary the order in which variables and domain values are 

searched. Generally speaking, search orderings shape the structure of a search space, which 

often affect the search results and efficiency. By ordering the variables differently, different 

search spaces are constructed without changing the complexity of a problem [108]. Imagin- 

ing doing a tree search, variable orderings define the orders of the branches. Variables may 

come in different domain sizes and thus turn out different branching factors. Once the 

search order has been changed, the order of branching factors can be varied and the effec- 

tive search space may become bigger or smaller to  the algorithms. Many strategies utilize 

such characteristics and determine different orderings. For example, applying Haralick and 

Elliott's fail-first principle [37], a search algorithm can dynamically pick the variable that 

either has the smallest (remaining) domain or is involved in most constraints. Dealing with 

such variables first, the algorithm is able to detect dead-ends early. 

Similarly, value orderings change the search structure as well. Different from variable 

orderings however, value orderings rearrange nodes within a branch and try to find a node 
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(or a value) that is most likely to succeed. One popular value ordering is the min-conflict 

heuristic [64]. The idea is to  select a value that can either minimize the total number of 

conflicts or minimize the conflicts with other unassigned variables. Although the min-conflict 

can be used with a complete search and becomes for example an informed backtracking [65], 

it is more commonly used with stochastic search methods and more detail will be discussed 

in the following section. 

2.3.4 Stochastic search 

Complete systematic methods are often inefficient for large hard CSPs [112]. Fast and good 

enough solutions are sometimes desirable and acceptable in many real world applications. 

In contrast to systematic search, stochastic methods wander in the problem space in a 

relatively nondeterministic manner. Local search methods have been popular for quite a 

long time and evolutionary algorithms have drawn the researchers' attention in the recent 

years [112]. 

2.3.4.1 Local search 

Local search is a repair based strategy, where a fully assigned initial assignment is gen- 

erated first (often randomly, but not necessarily) and then the assignment is repaired or 

improved until a solution is found or some timeout mechanism kicks in. Hill-climbing is 

a typical example, which improves the search results iteratively based on an evaluation 

function. At each time step, one of the best neighbours will be chosen to be the next 

assigned state. In CSPs for example, the evaluation function can aim at minimizing the 

number of constraint violations and the (best) goal is to have 'zero' violation. A general hill- 

climbingrandomly selects the next state from the candidate neighbours if there is more than 

one candidate with the same evaluation. In other hill-climbing based algorithms, heuristics 

such as the min-conflict, are used as a guidance to the neighbour selection process. 

Generally, local search methods are incomplete and cannot guarantee to find a solution 

or to prove no solutions. One reason is that they have no idea which assignment node 

they have or have not visited, and another is that they may get stuck in a local optimum 

or wander around on a plateau. Much research has been done in preventing, detecting or 

escaping from these situations. For instance, random-walk [92] uses noise to walk out of 

traps. Tabu search [34, 1011 avoids going into the same bad area again by remembering 
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its previous experience. Simulated annealing [l, 70, 181 models the cooling speed of the 

annealing procedure to improve the performance. 

2.3.5 Evolutionary Computing 

Evolutionary computing (EC) includes genetic algorithms (GAS) [40, 35, 191, evolutionary 

programming, evolutionary strategies (ES) and genetic programming [55]. It has become 

a popular problem solving paradigm in AI. Swarm intelligence (SI) originated from a cel- 

lular robotic system [6] is closely related to evolutionary computation methods. These EC 

techniques were originally developed for optimizing numerical functions, training neural net- 

works and so on. They have been applied to CSPs, for example in [60, 8, 14, 89, 88, 99, 901. 

These problem solving techniques generally use a population of possible solutions, fitness 

information and probabilities in tackling problems [55]. Often, they first generate the initial 

states of the population, and iteratively alternate between evaluating the fitness value of 

the candidates and evolving the new states of the population until certain stopping criteria 

arrive. 

2.3.5.1 Genetic algorithms 

Simulating biological genetic systems, the development of genetic algorithms (GAS) started 

in the 1950s [55]. These algorithms have been applied to solve some constraint satisfaction 

optimization problems (CSOPs) and CSPs [log, 60, 8, 141 since the 90s. Based on the evo- 

lutionary theories, the idea is that the better fit individuals have a better chance to survive, 

and gradually the fitness of the population evolves and reaches its optimum. Specialized 

encodings, fitness functions or operators such as Michalewicz's GENOCOP [78] are often 

found in genetic algorithm research for solving problems 163, 141. The choices of the pa- 

rameter settings can sometimes depend on the problems and are one of the difficulties for 

users to apply.8 

2.3.5.2 Swarm intelligence 

Swarm modelling is inspired by the analogy of social insects, birds, fish and human cognition. 

It is a new optimization technique that emerged in the early 1990s. Chapter 3 will discuss 

'website http://w3.ualg.pt/-flobo/psgea-20051 for "Workshop on parameter setting in genetic and evo- 
lutionary algorithms, PSGEA 2005" 
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particle swarm optimization in detail. 

2.3.6 Summary of algorithms 

For a quick review of the algorithms mentioned in this chapter, we summarize them in 

Table 2.1. These algorithms are characterized in terms of the completeness, the consistency, 

whether they make initial complete assignment or not, and if they are able to give a potential 

solution (not necessarily to be a consistent solution) at anytime while searching. 

Table 2.1: A summary of algorithms 

Algorithm 

generate-and-test 
backtracking 
forward-checking 
random guessing 
random- walk 
hill-climbing 
min-conflict HC 
genetic algorithm 
particle swarm 
ant colony 

Type 
systematic 
systematic 
systematic 
stochastic 
stochastic 
stochastic 
stochastic 
stochastic 
stochastic 
stochastic 

2.4 CSP Frameworks 

Complete 

Yes 
Yes 
Yes 
no 
no 
no 
no 
no 
no 
no 

Consistent 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Besides the traditional research in search algorithms and problem solving techniques, CSP 

research also includes the development of libraries and frameworks. According to Roy et al. 

1811, "a framework approach integrates objects with constraints to provide extensible and 

flexible implementations". BackTalk [82], ILOG Solver 1451 and JCL (the Java Constraints 

Library) [58] are some examples. BackTalk allows defining complex finite domain CSPs. 

It can be used as either a library for users to  apply for solving CSPs or a framework for 

developers to  design and implement their own CSP algorithms [81, 821. ILOG Solver is 

a constraint-based optimization engine that provides optimization technology for schedul- 

ing, sequencing, timetabling, configuration, dispatching and resource-allocation applications 

with logical constraints 175, 451. JCL is a Java based library for constraint satisfaction prob- 

lems and it is able to  handle both discrete finite domains and continuous domains 1581. 

Initial 

no 
no 
no 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Anytime solution 

no 
no 
no 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 



CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 

2.4.1 Arithmetic CSPs in Python 

We have developed a CSP framework in Python for solving arithmetic CSPs where con- 

straints are modelled in arithmetic functions [20]. Python supports object-oriented pro- 

gramming and includes many interesting features such as operator overloading, generators, 

and list comprehension. With these features and the declarative nature of Python, we can 

make the CSP framework easy to understand and use. So far, this framework supports 

finite integer domains and contains a general backtracking solver. In this research, I will 

enhance this framework by implementing and comparing several different particle swarm 

optimization algorithms and some modified backtracking algorithms to solve (arithmetic) 

CSPs with finite integer domains. 

2.4.1.1 Examples 

By using the examples described in Section 2.2, we can illustrate how the CSP framework 

works. Taking advantage of Python language, formulating a CSP is very straightforward. 

What the framework users need to do is to define the variables (and domains), create the 

problem (CSP) and add the constraints one by one. If the users would like to solve the 

problem, they can specify a solver to  solve the problem. Besides the CSP examples shown 

in Appendix A (Figure A.l N Figure A.5), a complete sample execution in Python is given 

in Figure 2.7. 
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>>> # import the csp framework 
>>> from csp import * 
>>> 
>>> # define variables: 
>>> # enumerate color red = 1, green = 2, blue = 3 
>>> # range(1,4) render a list [1,2,31 
>>> R1, R2, R3 = var(range(1,4)), var(range(1,4)), var(range(lY4)) 
>>> R4, R5 = var(range(l,4)), var(range(1,4)) 
>>> 
>>> # create a CSP: 
>>> csp = problem(R1, R2, R3, R4, R5) 
>>> 
>>> # add constraints: 
>>> csp += R1 !=  R2 
>>> csp += R1 !=  R4 
>>> csp += R1 != R5 
>>> csp += R2 != R3 
>>> csp += R2 != R4 
>>> csp += R3 != R4 
>>> csp += R3 != R5 
>>> csp += R4 != R5 
>>> 
>>> # solve the problem: 
>>> for sol in gen-backtracking(csp): 

print 'Rl = %s, R2 = %s, R3 = %s, R4 = %s, R5 = %s'\ 
% value(R1, R2, R3, R4, R5) 

Figure 2.7: A Sample Run of the graph colouring problem in Python CSP framework. 

gen-backtracking(csp) is a function call to a Python backtracking generator, which gives solu- 
tions one at a time when it is called until it runs out all solutions. 



Chapter 3 

Particle Swarm Optimization 

3.1 Introduction 

Particle swarm optimization (PSO) [53] is a popular problem solving technique in the swarm 

intelligence (SI) paradigm. It  was first introduced by Kennedy and Eberhart in 1995. They 

developed simple methods which could efficiently optimize continuous nonlinear mathemat- 

ical functions. Borrowing ideas from artificial life (A-life), social psychology and swarming 

theory [53, 551, PSO simulates swarms such as flocks of birds and schools of fish searching 

for food.' 

Also, PSO is related to evolutionary computation (EC), but it is somewhat different 

[44, 531. Similar to many EC techniques, PSO initializes a problem state to a population 

of randomly distributed solutions. Unlike many other ECs however, PSO "evolves" solu- 

tions based on individual experience and group experience, rather than using evolutionary 

operators (e.g. the crossover and the mutation operators in genetic algorithms). It assumes 

that socially shared information helps its population evolve. In other words, the population 

iteratively updates and searches for optima with the shared information. 

Since its first development, many PSO variants have been evolved, and research has 

shown promising results in some well-known test functions [53, 96, 10, 551. Starting with 

some SI techniques in Section 3.2 and several PSOs in Section 3.3, this research will in- 

vestigate the PSO techniques specifically for solving the constraint satisfaction problems 

discussed in Chapter 2. 

'Craig Reynolds' boids [77] is a well-known visual simulation of flocking. 
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3.2 Swarm Intelligence 

A swarm is "a collection of organisms or agents which interact with one another [25]." The 

term s w a m  intelligence (SI) was first used in reference to Beni and Wang's cellular robotic 

systems in the late 1980s [6, 31. In their systems, a group of simple robots interact with 

their neighbour robots via communication. Later (in the early 90s), swarm intelligence 

studies were inspired by social insects, birds, fish and human cognition. In the recent years, 

swarm modelling has become a new strategy for solving both constrained and unconstrained 

optimization problems [42, 71, 72, 71. In addition to solving optimization problems, limited 

research has also applied to solve CSPs [89, 99, 901. Among others, ant colony optimization 

(ACO) 1221 and particle swarm optimization [53] are two popular swarm systems. PSO will 

be investigated starting from Section 3.3. In this section, we will briefly look at the ACO 

techniques. 

3.2.1 Ant Colony Optimization 

Marco Dorigo invented ant colony optimization by modelling insect ants' behaviour to solve 

discrete optimization problems, such as the travelling salesman problem [22, 211. Artificial 

ants have been tested on other combinatorial problems such as quadratic assignment prob- 

lems, graph colouring, job-shop scheduling, sequential ordering, network routing, swarm- 

based robotic problems [6, 251 and constraint satisfaction problems [89, 991. 

The idea is that a colony of ants collaboratively find shortest paths between their nest and 

a food source without a coordinator or leadership [25]. These ants "communicate" through 

a chemical substance called pheromone. In ACO, this pheromone represents the information 

shared among the fellow ants. Essentially, each individual ant leaves pheromone on the way 

it goes by and picks up pheromone left by the other ants. Because this substance gets weaker 

over a distance and gradually evaporates over time, the amount of pheromone implies how 

frequently and recently ants have been through the same path. Stronger pheromone may 

indicate that a path is shorter or the chances of being successful is higher. 

In the algorithm, ants randomly wander the search space at first. Once pheromone ac- 

cumulates on several trails, individual ants detect it and choose a path among the candidate 

trails. This decision making will be favorable to those with stronger pheromone deposit. 

Eventually, these ants will converge to an optimized path and find a solution. 



CHAPTER 3. PARTICLE SWARM OPTIMIZATION 

3.2.1.1 Ant colonies for solving CSPs 

Because ACO is closely related to PSO and it has been shown to solve constraint satisfaction 

problems particularly on binary CSPs, we would like to briefly examine these systems. 

Schoofs and Naudts' systems [89] and Solnon's solvers [99] show that ACO can perform 

better than several other evolutionary algorithms (EAs) and competitively with forward- 

checking conflict-directed backjumping (FC-CBJ) on a set of random binary CSPs [113]. 

3.2.1.1.1 Schoofs and Naudts' ant systems. Schoofs and Naudts propose two ant 

systems to solve binary CSPs [89, 881. One is based on a constraint graph and uses a 

standard penalty function2 counting for constraint violations and evaluating the quality of 

a potential solution. Another system uses a hybrid penalty function and path consistency. 

Making use of path consistency, their hybrid system is capable of not only reducing the size 

of the search space, but also showing the insolvability outside of a mushy region.3 One 

problem as indicated by the authors is that even with this hybrid system, they still could 

not solve a problem or prove the problem unsolvable in the mushy region. 

3.2.1.1.2 Solnon's ant solvers. Solnon presented three ant solvers [99]. Those ant 

colonies have been shown to solve random binary CSPs rather effectively and efficiently 

compared with several well-known EAs, a random-walk and FC-CBJ [99, 1131. Although 

some parameter settings may influence the performance, they are more algorithm specific. 

Two strategies are worth noting: adding local search and preprocessing assignments. In the 

first case, the algorithm performs local search to locally improve the quality of a complete 

assignment as soon as such an assignment has arrived. In the latter case, it initializes a 

set of complete assignments called SampleSet with some local search preprocessing; and 

then, the solver starts with these initialized SampleSet and searches for solutions. The 

author intentionally keeps the ant solvers as generic as possible, but she comments that this 

may indeed have the solvers handle some global constraints less efficiently than specialized 

algorithms 1991. 

2 ~ e e  Definition 2.1.4 in Section 2.1. 

3~ mushy region is also referred to as a phase transition region, where a substance is neither entirely in 
one phase nor in another (eg. liquid vs. solid). The random CSPs in such a region with different tightness 
of constraints, contain both solvable and unsolvable instances [97]. 
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3.3 Traditional PSO 

Kennedy and Eberhart developed the first particle swarm algorithm in 1995 to simulate how 

the birds fly synchronously [53, 23, 251. This simulation then became known as the particle 

swarm optimization search algorithm. PSO's origin and the relations to other scientific 

research have been discussed in Section 3.1. In this section and the next section, we will 

first define the common terminology and introduce the original PSO algorithms; and then, 

we will review some PSO techniques. In Section 3.5, we will investigate a PSO [90] which 

solves binary constraint satisfaction problems. In the last section, we will state the research 

questions of this thesis. 

3.3.1 Definitions 

In PSO, a problem is modelled as an n-dimensional solution space and a population of 

particles search through this n-dimensional space for optimal solutions. 

Definition 3.3.1. In PSO, a particle Pi simulates an individual in a bird flock. Figure 3.1 

shows a group of particles in a 2-dimensional space. Each particle in the group is responsible 

for searching and keeping solutions together with its fellow particles. At any time t ,  particle 

Pi is located at some position xi(t) in the n-dimensional problem space. Conventionally, 

xi(t) indicates the current position of Pi and xi(t - 1) represents the previous position. In 

the problem solving context, a particle with its position represents a potential solution. 

Figure 3.1: Particle swarm (population = 10) in a Zdimensional space. 
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Definition 3.3.2. In PSO, a swarm P = {PI, P2, ... P,) is a set of particles. 

Definition 3.3.3. A particle's velocity G(t) = [ul, u2 . . . , u,] is an n-dimensional vector 

that moves particle Pi at time t as shown in Figure 3.2. Mathematically, the position-velocity 

relation is 

xi(t) = xi(t - 1) + G(t) (3.1) 

In PSO, velocities are mainly affected by particle's own knowledge and the neighbours' 

experience. Conceptually, a velocity <(t) can be derived from the relation in Equation 3.2, 

where cpl and cp2 are parameters as will be discussed in Section 3.3.2.1. According to this 

relation, a velocity can be computed using Equation 3.3. 

< (t) = cpl (individualexperience) + cp2 (gl obal experience) (3.2) 

6 ( t )  = wv',(t - 1) + cpl (experiencei) + pa (experienceg) (3.3) 

Figure 3.2: A position-velocity relation in a 2-dimensional space. 

Definition 3.3.4. A neighbourhood defines the social structure of a swarm and indicates 

which particles a particle should interact with. Within a neighbourhood, particles interact, 

communicate and share information. To form a neighbourhood, we may not restrict to 

the physical distances between particles; in fact, they are often defined by the enumeration 

labels of the particles in PSO [25]. For example in Figure 3.3, nine particles are enumerated 

w PI, P2, . . . P9. Regardless of the physical distance, PI, P2 and P3 are neighbours of size 

three,4 and P4, P5 and Ps form another. Stars, rings and wheels are the most commonly 

4According to the research papers in the field, size 3 neighbourhood is sometimes denoted as k = 2 
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used neighbourhood structures (shown in Figure 3.4). 

Figure 3.3: A global swarm vs. local neighbourhoods [25]. 

(a) A star (b) A ring ( c )  A wheel 

Figure 3.4: Simple neighbourhood topologies (population = 5) [51, 251. 

In the PSO context, two terms, local versus global are often used. "Local" refers to an 

individual neighbourhood while the global refers to the entire swarm as one big neighbour- 

hood. For example, there are three local neighbourhoods in Figure 3.3. Neighbourhoods 

can overlap and a particle can belong to  multiple neighbourhoods. For instance, particles 

PI, P2, P3, P4 and P5 are to form neighbourhoods of size 3 in a ring topology as shown 

in Figure 3.4(b). We may have five neighbourhoods in total: {PI, P2, P3), {P2, P3, P4), 

{P3, P4, P5), {P4, P5, PI) and {P5, PI, P2). A particle in such a structure retrieves informa- 

tion from another two particles directly connected to it. 
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Different neighbourhood structures may affect the performance of the swarm. They de- 

termine how information propagate among particles, and thus may affect the convergence 

of particles, i.e. when and how particles may come together, arrive at some stable state and 

stop improving the solution. That is, particles may converge on different local optima or 

at different time with different neighbourhood top~logies.~ In a star topology as shown in 

Figure 3.4(a), all particles are influenced by one global best location so far in every iteration 

and move towards the location, so they tend to converge quickly to the global best. In a ring 

topology, the neighbourhood segments are overlapped so the convergence may spread from 

one neighbourhood to another and eventually pull all the particles together. By gradually 

spreading information, the swarm converges slower in a ring than in a star. For a swarm 

in a wheel, there exists one and only one central particle, which serves as a buffer [55] .  

The central particle collects and compares the positions of all particles, finds the best one 

and moves itself towards the best position. All other particles then pull information from 

the central particle and start moving towards the same position. Because of this buffering 

effect, a wheel topology may preserve diversity for a bit longer and prevent the swarm from 

converging too fast on local optima. 

PSO evaluates the quality of its solutions based on an objective function, fitness 

function or evaluation function F(x).  By evaluating and comparing the current solution 

with the best solution found so far, a particle determines its next move. Three best solutions 

(or positions) so far are the individual best (pbest), global best (gbest) and local best (Ibest). 

0 The individual best position xpbesti refers to Pi's best position found so far, xpbestij is 

the jth element of xpbesti, and the individual best pbesti is the evaluation on xpbesti. 

0 The global best position so far xgbest is the best position so far of the swarm P and 

the global best gbest is the evaluation of xgbest. Similarly, xgbestj is the j th  element 

of xgbest. Although this can be used by particles in other neighbourhood structures, 

it is typically used in a star topology where all particles exchange information in a 

single neighbourhood [25]. 

5~ topology refers to the logical structure of a swarm neighbourhood, rather than a physical structure. 
We have mentioned, neighbouring relations are often defined by the enumeration labels of the particles in 
PSO. For example in Figure 3.3, nine particles are enumerated as PI ,  P2, . . . Pg. Regardless of the physical 
distance, PI,  P2 and P3 are neighbours of size three. 3'4. P5 and P6 form another one, and P7, Pg and Pg 
are the other. 
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The local best position so far xlbestk is the best position so far of all particles in 

neighbourhood k and the local best lbestk is the evaluated value. A ring topology is 

an example where particles use this information [25]. Particles in a ring topology often 

forms a number of (local) neighbourhoods; in each neighbourhood, particles share a 

local best position. Note that global best gbest is a typical example of lbest where all 

particles of a swarm form a single (global) neighbourhood. 

3.3.2 Continuous PSO 

PSO was originally designed to optimize continuous nonlinear mathematical functions, and 

so it deals with real numbers [53]. The algorithm randomly initializes each particle Pi 

to position xi(0) and velocity c(0).  At each time step t ,  every particle calculates a new 

velocity c ( t )  based on the social-psychological tendency [25, 531 from both its own and 

its neighbours' knowledge. Considering different ways of sharing information, there can be 

three ways to compute velocities? 

Individual pbest only or one particle per neighbourhood: each particle makes decisions 

on its own, and ignores everybody else. 

Global gbest and individual pbest: every particle considers the knowledge of all parti- 

cles within a single neighbourhood. 

Local neighbourhoods lbest and particle individual pbest: suppose particle Pi is in 

neighbourhood k 

Once the new velocity has been determined, particle Pi updates its position using Equa- 

tion 3.1 mentioned earlier. Then iteratively, all particles keep updating the velocities and 

their positions until timeout or the goal fitness value is obtained. 

6w is a parameter to control how much the new velocity is affected by the previous velocity. rl and 13 are 
random numbers in [0, 11 to randomize the influence of group experience and particles' individual experience. 
cl and cz are positive acceleration constants. 
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In short, this algorithm makes use of a swarm of particles stochastically and intelli- 

gently exploring new regions and exploiting towards the previous better regions until the 

swarm reaches an "optimum". The particles7 intelligence comes from social interaction and 

information sharing, and such learning abilities dominate the PSO algorithm 1551. 

3.3.2.1 Parameters  a n d  variants 

Like many other evolutionary algorithms, the behaviours of the individuals and the popula- 

tion (the particles and the swarm in PSO) are affected by the parameters in the algorithm; 

and so tuning the parameters changes the performance of the search [115, 251. Considering 

the algorithm and Equation 3.5, a generic PSO has a list of parameters to  work with: 

A particle position and a velocity vector are a node and a vector in an n-dimensional 

solution space. Both of them consist of n elements. The dimension n is also the size of 

a problem to solve, and so the solution space is n-dimensional. For example, the size 

of a constraint satisfaction problem (CSP) is the number of variables in the problem. 

The population pop of the swarm depends on the problem to solve. Between 10 and 50 

are commonly used pop values [23] and some experiments use 100 as their pop values. 

A size Ic neighbourhood consists of Icfl particles. There is no standard neighbourhood 

size. Research indicates 15 percent of the swarm size as neighbourhood size can be 

useful [23]. 

Iner t ia  weight w determines the influence of the previous velocity v',(t - 1) [55, 951 

and in turn controls particle's ability to explore and exploit the space. It also affects 

the speed of particles converging or de-converging, i.e. the speed of pulling the 

particles together or preventing the particles from settling. To get a better searching 

pattern between global exploration and local exploitation, researchers recommended 

to decrease w over time from 0.9 to 0.4 [95, 55, 231. By doing so, the particles can 

explore widely at the beginning and gradually shift to exploit towards an optimum. 

The relative magnitudes between cpl = rl x cl and cpz = 7-2 x cz upper bounds determine 

whether a particle move towards the neighbour best (gbest) or the individual best 

(pbest). If we have the upper bound of cpl greater than the upper bound of pz, 

particles tend to emphasize neighbours' experience and move towards the neighbour 
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best (gbest). rl and rz are random numbers between 0 and 1, which bring randomness 

to cpl and cp2 and affect the acceleration constants cl and c2. These random 

numbers are set at each calculation of a velocity so that particles may vary the influence 

between different sources of information. Unlike rl and 7-2, the acceleration constants 

cl and c2 are controllable. If they are small, the velocity gradually becomes smaller 

so the particle tends to slow down over time, and vice versa. 

Velocities are obtained stochastically because of the randomness introduced by rl and 

7-2. So, the upper bound of velocities Vmax is needed to prevent particles from exploring 

here and there forever and not being able to converge. If Vmax is too big, particles 

may fly too far at once and miss good solutions. If Vmax is too small, particles may 

be limited to a local area. But, the choice of Vmax is problem dependent, for instance, 

the size of a variable domain in CSP context. Based on the researchers' experience 

[23, 551, Vmax can be set at 10 to 20% of the range of each variable or proportion to 

the range of the problem. For example, suppose the search range of a variable is in 

[loo, 2001. Vmaz can be set to between 10 and 20. 

A constriction coefficient x was added by Clerc to Equation 3.5 [lo, 12, 551. 

where x = 
2k , k €](),I[ and cp = rlcl + r2c2 > 4.0 

When cp increases, x becomes smaller and so particles take smaller steps through the 

search. In turn, the magnitude of the coefficient affects the convergence of the swarm. 

Researchers suggest that a simple setting x = 0.729 where k = 1.0 and cp = 4.1 seems 

to work well [52]. The mathematical analysis of the coefficient is not in the scope of 

this research. Refer to [12] for more detail. 

Some researchers show that when using x or w to control velocities, the upper bound 

Vmax is unnecessary [12]. Some others indicate that one may still have a better control 

on particles to explore or exploit with Vmax although it is not required [24, 551. For 

example, studies show that having Vmax set to the maximum potential solution Xmax 

to Clerc's model, the elements of a velocity are individually controlled by the upper 

bound and the swarm does not seem to get stuck so easily at a local optima [55]. 
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3.3.3 Discrete (Binary) PSO 

Kennedy and Eberhart's discrete model [54] is a version of the PSO that does not directly 

use real numbers. It makes the PSO applicable to  problems with variable values taken from 

a discrete domain e.g. v E {1,1.5,2,2.5,3) as opposed to over a continuous range 1 5 v 5 3 

where there are infinite number of values between any two numbers. The rationale is that not 

all problems can be described using continuous domains; for example, the graph colouring 

in Section 2.2.5 has finite domains such as {red, blue, green). 

In Kennedy and Eberhart's discrete PSO, a particle and its position still represent a 

solution in the problem solution space. Instead of consisting of a sequence of integers or 

real numbers however, a particle Pi's position xi(t) at time t is composed of a bit-string: 

xil (t), xi2 (t) . . . , xin(t) where xij (t) E { O , l )  for each j E {1,2, . . . n). Also, in order to 

derive the bit value of xij(t), a velocity element vij(t) is not directly used as an increment to 

compute Xij(t), rather it is used as a threshold to  determine the possibility of a bit change. 

More specifically, vij(t) is transformed by a sigmoid function and then compared with a 

uniformly distributed random number pij(t) E [O, 11. 

1 0 if (t) e ,+ 
ct,, , xij (t + 1) = 

1 otherwise. 

