
PARTICLE SWARM OPTIMIZATION FOR SOLVING

CONSTRAINT SATISFACTION PROBLEMS

I-Ling Lin

B. Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Interactive Arts and Technology

@ I-Ling Lin 2005

SIMON FRASER UNIVERSITY

Fall 2005

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Examining Committee:

Date Approved:

I-Ling Lin

Master of Science

Particle Swarm Optimization for Solving Constraint

Satisfaction Problems

Dr. Rob Woodbury, Professor,

School of Interactive Arts and Technology

Simon Fraser University

Chair

Dr. Marek Hatala, Assistant Professor,

School of Interactive Arts and Technology

Simon Fraser University

Senior Supervisor

Dr. Toby Donaldson, Lecturer, Computing Science

Simon Fraser University

Supervisor

Dr. Vive Kumar, External Examiner,

Assistant Professor,

School of Interactive Arts and Technology

Simon Fraser University

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf
or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of
Graduate Studies.

It is understood that copying or publication of this work for financial gain shall
not be allowed without the author's written permission.\

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

This research presents the design and evaluation of a variety of new constraint-solving algo-

rithms based on the particle swarm optimization (PSO) paradigm. Constraint satisfaction

problems (CSPs) can be applied to many practical problems but they are in general NP-hard,

so developing new algorithms has been a major research challenge. PSO is a relatively new

approach to A1 problem solving and has just begun to be applied to CSPs. This research

modifies and extends the traditional PSOs to solve n-ary CSPs. These new particle swarm

algorithms are tested on practical configuration problems and the traditional n-queens prob-

lems. The effectiveness and efficiency of the new algorithms are experimentally compared

to the traditional PSOs. The performance of the individual algorithms is also assessed.

The algorithms that combine zigzagging particles and repair-based CSP-solving methods

perform best among the algorithms studied.

iii

To my parents, my homestay mother and Linda ...

Acknowledgments

I would like to thank those people who have supported me during the course of this research.

Without their help, I would not be able to complete this thesis.

First, I would like to thank Dr. Toby Donaldson for inspiring me, supervising me and

sponsoring me. He has been available since my undergraduate studies in Computing Science

at Simon F'raser University. He has guided and encouraged me throughout this research.

Also, I would like to thank Dr. Marek Hatala for being my senior supervisor. He advised

and helped me through writing and defending the thesis.

Dr. Rob Woodbury assisted me to evaluate my research and experiments, and I would

like to acknowledge him and owe my thanks to him.

I am grateful to Dr. Vive Kumar for being my external examiner as well.

I would also like to thank our graduate program assistants and advisors, particularly

Allison Neil and Joyce Black for helping me throughout these years. In addition, I would

like to thank the staff in Academic Computing Service (ACS) at Surrey for providing the

computer facilities for my experiments.

I should also appreciate the Faculty of Applied Sciences at Simon F'raser University, the

School of Interactive Arts and Technology (SIAT) at Simon F'raser University, the Donor of

the Global (West) Wholesalers Ltd. Graduate Bursary in Expert Systems and the Donor

of the Ralph M. Howatt Family Graduate Scholarship in Expert Systems for offering me

scholarships, fellowships and bursaries.

I also want to thank my parents for their everlasting love, patience and financial support

all these years. Moreover, I would like to thank Ms. Janice Fox, my homestay mother

who has been taking care of me since I came to Vancouver in 1995. Lastly, I would like

to acknowledge and thank my roommate, Linda Liu, who helped me gather experimental

data, drove me to the labs on numerous weekends and encouraged me all the time.

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables x

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goal . 2

1.3 Thesis Overview . 2

Constraint Sat isfaction Problems 3

2.1 Definitions. 4

2.2 Examples . 6

2.2.1 A warm-up example . 6

2.2.2 Pythagorean triple example . 6

2.2.3 &queens problem . 7

2.2.4 send-more-money Puzzle . 8

2.2.5 Graph colouring . 9

. 2.3 Problem Solving Techniques 10

. 2.3.1 Basic search algorithms 10

. 2.3.2 Problem reduction techniques 12

. 2.3.3 Strategic search and heuristics 13
. 2.3.4 Stochastic search 15

. 2.3.5 Evolutionary Computing 16

. 2.3.6 Summary of algorithms 17
. 2.4 CSP Frameworks 17

. 2.4.1 Arithmetic CSPs in Python 18

3 Particle Swarm Optimization 20

. 3.1 Introduction 20
. 3.2 Swarm Intelligence 21

. 3.2.1 Ant Colony Optimization 21

. 3.3 Traditional PSO 23

. 3.3.1 Definitions 23

. 3.3.2 Continuous PSO 27

. 3.3.3 Discrete (Binary) PSO 30

. 3.4 Solving Problems with PSOs 31

. 3.4.1 Research problems and applications 31

. 3.4.2 Strengths 31

. 3.4.3 Weaknesses 32

. 3.5 Solving binary CSPs 32

. 3.5.1 Schoofs and Naudts' operators 33

. 3.5.2 Parameters used in Schoofs and Naudts' PSO 34

. 3.6 The Research Goal: PSOs for Solving n-ary CSPs 34

4 Particle Swarm Optimization for Solving CSPs 36

. 4.1 CSP Representation in Particle Swarm 36

. 4.1.1 Connecting CSPs and PSO 37

. 4.1.2 Handling constraints 38

. 4.2 PSO Algorithms for Constraint Satisfaction 39

. 4.2.1 Generic PSO 39

4.2.2 Strategic PSOs . 45

vii

. 4.2.3 Neighbourhood structures 51

. 4.2.4 Summary of particle swarm algorithms 51

. 4.3 Application Problem-PC Configuration 53
. 4.3.1 Introduction 53

4.3.2 Modelling a PC configuration problem in Python CSP Framework . . 53

. 4.3.3 PC configuration test problems 61

5 Experiment and Evaluation 63

. 5.1 Introduction 63
. 5.2 Experiment Setup 64

. 5.2.1 Test algorithms 64
. 5.2.2 Test problems 70

. 5.2.3 Comparison measures 73

. 5.3 Experiments 76

. 5.3.1 Runs 76
. 5.3.2 Experimental facilities 76

. 5.3.3 Programming issues 78
. 5.4 Experimental results 78
. 5.4.1 Effectiveness 79

. 5.4.2 Efficiency 92

. 5.5 Discussion and Answers 105

5.5.1 Can we extend Schoofs and Naudts' PSO to solve general n-ary integer

. CSPs effectively? 105

5.5.2 How can we modify the traditional PSOs to solve n-ary integer CSPs?

How do the algorithms extending the traditional PSOs compare with

. Schoofs and Naudts' PSO? 107

6 Conclusion 110

. 6.1 Summary of the Research Results 111
. 6.2 Future Work 112

A Algorithms and Examples 114

. A.1 CSP Examples in Python CSP Framework 114

. A.2 Swarm Algorithms 117

viii

. A.3 Particle Swarm Algorithms for Solving CSPs 120

. A.3.1 Local depth-first search: genericDFS 120

B PC Configuration Test Problems 124

. B.l Formulation I 124

. B.l.l The variables and the domains 124

. B.1.2 The constraints 131

. B.1.3 Description for Formulation I test problems 131

. B.2 Formulation I1 133

. B.2.1 The variables and the domains 133

. B.2.2 The constraints 140

B.2.3 Description for Formulation I1 test problems 147

C Experimental Setup and Evaluation Data 154

. C.1 Parameter Settings for Exploration Phase 154

. C.2 Parameter Settings for Comparison Phase 156

. C.3 Figures 159

Bibliography 176

List of Tables

. 2.1 A summary of algorithms

. 4.1 This table summarizes the PSO algorithms developed in this research

. 4.2 Sample CPUs for varcpu and their integer representation

. 4.3 Sample constraints on var,,. var.., and var, b under Formulation I

4.4 Four n-ary constraints are added to the Python CSP Framework for Formu-

lation1 .
. 4.5 Sample values of CPU specifications and the enumerated domain

4.6 Sample CPUs in good tuples. and the entire list represents "GOODcpuM

. constraint

. 4.7 Sample PC connection constraints in Formulation I1

. 4.8 Sample PC user constraints in Formulation I1

. 4.9 PC configuration problems for Formulation I

. 4.10 PC configuration problems for Formulation I1

5.1 The five classes of particle swarm algorithms in this research
. 5.2 The PSO algorithms used in the Exploration phase

. 5.3 Parameters used in the Exploration phase

. 5.4 PSO algorithms used in the Comparison phase

5.5 PC configuration problems in the Exploration phase
. 5.6 n-queens problems in the Exploration phase

5.7 PC configuration problems in the Comparison Phase
. 5.8 n-queens problems in the all-diff phase

. 5.9 The systems used in the three-phase experiment

5.10 The success rate of PSO models from the Comparison phase

. 5.11 The success rate of PSO algorithms from the Comparison phase 85

. 5.12 The SR of PSO algorithms from the all-diff phase 90

5.13 The average run time and the number of consistency checks of binaryZigza-
. gHop-distance 93

. B.1 Sample CPUs for varwu 124

. B.2 Sample RAMS for varram 125

. B.3 Sample motherboards for var, b 125

. B.4 Sample VGAs for varVga 125

. B.5 Sample sound cards for var., ,j 126
. B.6 Sample NICs for varnic 126

. B.7 Sample floppy drives for varfdd 126

. B.8 Sample hard drives for varhdd 127

. B.9 Sample CD-ROMs for varcd 127

. B.10 Sample power supplies for varp,.. 128

. B.11 Sample casings for vartower 128

. B.12 Sample mice for varmoUse 128

. B.13 Sample monitors for varscT 129

. B.14 Sample printers for varprt 130

. B.15 Sample keyboards for varkb 130

. B.16 PC connection constraints in Formulation I 131

. B.17 Sample values of CPU specifications and the enumerated domain 133

. B.18 Sample values of RAM specifications and the enumerated domain 134

. . . B.19 Sample values of motherboard specifications and the enumerated domain 134

B.20 Sample values of VGA specifications and the enumerated domain 135

B.21 Sample values of sound card specifications and the enumerated domain 135

B.22 Sample values of NIC specifications and the enumerated domain 136

B.23 Sample values of floppy drive specifications and the enumerated domain 136

B.24 Sample values of hard drive specifications and the enumerated domain 137

B.25 Sample values of CD-ROM specifications and the enumerated domain 137

B.26 Sample values of power supply specifications and the enumerated domain . . . 138

B.27 Sample values of tower case specifications and the enumerated domain 139

B.28 Sample CPUs in good tuples-component constraint "GOODcpu" 140

. B.29 Sample RAMS in good tuples-component constraint "GOODram" 140

. . . B.30 Sample motherboards in good tuples-component constraint L'GOODmb" 141

. B.31 Sample VGAs in good tuples-component constraint "GOODvga" 142

. . . . B.32 Sample sound cards in good tuples-component constraint "GOODsnd" 142

. . . B.33 Sample network cards in good tuples-component constraint "GOODnic" 143

B.34 Sample floppy drives in good tuples-component constraint "GOODfdd" 143

B.35 Sample hard drives in good tuples-component constraint "GOODhdd" 144

B.36 Sample CD-ROM drives in good tuples-component constraint "GOODcd" . . 144

B.37 Sample power supplies in good tuples-component constraint "GOODpower" . 145

B.38 Sample tower cases in good tuples.- component constraint LLGOODtower" . . . 145