3.3.3.1 Binary encodings 

In order to  apply the binary representation to integer domains or real numbers, an integer or 

a real number must be converted to a bit-string. Two common encoding methods are Binary 

encoding and Gray encoding [55]. Binary encoding uses regular binary numbers (in base 2) 

to represent integers or real numbers; for example, 'OOl ' ,  '010' and '011' represent integer 

1, 2 and 3. Gray encoding also converts integers to sequences of bits. The only difference 

is Gray encoding minimizes the bit changes between consecutive numbers; for example the 

Gray encodings of 1, 2 and 3 are 'OOl ' ,  '011' and '010' so the bit change between 1 and 

2 is one bit rather than 2 bits in Binary encoding. Since Gray encoding flips only one 

bit at a time when the corresponding number increments one, Kennedy et al. recommend 

Gray encoding. It is suggested that Binary encoding may introduce undesired complexities 

to problem solving because the Hamming distance between any consecutive numbers is not 

uniform and it can be harder to  systematically control the changes from 0 ('000') to 1 ('001') 

or from 1 ('001') to 2 ('010') as needed for example [55]. 
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3.4 Solving Problems with PSOs 

3.4.1 Research problems and applications 

PSO was originally developed as an optimization problem solver. It  is most commonly 

applied to  optimization problems or to those problems that can be converted to  one [23]. 

Finding minima or maxima of a nonlinear function is a typical test problem for PSO al- 

gorithms 125, 961. Also, it has been shown to optimize global unconstrained optimization 

problems 172, 711. Some well-known static, numerical, continuous, real-valued constrained 

benchmark problems are popular among PSO researchers as well [115]. 

The early PSO applications were related to artificial neural networks (NNs) [55, 251. 

Because of the success in training neural networks, PSO has been applied to various related 

applications such as human tremor analysis and diagnosis, Parkinson's disease prediction, 

rule extraction and computer controlled milling optimization 155, 25, 961. In addition to 

the neural networks, several constrained nonlinear optimization problems have been investi- 

gated. Studied applications are, for example, neural network training [lo, 851, human tremor 

analysis and diagnosis [93], ingredient mix optimization problem [55], computer controlled 

milling optimization [106], reactive power and voltage control [116], power supply reliability 

enhancement [68], internal combustion engine design [76], and so on. More and more vari- 

ants are being de~eloped.~  Several possible application areas suggested by Eberhart and 

Shi [23] are multi-objective optimization, pattern recognition, scheduling, and so on. Refer 

to [23] for more suggestions and examples. 

3.4.2 Strengths 

One reason for PSO gaining its popularity is that it is conceptually straightforward and 

computationally simple [55]. Simulating birds flocking, particle swarms fundamentally use 

two simple formulae to effectively search the goal. Also, research has shown that in compar- 

ing PSO with other algorithms on a variety of problems 115, 87, 5, 33, 1181, it can perform 

better on some problems and be competitive on others. Since PSOs are a new search tech- 

nique, much research has been targeting to  improve the original PSOs for solving various 

problems and it has great potential to be done further. For example, owing to its similarity 

7 ~ o r  most recent research, one can refer to Particle Swarm Optimization website 1411, which keeps a list 
of bibliography and related information. 



CHAPTER 3. PARTICLE SWARM OPTIMIZATION 32 

to evolutionary computation (EC) methods, many successful EC techniques and ideas may 

be integrated to improve PSOs. Like many EC algorithms, PSO has a number of para- 

meters to adjust. On one hand, this is beneficial for implementing adaptive systems [55] 

and also shows the extensibility of PSO to other specifically designed algorithms although 

it may not perform as well as those algorithms. On the other hand, tuning parameters for 

solving a particular problem or a range of problems can be time-consuming and non-trivial. 

Compared with EC methods, PSO does not have as many parameters to tune in order to 

get acceptable performance [42]. In addition, Hu and Eberthart suggest that PSO is ap- 

plicable for both constrained and unconstrained problems even without pre-transforming 

the constraints and the objectives of a problem [42]. 

3.4.3 Weaknesses 

Researchers have found several issues that prevent the generic PSOs from effectively solving 

certain types of problems. Although the improvement has been working on to handle these 

issues, the solutions may not easily be applied to solve other problems; thus, we should keep 

these issues in mind while developing new particle swarms for solving other problems. For 

example, although PSO has the ability to converge quickly, it tends to wander and slow down 

as it approaches an optimum [115]. Owing to the premature convergence, it gets stuck quite 

easily and cannot explore wide enough. This can be problematic for solving multimodal 

problems where the problems have multiple optimal solutions. Particularly if many of those 

optima are only local rather than global [115], particles may get trapped at local optima. In 

addition, while there are not many parameters to control [42] and as mentioned previously, 

these parameters open up a potential for developing adaptive PSO systems, some of the 

parameters are problem dependent. Some suggested values and experimental settings are 

still at trial-and-error stage [23], and it can be non-trivial to find the right settings for 

individual problems. 

3.5 Solving binary CSPs 

Although quite a number of PSO variations are designed to solve constrained and uncon- 

strained optimization problems, the first and the only one developed specifically for solving 

CSPs was done by Schoofs and Naudts in 2002 [go]. Similar to their research in ant systems 

[89], this PSO solves binary CSPs and was tested on a set of randomly generated binary 
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CSPs. Besides a no-hope/re-hope mechanism for preventing particles from getting stuck in 

local optima, several additional operators were introduced to calculate particles' positions 

and velocities. Schoofs and Naudts conclude that the system is able to solve the tested 

random binary CSPs reasonably well but not so good as an ant colony algorithm and a 

genetic algorithm on hard problems [go]. 

3.5.1 Schoofs and Naudts' operators 

The spirit of the original PSO and the meanings of the original formulae (Equation 3.1 

and Equation 3.5 for computing a particle's position and velocity) remain essentially the 

same. Mathematically however, those two formulae have been reformulated with the new 

operators as follows to compute a velocity and update a position [go]: 

where velocity C(t) is a vector of [vl, v2, . . . , v,] at time t ,  a particle position d(t) consists of 

[xl, 2 2 ,  . . . , x,] at time t, xpgest and xg6est denote the individual best position so far and 

the global best position so far respectively, and parameters cpl and cp2 will be explained in 

the next section. These elements are either the same or similar to those in the original PSO. 

The difference is how they are computed via those new operators. Much detail of these 

operators are described in [go]. Briefly, they are 

1. 9 denotes a position change from one to another. (Z 9 8 = 5) moves from position Z 

to 8 and results in a velocity v' where v' is a vector [yi t xi]. 

2. $ is a reverse operator of 9; it calculates the next position after a position change 

with a velocity vector. Computationally, (2 c' v' = y3 adds a velocity v' to a position 2 

and becomes a new position y'. 

3. 0 operator adds two velocities and yields a new velocity. Specifically, suppose we have 
4 

v' o w' = ii where v' = b 9 a' and 6 = 89 then for each element ui in ii, ui is either 

ai t yi if bi = xi, or otherwise ai t bi. 

4. @ is used to multiply a velocity v' with a coefficient cp and to render a new velocity 

6 = cp @ v'. Representing CSP in PSO terms,8 suppose a variable xi is an element of 

' ~e f e r  to Section 4.1 for details. 
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position 2 and its conflict counts (nbConfi: the number of constraint violations the 

current value of variable xi causes) is greater than some given cp, we can obtain an 

element wi with respect to  w' = cp 8 v' by having xi + Xi,  or otherwise wi = xi + yi if 

nbCmfi is not greater than cp. This should become clear in Chapter 4. 

3.5.2 Parameters used in Schoofs and Naudts' PSO 

The parameters used Schoofs and Naudts' PSO are: 

Like other PSOs, Schoofs and Naudts' particle position and velocity vector are a 

node and a vector in an n-dimensional solution space. They consist of n elements. 

The dimension n is also the size of a constraint satisfaction problem (CSP), i.e. the 

number of variables in the problem. 

The populatioii pop is the size of the swarm. The value to  use depends on the problem 

to solve. 

Coefficients cpl and cpz. Schoofs and Naudts examined both cpl = cpz = 0 and cpi = 

9 2  = 1, and the experiments showed that the solution quality is better when cpl = 

'P2 = 0 [go]. 

A deflection operator gives the probability of direction changes of a particle to  refine 

the particle's moving direction. Schoofs and Naudts compare this operator to  the 

mutation operators in genetic algorithms. Refer to [go] and the algorithm in Figure A.8 

in Appendix A for the usage of the operator. This operator was set to  0, l / n  or 2/n 

in [go]. According to  Schoofs and Naudts, the deflection feature seems to reduce the 

instability of the velocities caused by the no-hope mechanism so the level diversity can 

be maintained at a certain level. But, if the deflection is set too high, the swarm will 

move too fast to  focus. 

3.6 The Research Goal: PSOs for Solving n-ary CSPs 

we learned that particle swarm optimization (PSO) has been successfully applied to various 

constrained optimization problems, and also proposed as a technique for solving random 

binary CSPs [go]. In our research, we will extend the ideas of the traditional PSOs and 
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Schoofs and Naudts' PSO, and develop new particle swarms to  solve general n-ary integer 

CSPS.~ For the purpose of this research, we will want to answer the following questions: 

Schoofs and Naudts developed a PSO algorithm for solving binary CSPs [go]. They 

modified the traditional PSOs by a set of new operators and mathematically refor- 

mulated the computation of the velocity and position of the particles with the new 

operators. They tested their algorithm on random binary CSPs and reported good 

results on non-hard problems. Can we use their algorithm or extend the algorithm to  

solve general n-ary integer CSPs effectively? 

The traditional Continuous PSO [53] and Discrete PSO [54] were not designed for 

CSPs. The questions are: 

1. How can we modify these traditional PSOs to solve n-ary integer CSPs? 

2. How do the algorithms extending the traditional PSOs compare with Schoofs and 

Naudts' algorithm'! 

As we have discussed in Section 3.4.2 and Section 3.4.3, the traditional PSOs have their 

strength and a number of weaknesses. While designing and developing the new particle 

swarm algorithms for solving n-ary CSPs, we should make use of their strength and pay 

special attention to the weaknesses since CSPs are hard multimodal problems in general. 

'see Section 2.1 for the definition as needed. 



Chapter 4 

Particle Swarm Optimization for 

Solving CSPs 

To achieve our research goal and answer the research questions presented in Section 3.6, we 

will begin with proposing and developing particle swarm algorithms for solving n-ary con- 

straint satisfaction problems (CSPs). Specifically in this chapter, we explain how we model 

CSPs in particle swarm, how we modify and improve the three particle swarm optimization 

(PSO) algorithms in Chapter 3 to search finite integer space, and then how we formulate a 

PC configuration problem as a CSP for the experiment. The experimental results will then 

be discussed in Chapter 5. 

4.1 CSP Representation in Particle Swarm 

In order to use PSO for solving CSPs, we must first put PSO to CSP solving and represent 

CSPs in a form that is searchable for PSO. Suppose a CSP has n variables varl, vara, . . . 
var,, and each variable can be assigned a single value from a finite set of integers (i.e. a CSP 

domain). Each of these integer sets is finite, but not necessarily consecutive over a range. 

The constraints imposed on the variables may be unary, binary, ternary or even more. In 

general, they may involve any number of variables between 1 and n. 
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4.1.1 Connecting CSPs and PSO 

To solve CSPs using PSO, we need to deternline the search space of the swarm, the particles, 

and the position and velocity of each particle. Firstly, PSO conventionally models a size n, 

problem as an n-dimensional search space and the size of a CSP is ~ne~asured by the nuinber 

of variables, so we use the number of CSP variables to  define the search space dimensions, 

one CSP variable per dimension. In any dimension i ,  the possible values to search are the 

domain of variable vari. One search node in the PSO's search space is a. complete assignment 

(va,ll, valz, . . . , val,,) to the CSP variables var I, varz, . . ., war, respectively. 

As a member of the swarm, a particle Pi takes part in the mission to search CSP solutions. 

Its position xi(t) as shown in Figure 4.1 represents a potential solution or CSP assignment 

found at  time t. An element zij(t) in a position xi(t) denotes a value v d j  selected from CSP 

domain Dj. Siinila.rly, particle Pi's best position so far q)best i ,  the swarm's best position 

so far xgbest or the kth neighbourhood best position so far xlbestk are the best (potential) 

solutions so far found by P?,, by the entire swarm or by the kt11 neighbourhood, respectively.' 

They are all sequences of CSP assignments (vcd Valz, . . . , val,,) . 

e when a best solution is found 

st, 

Figure 4.1: A particle position xi in the  CSP context is a complete ~ s i g n m e n t .  

A velocity vi(t) of a particle Pi is an n-dimensional vector that moves Pi from its previous 

'To determine its velocity to move from a current position to another, a pa.rlicle t,akes two pieces of 
information into account: the individual best experience xpbest and the group experience. The group 
experience s:gbest or xlbest depends on either the global or the local neighbourhoocl structure of t,he swarm 
disc~~ssrd in Section 3.3.1. 
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position xi(t - 1) to the next position xi(t). In the context of CSP, this velocity updates the 

complete assignment from one to another and each element vij(t) of vi(t) in fact changes the 

assignment of variable varj  from one domain value to another. In Figure 4.2 for example, 

vij(t) = 4 increments domain value assignment xij(t - 1) = 2 by 4 and yields xij(t) = 6. 

Figure 4.2: A particle velocity vi changes CSP variable assignment. 

4.1.2 Handling constraints 

Moving from one position to another, a particle may violate constraints. Thus, what we 

need to resolve next is how PSO handles constraints. PSO was originally designed for 

optimization problems and it relied on an evaluation function eval(x) to guide the particles. 

Intuitively, we can use such a mechanism to handle constraints in CSPs. Our task is to 

choose a good function, which can closely estimate the quality of an assignment and lead 

the swarm to a good solution quickly. For example, we can use a penalty function discussed 

in Section 2.1. In this research, we use two general penalty functions: a conflict count 

function and a distance estimation function. The conflict count function checks constraint 

violations and returns the arity of a constraint as a penalty score when the constraint is 

violated, or returns zero otherwise. The distance estimation function computes the distance 

from a potential solution to a satisfiable solution. For example, an assignment a = 100 

violates a constraint 'a+5 5 50'. In order to satisfy the constraint, a can only be at most 

45. The distance estimation function returns (100 - 45 = 55). 

Besides employing penalty functions to guide the particles, we consider several other 

constraint handling strategies such as repairing infeasible solutions or unsatisfiable po- 

tential solutions to improve the search or to minimize the constraint violations [63, 131. The 
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details are to be discussed in Section 4.2.2. 

4.2 PSO Algorithms for Constraint Satisfaction 

As part of this research, several new particle swarm algorithms were developed based on the 

three PSO models discussed previously: the Continuous PSO (Section 3.3.2), the Discrete 

PSO (Section 3.3.3) and Schoofs and Naudts' PSO for solving CSPs (Section 3.5). We will 

refer to them as the Continuous model,2 Discrete model and BCSP model from now on. 

One of the major challenges in applying PSOs directly to finite integer CSPs is that all 

assignments are only integers within a possibly non-consecutive range. This increases the 

complexity of the problems because the particles no longer fly smoothly in a continuous 

space. Instead, they need to hop in the space like a frog. In the first part of this section, 

we will discuss how to  modify the three PSO models to search integer domains. Then, we 

will describe strategies that we propose to improve the algorithms. 

4.2.1 Generic PSO 

To keep the merits of PSOs, we want the algorithms to be as simple and as close to the 

originals as possible. The first modification makes PSOs work with finite integer CSPs; 

particularly, the Continuous model and Discrete model were not originally designed to deal 

with integer CSPs. This modification allows each element xij(t) of a particle position xi(t) 

take on a value only from its corresponding CSP (integer) domain Dj. The BCSP model 

works with finite integer domains so no such modification is necessary. We will refer to these 

PSOs with minimal changes as generic type PSOs of all three models. 

4.2.1.1 Continuous model: genericPS0 

As mentioned before, we modified the continuous PSO to work with finite integer domains. 

The algorithm allows each element of a particle position3 to take on values only from its 

integer domain. Specifically, we modify the algorithm in updating velocities and positions 

as shown in Figure 4.3, Line 4-7. The computation of the velocity and position of a particle 

2~ l though  we will modify the model to  handle discrete integer CSP domain, we still refer to it as Con- 
tinuous model. 

3i.e. xij ( t )  in x i ( t )  = (xi1 ( t ) ,  xia(t), . . . , ~ i n ( t ) )  for j = 1,2,  . . . , n 
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Pi is done one element (dimension) at a time, for n dimensions. Figure 4.4 illustrates the 

idea where uij (t) moves an element xij (t - 1) of a position to xij (t) . If the resulting xij (t) 

is in domain Dj, no change is necessary; otherwise, we adjust uij(t) to u&(t) and xij(t) to 

x;(t) so xij (t) can be in Dj and close to ~ ~ ( t ) . ~  

1 FOR j = 1, 2 ,  . . . ,  n: 
2 v[j] = update ve loc i ty  
3 x[j] = update pos i t ion  x[j] + v[j] 
4 I F  x [j] not i n  domain D [ j] : 
5 x[j] = r e loca te  t o  x ' [ j l ,  where 
6 x' [j] is  the  c loses t  loca t ion  t o  x[jl i n  D [ j l  
7 v[j] = adjus t  t o  v' [jl so t h a t  x[j] = x[j] + v[j] maintains 

Figure 4.3: A pseudocode segment describes the change done for the Continuous PSO. 

(a) before the adjustment (b) after the adjustment 

Figure 4.4: A position adjustment on the jth-axis when the element xij goes out of domain Dj 

Assuming particle Pi is at xi( t  - 1). The small dots represent the values in domain D j ,  and 
the filled circle xij ( t  - 1) is the jth element of ~ i ( t  - 1). Suppose uij ( t )  does not move xij ( t  - 1)  
to another small dot on the board, as shown on the left. The algorithm will adjust ui j ( t )  to 
ui j ( t ) ,  find the closest "small dot" and move the particle to x;(t) .  

41n this research, particles only search within CSP domains due to the limitation of the CSP Framework. 
Alternatively, one may consider keeping xi j ( t )  as long as it is an integer; otherwise, xi j ( t )  can be moved to 
an integer x;(t)  close to ~ i j ( t ) .  If x i j ( t )  in the former case or x i j ( t )  in the latter case is not in D j ,  one 
should count it as a constraint violation. 
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4.2.1.2 Discrete model: binaryDiscrete and grayDiscrete 

We also apply the same idea described in Section 4.2.1.1 to the Discrete model. The dif- 

ference is that the Discrete PSO [54] represents a potential solution in an m-bit string5 

instead of a sequence of n integers. Unless the CSP domains are binary, some additional 

modification should be done beforehand. One possible change is to directly encode each 

integer element to its corresponding bit string. If each integer is encoded as an x-bit string, 

the original n-dimensional particle position becomes an xn-bit string. For example, we may 

have a continuous genericPS0 particle at  location (6,4,1,9). Transformed by binary encod- 

ing [55], this position in binaryDiscrete is (0110010000011001) .6 Or with a Gray encoding 

[55] in grayDiscrete, the position becomes (0101011000011101) .7 Our preliminary exper- 

iment has shown several immediate disadvantages of these representations to the Python 

CSP framework introduced in Section 2.4.1. 

The first issue is the speed. The discrete solvers binaryDiscrete and grayDiscrete tend 

to be slower than the continuous genericPS0 over the same number of iterations. For a 

problem of size n, assuming each integer domain value can be encoded to an x-bit string, 

a binary encoded position of a particle becomes xn dimensions whereas an integer encoded 

position is n dimensions. In other words, at each iteration each particle of the discrete 

solvers computes velocities and updates particle positions for x x n times, but the particle 

of the continuous solver performs this computation only for n times. 

Another issue is the "non-consecutive" CSP  domain^.^ Since the integers of a CSP 

domain may not be consecutive, not all bit strings correspond to  legal CSP assignments. 

Even with a consecutive domain, binary bit flops may produce some undesirable bit strings 

as explained below. 

1. Inconsistency among CSP domain sets may cause the undesirable bit strings.g For 

consistent implementation, we set all the bit string segments1' at the same length, 

regardless of what variable domain a bit string comes from. The string segments of 

5m-bit string consists of x i1x i2 . .  . xim, for example, 011.. .O. 

6 ~ o  present it clearly, we may divide the 16-bit binary encoding into 4 segments (0110,0100,0001,1001), 
one segment per original integer value. 

7i.e. (6,4,1,9) = (0101,0110,0001,1101) in Gray encodings 

' ~ o m a i n  consecutiveness has been defined in Definition 2.1.1. 

' ~ o m a i n  consistency has been defined in Definition 2.1.1. 

''one segment for one original integer value of a particle position. 
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(0001,0011,0101, Oll l ) ,  for instance, are all length 4 bit segments, and the segments 

of (000000110,110010000) are length of 9. Technically, we take the maximum domain 

value of all variable domains to determine the length of bit segments. However, this 

representation may waste space and time if the ranges of all domains are different. 

For example, we may have CSP domains Dl = {2,4,6,8), D2 = {1,2,. . . ,4001, D3 

= {0,1) and D4 = {1,2,. . . ,101. To have the same length for each bit segment, we 

encode a 9-bit string for each domain value.ll In this example, we obviously waste 19 

additional bits (6 for Dl ,  8 for D2 and 5 for D4) and these 19 bits consume unnecessary 

computat ion. 

2. Another situation occurs within a CSP domain. For example, we have a domain D = 

{1,3,5,7,9). We need 4 bits (from 0000 to 1111) to encode the domain and it becomes 

{0001,0011,0101,0111,1001). This encoding appears fine at first. However when a 

particle computes velocities and performs bit changes, some undesirable numbers12 

may appear. These undesirable numbers directly affect the validity of the bit change 

and are not acceptable to the Python CSP framework.13 

The situations discussed above may affect the effectiveness and the efficiency of the 

solvers. In order to  compensate the problem, we have tried to adjust and reduce the prob- 

ability of producing certain bit changes according to the distribution of CSP domains. But 

the adjustment may break the probability of a bit change from the original studies of the 

discrete PSO and lose the velocity information for the iterative particle movements. Our 

preliminary experiment has shown the disadvantage when CSP domains are not consecutive 

or not consistent. 

''The maximum domain value "400" is encoded as 110010000, which is a length 9 bit string. 

12~hese  numbers are 0000, 0010, 0100, 0110, 1000, 1010, 1011, 1100, 1101, 1110 or 1111; these values do 
not exist in the variable domain. 

13Another possibility is to enumerate a domain set and encode the values as a shorter and more compact 
representation such as (1,3,5,7,9) = (000,001,010,011, loo), to reduce the sparse effect. This may be 
possible if we have only a few CSP variable domains or each integer value across domains can be encoded 
into the same binary string. If we have a large number of variables and domains, the situation will become 
much more complicated because each domain set may contain different elements. So, we need to set up a 
lookup table for converting between the integer values and their binary strings for each domain. In addition, 
if the elements of CSP domains are encoded differently, we may have a problem in verifying constraints. For 
example, we may have two variables war1 and warz. The domains of war1 and war2 are Dl = (1,3,5,7,9) 
and D2 = (9,19,29) respectively. If we try the compact encoding, we will have Dl = (000,001,010,011,100) 
and D2 = (000,001,010). In such encodings, the value 9 in Dl differs from the one in D2. It may then 
require more careful thought when we examine a relation such as "9 == 9". One thing we know is that we 
cannot compare "100 == 000" directly. 
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4.2.1.3 BCSP model: bcspPSO 

Schoofs and Naudts' PSO (short for BCSP-PSO) is designed for solving binary constraint 

satisfaction problems [go]. The particles of this algorithm update their positions within 

CSP variable domains, so they do not go out of domain. The first thing to consider is 

the deflection operator which is used as a Boolean predicate in the algorithm with an 'if 

statement' in [go]. Functionally, the operator should give a probability to  change the moving 

direction of a particle. Hence, we modify the statement to "if random0 < deflection" 
as shown in Line 13 of Figure 4.5, where random0 returns a random number between 0 and 

1. With such a modification, the deflection becomes a probability threshold rather than 

a boolean switch. The value l / n  or 2/72 for deflect ion gives different probability of the 

direction change of a particle as discussed in [go], and the value 0 for deflect ion sets the 

probability to zero. 
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randomly initialize the particles 
set gbest, all Ibest's and all pbest's to  some very big values 
initialize best positions xgbest, all xlbest's and all xpbest 
t t l  
while t < maximum number of iterations: 

do for i t- 1 to population: 
do for j t 1 to n: 

do nbConf + conflict counts of xij [t - 11 of particle Pi 
if nbConf > cpl: 

then V' + xpbestij 8 x i j [ t  - I] 
else v' + xij [t - 11 8 xij [t - I] 

if nbConf > pa: 
then if random() < deflection: 

#comments: it was 'if deflection' in [go]# 
then v" + Rand(j) @ xij [t - 11 
else V" +- xgbestj 8 xij [t - I] 

else V" + xij [t - 11 8 xij[t  - 11 
xij [t] + xij [t - 11 @ (v' 0 v") 

fitnessi t conflict counts in particle Pi 
if fitnessi < pbesti: 

then xpbesti +- X i  

pbesti + fitnessi 
if pbesti does not change for noHope times: 

then randomly initialize X i  

gbest, xgbest t update from pbest, xpbest 
lbest, xlbest +- update from pbest, xpbest 
t t t f  1 

return gbest, xgbest 

Figure 4.5: Schoofs and Naudts' PSO [go]. It is named as bcspPSO and serves as the foundation of 
all algorithms derived from BCSP model in this research. 
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4.2.2 Strategic PSOs 

Our early experiments showed that the generic type psOs14 could not solve n-ary integer 

CSPs effectively. One possibility is that without enough diversity (or distance) among 

particles, the swarm converges and confines to a local optimum quickly. Another possibility 

is that particles tend to get stuck more easily with integer CSP search space. Particles' 

velocities are real numbers. In a continuous search space, particles can move in a much 

smaller scale (with real number velocities). In integer CSPs, the search space is discrete 

or even sparse because of the non-consecutive domains. If particles do not have enough 

power and the velocities are too small to  get out of the current positions, the particles may 

keep going back to the same position. For example, suppose we have a domain Dj = (1, 

2, 3, . . . l o )  and a particle's position xj is currently at 2. In a real number domain, the 

particle can possibly move gradually from 2.1, 2.2, . . . to  3. However in an integer domain, 

the velocity must be big enough to  take the particle to  move from 2 to 3; otherwise, the 

particle has to  stay at 2. 

In this section, we will describe several modifications done to  the generic type PSOs in 

order to avoid particles getting stuck and to  enhance particles' exploration abilities. Also, 

efficiency is another issue that we will have to consider. 

4.2.2.1 Zigzag movements: genericzigzag, binaryzigzag, grayzigzag and 

bcspzigzag 

Regardless of the original PSO models, moving in all n dimensions at one time may have 

brought in too much driving force to  the particles. This may have contributed to  the fast 

convergence of the swarm because each particle is affected by the same best experience in 

all n dimensions at one time and tends to come quickly to the best experience so far. Also, 

such a big step prevents particles from examining a local area. For example, imagine we are 

in a 2 dimensional space, an x-y plane. Moving one step in both x and y with a velocity (2, 

2) from location (0, 0), we can only visit one location at (2, 2). If we break the step into 

two smaller steps in x with velocity (2, 0) and then in y with velocity (0, 2), we may visit 

two locations (2, 0) and (2, 2). Besides, if step one and step two are affected by different 

best experience, we may visit (2, 0) and (2, 3) instead of (2, 0) and (2, 2) for instance. 

Moreover in CSPs, a constraint violation can sometimes be fixed by changing the values 

14with the basic modification in Section 4.2.1 
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of only one or two variables involved instead of changing the values of all variables. This 

is particularly true when a solution is close. Therefore, we propose to  have particles move 

one dimension at a time in a "zigzag" manner as shown in Figure 4.6. Each of these zigzag 

type PSOs will be referred to as genericzigzag of the Continuous PSO, binaryzigzag and 

grayZigzag of the Discrete PSO with different encodings, and bcspZigzag of the BCSP PSO. 

Computationally, this "zigzag" movement should increase the speed of each iteration 

because a particle only needs to compute one dimension (vij) of a velocity and update 

one element (xij) of a position each time instead of the entire n dimensions vil, vi2,. . . , vin 

and all n elements xil, xi2,. . . , xin. This may also speed up the evaluation of a potential 

solution each time because these zigzag particles only need to  examine one CSP variable 

in each iteration. Although this may possibly increase the total number of iterations the 

swarm requires to solve a problem, the swarm has potentially more chances to  examine more 

solutions locally and to find a solution quickly. In addition, while moving one dimension 

at a time, each movement may be guided by a different best found so far; in turn, it may 

reduce the chance for the particles to  be trapped in one particular best location so far. 

(a) particle P2 moves in a traditional style (b) particle Pz moves in a zigzag style 

Figure 4.6: A particle moves in a 2-dimensional space with 2 different styles. 
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4.2.2.2 No-hope and re-hope: genericRestart 

To escape from local optima, one lazy solution is to  take actions only when the situation 

occurs. For example, the swarm may detect a no-hope situation when there has been no 

improvement made for a certain amount of time. As soon as the no-hope situation is de- 

tected, some re-hope action may take place to give the swarm more hope to continue finding 

solutions. This idea comes from Schoofs and Naudts' "no-hope & re-hope mechanism" [go] 

and has been built into the BCSP model including bcspPSO and bcspZzgzag. Schoofs and 

Naudts' "no-hope & re-hope" mechanism simply restarts when a no-hope count15 arrives. 

Schoofs and Naudts suggest that the swarm gets stuck quickly in a local optimum without 

such a mechanism [go]. 

In practice, we can implement this mechanism at two different levels. First, the no-hope 

counters or sensors are placed in each particle to track the individual best so far (pbest). 

Second, we can set only one counter to monitor the entire swarm to track the status of 

the global best so far (gbest). Once a no-hope situation occurs, we restart the swarm and 

keep the best experience so far or refresh the best experience completely. We developed the 

genericRestart algorithm based on the continlious genericPS0 algorithm. Similar to the 

no-hope & re-hope strategy in the BCSP model, genericRestart has a no-hope counter in 

each particle. Once a no-hope is detected, the algorithm refreshes the particles' individual 

best so far (pbest), but retains the global best so far (gbest) that continuously guides the 

swarm. 

4.2.2.3 No-hope and Hop: genericHop, binaryHop, grayHop and bcspHop 

Unless the solution density of a problem or the number of solutions in a unit area of the 

search space is relatively high, blindly and randomly restarting the swarm may not solve 

the problem effectively. Alternatively, we propose to incorporate a repair-based constraint 

solving method with the no-hope & re-hope mechanism, and have particles fix constraint 

violations locally to find a better assignment for the particle position. Specifically, once a 

no-hope situation has been detected, the particles hop in some dimensions where the variable 

assignments are in conflict the most, and randomly assign a domain value16 to each of the 

15A no-hope count is a predefined upper bound for the maximum number of iterations before a re-hope 
action may take place. 

16we can also consider applying some heuristics to select values such as the min-conflict heuristic [64]. 
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corresponding dimensions (or variables) to repair the feasibility of the potential solutions. 

We name these algorithms genericHop, binayHop, grayHop, and bcspHop17 in this research. 

4.2.2.4 Piggy bank: genericMultigbest 

In PSO, all potential solutions are evaluated by an objective function. According to the 

returned evaluation, PSO determines the quality of a potential solution. The original 

PSOs keep only one global best found so far (gbest,xgbest) and throw away all the other 

(gbest', xgbest') with the same evaluation where gbest' = gbest but xgbest' # xgbest. How- 

ever, the global best in use (gbest, xgbest) may not be the best choice because different 

potential solutions with the same evaluation do not necessarily have the same probability of 

solving a problem. This is particularly true if the objective function is not effective enough 

to distinguish different potential solutions. At worst, some of these potential solutions may 

even lead to a dead end at a local optimum. Because of the multimodal nature of CSPS'' 

and the quality of the chosen objective function, it can be difficult to  determine which of 

the potential solutions with the same evaluation is really better. One remedy to this prob- 

lem is to bank all these potential solutions with the same evaluation, and then use them 

one at a time when a no-hope situation is detected. Pragmatically, once a chosen xgbest 

cannot guide the swarm to get any improvement for a certain amount of time, the algorithm 

replaces it with another banked xgbest' and continues searching. Currently, the timing of 

replacing a banked global best is still at trial-and-error stage, so we only implement this 

particle swarm genericMultigbest in the Continuous model for the experiment. 

4.2.2.5 Diversity control: genericAttractRepulse 

Research points out that the original PSO may converge too fast to  find an actual optimum 

for hard problems, particularly for multimodal problems [I151 like CSPs. The no-hope 

and re-hope strategies discussed so far, are designed to help the swarm to escape from a 

local optimum. But, they only take place when a no-hope situation occurs. In that case, 

the swarm has probably already been trapped. Different from these no-hope and re-hope 

strategies, Vesterstrprm and Riget proposed a diversity control system to monitor the 

17gener i c~op  is based on the Continuous model, binaryHop and grayHop are on the Discrete model, and 
bcspHop is upon the BCSP model. 

"CSPS typically have multiple solutions. For PSO, these multiple solutions mean multiple optima in the 
search space. 
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distance among the particles and actively prevent the swarm from converging too soon 

[115]. Their research has shown that the new system is capable of finding better optima 

than the traditional PSO in a continuous search space. However, with the time given for this 

research, we cannot find proper parameter settings for the generzcAttractRepulse algorithm 

to work with integer domains; thus, we can only leave this system for future research. 

4.2.2.6 Partner exchange: genericExchange 

Fast convergence is a merit of PSOs in dealing with unimodal problems in which only 

one optimal solution exists, but fast convergence may cause the swarm to prematurely stop 

in solving multimodal problems such as CSPs [115]. As discussed in Section 3.3.1, the 

neighbourhood structures of the swarm affect the speed of convergence. So, we propose to 

arrange a particle's neighbours to  maintain the diversity of the swarm and slow down the 

convergence. Specifically in the generzcExchange algorithm, we have the particles exchange 

partners every so often across different neighbourhoods before the entire swarm converges. 

Suppose we have a swarm structured in a logical ring with Ic = 2 as shown in Figure 4.7, 

where each neighbourhood includes 3 particles. Before exchanging partners, we have parti- 

cles (PI ,  P2, P3), (P4, P5, P6) and (P7, Ps, P9) as three groups in Figure 4.7(a). When some 

predefined criterionlg arrives, the exchange partner mechanism takes place and we randomly 

swap the members of each neighbourhood as shown in Figure 4.7(b), for example. After the 

swap, particles update their velocities based on the new neighbourhood information. 

4.2.2.7 Local dept h-first search: genericDFS 

If the swarm converges and the particles lack in power to fly around a local area,20 there 

may be other solutions unvisited around the area. Such scenarios can be explored with a 

depth-first search (DFS) to systematically look for an optimum locally. However, relying on 

a complete search too much may not only defeat the purpose of using the swarm in the first 

place, but also prolong the search if the problem is too big. Therefore, we should keep the 

genericDFS algorithm under control while integrating a depth-first search. For example, we 

divide all n CSP variables into several groups to  keep the local DFS manageable. Further 

l g ~ o r  the experiment, we define a counter and have the swarm perform the strategy periodically when the 
counter increments at certain times. 

20gbest and pbest cannot give a particle enough velocity to move around the local area thoroughly. 
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Figure 4.7: Exchanging partner is taking actions. 

details on setting up the algorithm is available under Section A.3.1. 

4.2.2.8 Hybrid PSO: genericHybrid 

All the strategies discussed so far have different characteristics and contribute to the search 

differently. Enabling the application of different strategies at different situations, the hybrid 

PSO (genericHybrid) integrates the no-hope and hop, partner exchange and local depth- 

first search strategies described in the previous sections. In addition, our early experiments 

showed that the more particles the more effectively the swarm performs in general;21 or at 

least, there may be a better chance to get good "guessers" who can produce good initial 

solutions. Therefore, we also enable the genericHybrid algorithm to spawn or generate 

more particles when there is no hope for improving the solutions. However, we do not rely 

on spawning more particles to work on its own because the performance of a generic swarm 

does not become better by simply increasing the number of particles for complex problems. 

Besides, the run time of each iteration grows as the number of particles increases. Therefore, 

we only allow the swarm to spawn more particles when a serious stagnation in the progress of 

2 1 ~ h i s  is only a general comment to some extent, not a conclusion. More experiments should be done. 
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the algorithm is detected. When the nehope and re-hope strategies cannot help to improve 

the solutions and the swarm obviously needs more alternative solution such as the doubling 

of the nehope count, the swam then spawns more particles to continue searching. 

4.2.3 Neighbourhood structures 

In this research, all the particle swarm algorithms are implemented with three different 

neighbourhood structures. Besides a star and a ring that are adopted from the traditional 

PSOs, we mixed the two to have a star-ring structure. In a star neighbourhood, a particle 

uses the global best information (gbest and xgbest) and its own experience (pbest and 

xpbest) in decision-making. In a ring, a particle updates its velocity and position according 

to its neighbours' (local) best information (lbest and xlbest) and its own experience (pbest 

and xpbest). In a star-ring structure, a particle works with two different neighbourhood 

structures. Not only does it globally retrieve information from all the particles in a star, 

but it also interacts with its local neighbourhoods22 in rings. Computationally, xgbest, 

xlbest and xpbest all contribute to particles' velocity updates as follows: 

$(t) = $(t - 1) + q c l  (xpbesti - xi(t - 1)) +r2c2(xgbest - xi(t - 1)) + r3c3(xlbestk - xi(t - 1)) 

( 4 4  
where rl, 7-2 and 7-3 are random numbers between 0 and 1, and cl, c2 and c3 are the 

acceleration constants.23 

4.2.4 Summary of particle swarm algorithms 

Table 4.1 summarizes all the particle swarm algorithms that have been implemented as part 

of this research. Aside from the algorithms based on the BCSP model, the rest of them 

use the two objective functions discussed in Section 4.1.2 to guide the search. These two 

objective functions, the conflict count function and the distance estimation function, are 

used individually with each algorithm and not in conjunction. 

2 2 ~  particle may belong to multiple local neighbourhoods as described in Section 3.3.1. 

23Acceleration constants are discussed in Section 3.3.2 for a star or a ring neighbourhood structure. 
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Table 4.1: This table summarizes the PSO algorithms developed in this research. 

Algorithm 

genericPS0 
binaryPSO 
grayPSO 
bcspPSO 
genericzigzag 
binary Zigzag 
gray Zigzag 

genericHop 
binaryHop 
grayHop 
bcs pH0 p 

genericAttract- 
Repulse 

genericHy brid 

Model 

Continuous 
Discrete 
Discrete 
BCSP 
Continuous 
Discrete 
Discrete 
BCSP 
Continuous 

Continuous 
Discrete 
Discrete 
BCSP 

Continuous 

Continuous 

Continuous 
Continuous 

Continuous 

Continuous 

Continuous 

Strategy 

generic 

zigzag 

no-hope& 
rehope 

no-hope & 
hop 

piggy bank 

diversity 
control 

DFS 
zigzag + 
DFS 

partner ex- 
change 
partner 
exchange 
+ zigzag 

no- hope& 
hop+ DFS 
+ spawned 
particles+ 
partner 
exchange 

Strategy description 

The original algorithm with 
minimal modifications to prevent 
the particles from falling out of 
CSP domains. 
Instead of traditionally moving in 
all n dimensions a t  once, these 
zigzag particles move one 
dimension a t  a time. 
Once a no-hope is detected, the 
swarm restarts and brings more 
hopes to the system. 
Integrating the no-hope& re-hope 
mechanism and a repair-based 
method, the particles try to fix 
constraint violations in the 
dimensions that have the most 
number of conflicts. 
The swarm keeps multiple global 
best found so far of the same eval- 
uation and replaces the current 
best with a banked one when a no- 
hope situation occurs. 
The swarm monitors the distance 
among particles and actively pre- 
vents the swarm from prematurely 
converging. 
When some predefined criterion 
arrives, each particle performs a 
complete depth-first search over 
their own responsible variables on 
the best solution found so far. 
The swarm exchanges partners 
among different neighbourhoods 
periodically; after each swap, the 
particles compute their velocities 
based on the newly formed 
neighbourhood experience. 
In addition to the features in 
genericHop, genericDFS and 
genericExchange, it includes 
spawning particles when the 
swarm is seriously stagnant (e.g. 
twice of the no-hove count) 

Section 

4.2.1.1 
4.2.1.2 
4.2.1.2 
4.2.1.3 
4.2.2.1 
4.2.2.1 
4.2.2.1 
4.2.2.1 
4.2.2.2 

4.2.2.3 
4.2.2.3 
4.2.2.3 
4.2.2.3 

4.2.2.4 

4.2.2.5 

4.2.2.7 
4.2.2.1+ 
4.2.2.7 

4.2.2.6 

4.2.2.1+ 
4.2.2.6 

4.2.2.3+ 
4.2.2.6+ 
4.2.2.7 
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4.3 Application Problem-PC Configuration 

Random constraint satisfaction problems are often used for benchmarking algorithms, but 

they may not be practical [32]. Thus, rather than experimenting with many random con- 

straint satisfaction problems, we will evaluate the performance of the algorithms on more 

realistic problems. 

4.3.1 Introduction 

Configuration problems are a class of problems related to considering how to  assemble a 

product from a set of components under a set of limitations [103]. It includes a wide range of 

complex real-life problems such as equipment configuration, product configuration, network 

configuration, software configuration and service configuration. Because of the nature of 

the constraints of the problems, much problem solving research is focused on reasoning 

approaches [84] or constraint-based methods [49]. 

A PC configuration problem is a practical configuration problem, which configures com- 

puter parts to build a functional personal computer. This problem can be very complex 

and involves many kinds of hardware specifications. For example, certain CPUs can only 

fit into certain motherboards, for which the sockets must be the same, the frequency must 

be compatible, and so on. A basic barebone PC may easily involve twelve essential parts 

and a number of limitations to put them together. Besides, we also need to consider con- 

sumers' budget and preference. Solving such a problem can not only help computer stores 

to assemble computers based on the hardware specifications efficiently, but also assist both 

power users and naive users to purchase computer systems effectively with their preference 

taken into account. The PC configuration CSP I1041 lends itself as a good candidate for 

our experimentation. As the purpose of this research focuses on solving CSPs as opposed 

to  optimizing them, all constraints will be treated as hard constraints that must be satisfied 

concurrently. The test problems are modelled in the CSP Python framework [20] and used 

to evaluate the particle swarm algorithms described earlier. 

4.3.2 Modelling a PC configuration problem in Python CSP Framework 

To model the PC configuration problem, a set of variables, their domain values, and a set 

of constraints need to be defined. A PC configuration problem deals with a set of hardware 

components and each component has a set of specifications. Hardware components include 
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CPUs, memories, motherboards, interface cards and various peripheral items. Hardware 

compatibility and user preference are the two major types of constraints. For instance, 

CPU socket must fit into a motherboard, memory pins have to match, and the interface 

cards should be supported. Manufacturers, colour and monitor size are examples of common 

user requirements. 

By analyzing the problem with the sample data taken from the ~ n t e r n e t , ~ ~  we consider 

two formulations below. Each of them models the problem to different levels of depth. 

4.3.2.1 Simple formulation - Formulation I 

Our first formulation is similar to  Tam and Ma's model for building a web-based configura- 

tion application [104, 1051. The categories of the hardware components are identified as the 

problem variables. Component compatibility and user requirements are preprocessed and 

turned into good list constraints. 

The benefit of this formulation is that the search space is much smaller and the problem 

is much simpler than the second formulation introduced in Section 4.3.2.2. Much work has 

already been done during the preprocessing phase. For example, a number of constraints 

between CPU and motherboard such as (CPU socket vs. motherboard socket) and (CPU 

speed vs. motherboard frequency) can be reduced to one good list constraint. On the 

other hand, it is not as user friendly in terms of formulating a CSP. It  requires constraint 

preprocessing among different components and does not fully take advantage of CSP repre- 

sentation. Moreover, it has to preprocess the constraints once again if more components or 

constraints are added later on, and it is less obvious how to represent user requirements. 

4.3.2.1.1 CSP variables and the domains. In this formulation, we define only a set 

of component variables to  represent the categories of the computer components such as 

varcp,, var,,, and var,b for CPU, RAM and motherboards. Figure 4.8 illustrates the 

variables of a sample problem. 

To represent the sample components as a set of integers for each component variable, 

we enumerate the components of the variable. For example, 10 CPU components are listed 

in Table 4.2. These CPU components are numbered from 0 to 9 and the domain Dcpu is 

set to {O,1 ,  2 , .  . . ,9). Likewise, the domains of var,,, and var,b are set to {O,1, 2,. . . ,9)  

2 4 ~ h e  components are partially chosen from the hot sale list of http://www.ncix.com on October 2004 
and the specifications are gathered from various manufacturers' online information. 
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Figure 4.8: The CSP variables of a PC configuration problem under Formulation I. 

representing the RAM and motherboards listed in Table B.2 and Table B.3 respectively. 

For the rest of the sample components and their domain assignments, see Section B.1.1. 

4.3.2.1.2 CSP Constraints. Tam and Ma assume the availability of a preprocessed, 

centralized database is available and the data is consistent [104). The only constraints ex- 

plicitly considered are on user budget, CPU type and memory bus speed; all other compo- 

nents are not constrained. When computers are configured however, hardware compatibility 

alone is in fact much more complicated than only CPU and memory constraints. Although 

this research is not about how to represent a configuration problem, we want to  make the 

test problem reasonably realistic; thus, we add additional realistic constraints to model the 

problem. For example, several constraints among CPU, RAM and motherboard are listed in 

Table 4.3. For the rest of the constraints in Formulation I, see Table B.16 in Section B.1.2. In 
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Table 4.2: Sample CPUs for varcpu and their integer representation. 

Component specification 

AMD ATHLON 64 3000+ 2.0GHz S754 800fsb 
AMD Mobile ATHLON XP-M 2500+ 1.86GHz SOCKETA 266fsb 
INTEL PENTIUM 4 3.0GHz S478 800fsb 
AMD ATHLON 64 3200+ 2.2GHz S754 800fsb 
AMD ATHLON 64 3500+ 2.2GHz S939 2000fsb 
AMD SEMPRON 2500+ 1.75GHz SOCKETA 333fsb 
INTEL PENTIUM 4 2.8GHz S478 800fsb 
INTEL PENTIUM 4 3.0GHz S478 800fsb 
AMD ATHLON 64 2800+ 1.8GHz S754 1600fsb 
INTEL PENTIUM 4 3.2GHz S478 800fsb 

Enumeration 

The domain of var,, is the enumeration of the sample components in (1, 2, . . . , 9). 

this formulation, we preprocess the data into good list constraints on a number of variables 

to enforce corresponding constraints. 

Table 4.3: Sample constraints on var,,,, var,,, and var,b under Formulation I .  

I Constraint I Description 

memory pins and the slots on a MB have to match; 
GOOD (warmb, warTam) 

if RAM is a dual RAM. motherboard must sumort it 

GOOD (war,, , warmb) 

I x 1 

/ GOOD(var,,, war,,, warmb) 1 total price 5 budget 

CPU socket must fit on a motherboard; 
fsb (front side bus) should be compatible. 

4.3.2.1.3 Formulation I in the Python CSP Framework. To implement this for- 

mulation in the Python CSP Framework [20], we extend the Framework and define one 

constraint for each compatibility limitation. Without any specification variablesz5 how- 

ever, there is not a clear way to represent these constraints descriptively. Besides, it is fairly 

inefficient to reprocess the component specification strings such as "CPU INTEL Pentium 4 

2.8GHz Sockets478 800fsb" and "MB ASUS Sockets478 dualRAM 184pin (800,533,400)fsbV 

25A set of variables represents the specifications of the hardware components. Refer to Section 4.3.2.2 for 
detail. 
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Table 4.4: Four n-ary constraints are added to the Python CSP Framework for Forn~ulation I. 

Constraint I arity 

G O O D l i s t  

Condition 

if the assignment is on the list, returns true 
if the assignment is not on the list, returns true 
if "total price 5 user budget", returns true 
if "total price 2 user budget", returns true 

"Arity" indicates the number of arguments of a. constraint. If the condition is true, the con- 
straint will return TRUE. 

in every constraint check. Thus, most of the component constraints shown in Section B.1.2 

are preprocessed into corresponding good lists or bad lists, except for the user budget. Four 

n-ary constraints: GOODlist, B A D l i s t ,  UPPERprice and LOWERprice listed in Table 4.4, are 

defined in the Framework. 

4.3.2.2 Detailed formulation - Formulation I1 

Besides the component variables in the Formulation I, we can model the problem more 

descriptively with a set of specification variables. These specification variables represent 

the specifications of hardware components such as brand name, model, capacity, and so 

on. Together with the Python CSP Framework, this formulation interestingly describes 

connection constraints and user constraints for component compatibility and user 

requirements. 

4.3.2.2.1 CPS variables and the domains. In addition to the component variables 

that represent the categories of the computer components: cpu, ram, mb, etc., we further 

define a set of specification variables to describe the specifications of the components such as 

CPubrand, CPumodel, CpUsoc~et for a CPU. Figure 4.9 shows the variables of a sample problem 

in Formulation 11. 

Similar to  the domains in Formulation I, the components of each category are enumer- 

ated as the integer domain values for the corresponding component variable. The values 

of each component specification are also enumerated as the domain values for the corre- 

sponding specification variable. Taking the sample CPUs in Table 4.2, we have specification 

variables CPubrand7 cpum0del, ~ p u , ~ ~ ~ k ,  cpusOcket and CpUfsb for the the brand name, model, 
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CPU clock, socket and f ~ b . ~ ~  Table 4.5 illustrates how to enumerate the values of individual 

specifications. For the rest of the sample specifications, see Section B.2.1. 

Table 4.5: Sample values of CPU specifications and the enumerated domain. 

enurn W b r a n d  

0 
1 AMD 
2 INTEL 
3 
4 
5 
6 
7 

The rows in the tables do not represent a product, but the enumerated values. For example, 
AMD of cpubrand is 1,  ATHLON of qum,del is 0, PENTIUM of cpum0de~ is 2, SOCKETA of 
cpusocket is 3, and so on. 

enum W m o d e l  

0 ATHLON 
1 M A T H L O N ~ ~  
2 PENTIUM 
3 SEMPRON 
4 
5 
6 
7 

4.3.2.2.2 CSP Constraints. We define three types of constraints in this formulation: 

component constraints, connection constraints and user constraints. Component con- 

straints relate specification variables to their corresponding component variables in forms 

of good lists to describe individual hardware components. For instance, to enforce "CPU: 

AMD ATHLON 64 3000+ 2.0GHz S754 800fsbV, we lookup the CPU from Table 4.2 and 

its specifications from Table 4.5. Consequently, the CPU has a value cpu = 0 in Table 4.2. 

By parsing the specifications and looking up the corresponding values in Table 4.5, we get 

CpUbTand = 1, CPumodel = 0, ~ p ~ d ~ ~ k  = 3, ~ p ~ ~ ~ ~ k ~ t  = I and CpUfsb = 2, respectively. We can 

then put these values in a tuple (cpu, cpuhand, cpumodel, cpuclock, Cpusocket, cpufsb) = (0, 1, 

0, 3, 1, 2). After processing all the sample CPUs collectively, we have a 6-ary component 

constraint G O O D C ~ U ( C ~ U ,  CpUbTand, cpum0del, CpuclOck, Cpusocket, q u f s b )  and a good list of 

CPUs as in Table 4.6. For the rest of component good lists under Formulation 11, refer to 

Section B.2.2.1. 

Connection constraints enforce component compatibility. Instead of using good lists as 

those in Formulation I, these constraints can be represented in arithmetic relations to work 

within the Python CSP Framework. Sample connection constraints are listed in Table 4.7. 

For a complete list of connection constraints, see Table B.39 in Section B.2.2.2. 

2 6 ~  specification of CPU, stands for front side bus and represents the speed. 

enum C P U C ~ O C ~  

0 1.75 
1 1.8 
2 1.86 
3 2.0 
4 2.2 
5 2.8 
6 3.0 
7 3.2 

enum C@socket 

0 S478 
1 S754 
2 S939 
3 SOCKETA 
4 
5 
6 
7 
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TOWER 
TOWERbrand 
TOWERform 

VGAface 
VGADVI 
VGATV 
VGAVGA 

Figure 4.9: The CSP variables of a PC configuration problem under Formulation 11. 
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Table 4.6: Sample CPUs in good tuples, and the entire list represents "GOODcpu" constraint. 

Table 4.7: Sample PC connection constraints in Formulation 11. 

Constraint expression 

CPU-socket == MB-socket 
RAM-pin == MB-pin 

arity I Description 

CPU socket must fit on a motherboard 
memory pins and the slots on a MB 
have to  match 
if a MB has a sound chip, a sound card 
is optional 

SND-face < 4 and 
( ( (  (SND-f ace+l) * (MB-PCI*lOO) 

/ lO**SND-face) % 10) > 0 

User constraints are defined for user requirements or preference. The requirements can 

be varied and sample user constraints are listed in Table 4.8. 

1 
3 

4.3.2.2.3 Formulation I1 in the Python CSP Framework. In addition to the 

GOODLIST, BADLIST, UPPERprice and LOWERprice constraints (shown in Table 4.4), a special 

arithmetic expression ' I ' for 'OR' have been implemented. Several connection constraints 

have been described using such an expression such as (SND-brand ! = 0) I (MB-snd ! = 0) 

(from Table 4.7). This expression is interesting because traditionally all CSP constraints 

are logically handled with AND relations and all of them must be satisfied at  the same time. 

if a sound card is to use, the interface 
must be supported 
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Table 4.8: Sample PC user constraints in Formulation 11. 

FDD-external == 1 1 1 I want to have an external floppy drive 

Constraint expression 

UPPERprice (items, 1800) 
LOWERprice(items , 1500) 

However, in reality some constraints may be satisfied in one way or another. The OR expres- 

sion enhances the flexibility of the Framework in expressing constraints and the user can 

have an option to specify more varieties of constraints in the Framework. 

arity 

n 
n 

CD-writer != 1 

4.3.3 PC configuration test problems 

Description 

budget upper bound $1800 
price lower bound $1500 

In order to test the particle swarm algorithms on both Formulation I and 11, different sets 

of test problems have been defined. 

1 

4.3.3.1 Problems for Formulation I 

do not want a CD writer 

A total of 6 test problems have been defined under Formulation I. These problems are 

listed in Table 4.9. Among these problems, problem 10.3 and problem 10.41 are for overall 

experiments and the others focus on dealing with n-ary price constraints. See Section B.1.3 

for problem description of each problem. 

4.3.3.2 Problems for Formulation I1 

A total of 14 test problems have been defined under Formulation 11. These problems are 

divided into seven problem sets 20, 21, . . .26 listed in Table 4.10. The complexity of these 

problem sets progressively increases. Each problem set contains a base problem and each 

problem of a problem set is developed by incrementally adding a number of constraints. See 

Section B.2.3 for problem description of each problem. 
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problem 
no. 

10.3 
10.41 
10.53 
10.55 
10.62 
10.64 

Table 4.9: PC configuration problems for Formulation I. 

1. It takes too much time to estimate. After running the estimation program for days, 
we still cannot retrieve the result. Based on the number of nodes in the search space 
examined, we know the solution density of problem 10.53 is smaller than 2.0 x The 
solution density of problem 10.55 is not available either. 