B.39 Sample PC connection constraints in Formulation I1 146

B.40 Sample PC user constraints in Formulation I1 147

B.41 CSP variables of problem set 20 . 147

B.42 CSP variables of problem set 21 . 148

B.43 CSP variables of problem set 22 . 149

B.44 CSP variables of problem set 23 . 149

B.45 CSP variables of problem set 24 . 150

B.46 CSP variables of problem set 25 . 151

B.47 CSP variables of problem set 26 . 153

C.l Parameter settings used in Exploration phase 154

C.2 Parameter settings used in Comparison phase 156

C.3 The partial success rate of PSO algorithms: problem set 10 from the Com-

parison phase . 159

C.4 The success rate of the PSO parameter settings 159

xii

List of Figures

2.1 A Pythagorean triple example in Section 2.2.2. 7

2.2 Queen positions in a 4-queens problem . 8

2.3 A sample solution of the &queens problem . 8

2.4 A send-more-money puzzle and its solution . 9

2.5 A sample graph colouring problem with 3 colours 10

2.6 A constraint graph of the graph colouring problem in Section 2.2.5. 13

2.7 A Sample Run of the graph colouring problem in Python CSP framework . . . 19

3.1 Particle swarm (population = 10) in a 2-dimensional space 23

3.2 A position-velocity relation in a 2-dimensional space 24

3.3 A global swarm vs. local neighbourhoods [25] 25

3.4 Simple neighbourhood topologies (population = 5) [51, 251 25

A particle position xi in the CSP context is a complete assignment
A particle velocity vi changes CSP variable assignment
A pseudocode segment describes the change done for the Continuous PSO . .
A position adjustment on the jth-axis when the element xij goes out of

domain Dj .
Schoofs and Naudts' PSO [90] . It is named as bcspPSO and serves as the

foundation of all algorithms derived from BCSP model in this research
A particle moves in a Zdimensional space with 2 different styles
Exchanging partner is taking actions .
The CSP variables of a PC configuration problem under Formulation I
The CSP variables of a PC configuration problem under Formulation I1

. 5.1 The s~iccess rate of PSO models from the Comparison phase 80

xiii

. 5.2 The mean evaluation value of PSO models from problem set 25 83

. 5.3 The mean evaluation value of PSO algorithms from problem set 25 86

. 5.4 The success rate of populations from the Comparison phase 87

5.5 The success rate of pop-rate: hop and zigzagHop algorithms from the Com-

parison phase . 87

. 5.6 The mean evaluation value of poprate from problem set 25 88

5.7 The mean evaluation value of PSO algorithms from the Comparison phase . . 89

5.8 The success rate of PSO models from the all-diff phase 93

5.9 The mean run time of PSO models from problem set 25 97

5.10 The mean run time of PSO algorithms from problem set 25 98

5.11 The mean run time of PSO algorithms from problem set 25 99

5.12 The mean number of consistency checks of PSO models from problem set 25 . 100

5.13 The mean number of consistency checks of PSO algorithms from problem set

25 . 101

5.14 The mean number of consistency checks of PSO algorithms from the Com-

parison phase . 102

5.15 The mean run time of PSO pop-rate: problem set 25 from the Comparison

phase . 103

5.16 Mean number of consistency checks of poprate: problem set 25 from Com-

parison phase . 104

. A.1 The warm-up example of Section 2.2.1 in the Python CSP framework 114

A.2 The Pythagorean triple example of Section 2.2.2 in the Python CSP framework . l l 4

. A.3 &Queens problem of Section 2.2.3 in the Python CSP framework 115

A.4 The send-more-money puzzle of Section 2.2.4 in the Python CSP framework . 115

A.5 The sample graph colouring problem of Section 2.2.5 in the Python CSP

framework . 116

. A.6 Pseudocode of the continuous PSO with global best information [55] 117

. A.7 A pseudocode of a discrete version [54] of the PSO in Figure A.6 118

A.8 Schoofs and Naudts' PSO for solving binary CSPs [go], named as bcspPSO

in this research . 119

A.9 Distribute 5 variables to 9 particles for performing DFS 121

. . . A.10 A particle performs depth-first search on variable set {varq,var5, varl) 122

xiv

A.ll Different non-DFS variable values generate different assignments in a graph

. colouring 122

. A.12 Particles perform depth-first search in the graph colouring problem 123

1 The mean evaluation value of pop-rate: problem sets 25 from the Comparison

. phase 162

C.2 The mean evaluation value of PSO models from the Comparison phase 163

C.3 The mean run time of PSO models from the Comparison phase 164

C.4 The mean run time of PSO algorithms using the distance function 165

C.5 The mean run time of PSO algorithms using the distance function 166

C.6 The mean run time of PSO algorithms using the conflict count function 167

C.7 The mean run time of PSO algorithms using the conflict count function 168

C.8 The mean number of consistency checks of PSO models from the Comparison

phase . 169

C.9 The mean number of consistency checks of PSO algorithms using the conflict

. count 170

C.10 The mean number of consistency checks of PSO algorithms using the conflict

. count 171

C. l l The mean number of consistency checks of PSO algorithms using the distance

. function 172

C.12 The mean number of consistency checks of PSO algorithms using the distance

. function 173

C.13 The mean run time of PSO populations: problem set 25 from the Comparison

phase . 174

C.14 The mean number of consistency checks of PSO populations: problem set 25

. from the Comparison phase 175

Chapter 1

Introduction

1.1 Motivation

Constraint satisfaction problems (CSPs) are a natural abstraction for many computational

problems, and thus have been a major research topic in A1 for many years [108]. This

abstraction naturally represents real-world problems. Many problems such as scheduling,

resource allocation and planning have been described as CSPs, and many techniques have

been developed to solve those problems. Still, much attention is needed in various aspects

of CSP research such as the development of new algorithms. In this research, we develop

and evaluate new algorithms to solve general n-ary CSPs.

Research in swarm intelligence started in the late 1980s and has been attractive to A1

researchers because it is simple and robust and offers a new alternative to solve many prac-

tical problems [4, 1071. As the name suggests, swarm intelligence models swarms of insects

and birds. Through communication, these swarms are able to adjust their behaviour and

to achieve their common objectives. Researchers have used these ideas to solve optimiza-

tion problems [25, 42, 71, 72, 71. Two popular techniques of this paradigm are ant colony

optimization (ACO) [22] and particle swarm optimization (PSO) [53]. ACO models ants

and PSO models birds. Both swarm techniques have been applied to solve random binary

constraint satisfaction problems [89, 90, 991, but not general n-ary CSPs. Although it is

possible to convert n-ary constraints to equivalent binary constraints [80], depending on

the nature of the constraints, an n-ary CSP can become more difficult to solve after the

conversion [102]. Besides, the process of converting an n-ary CSP to its equivalent binary

CSP can be complicated and, not all the conversions can be done properly and produce

CHAPTER 1. INTRODUCTION 2

semantically equivalent representation [47, 1021. In addition, n-ary constraints provide a

natural formulation for modelling real-world problems [86]. Thus, we do not want to limit

our development for solving only binary CSPs. If we want to try something new to solve

general CSPs, PSO is such a technique with potential not only because of the previous

research in solving optimization problems and binary CSPs but also because of its nature of

having multiple "workers" who can work individually and collaboratively to achieve a goal.

1.2 Research Goal

The goal of our research is to create new and effective particle swarm algorithms for solving

general n-ary CSPs. Researchers have applied PSOs to solve various optimization problems

and random binary CSPs. In this research, we will study these traditional PSOs, understand

the interplay between the PSOs and CSPs, make the connection between them, and propose

new techniques to develop new particle swarm algorithms for solving n-ary integer CSPs.

Through the experimental results, we will answer whether the new particle swarms can

solve general n-ary integer CSPs more effectively than the traditional ones. If they can

solve n-ary CSPs, we would like to find out how we may possibly enhance these algorithms

in the future.

1.3 Thesis Overview

This research combines CSPs and particle swarm optimization techniques, so in chapters 2

and 3, we review the background of CSPs and PSO respectively. In Chapter 2, we explain

basic terminology, give CSP examples, review existing CSP problem solving techniques and

also introduce the Python CSP framework used for this research. In Chapter 3, we look

at swarm intelligence, review traditional PSO algorithms, and discuss PSO problem solving

and its applications. Also, we raise our research questions as the goal of this research in

Section 3.6. In Chapter 4, we specifically describe how to apply PSO to solve CSPs. We

first introduce the problem representation to link CSPs and PSO together, explain the

particle swarm algorithms we developed for solving CSPs and then formulate test problems

to evaluate the swarm algorithms. In Chapter 5, we illustrate our experiments, evaluate

our algorithms and analyze the results. In Chapter 6, we conclude our findings and propose

future directions for further research.

Chapter 2

Constraint Satisfaction Problems

Since constraint-based ideas were first applied to solve A1 (artificial intelligence) problems in

the 1960s and 70s, constraint representations have been considered a natural way to describe

many real-world problems. For decades, constraint satisfaction problems (CSPs) [I081

have been one of the core research problems in AI, and the Association for Computing

Machinery (ACM) has recognized constraint programming as one of the strategic directions

in computer science research [38].

Many problems have been described as CSPs such as temporal reasoning, scheduling,

network routing, DNA sequencing, puzzle matching, resource allocation, floor plan design,

circuit design, graph problems and other combinatorial problems [108, 571. CSPs are in

general NP-complete [46, 591 and solving CSPs is hence NP-hard. CSPs typically represent

problems as a set of variables, domains, and constraints. A domain of a variable is the

allowable values for that variable, and constraints restrict which domain values the variables

may simultaneously be assigned. The goal of solving a CSP is to find one or more legal

assignments that satisfy all the constraints.

This chapter is organized in four sections. In the first two sections, we will introduce

the terminology and some examples that we use throughout the chapter. Then a review of

the existing constraint problem techniques follows. A new CSP framework in Python [20]

used for this research will be described in the last section of this chapter.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

2.1 Definitions

Before giving examples of CSPs, some terminology is needed. A CSP is formally defined as

a tuple of (V, D, C) namely variables, domains and constraints [108, 21.

Definition 2.1.1. V, D and C of a CSP are defined as follows:

0 V = { vl, v2, . . . v,) is a finite set of n variables. Each variable is a 'place-holder'

that is able to hold an assigned value [61].

0 D = { Dl, D2, . . . D,) is a finite set of domains. Each domain is finite.' For each i in

(1, 2, . . . n), domain Di represents the set of all possible values {valil, vali2, . . . valib)

that can be assigned to the respective variable via A variable-value assignment pair,

<vi, Valij> is also called a label, which assigns domain value Valij to variable vi, where

Valij E Di. A complete assignment refers to n such labels (<vl, vall>, <v2, va&,

. . . cv,, Val,>), one per variable. A part ial assignment is a subset of a complete

assignment. The domain of a variable can be a finite set of integers, real numbers,

Boolean values, or any objects. However, for this thesis, we restrict domains to be

finite sets of integers.

In later chapters, we use two terms to describe the structures of CSP domains: a

consecutive domain and consistent domains.

1. A consecutive domain is a variable domain in which all the elements can be

listed as a sequence of consecutive integers; i.e. the elements of a domain are

consecutive. For example, Dl = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) is a consecutive

domain, whereas D2 = (1, 3, 5, 7, 9) is not. This consecutiveness becomes slightly

more complicated when we discuss binary encoded domains in Section 4.2.1.2.

2. If all the domains of a problem are the same, the problem has consistent do-

mains or the domains of the problem are consistent. For example, we may have

CSP domains Dl = D2 = D3 = {1,2,3,4); then, domains Dl, D2 and D3 are

consistent. On the other hand, we may have CSP domains D4 = {2,4,6,8), D5

= {1,2,. . . ,4001, D6 = {0,1) and D7 = {1,2,. . . ,101; then, domains D4, D5,

D6 and D7 are not consistent.

'Some research considers infinite domains; we only take finite domains into consideration in this thesis.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 5

a C = {C1, C2,. . . , Cp) is a set of constraints. For each k in (1, 2, . . . p) , Ck(v1, v2,

. . . urn) is an m-ary constraint and m can be 1, 2, ... to the size of the problem.

A constraint is a Boolean function on the variables that restricts what values those

variables can take simultaneously. If an assignment (vall, va12, . . . val,) causes Ck (vl ,
v2, . . .urn) to return true, the constraint Ck is satisfied by the assignment; otherwise,

it returns false. If all constraints C1 A C2 A . . . A Cm are satisfied by one assignment,

the CSP is satisfied and this assignment is consistent. In practice, other than being

a function, a constraint can also be an equation, a logical relation, a set of all legal

tuples (i.e. a good list) or a set of all illegal tuples (a bad list) on the variables.