2. The 14 constraints in problem 10.3 are all connection constraints for compatibility. The 
additional constraints added to problem 10.41 relate to user requirements: one for exter- 
nal colour and the other two for the budget upper bound and the lower bound. 

var 
n 

14 
14 
14 
14 
14 
14 

Table 4.10: P C  configuration problems for Formulation 11. 

problem I var 

domain 
size 

10 - 40 
10 - 40 
10 - 40 
10 - 40 
10 - 40 
10 - 40 

domain 
size 

2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 

search 
space 

1.01 x 1015 
1.01 x loi5 
1.01 x loi5 
1.01 x l0l5 
1.01 x 1015 
1.01 x loi5 

no. 

20.3 

search 
space 

9.81 x 1016 
5.89 x 10l8 
3.62 x 
1.16 x 
3.36 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
1.14 x 

n 
32 

- 
constraints 

# 
20 
20 
23 
23 
3 1 
3 1 
35 
39 
45 
33 
33 
33 
33 
3 1 

constraints 

# 
14 
17 
16 
16 
16 
16 

min. 
arity 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

max. 
arity 

12 
12 
12 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
15 

min. 
arity 

2 
2 
2 
2 
2 
2 

approx. 
density 

(note: 1) 

no solution 
no solution 

1. It takes too much time to estimate. After running the estimation program for days, 
we still cannot retrieve the result. Based on the number of nodes in the search space 
examined, we know the solution density of problem 20.3 is smaller than 2.5 x None 
of the others is available either. 

max. 
arity 

14 
14 
14 
14 
14 
14 

approx. 
density 

1.1 x lo-' 
7.4 x 
(note: 1) 

no solution 
no solution 



Chapter 5 

Experiment and Evaluation 

5.1 Introduction 

In Section 3.6, we stated our research questions. In Chapter 4, we described a number of 

new particle swarm algorithms developed for this research. In this chapter, we focus on 

the answers. In support of our answers, we empirically tested the new algorithms in three 

phases, the Exploration, Comparison and all .-diff phases. In the Exploration phase, we 

explored the algorithms and their parameter settings, and determined which algorithms and 

what parameter settings for the Comparison phase. In the Comparison phase, we tested 

the algorithms on PC configuration test problems and collected the data for comparing the 

effectiveness and efficiency of the algorithms. From the Exploration and Comparison phases, 

we realized that the particle swarm algorithms have difficulty in solving n-ary constraints 

for large n, and so we set up the a l l -d i f f  experiment to examine the observation. Based 

on the results, we evaluated the algorithms on a set of measures. 

This chapter begins with the presentation of the test problems and the measures. In 

Section 5.3, the use of facilities and the implementation issues of the algorithms are ex- 

plained. In Section 5.4, the experimental results are reported and analyzed. Finally in 

Section 5.5, based on the experimental results, the research questions stated in Section 3.6 

are addressed. 
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5.2 Experiment Setup 

5.2.1 Test algorithms 

In order to solve CSPs, we developed new particle swarm algorithms based on three original 

PSOs: the continuous PSO [53], binary discrete PSO [54] and Schoofs and Naudts' PSO 

for solving binary CSPs (BCSP) [go]. We refer to these particle swarm algorithms as the 

Continuous model, Discrete model and BCSP model with respect to  their origins. Table 4.1 

provides a list of algorithms and their description. The development of our algorithms has 

been explained in Section 4.2, and each of these algorithms has been designed to work with 

different neighbourhood structures to communicate globally, locally or both.' Our research 

focuses on constraint satisfaction problems rather than on constraint optimization problems; 

therefore, all constraints must be satisfied simultaneously. 

Except for the BCSP-based algorithms that are already designed to work with the con- 

flict count objective function, the rest of them use the two objective functions discussed in 

Section 4.1.2 to guide the search. These two objective functions, the conflict count function 

and the distance estimation function, are used individually with each algorithm and not in 

conjunction. We divide the algorithms into five classes according to  their original models 

and the objective functions, and list them in Table 5.1. 

Table 5.1: The five classes of particle swarm algorithms in this research. 

Model 
Continuous 

The Continuous-Conflict algorithms are derived from the Continuous model with conflict 
counts objective function. 

Discrete 
BCSP 
Continuous 
Discrete 

In this research, we seek to  propose several particle swarm algorithms which are good for 

solving general CSPs, so we do not emphasize on tuning parameter settings to  improve the 

Objective function 
conflict counts 

'we denote each of these as "pg", "pl" and 'blg"; with these struct.ures, particles take information from 
the global best gbest and the individual best pbest, or from the local best lbest and the individual best pbest, 
or from the global best gbest, the local best lbest and the individual best pbest respectively. 

Referred name 
Continuous-Conflict 

conflict counts 
conflict counts 

distance estimation 
distance estimation 

Discrete-Conflict 
BCSP 
Continuous-Distance 
Discrete-Distance 
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performance of the algorithms. Thus, most of the parameter settings for the experiments 

are obtained from previous particle swarm research. Anyone interested in the effects of the 

parameters may further tweak the algorithms as needed for their particular problem. 

5.2.1.1 Algorithms for the Exploration phase 

In the Exploration phase, we examined all the algorithms shown in Table 5.2.2 For each 

algorithm, we set the swarm size to 20, 50 and 100 with an iteration limit of 10000. To 

experiment with neighbourhood structures, we have the swarm set up to work with a global 

neighbourhood structure, a local neighbourhood structure of size 7 (i.e. k = 6), and a mix 

of both structures. The detailed settings of the algorithms are in Table C.l  in Section C.l  

and the parameters used to control the behaviour of the swarm are explained in Table 5.3. 

Table 5.2: The PSO algorithms used in the Exploration phase. 

model-objective 

Continuous-conflict 

algorithm 

genericPSO 

genericzigzag 

genericHop 

genericRestart 

genericMultigbest 

genericDFS 

zigzagDFS 

genericExchange 

zigzagExchange 

binaryDiscrete 

grayDiscrete 

binaryzigzag 

grayzigzag 

binaryHop 

grayHop 

sect. 

4.2.1.1 

4.2.2.1 

4.2.2.3 

4.2.2.2 

4.2.2.4 

4.2.2.7 

4.2.2.7 

4.2.2.6 

4.2.2.6 

parameters in use 

w l ,  c1 and c~~ 

W ,  c1 and c2 

w, cl and c2, nohope3, poprate4 

w, cl and c2, nohope, pop-prate 

W ,  c1 and c2, nohope 

W ,  C I  and c2, nohope, df s-size5 

W ,  c1 and c2, nohope, dfs-size 

w, cl and c2, regroup6, stop-group7 

w, cl and c2, regroup, stop-group 

$1, $27 urnax, Vrnin 

$1 ,  $27 V m a x ,  urnin 

$1 $27 urnax, umin 

$1 ,  $ 2 ,  vmaz, urnin, nohope'', pop-rate12 

$1 ,  $2 ,  urnax, Vmin, nohope, Pop-rate 

cpl and p213, deflect7:0n'~, nohope15 

cpl, ( ~ 2 ,  de f ledion,  nohope 

2 ~ n  Table 5.2, we also provide information about the section number and the related parameter settings 
for reference. 
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model-objective 

r------ 

I model-objective 

algorithm 

genericRest art 

genericMultigbest 

genericDFS 

zigzagDFS 

binary Zigzag 

gray Zigzag 

binaryHop 

grayHop 

sect. parameters in use 

4.2.2.3 1 cpl, rpg, deflection, nohope, pop-rate16 

4.2.1.1 1 wl, cl and cz2 

4.2.2.1 1 w, cl and c2 

4.2.2.3 / w, cl and cr, nohope3, pop-~ate4 

4.2.2.2 / w, cl and c2, nohope, pop-prate 

4.2.2.4 ( w, cl and c2, nohope 

4.2.2.7 1 w, cl and c2; nohope, dfs-size5 

4.2.2.7 ( w, cl and c2, nohope, df s-size 

4.2.2.6 1 w, cl and c2, regroup6, stop-group7 

Table 5.3: Parameters used in the Exploration phase 

parameter 

POP 
k 

ITER 

W 

( ~ 1 ~ ~ 2 )  

nohope 

description 

the population of the swarm 

the size of neighbourhood 

the maximum of iterations 

an inertia weight in computing particle's velocity, deter- 

mines the effect of the previous velocity a t  time t - 1 

the acceleration constants in computing particle's velocity, 

determines the influence of the global (or local) best infor- 

mation and the individual best information 

an iteration count, defines when the swarm has no more im- 

provement for so long, the swarm performs a certain strat- 

egy to break the situation 
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model-objective parameter  

pop-rat e 

df s-size 

regroup 

stop-group 

spawn 

4 1  and 4 2  

nohope 

pop-rate 

$91, $92 

deflection 

nohope 

pop-rate 

description 

the percentage of particles to perform the given strategy 

after the nohope count kicks in; for instance, poprate = 0.5 

means half of the population should perform the specific 

strategy 

defines the number of variables in each depth-first search 

group assigned to a particle; see Section 4.2.2.8 

an iteration count, defines when the swarm should per- 

form such a strategy; only used in algorithms involving 

"exchange partner" strategy 

an iteration count, defines when to stop regrouping particles 

and return to normal 

an iteration count, defines when to spawn more particles; 

used in genericHybrid algorithm 

the acceleration constants in computing particle's velocity 

the velocity upper bound and lower bound in determining 

particle's velocity 

same as in the Continuous 

same as in the Continuous 

the coefficients are used in computing particle's velocity 

serves as a switch to refine particle's moving direction, i.e. 

whether a particle should flip the direction or not 

exists in the original BCSP model for individual particles 

to determine when it has done no improvement and should 

restart; we also use this parameter globally to the swarm 

similar to the nohope in the Continuous model 

same as in the Continuous 

same as Continuous/conflict 

same as Discretelconflict 

5.2.1.2 Algorithms for the Comparison phase 

Based on the results from the Exploration phase, several algorithms were eliminated for two 

reasons. One, we could not find proper parameter settings for those algorithms within the 
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time constraint. Also, in order to include additional algorithms (described below) that we 

would like to examine within the limited time for this research we removed several algorithms 

from the experiment. 

Additional algorithms are developed and included by integrating the strategies we have 

examined. "zigzagHop" type algorithms including "zigzag" style movement (as described 

in Section 4.2.2.1) and a repair-based "no-hope and hop" strategy (as discussed in Sec- 

tion 4.2.2.3) are added. Each of these zigzagHop algorithms will be referred to as gener- 

icZigzagHop of the Continuous PSO, binayZzgzagHop and grayZigzagHop of the Discrete 

PSO with different encoding, and bcspZigzagHop of the BCSP PSO. Another algorithm 

added is genericHybrid, which integrates the "no-hope and hop", "partner exchange", and 

"local depth-first search" strategies as discussed in Section 4.2.2.8. Table 5.4 lists the algo- 

rithms used in this phase. 

As for the parameter settings, we only used a subset of those from the Exploration phase 

because it is outside the scope of this research to exhaustively run all the settings on the 

selected algorithms. Some parameter settings; however, have been adjusted. First, we find 

that swarm size 20, 50 and 100 are more than sufficient for the purposes of the experiment. 

More particles imply more processing time for each iteration. Some experiments showed that 

we can differentiate the algorithms in the experiment with fewer particles, so we reduced 

the swarm size to 3, 5 and 10. 

Second, with the time we save by reducing the particles, we increased the iteration limit 

to 20000. In addition, the results from the Exploration phase indicated that zigzag type 

algorithms complete an iteration quickly because they only process one dimension each 

time. Given approximately the same amount of time, we can assign a larger iteration limit 

to these algorithms. Therefore, we allow zigzag and zigzagHop type algorithms to  run for a 

maximum of 50000 iterations. 
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Table 5.4: PSO algorithms used in the Comparison phase. 

model-objective 

Continuous-conflict 

algorithm sect. parameters in use 

genericPSO 4.2.1.1 w, cl and cz 
genericzigzag 4.2.2.1 w, cl and cz 
genericHop ( 4.2.2.3 1 w, cl and cz, nohope, pop-rate 
genericzigzag~opl w, cl and cz, nohope, pop-rate 
zigzagDFS 4.2.2.7 w, cl and cz, nohope, df s-size 
zigzagExchange 4.2.2.6 w, cl and c2, regroup, stop-group 
genericHybrid 1 4.2.2.8 1 w, cl,  cz, nohope, pop-rate, df s-size, 

regroup, stop-group 
binaryDiscrete 4.2.1.2 $1 and $2 ,  vmax and vmin 
grayDiscrete 4.2.1.2 $1, $2,  vmax, vmin 
binaryzigzag 4.2.2.1 $1,  4 2 ,  vmax, vmin 
gray Zigzag 4.2.2.1 $ 1 ,  $2,  vmaxr vmin 
binaryHop 4.2.2.3 41, $2,  vmax, Vmin, nohope, pop-rate 
grayHop 4.2.2.3 $ 2 ,  urnax, vmin, nohope, pop-rate 
binaryzigzagHop2 $1,  $2 ,  V m a x ,  Vmin, nohope, pop-rate 
grayZigzagHop3 $1, $2 ,  V m a x ,  urnin, nohope, pop-rate 
bcspPSO 4.2.1.3 cpl and cpz, deflection, nohope 
bcspzigzag 4.2.2.1 cpl, cp2, deflection, nohope 
bcspHop 4.2.2.3 cpl , 9 2 ,  deflection, nohope, pop-rate 
bcspZigzagHop4 I I c p l ,  cpz, de fledion, nohope, pop-rate 
genericPS0 ( 4.2.1.1 1 w, cl and cz - 

genericzigzag 4.2.2.1 w, cl and cz 
genericHop 4.2.2.3 w, cl and cz, nohope, pop-rate 
genericzigzagHopl w, cl and cz, nohope, pop-rate 
zigzagDFS 4.2.2.7 w, cl and cz, nohope, d f s s i z e  
zigzagExchange 4.2.2.6 w, cl and cz, regroup, stop-group 
genericHy brid 4.2.2.8 w, c l ,  cz, nohope, pop-rate, df s-size, 

I regroup, stop-group 
binaryDiscrete 1 4.2.1.2 1 $1 and &, vmax and vmin 

1. genericZigzagHop algorithm combines the strategies used in genericzigzag and generi- 
cHop algorithms. 

2. binaryZigzagHop algorithm combines the strategies used in binaryzigzag and binaryHop. 
3. grayZzgzagHop algorithm combines the strategies used in grayZigzag and grayHop. 
4. bcspZigzagHop algorithm combines the strategies used in bcspZigzag and bcspHop. 
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Third, we also changed the neighbourhood structure settings for the experiment. Among 

the three neighbourhood structures, the local i~eighbourhood structure (pl) performs better 

than the other two in the Exploration phase. Much research in the field also use similar 

structures only. Taking the time limitation for this research into account, we choose the 

local neighbourhood structure for the Comparison phase experiment. Owing to the change 

of the swarm size, we modify the size of a neighbourhood to 3 (i.e. k = 2) correspondingly. 

See Table C.2 for the detailed algorithm settings. 

5.2.1.3 Algorithms for the all-diff phase 

The Exploration and Comparison phases of the experiment indicated our particle swarms 

have difficulty dealing with n-ary constraints for large n,  such as the price constraints in 

the PC configuration problem and the a l l -d i f  f  constraints in an n-queens problem. These 

constraints become more difficult to the swarm as n grows. One obvious reason is that 

the particles lose their ability to distinguish the culprit variables whose assignments are 

the actual cause of the constraint violations. To observe the ability of the algorithms to  

handle n-ary constraints, we tested the same algorithms used in the Comparison phase with 

the same parameter settings on a set of n-queens problems for the al l -dif  f  phase. With 

the n-ary a l l -d i f  f  constraint in n-queens problems, we can systematically increment the 

size n and observe the results of the experiment. See Table 5.4 and Table C.2 for a list of 

algorithms and the parameter settings respectively. 

5.2.2 Test problems 

5.2.2.1 Test problems for the Exploration phase 

In the Exploration phase, we tested the particle swarm algorithms on a number of basic 

PC configuration problems3 and n-queens problems to  explore the algorithms and their 

parameter settings, and so we could determine the algorithms and the parameter settings 

for the Comparison phase. The problem specifications are listed in Table 5.5 and Table 5.6. 

Refer to Section B.1.3 and Section B.2.3 for detailed problem descriptions. 

3These include both Formulation I and Formulation 11. Formulation I has been discussed in Section 4.3.2.1 
and Formulation I1 can be found in Section 4.3.2.2 
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Table 5.5: PC configuration problems in the Exploration phase. 

7 
size 

approx. 
density 

1.1 x 10-I 
3.6 x 

10.3 
10.40 
20.3 
21.3 
22.3 
23.3 
24.3 
25.3 
26.3 

Problem 10.3 and 10.40 are under Formulation I, and the rest are under Formulation 11. 

search 
space 

1.01 l0l5 
1.01 x loi5 
9.81 x 10l6 
5.89 x 1018 
3.62 x 
1.16 lo25 
3.36 x lo2' 
6.72 x lo2' 
1.14 x 

Table 5.6: n-queens problems in the Exploration phase. 

constraints 

# 
14 
15 
20 
20 
23 
23 
3 1 
3 1 
31 

niin. 
arity 

2 
2 
1 
1 
1 
1 
1 
1 
1 

14 
14 
32 
36 
46 
51 
58 
59 
70 

max. 
arity 

14 
14 
12 
12 
12 
14 
14 
14 
15 

10 - 40 
10 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 

5.2.2.2 Test problems for the Comparison phase 

To evaluate the algorithms on a variety of problems, we create more test problems by 

adding more constraints to each problem set,4 in addition to the basic test problems in 

the Exploration phase. The problem specifications are summarized in Table 5.7. Refer to 

Section B.1.3 and Section B.2.3 for detailed problem descriptions. 

The special test problems, numbered 53, 55, 62, and 645 that contain more difficult price 

constraints, require additional explanation. For these problems, the distance objective func- 

tion has been modified to evaluate the price constraint and return a value between 1 and 0. 

If the return value is greater than one, the solution fails. If the value is zero, it implies the 

problem 
no. 

I 

4-queens 
5-queens 
&queens 
7-queens 
8-queens 

4~roblem set 10 are represented in Formulation I and problem set 25 are in Formulation 11. Both formu- 
lations have been discussed in Section 4.3.2. 

5i.e. 10.53, 10.55, 10.62, 10.64, 25.53, 25.55, 25.62 and 25.64 

var 
n 

4 
5 
6 
7 
8 

domain 
size 

4 
5 
6 
7 
8 

constraints 

# 
13 
2 1 
3 1 
43 
57 

search 
space 

256 
3125 

46656 
823543 

16777216 

min. 
arity 

2 
2 
2 
2 
2 

solution 

# 
2 
10 
4 
40 
92 

max. 
arity 

4 
5 
6 
7 
8 

solution 
density 

7.81 x lo-3' 
3.20 x 
8.57 x lop5 
4.86x1OW5 
5.48 x lo-6 
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Table 5.7: P C  configuration problems in the Comparison Phase. 

domain 
size 

10 - 40 
10 - 40 
10 - 40 
10 - 40 
10 - 40 
10 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 
2 - 40 

search 
space 

1.01 x 1015 
1.01 1015 

1.01 x 1015 
1.01 x 1015 
1.01 x 1015 
1.01 x 1015 
6.72 x loz5 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
6.72 x loz9 
6.72 x lo2' 
6.72 x lo2' 
6.72 x lo2' 
9.81 x lo1" 
5.89 x 10l8 
3.62 x 
1.16 x 
3.36 x lo2' 
6.72 x lo2' 
1.14 x 

constraints 

# 
approx. 
density 

1.1 x 10-I 
7.4 x 10-5 

no solution 
no solution 

no solution 
no solution 

Problem number beginning with 10 are from problem set 10, which are represented in Formu- 
lation I. Problem number beginning with 25 are from problem set 25, which are represented in 
Formulation 11. 

problem has been successfully solved. Otherwise, the result will be interpreted as an "accept- 

able" ~ o l u t i o n , ~  and that price constraints are the only constraints unsatisfied. The conflict 

count function weighing all constraints by their arity has no such benefit. Also, problems 

62 and 64 are intentionally set to unsolvable with constraint 'UPPERprice(items, 500) '. 
These are only used to test those algorithms using distance objective function. Different 

from problem 62, the search space of problem 64 is arranged in the order of the item price. 

Similarly, problem 53 and 55 are a pair of test problems. These two problems are solvable, 

but with a harder constraint 'UPPERprice (items, 750) '. The search space of problem 53 

is non-ordered and the search space of problem 55 is ordered. 

61n other words, the problem is treated as optimization problem for the distance objective function. 
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5.2.2.3 Test problems for the all-diff phase 

To observe the ability of the algorithms in handling n-ary constraints, we test the algorithms 

on n-queens problems for n = 4,5,6, .  . . , l o ,  and 15. The problem specifications are listed 

in Table 5.8. 

Table 5.8: n-queens problems in the all-diff phase. 

problem 
no. 

var 
n 
- - 

4 
5 
6 
7 
8 
9 
10 
15 

5.2.3 Comparison measures 

To evaluate the particle swarm algorithms and to  answer the research questions, we will 

measure the effectiveness and efficiency of the algorithms. As particle swarms are closely 

related to evolutionary computing, we will use the measures in that field to evaluate the 

particle swarm algorithms. The discussion of Craenen et al. in 1171 on comparing a set of 

evolutionary algorithms on solving binary CSPs provides a general reference. 

domain 
size 

4 
5 
6 
7 
8 
9 
10 
15 

5.2.3.1 Measuring effectiveness 

max. 
arity 

4 
5 
6 
7 
8 
9 
10 
15 

PSOs are incomplete search algorithms and so cannot guarantee to find a solution if one 

exists. Therefore, to compare the effectiveness of the algorithms, we have two measures: 

solution 
# 

2 
10 
4 

40 
92 

352 
724 

2279184 

search 
space 

256 
3125 

46656 
823543 

16777216 
387420489 

1.00 x 10l0 
4.38 x 1017 

1. At first, we want to know whether the algorithms can solve a test problem and the 

probability for the algorithms to solve a problem if they cannot guarantee to solve 

it. For this, we can use the percentage of successful runs that the algorithms find 

solutions, i.e. the success rate (SR) as one of the measures. 

2. Giving our constraint handling approaches, conflict counts and distance estimation, 

constraints 
# 
13 
2 1 
31 
43 
57 
73 
9 1 
21 1 

min. 
arity 

2 
2 
2 
2 
2 
2 
2 
2 
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the evaluation value (EV) of the objective functions equal to zero means a perfect so- 

lution has been found; otherwise, the higher the value, the worse the solution quality.7 

Since a particle swarm algorithm does not guarantee to converge on a perfect solution, 

the EV may not always be zero. The quality of a solution at termination%uggests the 

effectiveness of an algorithm. Considering that an algorithm will be tested multiple 

times, we will use a mean evaluation value (MEV) to estimate the effectiveness of the 

algorithms. A mean evaluation value comes from both the successful cases and the 

failures. Normally, an algorithm with a better success rate tends to have a lower MEV 

because whenever the algorithm solves a problem, its objective function yields zero. 

Without replacing the measure of MEV, we also want to examine odd cases where for 

example, an algorithm may have a good success rate on average but a high EV when 

it fails. For such cases, we divide the sum of the evaluation values of each algorithm 

over its number of failures and produce mean evaluation value on failures (FEV). 

While examining the mean evaluation value and the mean evaluation value on failures, 

we must bear two issues in mind: 

The two objective functions measure solutions differently, so we cannot compare 

the values across the objective functions. We will separate the comparison into 

two groups: Continuous-Conflict, Discrete-Conflict and BCSP models as Group 1 

for the algorithms that use the conflict count function, and Continuous-Distance 

and Discrete-Distance as Group 2 for the algorithms using the distance function. 

An evaluation value is only an estimation, not absolute. A potential solution 

with a lower evaluation value may not guarantee to  find an actual solution faster. 

For those partial solutions with the same evaluation value, the quality may not 

be the same. So, we only use the mean evaluation value in supporting the results 

from evaluating the success rate. 

5.2.3.2 Measuring efficiency 

To evaluate efficiency, we have incorporated several variables into the test algorithms to keep 

track of program elapsed run time, the number of iterations and the number of consistency 

7 ~ h i s  is just a general rule, unless the objective function is able to provide perfect information of a 
potential solution. 

'A PSO program terminates when either it finds a solution or it reaches a maximum number of iterations. 



CHAPTER 5. EXPERIMENT AND EVALUATION 

checks that the algorithms perform: 

1. The elapsed run time (RT) that an algorithm takes to solve a problem or to exceed the 

iteration limit, is straightforward and generally provides an indication of the eficiency 

of an algorithm. After all, we want to know how long it would take to receive an answer 

from an algorithm. However, RT can be complex to analyze because of its dependency 

on the hardware and implementation. Without careful control, an elapsed time can 

be affected by the environment even more. Therefore, we need an auxiliary measure 

besides using run time. Similar to  the mean evaluation value, we can compare the 

mean run time (MRT) of each algorithm over a number of test runs. 

2. The number of iterations (IT) is an internal counter, which suggests how long a pro- 

gram takes. If a problem is not solved, the maximum number of iterations is recorded. 

Generally, the higher the number of iterations, the longer the run time. But, not all 

algorithms spend the same amount of time for each iteration. For instance, running 

different numbers of particles takes different amount of time for each iteration. One 

remedy is to multiple the number of iterations by the population of a swarm, and we 

then have the number of evaluations (ES) of an algorithm. Even so, some algorithms 

may spend more time on creating or evaluating a good potential solution, while oth- 

ers may quickly generate a so-so solution each time. In effect, measuring number of 

iterations or number of evaluations is not so good as measuring number of consistency 

checks discussed below. 

3. The number of consistency checks (cc) is the number of verifying constraint violations 

of a current (potential) solution. It is usually considered as an atomic operation [17] 

for CSP algorithms. In other words, a consistency check is the most basic and critical 

operation in a CSP algorithm. It  is performed by all the algorithms and generally 

consumes the most computational time. Many CSP algorithms traditionally use this 

measure to evaluate themselves against others. Although the number of consistency 

checks also ignores the setup time of potential solutions, in support of the comparison 

of the algorithm run time, it has the advantage over the number of iterations or number 

of evaluations for several reasons. Each algorithm may perform different numbers of 

consistency checks in each iteration and so take different amount of time to complete 

an iteration. Thus, the number of consistency checks can more accurately imply how 

much time an algorithm runs than the number of iterations can. Also, since it is 
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commonly used for evaluating CSP algorithms, we can compare not only among the 

PSO algorithms with it, but also between PSO algorithms and other CSP algorithms 

potentially. 

In summary, we will evaluate the effectiveness of the particle swarm algorithms by their 

success rate (SR) with the support of the mean evaluation value (MEV), and compare their 

efficiency by the mean run time (MRT) with the support of the number of consistency checks 

(cc>.  

5.3 Experiments 

Experiments on particle swarm algorithms are resource intensive; thus, reasonable limits 

have been imposed on the experiments. Program speed is a critical issue too; thus, much 

effort has been put into speeding up the programs as will be discussed in Section 5.3.3. 

5.3.1 Runs 

The experiment is set t o  collect 10 runs per algorithm per test problem. For each of the test 

problems, we randomly and independently generated 10 sets of initial solutions (or initial 

states) namely set A,  B, C, . . . , J. Each set contains 10 initial solutions. All the algorithms 

will begin with these 10 sets of initial solutio~ls, one set per test run. Depending on the 

population of the swarm, an algorithm will take the first 3, 5 or 10 initial solutions to  begin. 

5.3.2 Experimental facilities 

5.3.2.1 Computer hardware and software environment 

Owing to  the availability of the facilities and the nature of the experiments of different 

phases, we have employed different types of computers and software environment in each 

phase. In the Exploration phase, we wanted to  determine what algorithms to study further 

and what parameter settings to work with, so using identical computers across the entire 

experiment was not critical. In order to  complete this phase as soon as possible, we decided 

to  use available computers in the labs. We only made sure that the same kind of computers 

and environments were used across the algorithms for one particular test problem. On the 

other hand, in order to evaluate as fairly as possible in the Comparison phase, we used 

a number of identical computers running the same operating system. In all-diff phase, 
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speed was not a major concern. Thus, all the algorithms were run on an Intel Pentium 4. 

The systems used in different phases of the experiment are listed in Table 5.9. 

Table 5.9: The systems used in the three-phase experiment. 

I Phase I CPU 
I 

5.3.2.2 The accuracy of the experiment 

Memory 
MB 

1024 
1024 
512 
512 
512 
512 
512 

Exploration 

Comparison 
all-dif f 

When we discuss the evaluation measures in Section 5.2.3, we mentioned the accuracy of 

using real time run time, i.e. total elapsed time. Before we use it to evaluate the efficiency of 

the particle swarm algorithms (although our conclusion will be supported by the auxiliary 

measure the  number of consistency checks), we must understand what possible issues may 

affect the accuracy of the measure and the data. 

Run time is straightforward; but it is affected by hardware, software environment and 

implementation besides the time a swarm actually needs to set up initial solutions, search, 

and evaluate solutions. For example, different CPUs give different performance, and different 

amounts of memory may support a program differently. Even with so-called "identical" 

machines, the CPUs may not perform exactly the same. Particularly, it is sometimes difficult 

to avoid every possible external process in Windows environment. If the run time of all the 

algorithm is mostly large, this effect will not be so significant. Otherwise, we should be 

aware the effect may be critical. 

Another influence comes from the implementation of the algorithms such as the choice of 

language or particular techniques in use. For example, certain operations can be fast in Java 

but slow in Python, or vice versa. Depending on the required operations, there might be a 

case that algorithm A is faster than B if they are implemented in Java, but B is faster than 

A if they are in Python. One other issue also related to implementation is the memoization, 

Intel P4, 3.0GHz 
Intel P4, 3.0GHz 
Intel P4, 2.8GHz 
Intel P4, 2.4GHz 
Intel P4, 2.4GHz 
Intel P4, 2.8GHz 
Intel P4, 2.4GHz 

Number 
of PC 

5 
1 

20-35 
1 

10-15 
20-35 

1 

Operating 
system 

Windows XP 
Linux 

Windows XP 
Windows XP 
Windows XP 
Windows XP 
Windows XP 

Python 
version 

2.4 
2.3 
2.3 
2.4 
2.3 
2.3 
2.4 
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which will be discussed in the next section. In all, because of the problems just described, 

we should carefully consider and cannot rely on real-time as the sole measure of efficiency. 

5.3.3 Programming issues 

We choose Python as the implementation language. While Python is not generally the most 

efficient language available, it is a good choice for prototyping and experimenting with new 

algorithms. 

In order to improve the speed, we used Python packages such as Pysco [79] and Python 

Numeric module [69] that approximately doubled the performance. Other optimizations 

were made based on the results of profiling the code, and using memoizationg [9, 621. How- 

ever, it turns out that there is a downside to memoization. If the swarm keeps generating 

new assignments, the memory usage grows quickly. Eventually memory context switching 

may kick in, and the performance will considerably decrease. This happened sometimes 

during the experiment when the system ran out of memory. Thus, we should be aware of 

any abnormally huge and sudden changes in run time of an algorithm, which may be simply 

caused by running out of memory rather than by the algorithm itself. 

5.4 Experimental results 

We look at the experimental results from two aspects. One aspect is the particle swarm 

algorithms10 of the three models. From the results, we can analyze and determine whether 

Schoofs and Naudts' algorithm [go] can be extended to solve n-ary CSPs and whether the 

traditional PSOs can be modified to solve n-ary CSPs.ll Another aspect compares the 

results across the PSO models, from which we can determine if any of the three models is 

better or promising for solving n-ary CSps.12 TO compare fairly among the PSO models, we 

only use the same types of algorithms from each model, i.e. the generic type, zigzag type, hop 

type and zigzagHop type algorithms to assess their performance. Several other algorithms 

based on genericPS0 will be considered as individual algorithms. While analyzing the 

 or the definition of memoization, see online material http://en.wikipedia.org/wiki/Memoization. An 
example in Python Cookbook at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52201. 

''See Table 4.1 for a list of algorithms as needed. 

"These are for the first research question and the second research question. 

1 2 ~ h i s  corresponds to part of the second research question stated in Chapter 3.6. 
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algorithms, we mainly consider the overall per:€ormance across different parameter settings. 

The resulting data came from both the Comparison phase and all-diff phase of the 

experiment.13 The results of the all-diff phase are used to discuss the effectiveness of the 

particle swarm algorithms in handling n-ary constraints. The outcomes of the Comparison 

phase provide both the effectiveness and efficiency of the particle swarm algorithms, for 

which we look at the following measures: 

success rate (sR); 

mean evaluation value (MEV) (in support of success rate); 

run time (RT); 

number of consistency checks (cc) (in support of run time). 

In this section, we present the results and briefly examine the outcomes. More specific 

discussion and analysis on the research questions will be in presented Section 5.5. 

5.4.1 Effectiveness 

5.4.1.1 The data from the Comparison phase 

The overall success rate of the PSO models in Figure 5.1 shows that the conflict count ob- 

jective function provides more help than the distance objective function in PC configuration 

problems.14 If we verify the results of the mean evaluation values in Figure 5.2, the particle 

swarms using the distance function yield a slower growth as the complexity of the problems 

increases (the number of constraints of the problems increases). The lower success rate and 

flatter mean evaluation values suggest that the distance estimation does not provide suffi- 

cient information to distinguish the quality of solutions for the PC configuration problem 

and so prevents the swarm from improving solutions. 

As groups of algorithms, the two Discrete models are slightly more effective than the 

Continuous models and the BCSP model on problems in Formulation I, but perform much 

worse than the Continuous models and the BCSP model on the problems in Formulation 

13i.e. the experiments on the PC configuration problems and the n-queens problems, respectively 

14Compared with problem set 25, problem set 10 are relatively simple. The difference between the two 
objective functions in problem set 10 is not obvious in the success rate. 

15Problems in problem set 10 are formulated in Formulation I, and problem set 25 and problems 20.3 to 
26.3 are in Formulation 11. 
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(a) The success rate of PSO models from test problem set 10.' 

6.9 % Continuous-conflict 
99.8 % Discrete-conflict 

BCSP (conflict) 
Continuous-distance 

100.0 % Discrete-distance 

(b) The success rate of PSO models from test problem set 25. 

Continuous-conflict 
Discrete-conflict 
BCSP (conflict) 
Continuous-distance 
Discrete-distance 

(c) The success rate of PSO models from test problems 20.3 to 26.3. 

68.5 % Continuous-conflict 
Discrete-conflict 

70.3 % BCSP (conflict) 
Continuous-distance 
Discrete-distance 

Figure 5.1: The success rate of PSO models from the Comparison phase. 

The outcomes include all PC configuration problems from the Comparison phase, except for 
the result of problem set 10. The result of problem set 10 comes from only problem 10.3 and 
10.41, which are simpler than problem 10.53, 55, 62 and 64. Problem 10.53, 55, 62 and 64 were 
not completed for pop = 10, so we do not take them into account. The partial results suggest 
that the success rates of problem set 10 are 54.4%. 59.9%, 52.0%, 57.9% and 65.0% respectively. 
Each model is assessed on the generic, zigzag, hop and zigzagHop type algorithms. 

(see Figure 5.1 and Table 5.10). Formulation I and I1 represent different classes of problems. 

While the CSP domains in Formulation I are consecutive and most of the domains are 

consistent,16 the domains of the test problems under Formulation I1 are not all consecutive 

and the domains across different CSP variables are much different. Being able to solve the 

test problems under Formulation I and not under Formulation I1 suggests that the Discrete 

models can solve the problems where the domains are consecutive and consistent, but do 

not perform well on the problems where the domains are non-consecutive or inconsistent. 

%ee Definition 2.1.1 for the definitions of consecutive domain and consistent domains. Also, refer to 
Section 4.2.1.2 for more discussions. 
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The Continuous-conflict model and the BCSP model have similar success rates on av- 

erage, but the BCSP model yields lower mean evaluation values in Figure 5.2. Among the 

problems in problem set 25, the Continuous-conflict model has better success rate as the 

complexity of the problems increases. Both models have great difficulty with hard problems 

such as problems 25.53 and 25.55 (see Table 5.10 as needed). 

None of the generic type algorithms17 have impressive performances. They could not 

solve any problem in problem set 25 as shown in Table 5.11 and their mean evaluation 

values are relatively high compared with the other algorithms as shown in Figure 5.3. The 

generic BCSP algorithm (bcspPS0) is the worst among all the generic type algorithms for 

problems involving n-ary constraints such as problems 10.41, 20.3 to 26.3 and the problems 

in problem set 25. 

For the performance of the proposed strategies, we focus on the "zigzag" movement 

and "no-hope and hop" strategy. Table 5.11 and Figure 5.3 show that these two strategies 

except for genericzigzag, greatly improve the genericPS0-conflict and bcspPSO algorithms 

for most of the test problems. Although genericzigzag does not improve genericPSO's 

success rate by much, it does render lower mean evaluation values. The zigzagHop strategy 

combining the two strategies performs even better. genericZigzagHop and bcspZigzagHop 

are the best algorithms in this r.esearch, and binary~igzag~opl8 is also the best among 

the discrete particle swarms. The "partner exchange" and "DFS" strategies on the other 

hand, do not contribute to the improvement very much.lg Hence, the improvement that 

genericHybrid20 has inflicted on the genericPS0 algorithm mostly comes from the "no-hope 

and hop" strategy and the spawned particles. 

Observing the data more closely, we can see how the swarm population and parameter 

p ~ p - r a t e ~ ~  affect the algorithms. Among the three population settings 3, 5 and 10, bigger 

17i.e. those algorithms directly derived from the original PSOs including genericPS0, binaryDiscrete, 
grayDiscrete and bcspPSO 

" ~ i k e  other discrete algorithms, the performance of binaryZigzagHop is also restricted by the CSP domains. 

lgThe "partner exchange" improves the mean evaluation value but it does not obviously improve the 
success rate; the "DFS'does not contribute to the improvement much in either the success rate or mean 
evaluation value. 

2 0 ~ t  integrates the "no-hope and hop", "parter exchange" and "DFS" strategies together, as well it will 
adaptively spawn more particles when no improvement has been done for too long. 

21pop-rate in the "no-hope and hop" strategy defines the percentage of the population to perform the 
strategy. It applies to all the hop type and zigzagHop type algorithms and genericHybrid algorithm. 
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swarms are generally found to be more effective (see Figure 5.4 and Table C.4 as needed)." 

In the Comparison phase, we set poprate to 0.25, 0.5 and 0.75 for the hop type and 

zigzagHop type algorithms, and 0.2 for the genericHybrid algorithm.23 Both the success 

rate and mean evaluation value versus poprate relations (in Figure 5.5 and Figure 5.6) 

suggest that with the higher poprate (i.e. more particles hop at the same time), the swarm 

performs more effectively in general. 

We have mentioned that the improvement done by genericHybrid to the genericPS0 al- 

gorithm mostly comes from the "no-hope and hop" strategy and the spawned particles. We 

can see that genericHybrid's poprate is not so high as those of genericHop or genericZigza- 

gHop, and so its success rate is not as good as those of the two, especially in problem 25.50. 

Also, genericHybrid's success rates of different parameter settings on the same problem do 

not change much, which may suggest that those settings do not very effectively change the 

behaviour of the swarm (see Table C.4). 

Comparing problem pairs (53 vs. 55) and (62 vs. 64), the price-ordered search space 

does not affect the algorithms very much in improving the quality of the search on these 

harder problems. To be more accurate, only genericPS0, genericHop, genericZigzagHop, 

binaryDiscrete and binaryHop are more sensitive to such an ordering and have a decreasing 

mean evaluation value in Figure 5.3. 

In support of the success rate, the results of the mean evaluation value in Figure 5.3 

and Figure 5.7 are generally consistent with those of the success rates as we have seen. 

While inspecting the mean evaluation value on failures, we do not find any inconsistent 

result. An additional observation from the mean evaluation values in Figure 5.7 is that 

most of the algorithms in the figure show obvious hikes at problem 25.50; those are more 

than likely caused by the 11-ary price constraints because the constraints contribute 1 for 

every dollar exceeding the budget to  the distance objective function. For example, if some 

potential solution is $100 more than user budget, the solution would have at least EV = 100 

when every other constraints are satisfied. Such a system implies user budget is absolutely 

critical. When an algorithm cannot resolve the price constraint, its mean evaluation value 

becomes high. The evaluation of the price constraint has been changed in problem 25.53, 

55, 62 and 64 as described in Section 5.2.2.2, so the situation is mostly leveled out and the 

mean evaluation values are generally reduced. 

2 2 ~ e  only show several algorithms in Table (3.4; the other algorithms share the similar observation. 

23generic~ybrid has many features to manipulate already, so we set only one poprate for the experiment. 
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L 
t I t I t # 

prob.25.3 prab. prab pmb. prob. prub. prola. pub. 
25.43 25 47 25.50 25.53 25.55 25 62 35 64 

Problem 

Figure 5.2: The mean evaluation value of PSO models from problem set 25. 

1. See Figure C.2 for problem set 10 and problems 20.3-26.3. 
2. All models have growing mean evaluation values (MEVs) while the complexity (the num- 

ber of constraints) of the problems increases. The MEVs of the PSOs using the distance 
objective function grow at a slower rate. 

3. The MEVs have an obvious escalation as the complexity of the problems increases. BCSP 
model is the best among the models using the conflict count function. 

4. The price constraints in problems 25.53, 55, 62 and 64 of the PSOs using the distance 
function are measured in a much smaller scale, so we can see the MEVs going downward 
after problem 25.50 for both the Continuous-distance and Discrete-distance models. 
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Table 5.10: The success rate of PSO models from the Comparison phase. 

The success rate of PSO models 
Class 

Model Objective 

Continuous conflict 
Discrete conflict 

conflict 
Continuous distance 
Discrete distance 

Discrete conflict 
conflict 

Discrete distance 

Discrete conflict 
conflict 

Discrete distance 

1. The outcomes are the individual PC configuration problems from the Comparison phase. 
2. Each model includes the generic, zigzag, hop and zigzagHop type algorithms. 
3. The Discrete model performs effectively in Formulation I, but can solve only few test 

problems in Formulation 11. 
4. The Continuous-conflict model and BCSP model perform competitively; but, the Con- 

tinuous model handles harder problems (as problems 10.41, 25.47, 25.50 and up) slightly 
better than the BCSP model, except for problem 26.3. However, none of the models have 
acceptable performance on problems 25.53 and 25.55. 

5. Problems 10.53, 55, 62 and 64 were not completed for pop = 10 so the results shown are 
only partial. Since swarms with pop = 3 or 5 are not usually as effective as those with 
pop = 10, the partial results appear to be really low. We might expect better result if 
the experiment had been done. 

Problem 

10.41 

93.8% 
99.6% 
78.9% 
89.2% 
100% 

25.43 

70.8% 
0% 

73.0% 
27.9% 

0% 

21.3 

77.1% 
11.3% 
78.1% 
51.3% 
11.7% 

10.53 

0.6% 
0% 
0% 

67.5% 
71.3% 

25.47 

67.9% 
0% 

60.6% 
19.2% 

0% 

22.3 

72.9% 
0% 

75.4% 
38.3% 

0% 

10.55 

3.3% 
0% 

0.5% 
90.8% 
100% 

25.50 

53.8% 
0% 

51.9% 
3.8% 
0% 

23.3 
72.1% 

0% 
75.6% 
37.1% 

0% 

10.62 

0% 
0% 

25.53 
4.2% 
0% 

2.4% 
0% 
0% 

24.3 

72.1% 
0% 

72.8% 
27.5% 

0% 

10.64 

0% 
0% 

25.55 
13.3% 

0% 
2.6% 
0% 
0% 

25.3 

72.1% 
0% 

73.5% 
28.8% 

0% 

25.62 
- 

0% 
0% 

26.3 

36.3% 
0% 

38.1% 
11.3% 

0% 
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(a) The success rate of populations from test problem set 25. 

pop = 3 
pop = 5 
pop = BO 

(b) The success rate of populations from test problems 20.3 to 26.3. 

pop = 3 
42.4% pop=5 

50.2 % pop = 10 

Figure 5.4: The success rate of populations from the Comparison phase. 

1. The outcomes include all PC configuration problems in Formulation I1 from the Compar- 
ison phase. Each model includes the generic, zigzag, hop and zigzagHop type algorithms. 

2. The result of problem set 10 is incomplete and not shown. If we consider only the 
completed problems 10.3 and 10.41, the success rates are 92.8%, 95.1% and 96.5% with 
respect to pop = 3, 5, and 10. The partial results of the problems in problem set 10, the 
success rates of problem set 10 become 49.3%, 52.7% and 75.3% respectively. 

(a) The success rate of the hop strategy from test problem set 25. 

poprate = 0.25 
popsate = 0.5 
poprate = 0.75 

(b) The success rate of the hop strategy from test problems 20.3 to 26.3. 

59.0% poprate = 0.5 
62.9 % pop-rate = 0.75 

Figure 5.5: The success rate of pop-rate: hop and zigzagHop algorithms from the Comparison phase. 

1. The outcomes include all PC configuration problems under Formulation I1 from the 
Comparison phase. 

2. The result of problem set 10 is incomplete and not shown. If we consider only the 
completed problem 10.3 and 10.41, the success rates are 99.4%, 98.8% and 99.5% with 
respect to puprate = 3, 5, and 10. The partial results of the problems in problem set 
10, the success rates of problem set 10 become 63.3%, 61.1% and 61.1% respectively. 
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.50 

pop-rate 

Figure 5.6: The  mean evaluation value of pop-rate from problem set 25. 

1. The outcomes include PC configuration problems in problem set 25 from the Comparison 
phase. The algorithms are the hop and zigzagHop algorithms using the conflict count 
function. See Figure C.l for the algorithms using the distance function as needed. 

2. Generally, the higher the poprate, the lower the mean evaluation value. Some changes 
between poprate = 0.5 and 0.75 are not obvious because poprate = 0.5 renders relatively 
high success rate on the test problems and poprate = 0.75 has only limited improvement, 
and the mean evaluation value of binaryHop slightly increases when poprate grows. 
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5.4.1.2 From t h e  all-diff phase - t h e  n-queens experiments  

The experimental results of the Exploration and Comparison phases show that the particle 

swarm algorithms have difficulty in dealing with n-ary constraints for large n. To observe 

the ability of the particle swarm algorithms to deal with n-ary constraints, we examine 

the results from the all-diff phase. The arity of the all-diff constraints equals to  the 

number of queens. 

The success rate of the PSO models and particle swarm algorithms are shown in Fig- 

ure 5.8 and Table 5.12 respectively, from which we have several observations. First, none 

of the algorithms can solve 15-queens problem. Although most of the algorithms have 

their success rates above zero percent on 10-queens, only bcspZzgzagHop is most promising. 

Overall, the zigzagHop type algorithms perform best among the algorithms studied. 

Second, the Discrete models perform much better in this phase than they did in the 

Comparison phase on PC configuration problems under Formulation 11. The domains of 

n-queens problems are consecutive and c o n ~ i s t e n t , ~ ~  and the fact that the discrete algorithms 

can solve n-queens problems confirms our previous observation. That is, the Discrete models 

can solve the problems where the domains are consecutive and consistent, but do not perform 

well on the problems where the domains are not consecutive or not consistent. 

Third, the distance objective function works better with n-queens problems than it does 

with PC configuration problems. We have seen that the distance objective function does 

not provide sufficient estimation for good list or bad list constraints and price constraints. 

An n-queens problem contains only several arithmetic relation constraints and an all-dif f 

constraint, for which the distance objective function provides better estimation and performs 

competitively to the conflict count objective function. 

Table 5.12: The SR of PSO algorithms from the all-diff phase. 

The success rate of PSO algorithms on n-queens problems 

Algorithm 4-q 

Continuous-conflict 91.3% 

2 4 ~ e e  Definition 2.1.1 for definition as needed. 
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problems The success 

Algorithm 

genericHop 

rate of PSO algorithms on n-queen: 

I 

binaryDiscrete 

binaryzigzag 

binaryHop 

binary ZigzagHop 

grayDiscrete 

gray Zigzag 

grayHop 

binaryDiscrete 

binary Zigzag 

binaryHop 

binary ZigzagHop 

grayDiscrete 

grayzigzag 
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5.4.2 Efficiency 

The success rate of PSO algorithms on n-queens problems 

We have discussed the complication of using (elapsed) real run time to evaluate the efficiency 

of the algorithms in Section 5.2.3.2 and 5.3.2.2. While investigating the run time of the 

particle swarm algorithms, we did see some exceptionally high run time, irregular data and 

suspicious huge hikes in various cases such as in Figure 5.9, Figure 5.10 and Figure 5.11. 

One reason for these high run time and irregular hikes in the graphs to occur could be the 

actual performance of the algorithms under certain parameter settings, and some algorithms 

really need higher run time. In such cases, the algorithms have more consistently high run 

time across a number of test runs. 

The memoizer explained in Section 5.3.3 running out of memory could be another cause 

of the irregular high run time and the sudden hikes in the graphs. These cases create 

extremely huge mean run time error barsz5 and can usually be detected from the raw data. 

One example is the hike in Figure 5.9. Examining both Figure 5.9 and Figure 5.10, we can 

see that binaryZigzagHop as a hybrid of a zigzag type algorithm and a hop type algorithm 

is suspicious. The program run time increases irregularly while the number of consistency 

checks does not increase that much. Although hop type algorithms have higher run time 

per iteration, zigzag type algorithms generally run fast. From the raw data summarized in 

Table 5.13, we find that binaryZigzagHop could not solve problem 25.50 and ran for 50000 

iterations each time. The Python object garbage collector did not take place between each 

test run, so the memory usage exceeded what we expected at the end of test runs. The huge 

amount of memory usage caused the system running out of memory. If we remove the last 

exceptional runs from the data, the hike at problem 25.50 disappears. 

Looking at the overall run time of the PSO models, we can see that the BCSP model and 

the Continuous-conflict model are much more efficient than the two Discrete models. The 

25We generated error bars while computing the mean of run time of the algorithms with confidence interval 
level set to 95%. 

Algorithm 

P Y H O P  

8-q 

70% 

9-q 

56.7% 

4-q 

100% 

6-q 

97.8% 

5-q 

100% 

10-q 

20% 

7-q 

97.8% 

15-q 

0% 
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The success rate of PSO models of n-queens problems: n = 4, 5, . . . , 15 

Continuous-conflict 
66.7 % Discrete-conflict 

BCSP (conflict) 
Continuous-distance 

71.8 % Discrete-distance 

Figure 5.8: The success rate of PSO models from the all-diff phase. 

Table 5.13: The average run time and the number of consistency checks of binaryZigzagHop-distance. 

avg. RT 

85.0 
102.6 
118.3 
134.1 
165.0 
197.6 
281.1 
384.6 

39244.1 

pop 
3 
3 
3 
5 
5 
5 

10 
10 
10 

On problem 25.50 for 50000 iterations. 

Continuous-distance model performs as efficiently as the BCSP model and the Continuous- 

conflict model on the test problems in Formulation 11, but it is much more expensive on 

problems 10.3 and 10.41. Verifying the results with the number of consistency checks, the 

BCSP model has the best on average, closely followed by the two Continuous models for the 

problems in Formulation 11. The Continuous-conflict model however has the highest number 

of consistency checks for the problems in Formulation I. 

Examining Figure 5.9, Figure 5.10! Figure C.4 and the average run time per iteration of 

the particle swarm algorithms, we can see some large mean run time at problems 10.41 and 

25.50. Running out of memory is the major reason for the huge hike at problem 25.50 .~~ 

popra t e  

0.25 
0.5 
0.75 
0.25 
0.5 
0.75 
0.25 
0.5 
0.75 

2 6 ~ e e  Figure 5.9 for detail as needed. 

avg. CC 
= 3.0 x lo5 
= 3.6 x lo5 
= 3.85 x lo5 
= 5.0 x lo5 
= 5.9 x lo5 
% 6.5 x lo5 
= 10.7 x lo5 
NN 13.2 x lo5 
NN 14.4 x lo5 
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Investigating the high run time at problem 10.41 requires more care. The numbers of consis- 

tency checks of the algorithms are not exceptionally high at problem 10.41 (see Figure C. l l  

as needed). The algorithms using the distance objective function spend significant amount 

of time evaluating the potential solutions in each iteration for problem 10.41, which con- 

tributes the considerably high run time at the problem.27 For the issues between problems 

25.50 and 10.41, we have two observations. 

First, the price constraint is more expensive to evaluate in problem 10.41 than it is in 

problem 25.50 because the arity of the constraint is higher in problem 10.41. Also, the 

memoizer potentially works better in problem 25.50 than in problem 10.41. Problem 10.41 

has 14 variables and all the variables are involved in the price constraint; if any of the 14 

variables changes its assignment, the assignment to the price constraint is changed. If the 

newly generated assignment is not in the memoizer, the evaluation computation must be 

done. On the other hand, problem 25.50 has 59 variables and only 11 variables are involved 

in the price constraint. So the chances to change a value from one of the 11 variables in the 

price constraint in an iteration is relatively lower than the 14 variables in problem 10.41. In 

turn, the algorithm may have a better chance to take advantage of the memoizer and so the 

evaluation is faster. This is especially true in zigzag type algorithms since they deal with 

one variable at a time. 

Second, the average run time per iteration of the PSO algorithms indicates that the 

conflict count function evaluates a potential solution faster than the distance function does, 

particularly on GOODLIST and BADLIST constraints. The conflict count function only needs 

to check whether an assignment exists in the good listlbad list or not. Besides checking 

for existence, the distance function requires additional computation to estimate the quality 

of the assignment. The connection  constraint^^^ in problem set 10 are all good list and 

bad list constraints whereas those in problem set 25 are mostly in arithmetic forms. Even 

with a few GOODLIST and BADLIST component c o n ~ t r a i n t s ~ ~  in problem set 25, the lengths 

of the lists are much shorter than those in problem set 10. Therefore, it is more expensive 

for the distance function to estimate the quality of the assignment for the problems under 

Formulation I. 

2 7 ~ h i s  is not so significant to the algorithms using the conflict count function. 

2s~nforcing the compatibility between components, the length of these constraints can be up to some 
cross-product of the n components, typically 2 or 3 components at least. 

29~ef ining components and their specifications, the length of these constraints is the number of the com- 
ponent items. 
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As for the efficiency of the individual particle swarm algorithms, the zigzag type and 

zigzagHop type algorithms generally run faster and have lower number of consistency checks 

as shown in Figure 5.10, Figure 5.11, Figure 5.13, and Figure 5.14. Even with a higher it- 

eration limit,30 the zigzag type algorithms tend to maintain stable run time and number of 

consistency checks. The algorithms involving "hop" strategy on the other hand, tend to vary 

in run time and be more sensitive to the difficulty of the problems. Among the algorithms 

using the conflict count function, genericZzgzagHop and bcspZzgzagHop are the most effi- 

cient algorithms besides zzgzagDFS and genericzigzag. Algorithm genericZzgzagHop scales 

better and exhibits consistency with respect to its speed from problem 25.3 through 25.50. 

Algorithm bcspZigzagHop starts slightly better than genericZzgzagHop. genericZigzagHop 

becomes more efficient than bcspZigzagHop as the complexity of the problems increases. We 

can conclude similarly from examining the number of consistency checks in Figure 5.13 and 

Figure 5.14. For large problems such as problem 26.3, bcspZigzagHop performs better than 

genericZzgzagHop. 