Definition 2.1.2. An n-ary CSP is a CSP that contains n variables and each of the

constraints in the problem may involve any number of variables between one and the size

of the problem n.

Definition 2.1.3. S = {S1, S2, . . . Sm) is a set of all solutions. Generally, a CSP can

have 0, 1, or more solutions. A solution Si E S is a complete assignment {<vl, vall,>, <v2,

valzb>, . . . cv,, valnm>) of all n variables in the CSP, where all the constraints are satisfied.

A CSP is solvable if IS) 2 1.

Besides finding perfect solutions as the above, a good enough solution to a CSP where

only most of the (critical) constraints are satisfied, or an optimal solution to a CSOP

(constraint satisfaction optimization problem) may also be possible depending on the nature

of the problems [2].

Definition 2.1.4. A penal ty function is a function that takes an assignment as its input

and returns zero for a satisfiable assignment,2 or returns a value greater than zero to penalize

an unsatisfiable assignment.

It is a common technique in CSP research to evaluate the quality of an assignment. The

smaller the penalty, the better the quality. Counting the number of constraint violations and

estimating the distance from a potential solution to a satisfiable solution are some examples

[go, 631. Michalewicz et al. indicate that adaptively combining the maximum completion

cost3 with the expected completion cost can render a better penalty function [63].

2~ satisfiable assignment is a potential solution that is feasible and does not violate any constraints.

3A completion cost is the cost to complete or obtain a satisfiable solution from a given assignment.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

2.2 Examples

A CSP can be as simple as a one-variable arithmetic problem or as complex as a university

scheduling problem with thousands of variables. What CSPs are and how a problem can

be modelled as a CSP will become clear by the examples below. One should however know

that the representations of a problem may not be unique, and different representations may

affect the efficiency of finding solutions [27].

2.2.1 A warm-up example

Suppose we want to find a number between 1 and 10 that is an even integer. One obvious

way to represent this as a CSP is:

Variables: v

Domains: D, = {1,2, . . . l o)

0 Constraints:

- even(v) returns true if val E D, is even for an assignment v = val.

There are 5 solutions: v = 2, v = 4, v = 6, v = 8 and v = 10.

2.2.2 Pythagorean triple example

If we want to find the integer lengths of a right triangle where LC = 90" and 0 < a, b, c 5 30
--

are the respective integer lengths of the three sides BC, AC and AB shown in Figure 2.1:

Variables: a , b and c

0 Domains: D, = Db = Dc = {1,2, . . .30)

0 Constraints:

- pythagorean(a, b, c) returns true if a = val,, b = Valb and c = val, satisfy a2 +
b2 = c2 relation where val, E D,, Valb E Db and val, E D,.

There are 22 solutions and one of them is a = 3, b = 4 and c = 5.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

Figure 2.1: A Pythagorean triple example in Section 2.2.2.

2.2.3 8-queens problem

In the &queens problem, the problem is to place 8 queens on an 8-by-8 chessboard such that

no two queens attack each other; in other words, no two queens can be placed on the same

row, column or diagonal. One possible representation of this problem is to have 8 variables

for the queens' row positions and one queen per column. To avoid queens being placed on

the same row, the values of the variables must be all different. For every queen-pair, the

row (Manhattan) distance should not be equal to the column distance so that the queens

will not sit on the same diagonal as shown in Figure 2.2.

Variables: q l , q2 . . . 48 for the positions to place queens on column 1, 2, . . . and 8 of

the chessboard respectively.

Domains: for each i E {1,2,. . .8), domain Dqi = {1,2, . . .8) for variable qi is a set of

the possible row positions to place a queen on column i.

Constraints:

- a l l -d i f f (ql, qz, . . . q8) returns true iff the values of ql, q2, . . .q8 are pairwise

different.

- for every pair of queens (qi, qj), undiagonal(qi, qj) returns true only if Vali E

Dqi and Valj E Dqj S U C ~ that I qi - qj I # l i - j l holds.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

(a) bad position (b) good position

Figure 2.2: Queen positions in a kqueens problem.

Figure 2.3: A sample solution of the 8-queens problem.

Figure 2.3 shows one of the 92 solutions., where ql = 1, qz = 3, qs = 5, q4 = 7 , qs =

2, q6 = 4, q7 = 6 and qs = 8.

2.2.4 send-more-money Puzzle

The send-more-money problem shown in Figure 2.4 is an example of cryptarithmetic

puzzles.4 In this problem, we want to find a unique digit (0-9) for each letter s, e, n, d,

m, o, r, y and satisfy the equation SEND + MORE = MONEY with no leading zeros (i.e. s

4 ~ h e r e is a lot of information on the web, and http://www.clps.de/html/protcl/protcl/node62.html is
one of them.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

and m cannot be zero).

s e n d 9 5 6 7
+ m o r e - + 1 0 8 5

m o n e y 1 0 6 5 2

Figure 2.4: A send-more-money puzzle and its solution.

Variables: s, e, n, d, m, o, r and y

Domains: D, = Dm = (1, 2, . . .9) and D, = D, = Dd = Do = DT = D, = (0, 1, 2,

. . .9)

Constraints:

- all-diff (s, e, n, d, m, o, r, y) returns true only if the values of s, e, n, d, m, o,

r, y are pairwise different.

- An equation (s x 1000 + e x 100 + n x 10 + d) + (m x 1000 + o x 100 + r
x 10 + e) == m x 10000 + o x 1000 + n x 100 + e x 10 + y must hold.

The unique solution of this problem is s = 9, e = 5, n = 6, d = 7, m = 1, o = 0, r =

8 and y = 5.

2.2.5 Graph colouring

The problem in graph colouring is to assign one colour for each region on a map from a

selection of colours and the adjacent regions cannot be in the same colour. Assume we have

red, green and blue to colour the map in Figure 2.5(a).

Variables: rl, 7-2, r3, r 4 , and 7-5

Domains: DTi = {red, green, blue) for i - 1, 2, 3, 4, 5

Constraints:

- For every pair (ri, r j) , ri # r j must hold if ri and rj are adjacent.

There are 6 solutioils in the problem of Figure 2.5(a) and Figure 2.5(b) shows one,

where rl = blue, r 2 = red, r3 = blue, 7-4 = green and 7-5 = red.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

(a) a sample graph colouring problem (b) a sample solution

Figure 2.5: A sample graph colouring problem with 3 colours.

2.3 Problem Solving Techniques

Many techniques to solve CSPs have been developed; some originate from solving other

types of problems and some are specifically for solving CSPs. Basic CSP solving techniques

include: search algorithms, problem reduction, and (hybrid) heuristic strategies. Some

well-known techniques are described below.

2.3.1 Basic search algorithms

Search is a fundamental technique in A1 problem solving.5 The basic search algorithms

mentioned here are simple and serve as a core to other sophisticated search methods. In

this section, we will follow the convention to divide search algorithms into systematic and

stochastic search. Generate-and-test [2, 573 and simple backtracking [36] are the examples of

systematic search. Random guessing and random-walk algorithms are two stochastic search.

2.3.1.1 Basic systematic algorithms

2.3.1.1.1 Generate-and-test (GT) assigns values to variables and obtains a complete

assignment; and then, it checks whether the assignment satisfies all the constraints. This

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 11

brute-force method tries all values to all variables one by one and checks for the consis-

tency of the current assignment. Because no value is pruned or removed from the do-

main during the consistency checks, the complexity of the algorithm in the worst case is

)Dl x Dz x - - . x DnI = O(dn). Since GT eventually checks all possible combinations, it

is a complete algorithm and all solutions can be found (given enough time) if there is

any solutions. Because of the completeness, it can also be used to prove that a CSP is

unsatisfiable, i.e. no solution exists.

2.3.1.1.2 Chronological backtracking (CBT or BT) systematically traverses the en-

tire search space in a depth-first manner. It instantiates one variable at a time until it either

finds a solution or runs out of instances and proves no solutions exist. Smarter than GT, the

algorithm stops and backtracks as soon as it finds the partial assignment inconsistent. More

specifically, if the instantiated variables so far do not violate any constraint, the algorithm

keeps going on to the next variable; otherwise, it backtracks to the previously assigned vari-

able and reassigns an untried value. Backtracking is sound and complete,6 but it can be

inefficient because of thrashing. It does not identify the actual culprit of the inconsistency

so it may keep failing and backtracking for the same reasons again and again [57].

Chronological backtracking can be effective for simple problems; what is more important,

the strategy is so useful that most systematic search algorithms (as opposed to stochastic

methods) extend or derive from it to improve the performance.

2.3.1.2 Basic stochastic algorithms

2.3.1.2.1 Random guessing algorithm is the most naive stochastic search. Like

blindly throwing darts, it repeatedly 'guesses' a complete assignment and checks if the

assignment satisfies the constraints until it finds a solution or reaches timeout (or some

maximum number of iterations). Since the algorithm assigns variables in a non-systematic

way, it neither avoids checking for the same assignment repeatedly, nor guarantees to verify

all possible assignments. Because it does not guarantee to check all possible assignments,

the algorithm is incomplete and so it cannot guarantee a solution or prove no solutions.

On the other hand, the method is so simple and fast that it can be used for a problem

with many solutions if any solution is acceptable. Also, the randomness can be used to

61t guarantees that the solution returned must be correct. Also, the algorithm guarantees to find a
solution if there exits a solution.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

quickly estimate the solution density of a search space.

2.3.1.2.2 Random-walk algorithm (RW) is a basic local search technique [83]. It

initializes all the variables and "walks" through the search space fixing inconsistencies one

at a time until it satisfies all the constraints or times out. Similar to random guessing, it is

incomplete and so cannot guarantee a solution or prove no solutions. To prevent the walk

from wondering too much, many heuristics have been developed. In addition, random-walk

can serve as a simple strategy for other stochastic search methods to escape from local

optima, which will be discussed in Section 2.3.4.

2.3.2 Problem reduction techniques

Searching for solutions can be very time consuming, especially if the search space is big

and the solutions are distributed in a haphazard way. To improve the efficiency, one can

sometimes trim the size of the search space and simplify the original problems. Problem

reduction [I081 is such a method that can be used at the beginning of a search or during

a search. Once a problem becomes smaller and simpler, search algorithms can go through

the space faster. In some cases, problem reduction can solve CSPs without searching [108].

However, some reduction techniques may be too complex and too expensive in practice.

Often, problem reductions are applied to supplement other search strategies.

In this section, we will review several common problem reduction techniques such as

node-consistency and a r c - c o n s ~ s t e n c ~ . ~ Generally, these techniques are derived from the

idea of a constraint graph [108, 21, where the nodes represent the variables of a CSP and

the edges are the constraints indicating the relationship among the variables. Any two or

more connected edges become a path. Figure 2.6 illustrates the constraint graph of the

graph colouring problem in Section 2.2.5.

Each of these problem reductions provides a different level of consistency; for instance,

node-consistency guarantees the consistency in the nodes (i.e. the individual variables).

Depending on the problems and the level of consistency required, some combination of

these techniques can be used.

7 ~ e f e r to [I081 for other problem reduction techniques such as path-consistency and k-consistency.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

Figure 2.6: A constraint graph of the graph colouring problem in Section 2.2.5.

2.3.2.1 Node-consistency and arc-consistency

The simplest problem reduction techniques are node-consistency (NC) and arc-consistency

(AC), which prune the inconsistent values from the variable domains. The difference between

these two is that node-consistency affects individual variables (or unary constraints) whereas

arc-consistency checks binary constraints between two variables. NC ensures consistency at

the node level and AC ensures it on the edges on a constraint graph.

All AC algorithms check binary constraints, but in various ways. Some commonly used

ACs are noted as AC-1, AC-2, . . . AC-7. The higher number generally indicates that the

AC provides a higher degree of consistency, but at greater cost. For the effectiveness and

efficiency of the problem solving, AC-3 and AC-4 [98] are the two most widely used. Another

AC variant, directional arc-consistency (DAC), performs consistency checks on directed

edges. In providing consistency level, DAC is not so strong as the ACs above but can be

quite efficient [log].