Similar to what we found in Section 5.4.1, we also noticed that the discrete algoritlims 

perform competitively to the other algorithms (using the same strategies) on the problems 

in Formulation I,31 but badly on problems in Formulation 11. Especially, binaryDiscrete and 

binaryHop are the worst among all the algorithms in Figure 5.10, Figure 5.11, Figure 5.13, 

and Figure 5.14. Algorithm binaryZzgzagHop runs rather fast compared with other dis- 

crete algorithms shown in Figure 5.10 and Figure 5.11, but it is still slower than the other 

algorithms. 

Algorithm bcspPSO cannot solve any problems in problem set 25, but its run time re- 

mains relatively fast among the BCSP swarms. bcspZzgzag is relatively slow among the 

BCSP algorithms. bcspZzgzagHop starts as the fastest algorithm, but its run time gradu- 

ally grows as the complexity of the problems increases. We will discuss more about these 

algorithms in Section 5.5.1.1. 

As for parameter settings, we investigate the swarm population pop and the percentage 

of the population poprate to execute 'hop' strategy. The more the number of particles, the 

more the computational cycles translated into updating particles' velocities and positions, 

3 0 ~ h e  zigzag type and zigzagHop type algorithms can run up to 50000 iterations versus the other algorithms 
only run up to 20000 iterations. 

31~igure  C.4, Figure (2.6, Figure C.9 and Figure (3.11 also show the low numbers of consistency checks of 
those discrete algorithms on problems in problem set 10. 
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and propagating the knowledge to the neighbours. If a problem is too hard, a large swarm 

naturally requires more time to complete and performs many more consistency checks. But 

if a large swarm can solve a problem more effectively than a small swarm, the total run time 

can be shorter and the number of consistency checks can be lower. We can generally see 

that the change of the mean run time versus population tend to be more insensitive to those 

effective algorithms although we still find that the bigger the swarm, the higher the mean 

run time.32 For those ineffective algorithms such as binaryDiscrete, binaryHop, grayDiscrete 

and grayHop, more number of particles definitely implies more time to terminate. 

Similar to  pop, higher pop-rate means more particles to perform 'hop' strategy at the 

same time and each 'hop' takes time to determine which variables to fix. Thus, an algorithm 

with higher poprate  generally requires more time and be less efficient to  complete the search. 

However, an algorithm with a higher poprate may be more effective and so more efficient 

to  solve a problem. These two factors offset the effects of each other and so pop-rate does 

not change the efficiency of the algorithms very much. Some algorithms such as genericHop 

and binaryHop can even have better efficiency with higher poprate as shown in Figure 5.15 

and Figure 5.16. 

3 2 ~ e e  Figure C.13 and Figure C.14 as needed. 
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AlgGlass 
-*"+ 

Cmrlinuous model 
(conflict tiiude) 
Discrete mdel 
(conflld mode) 

- B C . 9  mo&l 
[conflict mods] 
Continuous model 
(distance mode) 

- - Discrete model 
-(distance mode) 

I 
I I t 1 I 1 L 

prob25.3 prob prob prob. prab. plob prob. prob 
29.43 2547 25.50 2553 25.55 25 62 25.64 

Problem 

Figure 5.9: The mean run time of PSO models from problem set 25. 

The outcomes present the individual PC configuration problems in problem set 25 from 
the Comparison phase. See Figure C.3(a) and Figure C.3(b) for problem set 10 and 
problems 20.3 to 26.3, respectively. 
The problems in problem set 25 are hard for both Discrete models. Because these algo- 
rithms cannot solve the problems, they run to the iteration limit and then quit. Hence, 
we can see their mean run times are relatively flat at a level from problems 25.3 to 25.55. 
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proh.25.3 prob. prob prob. prob. prob prob. y~ob 
25 43 25 47 25.50 15 53 25 55 25.62 25 54 

Problem 

AlgClass 
--- Continuous model 

[conflict niode) 
Oiscrete modal 

" ^ (conflict niode) 

- BCSP nicpdel 
[conflict mode] 

- e Continuous model 
(distance mode) 

- - D~tcre?s model 
(dldancs mode) 

Figure 5.12: The mean number of consistency checks of PSO models from problem set 25. 

1. The outcomes include PC configuration problem set 25 from the Comparison phase. See 
Figure C.8(a) and Figure C.8(b) for problem set 10 and problems 20.3-26.3, respectively. 

2. The numbers of consistency checks of both the Continuous-conflict model and the BCSP 
model are relatively low and grow slowly. The BCSP model has lower number of consis- 
tency checks across all problems. 

3. Both Discrete models have similar numbers of consistency checks between problems 25.3 
and 25.50. The evaluation of the distance function is changed and the solutions are 
considered as 'acceptable' once its EV is smaller than 1 in problems 25.53, 55, 62 and 
64. Therefore, the number of consistency checks of Discrete-distance then becomes lower 
than the one of Discrete-conflict. 
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I t I 
.25 .50 .75 

pop-rate 

(a) Algorithms using conflict function 

pop-rate 

(b) Algorithms using distance function 

Figure 5.15: The mean run time of PSO poprate: problem set 25 from the Comparison phase. 
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Figure 5.16: Mean number of consistency checks of poprate: problem set 25 from Comparison phase. 
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5.5 Discussion and Answers 

In this section, we will summarize the research results and discuss our research questions. 

Each of the following subsections corresponds to a research question stated in Section 5.1. 

5.5.1 Can we extend Schoofs and Naudts' PSO to solve general n-ary 

integer CSPs effectively? 

Schoofs and Naudts' original algorithm (bcspPS0) has difficulty in handling n-ary con- 

straints (n  > 2) and cannot solve n-ary CSPs effectively. The strategies we proposed, 

improve the performance of the bcspPSO algorithm. bcspZzgzagHop extending the bcspPSO 

and combining the zigzag movement and no-hope and hop strategy, is one of the best 

performing algorithms in this research. It can reasonably solve n-ary CSPs effectively on 

non-hard problems. 

5.5.1.1 Discussion - the BCSP PSOs 

To solve binary CSPs (BCSP), Schoofs and Naudts extended the traditional PSO [53] with 

a set of operators and a conflict count objective function [go]. Based on their pseudocode, 

we implemented the algorithm as will be referred to as bcspPSO. Extending this algorithm, 

we developed three particle swarm algorithms: bcspZigzag, bcspHop and bcspZzgzagHop. 

The experimental results in Section 5.4.1.1, Section 5.4.1.2 and Section 5.4.2 show that 

Schoofs and Naudts' particle swarm (bcspPS0) cannot mailage n-ary constraints in the PC 

configuration problem nor solve 4- or 5-queens test problems effectively. While reviewing the 

algorithm, we found that their vector-like operators and the conflict count function cause 

the ineffectiveness. In bcspPSO, a particle updates its position in each dimension33 only 

from the choice of four: the global best position so far, its individual best position so far, 

its current position, or a random position. A random position may be chosen only when 

the corresponding variable (varj)  is in conflict and the particle's current position equals 

its individual best position so far. Even so, the probability of choosing between a random 

position and the global best position so far relies on the deflection operator,34 which was 

set to either 0, l /n ,  or 2/n in the experiment. Since the chance for a random position to  be 

33A particle position is a complete CSP assignment and consists of n elements (val l ,  valz , .  . . , val,). Each 
element is an assigned value to its corresponding CSP variable varj where j = 1,2 , .  . . , n. 

34See Section 3.5 and Section 4.2.1.3 as needed. 
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explored is rather low especially when n is big, the swarm has a hard time moving to other 

area to find a better solution. 

As for the choice among the three other positions, it depends on whether the correspond- 

ing variable ( v a r j )  is in conflict or not. If val- j  is in conflict, the two best positions so far 

can be chosen; otherwise, the current position remains. Since the conflict count objective 

function cannot usually give accurate information on which variables are really in conflict in 

an n-ary constraint, all variables in the violated constraint are marked as in-conflict. If more 

variables are marked as in-conflict than there actually are, the swarm tends to converge to 

the global best position faster owing to the operation of the vector-like operators. This is 

obviously problematic to the algorithm while dealing with n-ary constraints because the 

information provided by the objective function is not as informative as while dealing with 

binary constraints. This quick convergence can be also observed from the fast run time of 

the algorithm although bcspPSO is very ineffective. Nothing much can be done after con- 

verging at local optima except reinitializing the algorithm whenever a no-hope count arrives 

or quickly looping through the remaining iterations. Even to reinitialize the algorithm, it 

may quickly converge to local optima again. So, the algorithm is generally faster than other 

particle swarm algorithms although it is ineffective in solving a problem. 

Algorithms bcspZzgzag, bcspHop and bcspZzgzagHop improve upon the bcspPSO algo- 

rithm. bcspZigzag recomputes the constraint violations every step and provides more ac- 

curate information about the current positions than bcspPSO does. Empirically, we have 

shown that bcspZigzag improves the success rate of the bcspPSO algorithm. bcspZigzag does 

not appear to be more efficient overall than bcspPSO on run time. Running for the same 

time limit, bcspPSO does 20000 iterations, whereas bcspZigzag can do 50000. Algorithm 

bcspHop improves the bcspPSO algorithm even more, but the speed is a tradeoff as problems 

become harder. Unlike bcspPSO cycling between convergence and reinitialization, bcspHop 

spends time searching and improving solutions. As a CSP solver, bcspZzgzagHop is not yet 

ready for solving hard problems. However, combining the merits of the zigzag movement 

and no-hope and hop strategy,35 bcspZzgzagHop improves the bcspPSO algorithm most. It is 

the best performing algorithm in this research, the most effective particle swarm algorithm 

in the a l l -d i f f  experiment and has potential for further research. 

35~efe r  to Section 4.2.2.1 and Section 4.2.2.3 as needed for the detail description. 
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5.5.2 How can we modify the traditional PSOs to  solve n-ary integer 

CSPs? How do the algorithms extending the traditional PSOs com- 

pare with Schoofs and Naudts' PSO? 

This research question includes two sub-questions and the answers to each of them involve 

two PSO models: the continuous PSO [53] and the discrete PSO [54]. We will discuss 

these two models in Section 5.5.2.1 and Section 5.5.2.2 respectively. The answers to the two 

questions are as follows: 

1. Unlike Schoofs and Naudts' PSO (the BCSP PSO), the continuous PSO and the 

discrete PSO were not originally designed to solve CSPs. So, we have to  first modify 

them so that the swarms understand and work with integer CSPs. In answering the 

question in Section 5.5.1, we have discussed some potential problems with Schoofs and 

Naudts' vector-like operators with n-ary constraints. Mathematically, the arithmetic 

computation of the original PSOs is simple and straightforward. Thus, we decided 

to keep the original formulae for updating particles' velocity and position. In order 

to restrain the particles from searching out of CSP domains, we relocate them to a 

closest legal spot as soon as they fly out of domain.36 

2. The genericZigxagHop algorithm is the most effective algorithm among the continu- 

ous particle swarm algorithms in this research, and binayZigxagHop is the one among 

the discrete algorithms. The genericZigxagHop-conflict algorithm37 performs competi- 

tively to bcspZigxagHop on most of the test problems, but not so good as bcspZigxagHop 

on large problems. The binaryZigxagHop algorithm can be as effective as bcspZigza- 

gHop as well, but the capability of binaryZigxagHop is more restricted by the domains 

of the constraint satisfaction problems. The bina yZigxagHop algorithm has difficulty 

with problems in which the domains are not consecutive or not c~nsistent.~'  

36Refer to Section 4.2.1 as needed. 

37Short for the genericZigzagHop using the conflict count objective function 

38See Definition 2.1.1 for the definitions of a consecutive domain and consistent domains. 
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5.5.2.1 Discussion - the continuous PSOs 

With the modification we have done, the continuous PSO can search discrete integer do- 

mains, and genericPS0 is the basic implementation of the continuous particle swarm. Ex- 

tending genericPS0, we developed a number of algorithms such as generzcZzgxag, genericHop 

and genericZzgzagHop. Besides these algorithms, we also implemented other algorithms to 

experiment with several interesting strategies. For instance, the genericHybrid algorithm 

combines partner exchange, local depth-first search, and no-hope and hop strategies with 

the ability to  spawn more particles. 

The experimental results show that genericPS0 is more effective than bcspPSO because 

genericPS0 can explore more freely from its arithmetically computed particle positions and 

velocities rather than bcspPSO's vector-like operation. The genericPS0 algorithm tends to 

work better with consecutive CSP domains because of its continuous nature as indicated 

by its success rate of solving the P C  configuration problems and the n-queens problems. 

However, genericPS0 gets stuck at local optima quickly and is unable to escape from local 

optima. The zigzag movement alone improves the speed of the algorithm, but it does not 

improve the effectiveness very much. 

Using the proposed strategies, the continuous particle swarm algorithms are able to solve 

the test problems with both consecutive and non-consecutive domains. For example, once 

the swarm has confined to a local optimum, genericHop repairs constraint violation to con- 

tinue improving the solutions. genericHybrid also improves the performance of generzcPS0 

but not as much as genericHop improves, which we have discussed in Section 5.4.1.1. 

Implemented with the same strategies, the genericZzgxagHop-conflict algorithm is the 

only swarm that can compete with bcspZigxagHop. The genericZigzagHop7s efficiency tends 

to be more stable across different problems, but bcspZzgzagHop scales better on the sizes 

of the test problems. For example, bcspZzgxagHop outperforms genericZigxagHop-conflict 

in solving the largest problems in the Comparison phase and the all-diff phase. bc- 

spZzgxagHop's ability to restart the swarm besides the no-hope and hop strategy, may have 

contributed to its performance in solving these large problems. When we tried to reduce 

genericZzgxagHop's duration of no-hope cycle from nohope = 2500 to 1000 on problem 26.3, 

the experiment shows the potential to improve the algorithm by reducing its nohope count. 
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5.5.2.2 Discussion - the discrete PSOs 

According to the authors of [54] and [55], two binary encodings can be used to encode integers 

and they suggest that Gray encoding works better than Binary encoding. We implemented 

the discrete particle swarms with both encodings3' but we find that Gray encoding is not 

necessarily better than Binary encoding in the CSP context because CSP domains are not 

always consecutive over a range and they can be sparse as discussed in Section 4.2.1.2. 

The discrete particle swarms perform well on the PC configuration problems in For- 

mulation I and the n-queens problems; but, not being able to solve the test problems in 

Formulation I1 is a major drawback. Compared with the algorithms from the other PSO 

models, the effectiveness of the discrete algorithms greatly depends on the distribution of 

CSP domains. Since a discrete particle computes velocities and uses the velocities as proba- 

bility thresholds to change its position bit string, the distribution of the CSP domain values 

and the consistency across all domains are important as discussed in Section 4.2.1.2. The 

domains of the test problems in Formulation I and the n-queens problems are rather con- 

sistent and consecutive, so the discrete algorithms are able to solve those problems more 

effectively. 

As discussed in Section 3.3.3, each particle position in the Discrete model is a bit string 

of length xn if the domain value of a variable can be encoded in x bits. Regardless of the 

efficiency of the program implementation, the time complexity of the Discrete algorithms is 

x times of those of the continuous and BCSP algorithms for the same number of iterations. 

When the discrete particle swarms cannot solve a problem effectively and run up to the 

iteration limit, their total run time is high and inefficient. 

The binaryZzgzagHop algorithm improves binaryDiscrete's success rate the most among 

the discrete particle swarm algorithms in this research. In solving PC configuration problem 

set 10 and the n-queens problems, it performs better than genericZzgzagHop, but slightly less 

effective than bcspZzgzagHop. Similar to  the other discrete particle swarms, binaryzzgza- 

gHop could not solve any PC configuration test problems in Forinulation I1 because the 

distribution of the CSP domains is not suitable for the algorithm. 

3 9 ~ h e  algorithms with Binary encoding are binaryDiscrete, binaryZigzag, binaryHop and binaryZzgzagHop; 
and the algorithms with Gray encoding are grayDiscrete, grayzigzag and grayHop 
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Conclusion 

In this research, we developed a number of particle swarm algorithms to solve general n-ary 

integer constraint satisfaction problems (CSPs) based on three existing particle swarm opti- 

mization (PSO) approaches. Among these three PSOs, one of them was developed to solve 

binary constraint satisfaction problems (BCSP) but not general n-ary CSPs. Although stud- 

ies [80] show that it is possible to convert n-ary constraints to  equivalent binary constraints, 

not all n-ary CSPs are suitable to be converted to equivalent binary ones in terms of the 

complexity of the problems. A CSP can become easier or harder to solve after the conversion 

[102], depending on the nature of the constraints. In addition, the process of converting an 

n-ary CSP to its equivalent binary CSP can be complicated and, not all the conversions 

can be done properly and produce semantically equivalent representation [47, 1021. More- 

over, n-ary constraints provide a natural formulation for modelling real-world problems [86]. 

Thus, we did not limit our development for solving only binary CSPs. While developing the 

new particle swarm algorithms, we studied and modelled the relationship between the three 

PSOs and CSPs. 

The two original PSOs [53, 541 were not originally designed for solving CSPs, so we first 

presented a way for the particle swarms to  search through integer CSP domains. Extending 

the existing PSOs, we introduced algorithms appropriate for the CSP paradigm. For in- 

stance, some algorithms move the particles one dimension at a time in a zigzag style, which 

we have not seen before in the PSO research. With such movement, the particles can quickly 

step through the search space and evaluate more CSP assignments that differ only in some 

variables. Extending Schoofs and Naudts' no-hope and rehope mechanism [go] and CSP 

repair-based methods, we added a no-hope and hop technique to fix constraint violations 
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when the regular swarm stops improving the search. Both the zigzag movement and the 

no-hope and hop strategy outperform the original particle swarm algorithms in most of the 

test problems. 

To handle constraint satisfaction, we made use of the PSO optimization mechanism and 

used two objective functions: conflict count and distance estimation. The distance function 

works well for arithmetic constraints, but it is more expensive and less effective than the 

conflict count function for evaluating goodlists, badlists and price constraints. Thus, the 

conflict count function is better in the PC configuration problem and the distance function is 

better in the n-queens problems where no goodlist or badlist constraints are used. However, 

none of these two functions provide information good enough to  efficiently resolve n-ary 

constraints for large n. 

In addition to  developing the new particle swarm algorithms, we also used two different 

formulations to model a P C  configuration problem as our major test problems in the Python 

CSP framework [20]. The first formulation is based on Tam and Ma's web-based configu- 

ration research [104]. With this formulation, the problem is simpler but requires a larger 

amount of preprocessing effort to make the data consistent. In the second formulation, we 

utilize the arithmetic relations provided by the Python CSP framework [20] to describe the 

constraints. This formulation gives much greater flexibility in representing the problem and 

we can describe the problem in more detail. In addition, we implemented an 'OR' constraint 

to enhance the Python CSP framework. With this disjunctive constraint, we can make CSP 

representation more flexible and more expressive although harder to  solve. 

6.1 Summary of the Research Results 

In Section 5.5, we have discussed and answered the research questions based on the exper- 

imental results. From the results and discussions, we find that bcspZzgzagHop is the most 

promising algorithm among the algorithms in this research as it has an average of 64% suc- 

cess rate on a set of configuration test problems and 76.7% on the 10-queens problem. The 

genericZigzagHop algorithm performing competitively to  bcspZigzagHop with an average of 

67% success rate on the same set of configuration problems, has the potential for further 

improvement, although it is not as good as bcspZigzagHop on large problems. 
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6.2 Future Work 

Our research in developing particle swarm algorithms to solve general n-ary CSPs suggests 

many opportunities for future research. More thorough experimentation and more sophis- 

ticated n-ary constraint handling are needed. Other ideas for future research include: 

0 More intelligent repair methods can be used in the no-hope and hop strategy. For 

example, we can apply the min-conflict heuristic [65] to select a domain value. We have 

shown that random 'hops' improve the performance of the particle swarm algorithms. 

Applying more effective repair strategies, we may further enhance the algorithms. 

0 A better no-hope detection mechanism or more sophisticated diversity control as in 

[I151 may help. Some incomplete experiments suggest that the nohope count we 

used in the experiment may not necessarily provide the right information for the 

repair strategies to  take place. For instance, when we tried to reduce the duration 

of no-hope cycle of a particle swarm algorithm from nohope = 2500 to 1000, the 

experiment showed the potential for improving the results. 

0 The particles in the continuous and the discrete particle swarms only rely on the 

calculated velocities to update their positions. The BCSP particle swarms however, 

take constraint violation information into account for each variable. If a variable is not 

in conflict, a BCSP particle will not change its assignment to  the variable. This is one 

of the reasons that the BCSP particle swarm algorithms perform more effectively and 

efficiently than the algorithms of the other two PSOs. We may put the same strategy 

into the continuous and discrete particle swarm algorithms to prevent particles from 

wasting efforts to update variable assignments that are not in conflict. 

0 In most of the algorithms of this research, each swarm consists of same types of parti- 

cles, which all possess the same capability for solving CSPs. For example, in a zigza- 

gHop type particle swarm, all the particles feature zigzag movement and the no-hope 

and hop strategy. However, different types of particles may have different capabilities 

to contribute. It will be interesting to see what interactions and collaboration may 

occur among different types of particles. For example, we can try to put several zigzag 

particles and several particles who know how to 'hop' together in a system, instead 

of all particles featuring both strategies. As a related extension, it is also possible to 
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build a particle swarm system which is able to learn a given problem, find the most 

suitable particles, and adaptively adjust its settings to solve the problem. 

0 We mentioned that some experiments on several strategies were not completed ow- 

ing to time limitation. Some of these strategies, such as the piggy bank strategy 

and diversity control described in Section 4.2.2.4 and 4.2.2.5, may be worth further 

research. 

0 Developing a particle swarm visualization system [91, 261 may help us understand how 

the swarm searches through the CSP search space. We started a simple Zdimensional 

system, which only takes 2-variable problems. To develop a visualization system that 

can present an n-variable CSP, we need to resolve two major challenges. One is to  

represent an n-dimensional space using an x-y plane, and another is to visualize n-ary 

constraints. 

To be practical, the studies on the applicability of the algorithms should be done and 

several possible directions are: 

- In addition to a PC configuration problem, many real-world problems can be 

used such as scheduling problems, resource allocation, and so on. Also, taking 

an actual real-world sized problem can be useful too. 

- Applying the algorithms to the real-world problems, speed is an important issue. 

Our experiments were only limited to several sets of parameter settings. Research 

on tuning the parameter settings and improving the efficiency of the algorithms 

can be helpful. 

- Comparing particle swarm algorithms with other CSP algorithms is also an im- 

portant subject. 

0 Since PSO is able to start with any initial solutions and return a potential best solution 

so far at any time, we may further extend our research results to dynamic environment. 
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Algorithms and Examples 

A.l CSP Examples in Python CSP Framework 

# define var iab les :  
v  = var(1,  11) # i . e .  a  list of domain C1, 2, 3 ,  . . . 101 

# c rea te  a CSP: 
csp = problem(v) 

# add cons t ra in ts  
csp += even(v) 

Figure A.l: The warm-up example of Section 2.2.1 in the Python CSP framework. 

# def ine  var iab les :  
a ,  b, c  = var(1, 311, var(1,  311, var(1,  31) 

# crea te  a  CSP: 
csp = problem(a, b y  c) 

# add cons t ra in ts  
csp += a**2 + b**2 == c**2 

Figure A.2: The Pythagorean triple example of Section 2.2.2 in the Python CSP framework. 
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# crea te  a  CSP: 
q = [so, q1, 92, q3, q4, q5, q6, q71 
csp = problem(*q) 

# add cons t ra in ts  
csp += a l l -d i f f  (*q) 
f o r  i i n  xrange(8): 

f o r  j i n  xrange (8) : 
i f  i != j :  

csp += q[i]  - q[j] != abs ( j  - i )  

Figure A.3: &Queens problem of Section 2.2.3 in the Python CSP framework. 

Notation '*q7 is a feature of Python, for which one place a list of any number of variables as 
needed; for instance csp = problem(*q) is equivalent to csp = problem(q0, ql ,  q2, q3, q4, q5, 
q6, q7). 

# crea te  a  CSP: 
csp = problem(s, e ,  n ,  d ,  m ,  o ,  r ,  y) 

# add cons t ra in ts  
csp += a l l - d i f f ( s ,  e ,  n, d ,  m ,  0 ,  r ,  y) 
csp += 1000*s + lOO*e + 10*n + d +1000*m + 1OO*o + 1O*r + e \ 

== 10000*m + 1000*o + 1OO*n + 1O*e + y 

Figure A.4: The send-more-money puzzle of Section 2.2.4 in the Python CSP framework. 
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# define variables: 
# enumerate color red = 1, green = 2, blue = 3 
# range(l,4) render a list El ,2,3] 
RI, R2, R3 = var(range(l,4)), var(range(l,4)), var(range(l,4)) 
R4, R5 = var(range(l,4)), var(range(l,4)) 

# create a CSP: 
csp = problem(R1, R2, R3, R4, R5) 

# add constraints 
csp += R1 != R2 
csp += R1 != R4 
csp += R1 != R5 
csp += R2 != R3 
csp += R2 != R4 
csp += R3 != R4 
csp += R3 != R5 
csp += R4 != R5 

Figure A.5: The sample graph colouring problem of Section 2.2.5 in the Python CSP framework. 
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A.2 Swarm Algorithms 

PSO(problem, P, max-iter, cl , c:!, F )  
comments: for minimization 

1 gbest t initialized to some very big value 
2 t t o  
3 xi [t] t initialize particle's position 
4 ui [t] t initialize particle's velocity 
5 pbesti + initialized to some very big value 

while t < max-iter 
do for i t 1 to length[P] 

do eual t evaluate xi [t] with some objective function F 
comments: update pbesti and gbest if it is appropriate 
if eual < pbesti 

then pbesti +- eual 
xpbesti + xi [t] 

if eual < gbest 
then gbest t eual 

xgbest + X i  [t] 
t + t + l  
for i + 1 to length[P] 

do r l ,  r:! t random(), random() 
comments: calculate velocity 
ui [t] + ui [t - I ]  + rlcl (xpbesti - xi [t]) + r2c2 (xgbest - xi [ t ] )  
comments: update position 
X i  [t] + X i  [t - I ]  + Ui [t] 

return gbest, xgbest 

Figure A.6: Pseudocode of the continuous PSO with global best information [55] 

This pseudocode makes reference to page 296 in [55], but in more detail. Also, our goal is to 
find an minimum whereas the one in 1551 is to find a maximum. 
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~ ~ s c ~ ~ ~ ~ P S O ( p r o b l e m ,  P, dimension, max-zter, cl , c2, I?) 
comments: for minimization 

1 gbest + initialized to some very big value 
2 t + O  
3 xi [t] + initialize particle's position to some bitstring 
4 vi[t] + initialize particle's velocity 
5 pbesti t initialized to some very big value 

6 while t < max-iter 
7 do for i + 1 to length[P] 
8 do eval t evaluate xi[t] with some objective function F 

comments: update pbe& and gbest if it is appropriate 
9 if eval < pbesti 

10 then pbesti + eval 
11 xpbesti + xi [t] 
12 if eval < gbest 
13 then gbest + eval 
14 xgbest + xi [t] 

15 t t t + l  
16 for i t 1 to length[P] 
17 do for d t 1 to dimension 
18 do rl, 7-2 + random(), random() 

comments: calculate velocity 
19 vid [t] + Vid[t - 11 + rlcl (xpbestid - xid[t]) 

+~2~2(xgbe~ td  - ~id [ t ] )  
comments: update position 

20 if random() < sigmoid(-vij(t)) ## reference to [54, 551 
21 then xid [t] t 1 
22 else xid[t] t 0 
23 return gbest, xgbest 

Figure A.7: A pseudocode of a discrete version [54] of the PSO in Figure A.6 



APPENDIX A. ALGORITHMS AND EXAMPLES 

P S o ~ ~ ~ c S P ~ ( p r o b l e m ,  P ,  max-iter, c p ~ , c p z ,  deflection, noHope) 

randomly initialize the  particles 
initialize gbest, all lbest's and all pbest's, and xgbest, all xlbest's and all xpbest 
t c l  
while t < maximum number o f  iterations: 

do for i + 1 to population: 
do for j c 1 to n: 

do nbConf + conflict counts o f  x i j [ t  - 11 o f  particle Pi 
if nbConf > cpl: 

then v' + xpbestij BXij [t - 11 
else v' c xij  [t - 11 8 xij [t - 11 

if nbConf > cpz: 
then if random() < deflection: 

#comments: it was 'if deflection' in  [go]# 
then v" + Rand( j )  8 xi j[ t  - 11 
else v" c xgbestj 8 xij[t  - 11 

else v" +- xij [t - 11 8 X i j  [t - 11 
xij [t] + xij [t - 11 $ (v' 0 v") 

fitnessi + conflict counts in particle Pi 
if fitnessi < pbesti: 

then xpbesti, &sti +- xi ,  fitnessi 
if pbesti does not change for noHope times: 

then randomly initialize xi  
gbest, xgbest t update from pbest, xpbest 
lbest, xlbest t update from pbest, xpbest 
t + t + l  

return gbest, xgbest 

Figure A.8: Schoofs and Naudts' PSO for solving binary CSPs [go], named as bcspPSO in this 
research. 

It serves as the foundation of all algorithms derived from BCSP model in this research. 
gbest is the global best fitness, lbest keeps the local best fitness values of all swarm neigh- 
bourhoods, and pbest keeps the individual best fitness values of all particle. 
xgbest is the global best position, xlbest keeps the local best positions of all swarm neigh- 
bourhoods, and xpbest keeps the individual best positions of all particle. 
population is the number of particles of the swarm. 
cpl and cpz are some coefficients to determine that the velocity update relies more on global 
best experience or on individual best experience. 
R a n d ( j )  randomly returns a value from the domain D j .  
noHope is an upper bound defined for determining when there is no hope for the swarm to 
improve the solution and a no-hope mechanism should come in. 



APPENDIX A. ALGORITHMS AND EXAMPLES 

A.3 Particle Swarm Algorithms for Solving CSPs 

A.3.1 Local depth-first search: genericDFS 

In Section 4.2.2.7, we mentioned that we need to impose some control upon genericDFS 

when we combine a local depth-first search with genericPS0. 

Firstly, we divide all n CSP variables into several groups to keep the local DFS man- 

ageable. If there are enough1 variables to  be distributed among p particles, the n variables 

can be simply divided into p groups. Otherwise, we may permute the variables to produce 

p groups of variables such that no two groups are the same.' Each particle is assigned to  

a group of variables to perform a local DFS. The former case is straightforward, but the 

latter may require some explanation. For example, suppose we have a swarm of 9 particles 

to perform DFS on some best solution so far and the problem consists of 5 variables. There 

are obviously not enough variables to be distributed among the 9 particles, and so we per- 

mute the variables and group them as shown in Figure A.9. While the swarm is executing 

local DFS, each particle performs DFS only on the variables allocated to it (i.e. the DFS 

variables assigned to the particle) but not on the remaining non-DFS  variable^.^ For 

instance, while a particle is performing DFS on the DFS variables {var4, varg and varl) 

in Figure A.lO, the assignments of non-DFS variables remain the same. Since the size of a 

DFS variable group is limited e.g. 3 or 4 variables, the execution time can be manageable. 

We may use a graph colouring problem shown in Figure 2.5 to  illustrate how the system 

works. Five variables varl ,  varz, . . . , and varg correspond to the five regions R1, R2, . . . , 
and R5. For particles PI, P2, . . . , Pg to perform DFS, these 5 variables are arranged into 9 

different variable groups of size 3 as shown in Figure A.12. 

Besides randomly grouping the variables, we can also arrange the related variables to- 

gether to improve the effectiveness of the complete search. That is, if there exist a number 

of constraints among some variables, we should first consider putting these variables in a 

group by applying the variable ordering techniques discussed in Section 2.3.3.3. 

At least there are 2 to 3 variables per group but not too many so that the DFS can be meaningful and 
manageable. We set the DFS size to 3 variables in our experiments. 

2 ~ n  effect, we can minimize the chance of evaluating the same potential solution. Nevertheless, if we 
cannot avoid duplicates because of too many particles or too few variables, some overlaps may still be useful 
because the non-DFS variables for each particle may not necessarily have assigned to the same values as 
shown in Figure A.ll and ended up different solution states. 

3 ~ a c h  particle still evaluates the entire potential solution at each state to see if it finds some solution 
better in its local DFS. 
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Figure A.9: Distribute 5 variables to  9 particles for performing DFS 

5 variables cannot be distributed into 9 groups, so we may permute these 5 variables to produce 
at least 9 different permutations. Since we want each particle to take on 3 (DFS) variables, 
the first three variables of each permutation must be different so that no two particles are 
responsible for the same variables. 
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Figure A.lO: A particle performs depth-fist search on variable set {war4, wars, warl} 

While a particle is performing depth-first search on its DFS variables (var4,vars,varl), the 
values (vala and vals) of non-DFS variables remain. Whenever a state is generated, the particle 
evaluates the entire potential solution to see if it finds some solution better. If it does find a 
better solution, it updates the best solution so far gbest as a regular PSO. Then, it will continue 
DFS until the local DFS is completed. 

red blue red green 

val, 

Figure A.l l :  Different non-DFS variable values generate different assignments in a graph colouring. 

If we cannot avoid duplicates because of too many particles or too few variables, some overlaps 
may still be useful because the non-DFS variables for each particle may not necessarily have 
assigned to the same values and ended up with different solution states. 
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Figure A.12: Particles perform depth-first search in the graph colouring problem. 

Five variables v a n ,  varz, . . . , vars correspond to  the five regions R1, R2, . . . , R5 in Figure 2.5. 
For particles PI, P2, . . . , Pg t o  perform DFS, these 5 variables are arranged into 9 different 
variable groups of size 3. Typically, these "3-DFS variable" groups are all different. Each 
particle is assigned to  3 DFS variables and 2 non-DFS variables, and it is responsible for 
running DFS on the DFS variables as shown for particle Pg here. 



Appendix B 

PC Configuration Test Problems 

B. l  Formulation I 

B . l . l  The variables and the domains 

A collection of the enumerated values is the domain of that component variable. 

Table B. l :  Sample CPUs for varCp, 

Component specification 

AMD ATHLON 64 3000+ 2.0GHz S754 800fsb 
AMD Mobile ATHLON XP-M 2500+ 1.86GHz SOCKETA 266fsb 
INTEL PENTIUM 4 3.0GHz S478 800fsb 
AMD ATHLON 64 3200+ 2.2GHz S754 800fsb 
AMD ATHLON 64 3500+ 2.2GHz S939 2000fsb 
AMD SEMPRON 2500+ 1.75GHz SOCKETA 333fsb 
INTEL PENTIUM 4 2.8GHz S478 800fsb 
INTEL PENTIUM 4 3.0GHz S478 800fsb 
AMD ATHLON 64 2800+ 1.8GHz S754 1600fsb 
INTEL PENTIUM 4 3.2GHz S478 800fsb 

Enumeration 
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Table B.2: Sample RAMS for war,,, 

Component specification Enumeration 

SAMSUNG 512MB 184pin PC3200 0 
CORSAIR 1024MB 184pin PC3200 dual 1 
OCZ 512MB 184pin PC3200 2 
CORSAIR 1024MB 184pin PC3200 dual 3 
SAMSUNG 256MB 184pin PC3200 4 
KINGSTON 1024MB 184pin PC3200 dual 5 
OCZ 512MB 184pin PC3200 dual 6 
OCZ 1024MB 184pin PC3200 dual 7 
INFINEON 512MB 184pin PC3200 8 
KINGSTON 512MB 184pin PC3700 dual 9 

Table B.3: Sample motherboards for var,b 

Component specification Enum 

SOLTEK SOCKETA dual RAM 184pin (400,333,266)fsb, onboard, IDE, AGP, PCI, USB 0 
ASUS SOCKETA dual RAM 184pin (400)fsb, onboard, AGP, PCI, USB, WLAN, 1 
Firewire 
ASUS S754 184pin (800)fsb, onboard, IDE, AGP, PCI, USB, WLAN, Firewire 2 
ASUS S478 dual RAM 184pin (8007533,400)fsb, onboard, IDE, AGP, PCI, USB, WLAN 3 
SOLTEK S754 184pin (800)fsb, onboard, IDE, AGP, PCI, USB 4 
MSI S754 184pin ?fsb, onboard, IDE, AGP, PCI, USB, Firewire 5 
ASUS 5478 dual RAM 184pin (800,533,400)fsb, onboard, IDE, AGP, PCI, USB, WLAN, 6 
Firewire 
ASUS S754 184pin ?fsb, onboard, AGP, PCI, USB, Firewire 7 
ASROCK SOCKETA 184pin (333,266,200)fsb, onboard, IDE, AGP, PCI, USB 8 
ASUS SOCKETA 184pin (400,333,266,200)fsb, onboard, IDE, AGP, PCI, USB 9 

Table B.4: Sample VGAs for waruga 

Component specification Enumeration 

AT1 RADEON X800 256MB (VGA,DVI,TV)out 0 
MSI RADEON 9800 PRO 128MB (VGA,DVI,TV)out 1 
LEADTEK GEFORCE 6800 128MB (VGA,DVI,TV)out 2 
AT1 RADEON 9800 PRO 256MB (VGA,DVI,TV)out 3 
LEADTEK GEFORCE 6800 256MB (VGA,DVI,TV)out 4 
AT1 RADEON 9800 PRO 128MB (VGA,DVI,TV)out 5 
SAPPHIRE RADEON 9550 128MB (VGA,DVI,TV)out 6 
MSI GEFORCE 6800 Ultra 256MB (DV1,TV)out 7 
SAPPHIRE RADEON 9800 PRO 128MB (VGA,DVI,TV) 8 
BFG GEFORCE 6800 256MB (VGA,DVI,SV)out 9 
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Table B.5: Sample sound cards for var,,d 

Component specification Enumeration 

CREATIVE 0 
CREATIVE 1 
CREATIVE 2 
CREATIVE 3 
CHAINTECH 4 
M-AUDIO 5 
CREATIVE 6 
AOPEN 7 
M-AUDIO 8 
CREATIVE 9 

Table B.6: Sample NICs for var,i, 

Component specification Enumeration 

D-LINK (10,100)mbps PC1 0 
SMC (10,100)mbps PC1 1 
MICRONET (10,100,1000)mbps PC1 2 
INTEL (10,100,1000)mbps PC1 3 
D-LINK (10,100)mbps PCMCIA 4 
INTEL (1000)mbps PC1 5 
3COM (10,100)mbps PC1 6 
SURECOM (10,100)mbps PC1 7 
LINKSYS (10,100)mbps USB 8 
LINKSYS (10,100)mbps PC1 9 

Table B.7: Sample floppy drives for war f d d  

Component specification Enumeration 

MITSUMI BLACK 0 
MITSUMI IVORY 1 
Generic BLACK 2 
Generic IVORY 3 
SONY External BLACK 4 
SONY External BLACK 5 
ASUS IVORY 6 
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Table B.8: Sample hard drives for Varhdd 

Component specification Enumeration 

WD 200MB 7200rpm 8mb IDE 0 
SEAGATE 200MB 7200rpm 8mb IDE 1 
SEAGATE 200MB 7200rpm 8mb SATA 2 
SEAGATE 80MB 7200rpm 2mb IDE 3 
SEAGATE 120MB 7200rpm 8mb SATA,IDE 4 
SEAGATE 120MB 7200rpm 8mb IDE 5 
MAXTOR 80MB 7200rpm 2mb IDE 6 
WD 74MB lOOOOrpm 8mb SATA 7 
WD 36MB lOOOOrpm 8mb SATA 8 
WD 80MB 7200rpm 8mb IDE 9 

Table B.9: Sample CD-ROMs for var,d 

Component specification Enumeration 

LG IVORY r EIDE 
LITEON BLACK r EIDE 
LG BLACK r EIDE 
BENQ BEIGE r EIDE 
ASUS BLACK r EIDE 
SONY IVORY r EIDE 
ASUS GREY r EIDE 
LITEON IVORY r EIDE 
MSI IVORY r EIDE 
AOPEN WHITE r EIDE 
LG WHITE r+w EIDE 
LITEON IVORY r+w EIDE 
LG BLACK r+w EIDE 
TOSHIBA BEIGE r+w EIDE 
LG BLACK r+w+dvd EIDE 
BENQ BEIGE r+w EIDE 
LG IVORY r+w+dvd EIDE 
LITEON BLACK r+w EIDE 
SONY WHITE r+w EIDE 
LITEON BEIGE r+w+dvd EIDE 
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Table B.lO: Sample power supplies for Varpower 

Component specification Enumeration 

THERMALTAKE 420w 12V ATX PSI2 0 
OCZ 520w 12V ATX PSI2 1 
ANTEC 480w 12V ATX PSI2 2 
ENERMAX 350w 12V ATX PSI2 3 
SPARKLE 300w 12V ATX PSI2 4 
generic 350w 12V ATX PSI2 5 
ANTEC 430w 12V ATX PSI2 6 
ANTEC 480w 12V ATX PSI2 7 
ULTRA 500w 12V ATX PSI2 8 
ANTEC 550w 12V ATX PSI2 9 

Table B. l l :  Sample casings for vartowe, 

Component specification Enumeration 

ANTEC BLACK ATX 380w, 5.25,3.5,USB,Firewire 0 
ANTEC BLACK ATX 350w, 5.25,3.5,USB,PS/2 1 
TSUNAMI IVORY ATX 400w, 5.25,3.5,USB 2 
RAIDMAX BLACK ATX 420w, 5.25,3.5 3 
ANTEC SILVER ATX no, 5.25,3.5,USB 4 
ANTEC silver+black MicroATX 300w, 5.25,3.5,USB,Firewire 5 
ASPIRE black,silver,blue,green,yellow ATX 350w, 5.25,3.5,USB 6 
NGEAR BLACK+SILVER ATX 350w, 5.25,3.5 7 
ANTEC BRONZE ATX 300w, 5.25,3.5,USB,PS/2 8 
NGEAR BEIGE ATX 350w, 5.25,3.5,USB 9 

Table B.12: Sample mice for varmoUse 

Component specification Enumeration 

LOGITECH USB RED optical 0 
LOGITECH USB,PS/2 BLUE,RED,SILVER wireless 1 
LOGITECH optical wireless 2 
LOGITECH USB,PS/2 BLUE+SILVER optical 3 
LOGITECH USB,PS/2 SILVER+BLACK optical 4 
LOGITECH USB,PS/2 SILVER+BLACK optical 5 
LOGITECH USB,PS/2 WHITE optical 6 
MICROSOFT USB SILVER+BLACK 7 
QTRONIX USB,PS/2 SILVER+BLACK optical 8 
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Table B.13: Sample monitors for war,,, 

Component specification 

SAMSUNG 17 crt 1280x1024 IVORY D-Sub 
SAMSUNG 17 crt 1280x1024 SILVER+BLACK D-Sub 
LG 17 crt 1280x1024 BLACK D-Sub 
LG 17 crt 1280x1024 WHITE D-Sub 
LG 17 crt 1280x1024 IVORY D-Sub 
VIEWSONIC 17 crt 1280x1024 SILVER+BLACK D-Sub 
VIEWSONIC 17 crt 1280x1024 BLACK D-Sub 
NEC 17 crt 1280x1024 WHITE D-Sub 
VIEWSONIC 17 crt 1280x1024 WHITE D-Sub 
VIEWSONIC 17 crt 1920x1440 IVORY D-Sub 
SAMSUNG 19 crt 1600x1200 WHITE D-Sub 
MITSUBISHI 19 crt 1920x1440 BLACK D-Sub 
VIEWSONIC 19 crt 2048x1536 BLACK D-Sub 
VIEWSONIC 19 crt 1600x1200 BLACK D-Sub 
LG 19 crt 2048x1536 IVORY D-Sub 
SAMSUNG 19 crt 1600x1200 BLACK+SILVER D-Sub 
AOC 19 crt 1600x1200 WHITE D-Sub 
SAMSUNG 19 crt 1920x1440 SILVER D-Sub 
VIEWSONIC 19 crt 2048x1536 WHITE D-Sub 
VIEWSONIC 19 crt 1600x1200 IVORY D-Sub 
BENQ 19 lcd 1280x1024 SILVER+BLACK D-Sub,DVI 
BENQ 17 lcd 1280x1024 SILVER+BLACK D-Sub,DVI 
BENQ 17 lcd 1280x1024 SILVER+BLACK D-Sub,DVI 
BENQ 15 lcd 1024x768 BLACK+SILVER D-Sub,DVI 
BENQ 17 lcd 1280x1024 BLACK+SILVER D-Sub,DVI 
VIEWSONIC 15 lcd 1024x768 SILVER+BLACK D-Sub,DVI 
SAMSUNG 19 lcd 1280x1024 BLACK D-Sub,DVI 
SAMSUNG 17 lcd 1280x1024 SILVER D-Sub,DVI 
SAMSUNG 17 lcd 1280x1024 BLACK D-Sub,DVI 
LG 17 lcd 1280x1024 SILVER D-Sub.DVI 

Enumeration 
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Table B.14: Sample printers for var,,t 

Component specification Enumeration 

CANON 4800x1200 Parallel,USB,DPP color 0 
CANON 4800x1200 USB,DPP color 1 
CANON 4800x1200 USB color 2 
CANON 4800x1200 Parallel,USB,DPP color 3 
LEXMARK 4800x1200 USB color 4 
EPSON 5760x1440 USB color 5 
EPSON 5760x1440 Paralle1,USB color 6 
CANON 4800x1200 USB color 7 
HP 4800x1200 USB color 8 
HP 4800x1200 color 9 
BROTHER 1200x600 Paralle1,USB laser b/w 10 
SAMSUNG 600x600 Paralle1,USB laser b/w 11 
SAMSUNG 1200 Paralle1,USB laser color 12 
HP laser color 13 
SAMSUNG 1200x600 Paralle1,USB laser b/w 14 
SAMSUNG 1200 Paralle1,USB laser b/w 15 
LEXMARK 600 Paralle1,USB laser b/w 16 
OKIDATA 1200x600 Parallel,USB,LAN laser color 17 
BROTHER 600x600 Paralle1,USB laser b/w 18 

Table B.15: Sample keyboards for varkb 

Component specification Enumeration 

ITRON BLACK PSI2 0 
LOGITECH BLACK USB,PS/2 kb+mouse wireless 1 
BENQ BLACK 2 
MICROSOFT IVORY kb+mouse 3 
EAGLE TOUCH SILVER+BLACK USB,PS/2 4 
ELUMINX BLACK+BLUE PSI2 5 
IONE BLACK USB,PS/2 6 
ZIPPY SILVER+BLUE USB 7 
LOGITECH BLACK USB,PS/2 8 
TSUNAMI BLACK PSI2 kb+mouse 9 
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B. 1.2 The constraints 

Table B.16: PC connection constraints in Formulation I. 

I power supply is optional 
( ~ a r , , ~ , ,  ~ a r , ~ , ~ )  I a monitor connector must be supported by a VGA 

Constraint variables 

(varcpu, varmb) 

(varrnb, varrarn) 

(varrnb,uarvga) 

(varmb varsnd) 

(uarmb, varnic) 

(varrnb, uarfdd) 
(varmb, varhdd) 
(varmb, varui) 
(varrnb, vartower) 
(uartower varpower ) 

Description 

CPU socket must fit on a motherboard (MB), and fsb 
should be compatible 
memory pins and the slots on a MB have to match; if RAM 
is a dual RAM, a motherboard must support it 
if a MB has a video chip onboard, a VGA is optional; if a 
VGA is to use, the interface must be supported 
if a MB has a sound chip, a sound card is optional; if a 
sound card is to use, the interface must be supported 
if a MB has a network chip, an NIC is optional; if an NIC 
is to use, the interface must be supported 
the connection interface must be supported by a MB 
the connection interface must be supported by a MB 
the connection interface must be supported by a MB 
a motherboard formation factor must be consistent 
if the tower case includes a power supply, an additional 

B. 1.3 Description for Formulation I test problems 

B.1.3.1 Problem 10.3 

The is the base problem of problem set 10. It has 14 variables and 14 conilection constraints 

among the variables. The domain size of each variable is at least 10 on average and several 

variables have 30 to 40 samples. A list of constraints is shown in Table B.16. The search 

space is 1,006,236,000,000,000 = 1.01 x 1015. 

(varpTt, varmb, vartower) 
(varkb, varmb, vartower) 
( ~ a ~ r n o u ~ ~ ,  Varmb, ~ a r ~ ~ ~ ~ ~ )  
(uarcpu, varrarn, varrnb, 

a printer connector must be supported by a MB or a tower 
a KB connector must be supported by a MB or a tower 
a mouse connector must be supported by a MB or a tower 
total price must be smaller than or equal to the budget 
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B.1.3.2 Problem 10.40 

Based on problem 10.3, an ext-color constraint is added and everything else stays the 

same. The ext-color constraint enforces the colors of casing, floppy disk drive, CD-ROM, 

monitor, keyboard and mouse to be consistent. For example, they must all be: 

('BLACK', 'BRONZE', 'BLACK/SILVER' ), or 

('SILVER), 'GREY),  ' SILVER/BLACK)), or 

each tuple represents a set of compatible colors. 

B.1.3.3 Problem 10.41 

Based on problem 10.40, this problem takes user's budget into account and adds two 14-ary 

price constraints. These two price constraints define an upper bound and a lower bound of 

the budget: ' UPPERprice (items, 1800) ) and ' LOWERprice (items, 1500) ' respectively. 

B.1.3.4 Problem 10.53 

Based on problem 10.3, we add a price constraint 'UPPERprice(items, 750) '. The price 

constraint is harder than those in problem 10.41. 

B.1.3.5 Problem 10.55 

This problem is designed to  compare the result with problem 10.53. The only difference 

between these two problems is that the search space here is ordered; i.e. each set of domain 

is arranged in the order of item prices. 

B.1.3.6 Problem 10.62 

Based on problem 10.3, we add a price constraint ' UPPERprice (items, 500) ' , which makes 

the problem no solution. This problem test only those algorithms using distance objective 

function. For this problem, the distance objective function is modified so that the evaluation 

of the price constraint returns some value smaller than 1 and greater or equal to  0. The test 

result will be accepted as soon as all constraints are satisfied, except for the price constraint. 
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B.1.3.7 Problem 10.64 

This problem is designed to compare the result with problem 10.62. The only difference 

between these two problems is that the search space here is ordered; i.e. each set of domain 

is arranged in the order of it,em prices. Like problem 10.62, this is to test those algorithms 

using distance objective function. 

B.2 Formulation I1 

B.2.1 The variables and the domains 

Table B.17: Sample values of CPU specifications and the enumerated domain. 

Enum cpubrand CPUrnodel CPUclock CPUsocket CPU f sb 

0 ATHLON 1.75 S478 266 
1 AMD Mobile ATHLON 1.8 S754 333 
2 INTEL PENTIUM 1.86 S939 800 
3 SEMPRON 2.0 SOCKETA 1600 
4 2.2 2000 
5 2.8 
6 3.0 
7 3.2 

The rows in the table do not represent a product, but the enumerated values. For example, 
AMD of CPUb~and is 1, ATHLON of p u m o d e l  is 0, PENTIUM of p u m o d e l  is 2, SOCKETA of 
CP%ocket is 3, etc. 
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Table B.18: Sample values of RAM specifications and the enumerated domain. 

Enum T a m b r a n d  T a m p i n  T a m M B  T a m d u a l  

0 184 256 False 
1 512 True 
2 1024 
3 SAMSUNG 
4 CORSAIR 
5 OCZ 
6 KINGSTON 
7 INFINEON 

Variable r a m M ~  represents the capacity of a RAM. The rows in the table do not represent a 
product, but the enumerated values. For example, KINGSTON of rambrand is 6, 512MB of 
r a m M B  is 1, etc. 

Table B.19: Sample values of motherboard specifications and the enumerated domain. 

Enum mbbrand mbsOcket m b f o r ,  Onboard1 m b P i ,  Drv/Slots/Dua12 m b f s b  

0 S478 ATX False 184 False 200 
1 S754 True 
2 
3 SocketA 
4 
5 
6 
7 
8 SOLTEK 
9 ASUS 
10 MSI 
11 ASROCK 

True 266 
333 
400 
533 
800 

Variable m b f o r ,  represents the formfactor of a motherboard. 'LOnboard" includes NIC and 
Soundcard, "Drv" includes IDE or SATA and "Slots" include AGP, IDE, PCI, USB. The rows 
in the table do not represent a product, but the enumerated values. For example, ASUS of 
mbbrand is 9, S478 of mb30ck,t is 0, True of Onboard for mbSnd and mbni ,  is 1, etc. 

1. Combinations of m b S n d  and mbnic  
2. Combinations of m b r o ~ ,  ~ ~ S A T A ,  ~ ~ A G P ,  m b p c r ,  m b u s ~  and mbdUal 
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Table B.20: Sample values of VGA specifications and the enumerated domain. 

Enum vgabrand vgamodel vga f ace vgaDV I V P T V  VgaV GA 

0 GEFORCE AGP False False False 
1 RADEON True True True 
2 PC1 
10 MSI 
12 AT1 
13 LEADTEK 
14 SAPPHIRE 
15 BFG 

Variable vgaf,,, represents the interface of a VGA card, and v g a o v r ,  vgaTv  and v g a v c a  are 
the connectors of a VGA card. The rows in the table do not represent a product, but the 
enumerated values. For example, AT1 of vgabrand is 12, AGP of vga,,d,l is 0, etc. 

Table B.21: Sample values of sound card specifications and the enumerated domain. 

Enum sndbrand ~ n d f a c e  

0 Dummy 
2 PC1 
16 CREATIVE 
17 CHAINTECH 
18 M-AUDIO 
19 AOPEN 

Variable sndface represents the interface of a sound card. "Dummy sound card" is used when 
sound card is optional. The rows in the table do not represent a product, but the enumerated 
values. For example, CREATIVE of sndbrand is 16, PC1 of s n d f  ,,, is 2, etc. 
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Table B.22: Sample values of NIC specifications and the enumerated domain. 

Enum nicbrand ni~f ace n ~ ~ w i r e l e s s  

0 Dummy False 
1 True 
2 INTEL PC1 
3 USB 
4 PCMCIA 
20 D-LINK 
21 SMC 
22 MICRONET 
23 3COM 
24 SURECOM 
25 LINKSYS 

Variable nicrace represents the interface of a network card. "Dummy network card" is used 
when network card is optional. The rows in the table do not represent a product, but the 
enumerated values. For example, LINKSYS of nicbrand is 25, False of nicwireleSs is 0, etc. 

Table B.23: Sample values of floppy drive specifications and the enumerated domain. 

Enum f ddbrand f ddcolor f ddez t  f ddf ace 

0 False IDE 
1 BLACK True 
2 IVORY USB 
9 ASUS 
26 MITSUMI 
27 Generic 
28 SONY 

Variable fddfac, represents the interface of a floppy drive, and fddeZt indicates whether a 
floppy drive is external or not. The rows in the table do not represent a product, but the 
enumerated values. For example, SONY of fddbrand is 28, IDE of fddfac, is 0, etc. 
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Table B.24: Sample values of hard drive specifications and the enumerated domain. 