2.3.3 Strategic search and heuristics

Because neither basic search nor consistency checks alone can always solve CSPs in a timely

manner, adding heuristics and using hybrid algorithms are often used to improve perfor-

mance. This is not only applicable to the systematic search, but also true of the stochastic

search described in Section 2.3.4.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

2.3.3.1 Constraint propagations

Problem reduction techniques in Section 2.3.2 can also be applied to interleave between

search steps to continuously narrow the search space, which is called constraint propagations

121. Backmarking, backchecking, backjumping and forward checking are some examples

of this sort [30, 31, 371. Forward checking (FC) for example, looks ahead and performs

consistency checks while assigning a value to a variable and removes inconsistent values

from the unassigned (future) variables. If any future variable has no consistent values

available, the algorithm backtracks as in chronological backtracking. By looking ahead to

remove impossible assignments, FC is an efficient general-purpose search algorithm [83].

2.3.3.2 Hybrid strategies

Some algorithms explore multiple branches at the same time [I081 and other techniques mix

the strength of various algorithms and integrate different search strategies. To list a few, here

are some examples that combine forward search with backtrack search: backtracking with

backjumping (BMJ), backtracking with conflict-directed backjumping (BM-CBJ), FC-BJ,

FC-CBJ, MAC-BJ and MAC-CBJ [73, 741.

2.3.3.3 Variable-orderings and value-orderings

Another common strategy is to vary the order in which variables and domain values are

searched. Generally speaking, search orderings shape the structure of a search space, which

often affect the search results and efficiency. By ordering the variables differently, different

search spaces are constructed without changing the complexity of a problem [108]. Imagin-

ing doing a tree search, variable orderings define the orders of the branches. Variables may

come in different domain sizes and thus turn out different branching factors. Once the

search order has been changed, the order of branching factors can be varied and the effec-

tive search space may become bigger or smaller to the algorithms. Many strategies utilize

such characteristics and determine different orderings. For example, applying Haralick and

Elliott's fail-first principle [37], a search algorithm can dynamically pick the variable that

either has the smallest (remaining) domain or is involved in most constraints. Dealing with

such variables first, the algorithm is able to detect dead-ends early.

Similarly, value orderings change the search structure as well. Different from variable

orderings however, value orderings rearrange nodes within a branch and try to find a node

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 15

(or a value) that is most likely to succeed. One popular value ordering is the min-conflict

heuristic [64]. The idea is to select a value that can either minimize the total number of

conflicts or minimize the conflicts with other unassigned variables. Although the min-conflict

can be used with a complete search and becomes for example an informed backtracking [65],

it is more commonly used with stochastic search methods and more detail will be discussed

in the following section.

2.3.4 Stochastic search

Complete systematic methods are often inefficient for large hard CSPs [112]. Fast and good

enough solutions are sometimes desirable and acceptable in many real world applications.

In contrast to systematic search, stochastic methods wander in the problem space in a

relatively nondeterministic manner. Local search methods have been popular for quite a

long time and evolutionary algorithms have drawn the researchers' attention in the recent

years [112].

2.3.4.1 Local search

Local search is a repair based strategy, where a fully assigned initial assignment is gen-

erated first (often randomly, but not necessarily) and then the assignment is repaired or

improved until a solution is found or some timeout mechanism kicks in. Hill-climbing is

a typical example, which improves the search results iteratively based on an evaluation

function. At each time step, one of the best neighbours will be chosen to be the next

assigned state. In CSPs for example, the evaluation function can aim at minimizing the

number of constraint violations and the (best) goal is to have 'zero' violation. A general hill-

climbingrandomly selects the next state from the candidate neighbours if there is more than

one candidate with the same evaluation. In other hill-climbing based algorithms, heuristics

such as the min-conflict, are used as a guidance to the neighbour selection process.

Generally, local search methods are incomplete and cannot guarantee to find a solution

or to prove no solutions. One reason is that they have no idea which assignment node

they have or have not visited, and another is that they may get stuck in a local optimum

or wander around on a plateau. Much research has been done in preventing, detecting or

escaping from these situations. For instance, random-walk [92] uses noise to walk out of

traps. Tabu search [34, 1011 avoids going into the same bad area again by remembering

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS 16

its previous experience. Simulated annealing [l, 70, 181 models the cooling speed of the

annealing procedure to improve the performance.

2.3.5 Evolutionary Computing

Evolutionary computing (EC) includes genetic algorithms (GAS) [40, 35, 191, evolutionary

programming, evolutionary strategies (ES) and genetic programming [55]. It has become

a popular problem solving paradigm in AI. Swarm intelligence (SI) originated from a cel-

lular robotic system [6] is closely related to evolutionary computation methods. These EC

techniques were originally developed for optimizing numerical functions, training neural net-

works and so on. They have been applied to CSPs, for example in [60, 8, 14, 89, 88, 99, 901.

These problem solving techniques generally use a population of possible solutions, fitness

information and probabilities in tackling problems [55]. Often, they first generate the initial

states of the population, and iteratively alternate between evaluating the fitness value of

the candidates and evolving the new states of the population until certain stopping criteria

arrive.

2.3.5.1 Genetic algorithms

Simulating biological genetic systems, the development of genetic algorithms (GAS) started

in the 1950s [55]. These algorithms have been applied to solve some constraint satisfaction

optimization problems (CSOPs) and CSPs [log, 60, 8, 141 since the 90s. Based on the evo-

lutionary theories, the idea is that the better fit individuals have a better chance to survive,

and gradually the fitness of the population evolves and reaches its optimum. Specialized

encodings, fitness functions or operators such as Michalewicz's GENOCOP [78] are often

found in genetic algorithm research for solving problems 163, 141. The choices of the pa-

rameter settings can sometimes depend on the problems and are one of the difficulties for

users to apply.8

2.3.5.2 Swarm intelligence

Swarm modelling is inspired by the analogy of social insects, birds, fish and human cognition.

It is a new optimization technique that emerged in the early 1990s. Chapter 3 will discuss

'website http://w3.ualg.pt/-flobo/psgea-20051 for "Workshop on parameter setting in genetic and evo-
lutionary algorithms, PSGEA 2005"

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

particle swarm optimization in detail.

2.3.6 Summary of algorithms

For a quick review of the algorithms mentioned in this chapter, we summarize them in

Table 2.1. These algorithms are characterized in terms of the completeness, the consistency,

whether they make initial complete assignment or not, and if they are able to give a potential

solution (not necessarily to be a consistent solution) at anytime while searching.

Table 2.1: A summary of algorithms

Algorithm

generate-and-test
backtracking
forward-checking
random guessing
random- walk
hill-climbing
min-conflict HC
genetic algorithm
particle swarm
ant colony

Type
systematic
systematic
systematic
stochastic
stochastic
stochastic
stochastic
stochastic
stochastic
stochastic

2.4 CSP Frameworks

Complete

Yes
Yes
Yes
no
no
no
no
no
no
no

Consistent

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Besides the traditional research in search algorithms and problem solving techniques, CSP

research also includes the development of libraries and frameworks. According to Roy et al.

1811, "a framework approach integrates objects with constraints to provide extensible and

flexible implementations". BackTalk [82], ILOG Solver 1451 and JCL (the Java Constraints

Library) [58] are some examples. BackTalk allows defining complex finite domain CSPs.

It can be used as either a library for users to apply for solving CSPs or a framework for

developers to design and implement their own CSP algorithms [81, 821. ILOG Solver is

a constraint-based optimization engine that provides optimization technology for schedul-

ing, sequencing, timetabling, configuration, dispatching and resource-allocation applications

with logical constraints 175, 451. JCL is a Java based library for constraint satisfaction prob-

lems and it is able to handle both discrete finite domains and continuous domains 1581.

Initial

no
no
no
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Anytime solution

no
no
no
Yes
Yes
Yes
Yes
Yes
Yes
Yes

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

2.4.1 Arithmetic CSPs in Python

We have developed a CSP framework in Python for solving arithmetic CSPs where con-

straints are modelled in arithmetic functions [20]. Python supports object-oriented pro-

gramming and includes many interesting features such as operator overloading, generators,

and list comprehension. With these features and the declarative nature of Python, we can

make the CSP framework easy to understand and use. So far, this framework supports

finite integer domains and contains a general backtracking solver. In this research, I will

enhance this framework by implementing and comparing several different particle swarm

optimization algorithms and some modified backtracking algorithms to solve (arithmetic)

CSPs with finite integer domains.

2.4.1.1 Examples

By using the examples described in Section 2.2, we can illustrate how the CSP framework

works. Taking advantage of Python language, formulating a CSP is very straightforward.

What the framework users need to do is to define the variables (and domains), create the

problem (CSP) and add the constraints one by one. If the users would like to solve the

problem, they can specify a solver to solve the problem. Besides the CSP examples shown

in Appendix A (Figure A.l N Figure A.5), a complete sample execution in Python is given

in Figure 2.7.

CHAPTER 2. CONSTRAINT SATISFACTION PROBLEMS

>>> # import the csp framework
>>> from csp import *
>>>
>>> # define variables:
>>> # enumerate color red = 1, green = 2, blue = 3
>>> # range(1,4) render a list [1,2,31
>>> R1, R2, R3 = var(range(1,4)), var(range(1,4)), var(range(lY4))
>>> R4, R5 = var(range(l,4)), var(range(1,4))
>>>
>>> # create a CSP:
>>> csp = problem(R1, R2, R3, R4, R5)
>>>
>>> # add constraints:
>>> csp += R1 != R2
>>> csp += R1 != R4
>>> csp += R1 != R5
>>> csp += R2 != R3
>>> csp += R2 != R4
>>> csp += R3 != R4
>>> csp += R3 != R5
>>> csp += R4 != R5
>>>
>>> # solve the problem:
>>> for sol in gen-backtracking(csp):

print 'Rl = %s, R2 = %s, R3 = %s, R4 = %s, R5 = %s'\
% value(R1, R2, R3, R4, R5)

Figure 2.7: A Sample Run of the graph colouring problem in Python CSP framework.

gen-backtracking(csp) is a function call to a Python backtracking generator, which gives solu-
tions one at a time when it is called until it runs out all solutions.

Chapter 3

Particle Swarm Optimization

3.1 Introduction

Particle swarm optimization (PSO) [53] is a popular problem solving technique in the swarm

intelligence (SI) paradigm. It was first introduced by Kennedy and Eberhart in 1995. They

developed simple methods which could efficiently optimize continuous nonlinear mathemat-

ical functions. Borrowing ideas from artificial life (A-life), social psychology and swarming

theory [53, 551, PSO simulates swarms such as flocks of birds and schools of fish searching

for food.'

Also, PSO is related to evolutionary computation (EC), but it is somewhat different

[44, 531. Similar to many EC techniques, PSO initializes a problem state to a population

of randomly distributed solutions. Unlike many other ECs however, PSO "evolves" solu-

tions based on individual experience and group experience, rather than using evolutionary

operators (e.g. the crossover and the mutation operators in genetic algorithms). It assumes

that socially shared information helps its population evolve. In other words, the population

iteratively updates and searches for optima with the shared information.

Since its first development, many PSO variants have been evolved, and research has

shown promising results in some well-known test functions [53, 96, 10, 551. Starting with

some SI techniques in Section 3.2 and several PSOs in Section 3.3, this research will in-

vestigate the PSO techniques specifically for solving the constraint satisfaction problems

discussed in Chapter 2.

'Craig Reynolds' boids [77] is a well-known visual simulation of flocking.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

3.2 Swarm Intelligence

A swarm is "a collection of organisms or agents which interact with one another [25]." The

term s w a m intelligence (SI) was first used in reference to Beni and Wang's cellular robotic

systems in the late 1980s [6, 31. In their systems, a group of simple robots interact with

their neighbour robots via communication. Later (in the early 90s), swarm intelligence

studies were inspired by social insects, birds, fish and human cognition. In the recent years,

swarm modelling has become a new strategy for solving both constrained and unconstrained

optimization problems [42, 71, 72, 71. In addition to solving optimization problems, limited

research has also applied to solve CSPs [89, 99, 901. Among others, ant colony optimization

(ACO) 1221 and particle swarm optimization [53] are two popular swarm systems. PSO will

be investigated starting from Section 3.3. In this section, we will briefly look at the ACO

techniques.