Enum hddbrand h d d ~ ~  hddext hdd face  hddrpm 

0 36 False IDE 7200 
1 74 True SATA 10000 
2 80 
3 120 
4 200 

29 WD 
30 SEAGATE 
31 MAXTOR 

Variable hddfa,, represents the interface of a hard drive and h d d ~ ~  is the capacity of a hard 
drive in Megabyte. The rows in the table do not represent a product, but the enumerated 
values. For example, SEAGATE of hddbrand is 30, 120MB of h d d ~ ~  is 3, etc. 

Table B.25: Sample values of CD-ROM specifications and the enumerated domain. 

I Enum cdbrand cdcolor cdext cdface cdzurt 

0 False IDE False 
1 BLACK True True 
2 IVORY 
3 BEIGE 
4 GREY 
5 WHITE 
9 ASUS 
10 MSI 
19 AOPEN 
28 SONY 
32 LG 
33 LITEON 
34 BENQ 
35 TOSHIBA 

Variable cdf,,, represents the interface of a CD-ROM drive and cdwrt indicates whether the 
CD-ROM drive is a writer or not. The rows in the table do not represent a product, but the 
enumerated values. For example, TOSHIBA of Cdbrand is 35, BLACK of cd,,l,, is 1, True of 
cdWrt is 1, etc. 
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Table B.26: Sample values of power supply specifications and the enumerated domain. 

Enum powerbrand Powerwatts 

0 DUMMY 0 
1 300 

2 350 
3 420 
4 430 
5 OCZ 480 
6 500 
7 520 
8 550 
39 THERMALTAKE 
40 ANTEC 
41 ENERMAX 
42 SPARKLE 
43 generic 
44 ULTRA 

"Dummy power supply" is used when power supply is optional. The rows in the table do not 
represent a product, but the enumerated values. For example, ANTEC of powerb,,,d is 40, 
340w of powerwatt, is 2, etc. 
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Table B.27: Sample values of tower case specifications and the enumerated domain. 

Enum towerb,,,d tower fo,, towerpowe, towerpg t o w e r ~ s ~  towerwatt, tozuercolo, 

0 ATX None False False 0 

ANTEC 
TSUNAMI 
RAIDMAX 
ASPIRE 

MicroATX ATX True True 300 
350 
380 
400 
420 

BLACK 
IVORY 
BEIGE 

SILVER 
SIB 
BLUE 
GREEN 
YELLOW 
B/S 
BRONZE 

48 NGEAR 

The rows in the table do not represent a product, but the enumerated values. For example, 
NGEAR of towerb,,,d is 48, SILVER of towercolo, is 7, etc. Color 'SIB' means silverlblack 
and 'B/S' means black/silver 
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B.2.2 The constraints 

B.2.2.1 Component constraints 

Table B.28: Sample CPUs in good tuples-component constraint "GOODcpu" 

2) for brand, 

Table B.29: Sample RAMS in good tuples-component constraint "GOODram". 

RAM# Specification 

0 (3, 0, 1, 0) 
1 (4, 0, 2, 1) 

2 (5, 0, 1, 0) 
3 (4, 0, 2, 1) 
4 (3, 0, 0, 0) 
5 (6, 0, 2, 1) 
6 (5, 0, 1, 1) 
7 (5, 0, 2, 1) 
8 (7, 0, 1, 0) 
9 (6, 0, 1, 1) 
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Table B.30: Sample motherboards in good tuples-component constraint "GOODmb". 

The sample motherboards (mb) in order of brand, socket, form factor, NIC, sound card, pin, 
drvlDE, drvSATA, AGP, IDE, PCI, USB, dual type and fsb are the following. Because of 
the multiple supported fsb, there can be multiple entries for some motherboard. 
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Table B.31: Sample VGAs in good tuples-component constraint "GOODvga". 

Table B.32: Sample sound cards in good tuples-component constraint "GOODsndn 
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Table B.33: Sample network cards in good tuples-component constraint "GOODnic" . 

Table B.34: Sample floppy drives in good tuples-component constraint LLGOODfdd" 

FDD# Specification 

0 (26, 1, 0, 0) 
1 (26, 2, 0, 0) 
2 (27, 1, 0, 0) 
3 (27, 21 0, 0) 
4 (28, 1, 0, 0) 
5 (28, 1, 1, 3) 
6 (9, 2, 1, 3) 
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Table B.35: Sample hard drives in good tuples-component constraint "GOODhdd". 

Table B.36: Sample CD-ROM drives in good tuples-component constraint "GOODcd". 

CD# Specification 

0 (32, 2, 0, 1, 0) 
1 (33, 1, 0, 1, 0) 
2 (32, 1, 0, 1, 0) 
3 (24, 3, 0, 1, 0) 
4 (9, 2, 0, 1, 0) 
5 (28, 3, 0, 1, 0) 
6 (9, 4, 0, 1, 0) 
7 (33, 2, 0, 1, 0) 
8 (10, 2, 0, 1, 0) 
9 (19, 5, 0, 1, 0) 
10 (32, 5, 0, 1, 1) 
11 (33, 2, 0, 1, 1) 
12 (32, 1, 0, 1, 1) 
13 (35, 3, 0, 1, I )  
14 (32, 1, 0, 1, 1) 
15 (34, 3, 0, 1, 1) 
16 (32, 2, 0, 1, 1) 
17 (33, 1, 0, 1, 1) 
18 (28, 5, 0, 1, 1) 
19 (33, 3, 0, 1, 1) 
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Table B.37: Sample power supplies in good tuples-component constraint LLGOODpower". 

Power# Specification 

0 (0, 0) 
1 (39, 3) 
2 (5, 7) 
3 (40, 5) 
4 (41, 2) 
5 (42, 1) 
6 (43, 2) 
7 (40, 4) 
8 (40, 5) 
9 (44, 6) 
10 (40, 8) 

Table B.38: Sample tower cases in good tuples-component constraint "GOODtower" 
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B.2.2.2 Connection constraints 

Table B.39: Sample PC connection constraints in Formulation 11. 

Constraint expression 

VGA-f ace < 4 and 

((((VGA-face+l) 

* (MB-AGP + MB-PcI*IOO)) 

/ lO**VGA-face) % 10) > 0 

SND-face < 4 and 

((((SND-face+l) * (MB-PCI*lOO)) 
/ lO**SND-face) % 10) > 0 

(NIC-brand != 0) I (MB-nic != 0) 

NIC-face < 4 and 

((((NIC-face+l) * (MB-PCI*lOO)) 
/ lO**NIC-face) % 10) > 0 

FDD-face < 3 and 

((((FDD-face+l) * (MB-drvIDE 
+ MB-IDE + MB-USB*lOO)) 

/ lO**FDD-face) % 10) > 0 

HDD-face < 3 and 

((((HDD-face+l) * (MB-drvIDE 
+ MB-IDE + MB-drvSATA*lO 

+ MB-USB*lOO) ) / lO**HDD-f ace) 

% 10) > 0 

CD-f ace < 3 and 

( ( ( (CD-f ace+l) * (MB-drvIDE + MB-IDE 
+ MB-drvSATA*lO + MB-USB*lOO)) 

/ lO**CD-face) % 10) > 0 

(TOWER-power != 0) 

I (POWER-brand != 0) 

Description 

CPU socket must fit on a motherboard 

CPU fsb should be compatible 

Memory pins and the slots on a MB have to match 

If RAM is dual, a motherboard must support it 

If a VGA is used, the interface must be supported 

If a MB has a sound chip, a sound card is optional 

If sound card is used, interface must be supported 

If a MB has a network chip, an NIC is optional 

If an NIC is used, the interface must be supported 

The interface must be supported by a MB 

The interface must be supported by a MB 

The interface must be supported by a MB 

If the tower case includes a power supply, 

an additional power supply is optional 



APPENDIX B. P C  CONFIGURATION TEST PROBLEMS 

B.2.2.3 User constraints 

Table B.40: Sample PC user constraints in Formulation 11. 

B.2.3 Description for Formulation I1 test problems 

B.2.3.1 Problem set 20 - problem 20.3. 

These problems are the simplest set of problems in Formulation 11. Problem 20.3 is a base 

problem that includes 32 variables, 8 component constraints and 12 arithmetic connections. 

The variables are listed in Table B.41 and the size of the domains varies from 2 to 20. Sample 

component constraints are listed in Table B.28 to Table B.38, and connection constraints 

are included in Table B.39. The search space is 98,099,527,680,000,000 z 9.81 x 1016. 

Constraint expression 

UPPERprice (1800) 
LOWERprice (1500) 
FDD-external == 1 
CD-writer != 1 

Table B.41: CSP variables of problem set 20. 

Description 

budget upper bound $1800 
price lower bound $1500 
want to have an external floppy drive 
do not want a DVD writer 

Component 
variables 

CPU 
r a m  
m b  

v9a 
f dd 
hdd 
power 
tower 

Specification 
variables 

CPUsocket CPU f sb 

Tampin Tamdual 
mbsocket, m b d r v ~ ~ ~ ,  m b d r v ~ ~ ~ ~ ,  mbf orm, mbpin, 
~ ~ A G P ,  ~ ~ Z D E ,  ~ ~ P C Z ,  mbi7s~, mbdual, mbfsb 
vgainter f ace 

f ddco~or f ddinter face, f ddezterna~ 
hddinter f ace 

Power w att s 

towerco~or tower f orm towerwatts 
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B.2.3.2 Problem set 21 - problem 21.3. 

This set of problems are composed of 36 variables, 8 component constraints and 12 arith- 

metic connections. The variables are listed in Table B.42 and the sizes of the domains are 

between 2 to 20. Sample component constraints are listed in Table B.28 to Table B.38, 

and connection constraints are included in Table B.39. The size of the search space is 

5,885,971,660,800,000,000 = 5.89 x 1018. 

Table B.42: CSP variables of problem set 21. 

variables 

CPU 
ram 
mb 

u9a 
f dd 
hdd 
power 
tower 

B.2.3.3 Problem set 22 - problem 22.3. 

The size of this set of problems becomes 46, and the base problem 22.3 contains 9 component 

constraints and 14 arithmetic connections. The variables are listed in Table B.43 and the 

sizes of the domains are between 2 to 20. Sample component constraints are listed in 

Table B.28 to Table B.38, and connection constraints are included in Table B.39. Its search 

space is 361,634,098,839,552,000,000,000 = 3.62 x 



APPENDIX B. P C  CONFIGURATION TEST PROBLEMS 

Component 
variables 

CPU 

ram 
mb 

fdd 
hdd 
cd 
power 
tower 

Table B.43: CSP variables of problem set 22. 

- -- 

Specification 
variables 

ugamodel, Ugainter f ace 

f ddcolor f ddinterface , f ddezternal 
hddinter face , hddexternal hddmb, hddcache hddrpm 
cdcolor cdinter f ace, cdexternal, cdwriter 
Powerwatts 
 tower,,^,, towerform, towerpsl2, toweruss ,  towerwatts 

Problem set 23 - problem 23.3. 

The problem size is 51 and the variables are listed in Table B.44. The number of constraints 

of the base problem 23.3 is the same as problem 22.3. Sample component constraints are 

listed in Table B.28 to Table B.38, and connection constraints are included in Table B.39. 

The search space is 11,572,291,162,865,664,000,000,000 % 1.16 x 

Table B.44: CSP variables of problem set 23. 

Component 
variables 

CPU 

r a m  
mb 

U P  

f dd 
hdd 
cd 
power 
tower 

Specification 

ugamodel, ugainter f ace 

f ddcolor f ddinterface, f ddexternal 
hddinterface hddezternal, hddmb hddcache , hddrpm 
cdcolor cdinter f ace, cdexternal cdwriter 
Powerwatts 
 tower,,^,, towerform, towerps12, t o w e r ~ s ~ ,  towerwatts 
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B.2.3.5 Problem set 24 - problem 24.3. 

The base problem consists of 58 variables, 11 component constraints and 20 arithmetic 

connections. The variables are listed in Table B.45, sample component constraints are 

listed in Table B.28 to Table B.38, and connection constraints are included in Table B.39. 

The space becomes 336,059,335,369,618,882,560,000,000,000 % 3.36 x lo2' 

Table B.45: CSP variables of problem set 24. 

Component 
variables 

CPU 
ram 
mb 

'"g a 
snd 
nic 
f dd 
hdd 
cd 
power 
tower 

Specification 
variables 

CPUmodel, cpusocket, CPU f sb 

rampin, rammb, ramdual 
mbsocket, m b d r v ~ ~ ~ ,  m b d r v s ~ ~ ~ ,  mbsndonboard, mbniconboard, 
mbform, mbpin, ~ ~ A G P ,  ~ ~ I D E ,  ~ ~ P C I ,  ~ ~ U S B ,  mbdual, mbf sb 

vgamodel, Vgainterface, VgaDVI, VgaTV, VgaVGA 
sndbrand sndinter f ace 

nicband, nicinter f ace, n i~wi re l e s s  

f ddcolor f ddinterface, f ddexternal 
hddinter ace, hddezternal hddmb, hddcache, hddrprn 
cdcolor cdinter f ace, cdexternal , cdwriter 
Powerwatts 
towercolor, tower form, t o w e r p ~ / ~ ,  t o w e r u s ~ ,  towerwatts 

B.2.3.6 Problem set 25 - problem 25.3. 

There are 59 variables for this set of problems and they are listed in Table B.46. Its search 

space is slightly increased to 672,118,670,739,237,765,120,000,000,000 % 6.72 x lo2'. The 

base problem 25.3 contains 11 component constraints and 20 arithmetic connections. Sample 

component constraints are listed in Table B.28 to  Table B.38, and connection constraints 

are included in Table B.39. 

B.2.3.6.1 Problem 25.43. Based on the base problem 25.3, several user constraints 

are added to the problem: ramMB, fddExt,  cdDvd and cdwriter.  

ramMB > 512MB defines the size of the RAM to be greater than or equal to  512MB. 
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Component 
variables 

CPU 
ram 
mb 

vga 
snd 
nic 
f dd 
hdd 
cd 
power 
tower 

Table B.46: CSP variables of problem set 25. 

Specification 
variables 

Cpurnodel, Cpusocket CPu f s b  

rampin, rammb, ramdual 
mbsocket m b d r v ~ ~ ~  , m b d r v s ~ ~ ~ ,  mbsndonboard mbniconboard, 
mbjorm, mbpin, ~ ~ A G P ,  ~ ~ Z D E ,  ~ ~ P C I ,  ~ ~ U S B ,  mbd~al, mbfsb 
Vgamodel Vgainter face VgaDVI, VgaTV, VgaVGA 
sndbrand ~ndinter face 

ni~brand nicinter face ni~wireless 
f ddcolor f ddinter face, f ddexternal 
hddinter f ace hddezternal hddmb, hddcache hddrpm 
cdcolor, cdinter face, cdexternal cdwriter ~ddvd 
Powerwatts 
towercol,, towerform, t o w e r p ~ / ~ ,  tower us^, towerwatts 

fddExt f ddexternal != hddezternal == ~d~~~~~~~~ for that if floppy disk drive 

external model, hard drive and CD-ROM must be internal; or vice versa. 

cdDvd = 1 demands a DVD driver, rather than a CD-ROM. 

cdWriter = 1 demands only a writer, not a reader. 

B.2.3.6.2 Problem 25.47. In addition to the constraints added to problem 25.43, some 

additional user constraints are added to this problem: hddcapacity, vgaModel, onboard 

and ext-color. 

hddcapacity > 120GB defines the capacity of the hard drive to be greater than or 

equal to 120GB. 

vgaModel = 'RADEON' requires the video card model to be 'RADEON'. 

onboard (mbsndunboard == mbniconboard == 0) I (mbsndonboard != 0 != mbniconboard) 

defines either both sound card and network card are built in on motherboard or neither 

of them built in on motherboard. 

ext-color enforces the colors of casing, floppy disk drive and CD-ROM to be con- 

sistent. For example, they must all be ( 'BLACK',  'BRONZE', 'BLACK/SILVERJ ), or 
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( ' SILVER', 'GREY', ' SILVER/BLACK' ), or ('WHITE), ' I V O R Y ) ,  'BEIGE)) ,  and each 

tuple represents compatible colors. 

B.2.3.6.3 Problem 25.50. This problem is built on top of problem 25.47. A few user 

constraints are added: powerwatts, colorBlack and the price constraints UPPERprice and 

LOWERprice. 

0 powerwatts >= 350 I towerwatts >= 350 requires the power of the power supplies 

must be greater than or equal to  350 watts. 

0 colorBlack (fddcoloT != t o ~ e r , , ~ ~ ~  == cdcol,) requests the casing and the CD-ROM 

must be the same color, but the color of the floppy drive must be different. 

0 UPPERprice <= 1800 defines price constraint upper bound. 

0 LOWERprice >= 1500 defines price constraint lower bound. 

B.2.3.6.4 Problem 25.53. Similar to  problem 10.53 in problem set 10 (Formulation I), 

this problem is defined to be harder than problem 25.50 with a harder price constraint upper 

bound ' UPPERprice (items, 750) ' . The variables and the other constraints are exact same 

as problem 25.3. 

B.2.3.6.5 Problem 25.55. This problem is designed to compare the result with prob- 

lem 25.53. The only difference is the search space of this problem is ordered; i.e. each set 

of domain is arranged in the order of item price. 

B.2.3.6.6 Problem 25.62. Based on the base problem 25.3, an additional price con- 

straint ' UPPERprice (items, 500) ' is added to make the problem no solution. This prob- 

lem is meant to test those algorithms with distance objective function. For this problem, the 

distance objective function is modified in a way that the evaluation of the price constraint 

returns some value smaller than 1 and greater or equal to 0. The test result will be accepted 

as soon as all constraints are satisfied, except for the price constraint. 

B.2.3.6.7 Problem 25.64. This problem is designed to compare the result with prob- 

lem 25.62. The only difference is the search space of this problem is ordered; i.e. each set 

of domain is arranged in the order of item price. Like problem 25.62, this is to  test those 

algorithms with distance objective function. 
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B.2.3.7 Problem set 26 - problem 26.3. 

The problem size is promoted to 70. The variables are listed in Table B.47. There are 11 

component constraints and 20 arithmetic connections binding the 70 variables. The search 

space jumps to 11,356,117,060,810,161,279,467,520,000,000,000,000 % 1.14 x Sam- 

ple component constraints are listed in Table B.28 to Table B.38, and connection constraints 

are included in Table B.39. 

Table B.47: CSP variables of problem set 26 

Component 
variables 

ram 
mb 

vga 
snd 
n ic  
f dd  
hdd 
cd 
power 
tower 

Specification 
variables 



Appendix C 

Experimental Setup and 

Evaluation Data 

C. 1 Parameter Settings for Exploration Phase 

Table C. 1: Parameter settings used in Exploration phase 

model/objective 

(across algorithm) 

parameter 

POP 
k 

ITER 

W 

( ~ 1 ,  c2) 

nohope 

-- 

description 

the population of the swarm 

the size of neighbourhood 

the maximum of iterations 

an inertia weight in computing 

particle's velocity v(t), deter- 

mines the effect of v(t - 1) 

the acceleration constants in 

computing particle's velocity, 

determines the influence of the 

global (or local) best and the 

individual best information 

an iteration count, defines 

when the swarm has no more 

improvement for so long, the 

swarm performs a certain 

strategy to break the situation 

-- 

values 

20, 50, 100 

6, global only1 

10000 

decreases from 0.9 to 0.4 

500 (or 1000)2 
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parameter 

pop-rate 

df s-size 

regroup 

stop-group 

spawn 

41 and 4 2  

(vmm 'vmin ) 

nohope 

pop-rate 

91' 9 2  

de f ledion 

poprate 

description 

the percentage of particles to 

perform the given strategy after 

the nohope count kicks in; for 

instance, pop-rate = 0.5 means 

half of the population should 

perform the specific strategy 

defines the number of variables 

in each depth-first search group 

assigned to a particle; see Sec- 

tion 4.2.2.8 

an iteration count, defines 

when the swarm should 

perform such a strategy; only 

used in algorithms involving 

"exchange partner" strategy 

an iteration count, defines when 

to stop regrouping particles and 

return to normal 

an iteration count, defines when 

to spawn more particles; used in 

genericHybrid algorithm 

the acceleration constants in 

computing particle's velocity 

the velocity upper bound and 

lower bound in determining 

particle's velocity 

same as in the Continuous 

same as in the Continuous 

the coefficients used in comput- 

ing particle's velocity 

serves as a switch to refine 

particle's moving direction, i.e. 

whether a particle should flip 

the direction or not 

same as in the Continuous 

values 

3333, 5000, 10000 

2 x nohope 

random(0,4) and 4 - q51 
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parameter 

nohope 

description 

exists in the original BCSP 

model for individual particles 

to determine when it has done 

no improvement and should 

restart; we also use this 

parameter globally to the 

swarm similar to the nohope in 

the Continuous model 

1 values 

Discrete/distance I I same as Discrete/conflict I 
Continuous/distance 

1. "Global only" means the entire swarm as one and the only one neighbourhood. 

I 

( same as Continuous/conflict 

2. The nohope count is set depending on the maximum number of iterations (i.e. 1/20 

of ITER); in turns, 500 is used in genericHop and genericRestart, and 1000 is used in 

genericMultigbest, genericDFS and zigzagDFS. 

C.2 Parameter Settings for Comparison Phase 

Table C.2: Parameter settings used in Comparison phase 

(across algorithm) 

parameter 

POP 
k 

ITER 

description 

the population of the swarm 

the size of neighbourhood 

the maximum of iterations 

an inertia weight in computing 

particle's velocity, determines 

the effect of the previous veloc- 

ity at  time t - 1 

the acceleration constants in 

computing particle's velocity, 

determines the influence of the 

global (or local) best 

information and the individual 

best information 

values 

3, 5, 10 

2 

20000 (or 50000)" 

decreases from 0.9 to 0.4 

(3, 1) 
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parameter 

pop-rate 

nohope 

df s-size 

regroup 

stop-group 

spawn 

description 

the percentage of particles to 

perform the given strategy after 

the nohope count kicks in; for 

instance, pop-rate = 0.5 means 

half of the population should 

perform the specific strategy 

an iteration count, defines 

when the swarm has no more 

improvement for so long, the 

swarm performs a certain 

strategy to break the situation 

defines the number of variables 

in each depth-first search group 

assigned to a particle; see Sec- 

tion 4.2.2.8 

an iteration count, defines 

when the swarm should 

perform such a strategy; only 

used in algorithms involving 

"exchange partner" strategy 

an iteration count, defines when 

to stop regrouping particles and 

return to normal 

an iteration count, defines when 

to spawn more particles; used in 

genericHybrid algorithm 

the acceleration constants in 

computing particle's velocity 

the velocity upper bound and 

lower bound in determining 

particle's velocity 

same as in the Continuous 

same as in the Continuous 

the coefficients used in comput- 

ing particle's velocity 

values 

0.25, 0.5, 0.75 

see note2 

66667,10000, 20000 

2 x nohope 

- 

random(0,4) and 4 - 

see note2 

0.25, 0.5, 0.75 
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nohope 

model/objective 

1 pop-rate 

parameter 

de f ledion 

description 

serves as a switch to  refine 

particle's moving direction, i.e. 

whether a particle should flip 

the direction or not 

exists in the original BCSP 

model for individual particles 

to  determine when it has done 

no improvement and should 

restart; we also use this 

parameter globally to  the 

swarm similar to  the nolzope in 

the Continuous model 

same as in the Continuous 

same as Continuous/conflict 

same as Discrete/conflict 

values 

see note2 

1. Because zigzag and zigzagHop type algorithms only process one dimension per itera- 

tion, it can generally do faster than other type algorithms. Thus, given approximately 

same amount of run time, we can assign a much higher iteration upper bound to these 

algorithms. For consistent, we define I T E R  = 50000 for zigzag and zigzagHop type 

algorithms, and 20000 is for all the other algorithms. 

2. The nohope count is set depending on the maximum number of iterations (i.e. 1/20 of 

I T E R ) ;  in turns, 1000 is used in genericHop and genericHybrid, 2500 is used in gener- 

icZigzagHop, and 5000 is used zzgzagDFS algorithm. 
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C.3 Figures 

Table C.3: The partial success rate of PSO algorithms: problem set 10 from the Comparison phase. 

The success rate of PSO algorithms 

PSO 
Algorithm 

genericPS 0 
genericzigzag 
genericHop 
genericZigzagHop 
genericExchange 
zigzagExchange 
zigzagDFS 
genericHybrid 
binaryDiscrete 
binaryzigzag 
binaryHop 
binaryZigzagHop 
grayDiscrete 
grayzigzag 
grayHop 
bcspPSO 
bcspzigzag 
bcspHop 
bcspZigzagHop 

Continuous 
conflict 

43.3% 
45% 

56.4% 
60.3% 
67.1% 
65.8% 
52.3% 
67.1% 

- 

Discrete 
conflict 

- 

BCSP 
conflict - 

26.1% 
51.3% 
60% 
60% 

Continuous 
distance 

47.2% 
49.4% 
64.1% 
58.1% 
55.8% 
59.6% 
50% 

69.5% 

Discrete 
distance 

These figures are for reference only. The experiments with problem 10.53-10.64 are incomplete, 
not including pop = 10. 

Table C.4: The success rate of the PSO parameter settings. 

I Algorithm and settings I Problem 

pop pop-rate regroup I stop-group I deflectzon 1 25.3 1 25.43 / 25.47 1 25.50 / 25.53 1 25.55 
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genericZzgzagHop of the Continuous-conflict model 

genericHybrid of the Continuous-conflict model 

Algorithm and settings 

I 
bcspHop of the BCSP model 

Problem 

25.3 

100% 

90% 

100% 

100% 

pop 
5 

10 

10 

10 

pop-rate 

0.75 

0.25 

0.50 

0.75 

def lec t ion  25.43 

100% 

90% 

100% 

100% 

regroup stop-group 25.47 

100% 

90% 

100% 

100% 

25.50 

70% 

70% 

100% 

90% 

25.53 

20% 

0% 

0% 

10% 

25.55 

30% 

10% 

30% 

20% 
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POP 

Algorithm and settings I Problem 

the 

pop-rate regroup stop-group 

0.50 

0.75 

0.50 

0.75 

0.50 - 
0.75 

0.50 

0.75 

BCSP model 

deflection 

2 / n  

2 / n  
0.0 

0.0 

l / n  

l / n  

2 / n  

2 / n  

The outcomes are the individual PC configuration problem set 25 from the Comparison phase. 

25.3 

80% 

100% 

90% 

100% 

100% 

100% 

100% 

100% 
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Algorithm - = - genericHop 

- - - genericZ~gzagHop 
% %. binaryHop 

---- binaryZ~gzagHop 

pop-rate 

Figure C.l: The mean evaluation value of pop-rate: problem sets 25 from the Comparison phase. 

This includes the hop and the zigzagHop type algorithms using the distance function and 
the outcomes include all PC configuration problem set 25 from the Comparison phase. See 
Figure 5.6 for the algorithms using the conflict count function. Generally, the higher the 
poprate, the lower the mean evaluation value. 
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1 I I 1 i I 
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Figure C.2: The mean evaluation value of PSO models from the Comparison phase. 

For problems of Formulation I in Figure C.2(a), the BCSP model has the highest overall mean 
evaluation value and all others do not show much difference, which is consistent with the 
findings of the success rate. Problems 10.53-10.64 were incomplete on pop = 10. 
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Figure C.3: The mean run time of PSO models from the Comparison phase. 

The experiments on problems 10.53-10.64 were incomplete with pop = 10. The mean run 
time of all models in Figure C.3(b) grows as the complexity of the problems increases. Par- 
ticularly, both Discrete models have much higher mean run time. The hikes at problem 10.41 
in Figure C.3(a) are discussed in Section 5.4.2. The hike at problem 10.53 comes from bina- 
ryZigzagHop caused by running out of memory. 
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Figure C.8: The mean number of consistency checks of PSO models from the Comparison phase. 

The experiments on problems 10.53-10.64 were incomplete with pop = 10. 
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