3.2.1 Ant Colony Optimization

Marco Dorigo invented ant colony optimization by modelling insect ants' behaviour to solve

discrete optimization problems, such as the travelling salesman problem [22, 211. Artificial

ants have been tested on other combinatorial problems such as quadratic assignment prob-

lems, graph colouring, job-shop scheduling, sequential ordering, network routing, swarm-

based robotic problems [6, 251 and constraint satisfaction problems [89, 991.

The idea is that a colony of ants collaboratively find shortest paths between their nest and

a food source without a coordinator or leadership [25]. These ants "communicate" through

a chemical substance called pheromone. In ACO, this pheromone represents the information

shared among the fellow ants. Essentially, each individual ant leaves pheromone on the way

it goes by and picks up pheromone left by the other ants. Because this substance gets weaker

over a distance and gradually evaporates over time, the amount of pheromone implies how

frequently and recently ants have been through the same path. Stronger pheromone may

indicate that a path is shorter or the chances of being successful is higher.

In the algorithm, ants randomly wander the search space at first. Once pheromone ac-

cumulates on several trails, individual ants detect it and choose a path among the candidate

trails. This decision making will be favorable to those with stronger pheromone deposit.

Eventually, these ants will converge to an optimized path and find a solution.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

3.2.1.1 Ant colonies for solving CSPs

Because ACO is closely related to PSO and it has been shown to solve constraint satisfaction

problems particularly on binary CSPs, we would like to briefly examine these systems.

Schoofs and Naudts' systems [89] and Solnon's solvers [99] show that ACO can perform

better than several other evolutionary algorithms (EAs) and competitively with forward-

checking conflict-directed backjumping (FC-CBJ) on a set of random binary CSPs [113].

3.2.1.1.1 Schoofs and Naudts' ant systems. Schoofs and Naudts propose two ant

systems to solve binary CSPs [89, 881. One is based on a constraint graph and uses a

standard penalty function2 counting for constraint violations and evaluating the quality of

a potential solution. Another system uses a hybrid penalty function and path consistency.

Making use of path consistency, their hybrid system is capable of not only reducing the size

of the search space, but also showing the insolvability outside of a mushy region.3 One

problem as indicated by the authors is that even with this hybrid system, they still could

not solve a problem or prove the problem unsolvable in the mushy region.

3.2.1.1.2 Solnon's ant solvers. Solnon presented three ant solvers [99]. Those ant

colonies have been shown to solve random binary CSPs rather effectively and efficiently

compared with several well-known EAs, a random-walk and FC-CBJ [99, 1131. Although

some parameter settings may influence the performance, they are more algorithm specific.

Two strategies are worth noting: adding local search and preprocessing assignments. In the

first case, the algorithm performs local search to locally improve the quality of a complete

assignment as soon as such an assignment has arrived. In the latter case, it initializes a

set of complete assignments called SampleSet with some local search preprocessing; and

then, the solver starts with these initialized SampleSet and searches for solutions. The

author intentionally keeps the ant solvers as generic as possible, but she comments that this

may indeed have the solvers handle some global constraints less efficiently than specialized

algorithms 1991.

2 ~ e e Definition 2.1.4 in Section 2.1.

3~ mushy region is also referred to as a phase transition region, where a substance is neither entirely in
one phase nor in another (eg. liquid vs. solid). The random CSPs in such a region with different tightness
of constraints, contain both solvable and unsolvable instances [97].

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

3.3 Traditional PSO

Kennedy and Eberhart developed the first particle swarm algorithm in 1995 to simulate how

the birds fly synchronously [53, 23, 251. This simulation then became known as the particle

swarm optimization search algorithm. PSO's origin and the relations to other scientific

research have been discussed in Section 3.1. In this section and the next section, we will

first define the common terminology and introduce the original PSO algorithms; and then,

we will review some PSO techniques. In Section 3.5, we will investigate a PSO [90] which

solves binary constraint satisfaction problems. In the last section, we will state the research

questions of this thesis.

3.3.1 Definitions

In PSO, a problem is modelled as an n-dimensional solution space and a population of

particles search through this n-dimensional space for optimal solutions.

Definition 3.3.1. In PSO, a particle Pi simulates an individual in a bird flock. Figure 3.1

shows a group of particles in a 2-dimensional space. Each particle in the group is responsible

for searching and keeping solutions together with its fellow particles. At any time t , particle

Pi is located at some position xi(t) in the n-dimensional problem space. Conventionally,

xi(t) indicates the current position of Pi and xi(t - 1) represents the previous position. In

the problem solving context, a particle with its position represents a potential solution.

Figure 3.1: Particle swarm (population = 10) in a Zdimensional space.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

Definition 3.3.2. In PSO, a swarm P = {PI, P2, ... P,) is a set of particles.

Definition 3.3.3. A particle's velocity G(t) = [ul, u2 . . . , u,] is an n-dimensional vector

that moves particle Pi at time t as shown in Figure 3.2. Mathematically, the position-velocity

relation is

xi(t) = xi(t - 1) + G(t) (3.1)

In PSO, velocities are mainly affected by particle's own knowledge and the neighbours'

experience. Conceptually, a velocity <(t) can be derived from the relation in Equation 3.2,

where cpl and cp2 are parameters as will be discussed in Section 3.3.2.1. According to this

relation, a velocity can be computed using Equation 3.3.

< (t) = cpl (individualexperience) + cp2 (gl obal experience) (3.2)

6 (t) = wv',(t - 1) + cpl (experiencei) + pa (experienceg) (3.3)

Figure 3.2: A position-velocity relation in a 2-dimensional space.

Definition 3.3.4. A neighbourhood defines the social structure of a swarm and indicates

which particles a particle should interact with. Within a neighbourhood, particles interact,

communicate and share information. To form a neighbourhood, we may not restrict to

the physical distances between particles; in fact, they are often defined by the enumeration

labels of the particles in PSO [25]. For example in Figure 3.3, nine particles are enumerated

w PI, P2, . . . P9. Regardless of the physical distance, PI, P2 and P3 are neighbours of size

three,4 and P4, P5 and Ps form another. Stars, rings and wheels are the most commonly

4According to the research papers in the field, size 3 neighbourhood is sometimes denoted as k = 2

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

used neighbourhood structures (shown in Figure 3.4).

Figure 3.3: A global swarm vs. local neighbourhoods [25].

(a) A star (b) A ring (c) A wheel

Figure 3.4: Simple neighbourhood topologies (population = 5) [51, 251.

In the PSO context, two terms, local versus global are often used. "Local" refers to an

individual neighbourhood while the global refers to the entire swarm as one big neighbour-

hood. For example, there are three local neighbourhoods in Figure 3.3. Neighbourhoods

can overlap and a particle can belong to multiple neighbourhoods. For instance, particles

PI, P2, P3, P4 and P5 are to form neighbourhoods of size 3 in a ring topology as shown

in Figure 3.4(b). We may have five neighbourhoods in total: {PI, P2, P3), {P2, P3, P4),

{P3, P4, P5), {P4, P5, PI) and {P5, PI, P2). A particle in such a structure retrieves informa-

tion from another two particles directly connected to it.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 26

Different neighbourhood structures may affect the performance of the swarm. They de-

termine how information propagate among particles, and thus may affect the convergence

of particles, i.e. when and how particles may come together, arrive at some stable state and

stop improving the solution. That is, particles may converge on different local optima or

at different time with different neighbourhood top~logies.~ In a star topology as shown in

Figure 3.4(a), all particles are influenced by one global best location so far in every iteration

and move towards the location, so they tend to converge quickly to the global best. In a ring

topology, the neighbourhood segments are overlapped so the convergence may spread from

one neighbourhood to another and eventually pull all the particles together. By gradually

spreading information, the swarm converges slower in a ring than in a star. For a swarm

in a wheel, there exists one and only one central particle, which serves as a buffer [55] .

The central particle collects and compares the positions of all particles, finds the best one

and moves itself towards the best position. All other particles then pull information from

the central particle and start moving towards the same position. Because of this buffering

effect, a wheel topology may preserve diversity for a bit longer and prevent the swarm from

converging too fast on local optima.

PSO evaluates the quality of its solutions based on an objective function, fitness

function or evaluation function F(x). By evaluating and comparing the current solution

with the best solution found so far, a particle determines its next move. Three best solutions

(or positions) so far are the individual best (pbest), global best (gbest) and local best (Ibest).

0 The individual best position xpbesti refers to Pi's best position found so far, xpbestij is

the jth element of xpbesti, and the individual best pbesti is the evaluation on xpbesti.

0 The global best position so far xgbest is the best position so far of the swarm P and

the global best gbest is the evaluation of xgbest. Similarly, xgbestj is the j th element

of xgbest. Although this can be used by particles in other neighbourhood structures,

it is typically used in a star topology where all particles exchange information in a

single neighbourhood [25].

5~ topology refers to the logical structure of a swarm neighbourhood, rather than a physical structure.
We have mentioned, neighbouring relations are often defined by the enumeration labels of the particles in
PSO. For example in Figure 3.3, nine particles are enumerated as PI , P2, . . . Pg. Regardless of the physical
distance, PI, P2 and P3 are neighbours of size three. 3'4. P5 and P6 form another one, and P7, Pg and Pg
are the other.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 27

The local best position so far xlbestk is the best position so far of all particles in

neighbourhood k and the local best lbestk is the evaluated value. A ring topology is

an example where particles use this information [25]. Particles in a ring topology often

forms a number of (local) neighbourhoods; in each neighbourhood, particles share a

local best position. Note that global best gbest is a typical example of lbest where all

particles of a swarm form a single (global) neighbourhood.

3.3.2 Continuous PSO

PSO was originally designed to optimize continuous nonlinear mathematical functions, and

so it deals with real numbers [53]. The algorithm randomly initializes each particle Pi

to position xi(0) and velocity c(0). At each time step t , every particle calculates a new

velocity c (t) based on the social-psychological tendency [25, 531 from both its own and

its neighbours' knowledge. Considering different ways of sharing information, there can be

three ways to compute velocities?

Individual pbest only or one particle per neighbourhood: each particle makes decisions

on its own, and ignores everybody else.

Global gbest and individual pbest: every particle considers the knowledge of all parti-

cles within a single neighbourhood.

Local neighbourhoods lbest and particle individual pbest: suppose particle Pi is in

neighbourhood k

Once the new velocity has been determined, particle Pi updates its position using Equa-

tion 3.1 mentioned earlier. Then iteratively, all particles keep updating the velocities and

their positions until timeout or the goal fitness value is obtained.

6w is a parameter to control how much the new velocity is affected by the previous velocity. rl and 13 are
random numbers in [0, 11 to randomize the influence of group experience and particles' individual experience.
cl and cz are positive acceleration constants.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 28

In short, this algorithm makes use of a swarm of particles stochastically and intelli-

gently exploring new regions and exploiting towards the previous better regions until the

swarm reaches an "optimum". The particles7 intelligence comes from social interaction and

information sharing, and such learning abilities dominate the PSO algorithm 1551.

3.3.2.1 Parameters a n d variants

Like many other evolutionary algorithms, the behaviours of the individuals and the popula-

tion (the particles and the swarm in PSO) are affected by the parameters in the algorithm;

and so tuning the parameters changes the performance of the search [115, 251. Considering

the algorithm and Equation 3.5, a generic PSO has a list of parameters to work with:

A particle position and a velocity vector are a node and a vector in an n-dimensional

solution space. Both of them consist of n elements. The dimension n is also the size of

a problem to solve, and so the solution space is n-dimensional. For example, the size

of a constraint satisfaction problem (CSP) is the number of variables in the problem.

The population pop of the swarm depends on the problem to solve. Between 10 and 50

are commonly used pop values [23] and some experiments use 100 as their pop values.

A size Ic neighbourhood consists of Icfl particles. There is no standard neighbourhood

size. Research indicates 15 percent of the swarm size as neighbourhood size can be

useful [23].

Iner t ia weight w determines the influence of the previous velocity v',(t - 1) [55, 951

and in turn controls particle's ability to explore and exploit the space. It also affects

the speed of particles converging or de-converging, i.e. the speed of pulling the

particles together or preventing the particles from settling. To get a better searching

pattern between global exploration and local exploitation, researchers recommended

to decrease w over time from 0.9 to 0.4 [95, 55, 231. By doing so, the particles can

explore widely at the beginning and gradually shift to exploit towards an optimum.

The relative magnitudes between cpl = rl x cl and cpz = 7-2 x cz upper bounds determine

whether a particle move towards the neighbour best (gbest) or the individual best

(pbest). If we have the upper bound of cpl greater than the upper bound of pz,

particles tend to emphasize neighbours' experience and move towards the neighbour

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 29

best (gbest). rl and rz are random numbers between 0 and 1, which bring randomness

to cpl and cp2 and affect the acceleration constants cl and c2. These random

numbers are set at each calculation of a velocity so that particles may vary the influence

between different sources of information. Unlike rl and 7-2, the acceleration constants

cl and c2 are controllable. If they are small, the velocity gradually becomes smaller

so the particle tends to slow down over time, and vice versa.

Velocities are obtained stochastically because of the randomness introduced by rl and

7-2. So, the upper bound of velocities Vmax is needed to prevent particles from exploring

here and there forever and not being able to converge. If Vmax is too big, particles

may fly too far at once and miss good solutions. If Vmax is too small, particles may

be limited to a local area. But, the choice of Vmax is problem dependent, for instance,

the size of a variable domain in CSP context. Based on the researchers' experience

[23, 551, Vmax can be set at 10 to 20% of the range of each variable or proportion to

the range of the problem. For example, suppose the search range of a variable is in

[loo, 2001. Vmaz can be set to between 10 and 20.

A constriction coefficient x was added by Clerc to Equation 3.5 [lo, 12, 551.

where x =
2k , k €](),I[and cp = rlcl + r2c2 > 4.0

When cp increases, x becomes smaller and so particles take smaller steps through the

search. In turn, the magnitude of the coefficient affects the convergence of the swarm.

Researchers suggest that a simple setting x = 0.729 where k = 1.0 and cp = 4.1 seems

to work well [52]. The mathematical analysis of the coefficient is not in the scope of

this research. Refer to [12] for more detail.

Some researchers show that when using x or w to control velocities, the upper bound

Vmax is unnecessary [12]. Some others indicate that one may still have a better control

on particles to explore or exploit with Vmax although it is not required [24, 551. For

example, studies show that having Vmax set to the maximum potential solution Xmax

to Clerc's model, the elements of a velocity are individually controlled by the upper

bound and the swarm does not seem to get stuck so easily at a local optima [55].

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

3.3.3 Discrete (Binary) PSO

Kennedy and Eberhart's discrete model [54] is a version of the PSO that does not directly

use real numbers. It makes the PSO applicable to problems with variable values taken from

a discrete domain e.g. v E {1,1.5,2,2.5,3) as opposed to over a continuous range 1 5 v 5 3

where there are infinite number of values between any two numbers. The rationale is that not

all problems can be described using continuous domains; for example, the graph colouring

in Section 2.2.5 has finite domains such as {red, blue, green).

In Kennedy and Eberhart's discrete PSO, a particle and its position still represent a

solution in the problem solution space. Instead of consisting of a sequence of integers or

real numbers however, a particle Pi's position xi(t) at time t is composed of a bit-string:

xil (t), xi2 (t) . . . , xin(t) where xij (t) E { O , l) for each j E {1,2, . . . n). Also, in order to

derive the bit value of xij(t), a velocity element vij(t) is not directly used as an increment to

compute Xij(t), rather it is used as a threshold to determine the possibility of a bit change.

More specifically, vij(t) is transformed by a sigmoid function and then compared with a

uniformly distributed random number pij(t) E [O, 11.

1 0 if (t) e ,+
ct,, , xij (t + 1) =

1 otherwise.

3.3.3.1 Binary encodings

In order to apply the binary representation to integer domains or real numbers, an integer or

a real number must be converted to a bit-string. Two common encoding methods are Binary

encoding and Gray encoding [55]. Binary encoding uses regular binary numbers (in base 2)

to represent integers or real numbers; for example, 'OOl ' , '010' and '011' represent integer

1, 2 and 3. Gray encoding also converts integers to sequences of bits. The only difference

is Gray encoding minimizes the bit changes between consecutive numbers; for example the

Gray encodings of 1, 2 and 3 are 'OOl ' , '011' and '010' so the bit change between 1 and

2 is one bit rather than 2 bits in Binary encoding. Since Gray encoding flips only one

bit at a time when the corresponding number increments one, Kennedy et al. recommend

Gray encoding. It is suggested that Binary encoding may introduce undesired complexities

to problem solving because the Hamming distance between any consecutive numbers is not

uniform and it can be harder to systematically control the changes from 0 ('000') to 1 ('001')

or from 1 ('001') to 2 ('010') as needed for example [55].

CHAPTER 3. PARTICLE SWARM OPTIMIZATION

3.4 Solving Problems with PSOs

3.4.1 Research problems and applications

PSO was originally developed as an optimization problem solver. It is most commonly

applied to optimization problems or to those problems that can be converted to one [23].

Finding minima or maxima of a nonlinear function is a typical test problem for PSO al-

gorithms 125, 961. Also, it has been shown to optimize global unconstrained optimization

problems 172, 711. Some well-known static, numerical, continuous, real-valued constrained

benchmark problems are popular among PSO researchers as well [115].

The early PSO applications were related to artificial neural networks (NNs) [55, 251.

Because of the success in training neural networks, PSO has been applied to various related

applications such as human tremor analysis and diagnosis, Parkinson's disease prediction,

rule extraction and computer controlled milling optimization 155, 25, 961. In addition to

the neural networks, several constrained nonlinear optimization problems have been investi-

gated. Studied applications are, for example, neural network training [lo, 851, human tremor

analysis and diagnosis [93], ingredient mix optimization problem [55], computer controlled

milling optimization [106], reactive power and voltage control [116], power supply reliability

enhancement [68], internal combustion engine design [76], and so on. More and more vari-

ants are being de~eloped.~ Several possible application areas suggested by Eberhart and

Shi [23] are multi-objective optimization, pattern recognition, scheduling, and so on. Refer

to [23] for more suggestions and examples.

3.4.2 Strengths

One reason for PSO gaining its popularity is that it is conceptually straightforward and

computationally simple [55]. Simulating birds flocking, particle swarms fundamentally use

two simple formulae to effectively search the goal. Also, research has shown that in compar-

ing PSO with other algorithms on a variety of problems 115, 87, 5, 33, 1181, it can perform

better on some problems and be competitive on others. Since PSOs are a new search tech-

nique, much research has been targeting to improve the original PSOs for solving various

problems and it has great potential to be done further. For example, owing to its similarity

7 ~ o r most recent research, one can refer to Particle Swarm Optimization website 1411, which keeps a list
of bibliography and related information.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 32

to evolutionary computation (EC) methods, many successful EC techniques and ideas may

be integrated to improve PSOs. Like many EC algorithms, PSO has a number of para-

meters to adjust. On one hand, this is beneficial for implementing adaptive systems [55]

and also shows the extensibility of PSO to other specifically designed algorithms although

it may not perform as well as those algorithms. On the other hand, tuning parameters for

solving a particular problem or a range of problems can be time-consuming and non-trivial.

Compared with EC methods, PSO does not have as many parameters to tune in order to

get acceptable performance [42]. In addition, Hu and Eberthart suggest that PSO is ap-

plicable for both constrained and unconstrained problems even without pre-transforming

the constraints and the objectives of a problem [42].

3.4.3 Weaknesses

Researchers have found several issues that prevent the generic PSOs from effectively solving

certain types of problems. Although the improvement has been working on to handle these

issues, the solutions may not easily be applied to solve other problems; thus, we should keep

these issues in mind while developing new particle swarms for solving other problems. For

example, although PSO has the ability to converge quickly, it tends to wander and slow down

as it approaches an optimum [115]. Owing to the premature convergence, it gets stuck quite

easily and cannot explore wide enough. This can be problematic for solving multimodal

problems where the problems have multiple optimal solutions. Particularly if many of those

optima are only local rather than global [115], particles may get trapped at local optima. In

addition, while there are not many parameters to control [42] and as mentioned previously,

these parameters open up a potential for developing adaptive PSO systems, some of the

parameters are problem dependent. Some suggested values and experimental settings are

still at trial-and-error stage [23], and it can be non-trivial to find the right settings for

individual problems.

3.5 Solving binary CSPs

Although quite a number of PSO variations are designed to solve constrained and uncon-

strained optimization problems, the first and the only one developed specifically for solving

CSPs was done by Schoofs and Naudts in 2002 [go]. Similar to their research in ant systems

[89], this PSO solves binary CSPs and was tested on a set of randomly generated binary

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 33

CSPs. Besides a no-hope/re-hope mechanism for preventing particles from getting stuck in

local optima, several additional operators were introduced to calculate particles' positions

and velocities. Schoofs and Naudts conclude that the system is able to solve the tested

random binary CSPs reasonably well but not so good as an ant colony algorithm and a

genetic algorithm on hard problems [go].

3.5.1 Schoofs and Naudts' operators

The spirit of the original PSO and the meanings of the original formulae (Equation 3.1

and Equation 3.5 for computing a particle's position and velocity) remain essentially the

same. Mathematically however, those two formulae have been reformulated with the new

operators as follows to compute a velocity and update a position [go]:

where velocity C(t) is a vector of [vl, v2, . . . , v,] at time t , a particle position d(t) consists of

[xl, 2 2 , . . . , x,] at time t, xpgest and xg6est denote the individual best position so far and

the global best position so far respectively, and parameters cpl and cp2 will be explained in

the next section. These elements are either the same or similar to those in the original PSO.

The difference is how they are computed via those new operators. Much detail of these

operators are described in [go]. Briefly, they are

1. 9 denotes a position change from one to another. (Z 9 8 = 5) moves from position Z

to 8 and results in a velocity v' where v' is a vector [yi t xi].

2. $ is a reverse operator of 9; it calculates the next position after a position change

with a velocity vector. Computationally, (2 c' v' = y3 adds a velocity v' to a position 2

and becomes a new position y'.

3. 0 operator adds two velocities and yields a new velocity. Specifically, suppose we have
4

v' o w' = ii where v' = b 9 a' and 6 = 89 then for each element ui in ii, ui is either

ai t yi if bi = xi, or otherwise ai t bi.

4. @ is used to multiply a velocity v' with a coefficient cp and to render a new velocity

6 = cp @ v'. Representing CSP in PSO terms,8 suppose a variable xi is an element of

' ~e f e r to Section 4.1 for details.

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 34

position 2 and its conflict counts (nbConfi: the number of constraint violations the

current value of variable xi causes) is greater than some given cp, we can obtain an

element wi with respect to w' = cp 8 v' by having xi + Xi, or otherwise wi = xi + yi if

nbCmfi is not greater than cp. This should become clear in Chapter 4.

3.5.2 Parameters used in Schoofs and Naudts' PSO

The parameters used Schoofs and Naudts' PSO are:

Like other PSOs, Schoofs and Naudts' particle position and velocity vector are a

node and a vector in an n-dimensional solution space. They consist of n elements.

The dimension n is also the size of a constraint satisfaction problem (CSP), i.e. the

number of variables in the problem.

The populatioii pop is the size of the swarm. The value to use depends on the problem

to solve.

Coefficients cpl and cpz. Schoofs and Naudts examined both cpl = cpz = 0 and cpi =

9 2 = 1, and the experiments showed that the solution quality is better when cpl =

'P2 = 0 [go].

A deflection operator gives the probability of direction changes of a particle to refine

the particle's moving direction. Schoofs and Naudts compare this operator to the

mutation operators in genetic algorithms. Refer to [go] and the algorithm in Figure A.8

in Appendix A for the usage of the operator. This operator was set to 0, l / n or 2/n

in [go]. According to Schoofs and Naudts, the deflection feature seems to reduce the

instability of the velocities caused by the no-hope mechanism so the level diversity can

be maintained at a certain level. But, if the deflection is set too high, the swarm will

move too fast to focus.

3.6 The Research Goal: PSOs for Solving n-ary CSPs

we learned that particle swarm optimization (PSO) has been successfully applied to various

constrained optimization problems, and also proposed as a technique for solving random

binary CSPs [go]. In our research, we will extend the ideas of the traditional PSOs and

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 35

Schoofs and Naudts' PSO, and develop new particle swarms to solve general n-ary integer

CSPS.~ For the purpose of this research, we will want to answer the following questions:

Schoofs and Naudts developed a PSO algorithm for solving binary CSPs [go]. They

modified the traditional PSOs by a set of new operators and mathematically refor-

mulated the computation of the velocity and position of the particles with the new

operators. They tested their algorithm on random binary CSPs and reported good

results on non-hard problems. Can we use their algorithm or extend the algorithm to

solve general n-ary integer CSPs effectively?

The traditional Continuous PSO [53] and Discrete PSO [54] were not designed for

CSPs. The questions are:

1. How can we modify these traditional PSOs to solve n-ary integer CSPs?

2. How do the algorithms extending the traditional PSOs compare with Schoofs and

Naudts' algorithm'!

As we have discussed in Section 3.4.2 and Section 3.4.3, the traditional PSOs have their

strength and a number of weaknesses. While designing and developing the new particle

swarm algorithms for solving n-ary CSPs, we should make use of their strength and pay

special attention to the weaknesses since CSPs are hard multimodal problems in general.

'see Section 2.1 for the definition as needed.

Chapter 4

Particle Swarm Optimization for

Solving CSPs

To achieve our research goal and answer the research questions presented in Section 3.6, we

will begin with proposing and developing particle swarm algorithms for solving n-ary con-

straint satisfaction problems (CSPs). Specifically in this chapter, we explain how we model

CSPs in particle swarm, how we modify and improve the three particle swarm optimization

(PSO) algorithms in Chapter 3 to search finite integer space, and then how we formulate a

PC configuration problem as a CSP for the experiment. The experimental results will then

be discussed in Chapter 5.

4.1 CSP Representation in Particle Swarm

In order to use PSO for solving CSPs, we must first put PSO to CSP solving and represent

CSPs in a form that is searchable for PSO. Suppose a CSP has n variables varl, vara, . . .
var,, and each variable can be assigned a single value from a finite set of integers (i.e. a CSP

domain). Each of these integer sets is finite, but not necessarily consecutive over a range.

The constraints imposed on the variables may be unary, binary, ternary or even more. In

general, they may involve any number of variables between 1 and n.

CHAPTER 4. PARTICLE SWARM OPTIIVIIZATION FOR SOLVING CSPS 3 7

4.1.1 Connecting CSPs and PSO

To solve CSPs using PSO, we need to deternline the search space of the swarm, the particles,

and the position and velocity of each particle. Firstly, PSO conventionally models a size n,

problem as an n-dimensional search space and the size of a CSP is ~ne~asured by the nuinber

of variables, so we use the number of CSP variables to define the search space dimensions,

one CSP variable per dimension. In any dimension i , the possible values to search are the

domain of variable vari. One search node in the PSO's search space is a. complete assignment

(va,ll, valz, . . . , val,,) to the CSP variables var I, varz, . . ., war, respectively.

As a member of the swarm, a particle Pi takes part in the mission to search CSP solutions.

Its position xi(t) as shown in Figure 4.1 represents a potential solution or CSP assignment

found at time t. An element zij(t) in a position xi(t) denotes a value v d j selected from CSP

domain Dj. Siinila.rly, particle Pi's best position so far q)best i , the swarm's best position

so far xgbest or the kth neighbourhood best position so far xlbestk are the best (potential)

solutions so far found by P?,, by the entire swarm or by the kt11 neighbourhood, respectively.'

They are all sequences of CSP assignments (vcd Valz, . . . , val,,) .

e when a best solution is found

st,

Figure 4.1: A particle position xi in the CSP context is a complete ~ s i g n m e n t .

A velocity vi(t) of a particle Pi is an n-dimensional vector that moves Pi from its previous

'To determine its velocity to move from a current position to another, a pa.rlicle t,akes two pieces of
information into account: the individual best experience xpbest and the group experience. The group
experience s:gbest or xlbest depends on either the global or the local neighbourhoocl structure of t,he swarm
disc~~ssrd in Section 3.3.1.

CHAPTER 4. PARTICLE SWARM OPTIMIZATIONFOR SOLVING CSPS 38

position xi(t - 1) to the next position xi(t). In the context of CSP, this velocity updates the

complete assignment from one to another and each element vij(t) of vi(t) in fact changes the

assignment of variable varj from one domain value to another. In Figure 4.2 for example,

vij(t) = 4 increments domain value assignment xij(t - 1) = 2 by 4 and yields xij(t) = 6.

Figure 4.2: A particle velocity vi changes CSP variable assignment.

4.1.2 Handling constraints

Moving from one position to another, a particle may violate constraints. Thus, what we

need to resolve next is how PSO handles constraints. PSO was originally designed for

optimization problems and it relied on an evaluation function eval(x) to guide the particles.

Intuitively, we can use such a mechanism to handle constraints in CSPs. Our task is to

choose a good function, which can closely estimate the quality of an assignment and lead

the swarm to a good solution quickly. For example, we can use a penalty function discussed

in Section 2.1. In this research, we use two general penalty functions: a conflict count

function and a distance estimation function. The conflict count function checks constraint

violations and returns the arity of a constraint as a penalty score when the constraint is

violated, or returns zero otherwise. The distance estimation function computes the distance

from a potential solution to a satisfiable solution. For example, an assignment a = 100

violates a constraint 'a+5 5 50'. In order to satisfy the constraint, a can only be at most

45. The distance estimation function returns (100 - 45 = 55).

Besides employing penalty functions to guide the particles, we consider several other

constraint handling strategies such as repairing infeasible solutions or unsatisfiable po-

tential solutions to improve the search or to minimize the constraint violations [63, 131. The

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

details are to be discussed in Section 4.2.2.

4.2 PSO Algorithms for Constraint Satisfaction

As part of this research, several new particle swarm algorithms were developed based on the

three PSO models discussed previously: the Continuous PSO (Section 3.3.2), the Discrete

PSO (Section 3.3.3) and Schoofs and Naudts' PSO for solving CSPs (Section 3.5). We will

refer to them as the Continuous model,2 Discrete model and BCSP model from now on.

One of the major challenges in applying PSOs directly to finite integer CSPs is that all

assignments are only integers within a possibly non-consecutive range. This increases the

complexity of the problems because the particles no longer fly smoothly in a continuous

space. Instead, they need to hop in the space like a frog. In the first part of this section,

we will discuss how to modify the three PSO models to search integer domains. Then, we

will describe strategies that we propose to improve the algorithms.

4.2.1 Generic PSO

To keep the merits of PSOs, we want the algorithms to be as simple and as close to the

originals as possible. The first modification makes PSOs work with finite integer CSPs;

particularly, the Continuous model and Discrete model were not originally designed to deal

with integer CSPs. This modification allows each element xij(t) of a particle position xi(t)

take on a value only from its corresponding CSP (integer) domain Dj. The BCSP model

works with finite integer domains so no such modification is necessary. We will refer to these

PSOs with minimal changes as generic type PSOs of all three models.

4.2.1.1 Continuous model: genericPS0

As mentioned before, we modified the continuous PSO to work with finite integer domains.

The algorithm allows each element of a particle position3 to take on values only from its

integer domain. Specifically, we modify the algorithm in updating velocities and positions

as shown in Figure 4.3, Line 4-7. The computation of the velocity and position of a particle

2~ l though we will modify the model to handle discrete integer CSP domain, we still refer to it as Con-
tinuous model.

3i.e. xij (t) in x i (t) = (xi1 (t) , xia(t), . . . , ~ i n (t)) for j = 1,2, . . . , n

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 40

Pi is done one element (dimension) at a time, for n dimensions. Figure 4.4 illustrates the

idea where uij (t) moves an element xij (t - 1) of a position to xij (t) . If the resulting xij (t)

is in domain Dj, no change is necessary; otherwise, we adjust uij(t) to u&(t) and xij(t) to

x;(t) so xij (t) can be in Dj and close to ~ ~ (t) . ~

1 FOR j = 1, 2 , . . . , n:
2 v[j] = update ve loc i ty
3 x[j] = update pos i t ion x[j] + v[j]
4 I F x [j] not i n domain D [j] :
5 x[j] = r e loca te t o x ' [j l , where
6 x' [j] is the c loses t loca t ion t o x[jl i n D [j l
7 v[j] = adjus t t o v' [jl so t h a t x[j] = x[j] + v[j] maintains

Figure 4.3: A pseudocode segment describes the change done for the Continuous PSO.

(a) before the adjustment (b) after the adjustment

Figure 4.4: A position adjustment on the jth-axis when the element xij goes out of domain Dj

Assuming particle Pi is at xi(t - 1). The small dots represent the values in domain D j , and
the filled circle xij (t - 1) is the jth element of ~ i (t - 1). Suppose uij (t) does not move xij (t - 1)
to another small dot on the board, as shown on the left. The algorithm will adjust ui j (t) to
ui j (t) , find the closest "small dot" and move the particle to x;(t) .

41n this research, particles only search within CSP domains due to the limitation of the CSP Framework.
Alternatively, one may consider keeping xi j (t) as long as it is an integer; otherwise, xi j (t) can be moved to
an integer x;(t) close to ~ i j (t) . If x i j (t) in the former case or x i j (t) in the latter case is not in D j , one
should count it as a constraint violation.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

4.2.1.2 Discrete model: binaryDiscrete and grayDiscrete

We also apply the same idea described in Section 4.2.1.1 to the Discrete model. The dif-

ference is that the Discrete PSO [54] represents a potential solution in an m-bit string5

instead of a sequence of n integers. Unless the CSP domains are binary, some additional

modification should be done beforehand. One possible change is to directly encode each

integer element to its corresponding bit string. If each integer is encoded as an x-bit string,

the original n-dimensional particle position becomes an xn-bit string. For example, we may

have a continuous genericPS0 particle at location (6,4,1,9). Transformed by binary encod-

ing [55], this position in binaryDiscrete is (0110010000011001) .6 Or with a Gray encoding

[55] in grayDiscrete, the position becomes (0101011000011101) .7 Our preliminary exper-

iment has shown several immediate disadvantages of these representations to the Python

CSP framework introduced in Section 2.4.1.

The first issue is the speed. The discrete solvers binaryDiscrete and grayDiscrete tend

to be slower than the continuous genericPS0 over the same number of iterations. For a

problem of size n, assuming each integer domain value can be encoded to an x-bit string,

a binary encoded position of a particle becomes xn dimensions whereas an integer encoded

position is n dimensions. In other words, at each iteration each particle of the discrete

solvers computes velocities and updates particle positions for x x n times, but the particle

of the continuous solver performs this computation only for n times.

Another issue is the "non-consecutive" CSP domain^.^ Since the integers of a CSP

domain may not be consecutive, not all bit strings correspond to legal CSP assignments.

Even with a consecutive domain, binary bit flops may produce some undesirable bit strings

as explained below.

1. Inconsistency among CSP domain sets may cause the undesirable bit strings.g For

consistent implementation, we set all the bit string segments1' at the same length,

regardless of what variable domain a bit string comes from. The string segments of

5m-bit string consists of x i1x i2 . . . xim, for example, 011.. .O.

6 ~ o present it clearly, we may divide the 16-bit binary encoding into 4 segments (0110,0100,0001,1001),
one segment per original integer value.

7i.e. (6,4,1,9) = (0101,0110,0001,1101) in Gray encodings

' ~ o m a i n consecutiveness has been defined in Definition 2.1.1.

' ~ o m a i n consistency has been defined in Definition 2.1.1.

''one segment for one original integer value of a particle position.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 42

(0001,0011,0101, Oll l) , for instance, are all length 4 bit segments, and the segments

of (000000110,110010000) are length of 9. Technically, we take the maximum domain

value of all variable domains to determine the length of bit segments. However, this

representation may waste space and time if the ranges of all domains are different.

For example, we may have CSP domains Dl = {2,4,6,8), D2 = {1,2,. . . ,4001, D3

= {0,1) and D4 = {1,2,. . . ,101. To have the same length for each bit segment, we

encode a 9-bit string for each domain value.ll In this example, we obviously waste 19

additional bits (6 for Dl , 8 for D2 and 5 for D4) and these 19 bits consume unnecessary

computat ion.

2. Another situation occurs within a CSP domain. For example, we have a domain D =

{1,3,5,7,9). We need 4 bits (from 0000 to 1111) to encode the domain and it becomes

{0001,0011,0101,0111,1001). This encoding appears fine at first. However when a

particle computes velocities and performs bit changes, some undesirable numbers12

may appear. These undesirable numbers directly affect the validity of the bit change

and are not acceptable to the Python CSP framework.13

The situations discussed above may affect the effectiveness and the efficiency of the

solvers. In order to compensate the problem, we have tried to adjust and reduce the prob-

ability of producing certain bit changes according to the distribution of CSP domains. But

the adjustment may break the probability of a bit change from the original studies of the

discrete PSO and lose the velocity information for the iterative particle movements. Our

preliminary experiment has shown the disadvantage when CSP domains are not consecutive

or not consistent.

''The maximum domain value "400" is encoded as 110010000, which is a length 9 bit string.

12~hese numbers are 0000, 0010, 0100, 0110, 1000, 1010, 1011, 1100, 1101, 1110 or 1111; these values do
not exist in the variable domain.

13Another possibility is to enumerate a domain set and encode the values as a shorter and more compact
representation such as (1,3,5,7,9) = (000,001,010,011, loo), to reduce the sparse effect. This may be
possible if we have only a few CSP variable domains or each integer value across domains can be encoded
into the same binary string. If we have a large number of variables and domains, the situation will become
much more complicated because each domain set may contain different elements. So, we need to set up a
lookup table for converting between the integer values and their binary strings for each domain. In addition,
if the elements of CSP domains are encoded differently, we may have a problem in verifying constraints. For
example, we may have two variables war1 and warz. The domains of war1 and war2 are Dl = (1,3,5,7,9)
and D2 = (9,19,29) respectively. If we try the compact encoding, we will have Dl = (000,001,010,011,100)
and D2 = (000,001,010). In such encodings, the value 9 in Dl differs from the one in D2. It may then
require more careful thought when we examine a relation such as "9 == 9". One thing we know is that we
cannot compare "100 == 000" directly.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

4.2.1.3 BCSP model: bcspPSO

Schoofs and Naudts' PSO (short for BCSP-PSO) is designed for solving binary constraint

satisfaction problems [go]. The particles of this algorithm update their positions within

CSP variable domains, so they do not go out of domain. The first thing to consider is

the deflection operator which is used as a Boolean predicate in the algorithm with an 'if

statement' in [go]. Functionally, the operator should give a probability to change the moving

direction of a particle. Hence, we modify the statement to "if random0 < deflection"
as shown in Line 13 of Figure 4.5, where random0 returns a random number between 0 and

1. With such a modification, the deflection becomes a probability threshold rather than

a boolean switch. The value l / n or 2/72 for deflect ion gives different probability of the

direction change of a particle as discussed in [go], and the value 0 for deflect ion sets the

probability to zero.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 44

randomly initialize the particles
set gbest, all Ibest's and all pbest's to some very big values
initialize best positions xgbest, all xlbest's and all xpbest
t t l
while t < maximum number of iterations:

do for i t- 1 to population:
do for j t 1 to n:

do nbConf + conflict counts of xij [t - 11 of particle Pi
if nbConf > cpl:

then V' + xpbestij 8 x i j [t - I]
else v' + xij [t - 11 8 xij [t - I]

if nbConf > pa:
then if random() < deflection:

#comments: it was 'if deflection' in [go]#
then v" + Rand(j) @ xij [t - 11
else V" +- xgbestj 8 xij [t - I]

else V" + xij [t - 11 8 xij[t - 11
xij [t] + xij [t - 11 @ (v' 0 v")

fitnessi t conflict counts in particle Pi
if fitnessi < pbesti:

then xpbesti +- X i

pbesti + fitnessi
if pbesti does not change for noHope times:

then randomly initialize X i

gbest, xgbest t update from pbest, xpbest
lbest, xlbest +- update from pbest, xpbest
t t t f 1

return gbest, xgbest

Figure 4.5: Schoofs and Naudts' PSO [go]. It is named as bcspPSO and serves as the foundation of
all algorithms derived from BCSP model in this research.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

4.2.2 Strategic PSOs

Our early experiments showed that the generic type psOs14 could not solve n-ary integer

CSPs effectively. One possibility is that without enough diversity (or distance) among

particles, the swarm converges and confines to a local optimum quickly. Another possibility

is that particles tend to get stuck more easily with integer CSP search space. Particles'

velocities are real numbers. In a continuous search space, particles can move in a much

smaller scale (with real number velocities). In integer CSPs, the search space is discrete

or even sparse because of the non-consecutive domains. If particles do not have enough

power and the velocities are too small to get out of the current positions, the particles may

keep going back to the same position. For example, suppose we have a domain Dj = (1,

2, 3, . . . l o) and a particle's position xj is currently at 2. In a real number domain, the

particle can possibly move gradually from 2.1, 2.2, . . . to 3. However in an integer domain,

the velocity must be big enough to take the particle to move from 2 to 3; otherwise, the

particle has to stay at 2.

In this section, we will describe several modifications done to the generic type PSOs in

order to avoid particles getting stuck and to enhance particles' exploration abilities. Also,

efficiency is another issue that we will have to consider.

4.2.2.1 Zigzag movements: genericzigzag, binaryzigzag, grayzigzag and

bcspzigzag

Regardless of the original PSO models, moving in all n dimensions at one time may have

brought in too much driving force to the particles. This may have contributed to the fast

convergence of the swarm because each particle is affected by the same best experience in

all n dimensions at one time and tends to come quickly to the best experience so far. Also,

such a big step prevents particles from examining a local area. For example, imagine we are

in a 2 dimensional space, an x-y plane. Moving one step in both x and y with a velocity (2,

2) from location (0, 0), we can only visit one location at (2, 2). If we break the step into

two smaller steps in x with velocity (2, 0) and then in y with velocity (0, 2), we may visit

two locations (2, 0) and (2, 2). Besides, if step one and step two are affected by different

best experience, we may visit (2, 0) and (2, 3) instead of (2, 0) and (2, 2) for instance.

Moreover in CSPs, a constraint violation can sometimes be fixed by changing the values

14with the basic modification in Section 4.2.1

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 46

of only one or two variables involved instead of changing the values of all variables. This

is particularly true when a solution is close. Therefore, we propose to have particles move

one dimension at a time in a "zigzag" manner as shown in Figure 4.6. Each of these zigzag

type PSOs will be referred to as genericzigzag of the Continuous PSO, binaryzigzag and

grayZigzag of the Discrete PSO with different encodings, and bcspZigzag of the BCSP PSO.

Computationally, this "zigzag" movement should increase the speed of each iteration

because a particle only needs to compute one dimension (vij) of a velocity and update

one element (xij) of a position each time instead of the entire n dimensions vil, vi2,. . . , vin

and all n elements xil, xi2,. . . , xin. This may also speed up the evaluation of a potential

solution each time because these zigzag particles only need to examine one CSP variable

in each iteration. Although this may possibly increase the total number of iterations the

swarm requires to solve a problem, the swarm has potentially more chances to examine more

solutions locally and to find a solution quickly. In addition, while moving one dimension

at a time, each movement may be guided by a different best found so far; in turn, it may

reduce the chance for the particles to be trapped in one particular best location so far.

(a) particle P2 moves in a traditional style (b) particle Pz moves in a zigzag style

Figure 4.6: A particle moves in a 2-dimensional space with 2 different styles.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

4.2.2.2 No-hope and re-hope: genericRestart

To escape from local optima, one lazy solution is to take actions only when the situation

occurs. For example, the swarm may detect a no-hope situation when there has been no

improvement made for a certain amount of time. As soon as the no-hope situation is de-

tected, some re-hope action may take place to give the swarm more hope to continue finding

solutions. This idea comes from Schoofs and Naudts' "no-hope & re-hope mechanism" [go]

and has been built into the BCSP model including bcspPSO and bcspZzgzag. Schoofs and

Naudts' "no-hope & re-hope" mechanism simply restarts when a no-hope count15 arrives.

Schoofs and Naudts suggest that the swarm gets stuck quickly in a local optimum without

such a mechanism [go].

In practice, we can implement this mechanism at two different levels. First, the no-hope

counters or sensors are placed in each particle to track the individual best so far (pbest).

Second, we can set only one counter to monitor the entire swarm to track the status of

the global best so far (gbest). Once a no-hope situation occurs, we restart the swarm and

keep the best experience so far or refresh the best experience completely. We developed the

genericRestart algorithm based on the continlious genericPS0 algorithm. Similar to the

no-hope & re-hope strategy in the BCSP model, genericRestart has a no-hope counter in

each particle. Once a no-hope is detected, the algorithm refreshes the particles' individual

best so far (pbest), but retains the global best so far (gbest) that continuously guides the

swarm.

4.2.2.3 No-hope and Hop: genericHop, binaryHop, grayHop and bcspHop

Unless the solution density of a problem or the number of solutions in a unit area of the

search space is relatively high, blindly and randomly restarting the swarm may not solve

the problem effectively. Alternatively, we propose to incorporate a repair-based constraint

solving method with the no-hope & re-hope mechanism, and have particles fix constraint

violations locally to find a better assignment for the particle position. Specifically, once a

no-hope situation has been detected, the particles hop in some dimensions where the variable

assignments are in conflict the most, and randomly assign a domain value16 to each of the

15A no-hope count is a predefined upper bound for the maximum number of iterations before a re-hope
action may take place.

16we can also consider applying some heuristics to select values such as the min-conflict heuristic [64].

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVTNG CSPS 48

corresponding dimensions (or variables) to repair the feasibility of the potential solutions.

We name these algorithms genericHop, binayHop, grayHop, and bcspHop17 in this research.

4.2.2.4 Piggy bank: genericMultigbest

In PSO, all potential solutions are evaluated by an objective function. According to the

returned evaluation, PSO determines the quality of a potential solution. The original

PSOs keep only one global best found so far (gbest,xgbest) and throw away all the other

(gbest', xgbest') with the same evaluation where gbest' = gbest but xgbest' # xgbest. How-

ever, the global best in use (gbest, xgbest) may not be the best choice because different

potential solutions with the same evaluation do not necessarily have the same probability of

solving a problem. This is particularly true if the objective function is not effective enough

to distinguish different potential solutions. At worst, some of these potential solutions may

even lead to a dead end at a local optimum. Because of the multimodal nature of CSPS''

and the quality of the chosen objective function, it can be difficult to determine which of

the potential solutions with the same evaluation is really better. One remedy to this prob-

lem is to bank all these potential solutions with the same evaluation, and then use them

one at a time when a no-hope situation is detected. Pragmatically, once a chosen xgbest

cannot guide the swarm to get any improvement for a certain amount of time, the algorithm

replaces it with another banked xgbest' and continues searching. Currently, the timing of

replacing a banked global best is still at trial-and-error stage, so we only implement this

particle swarm genericMultigbest in the Continuous model for the experiment.

4.2.2.5 Diversity control: genericAttractRepulse

Research points out that the original PSO may converge too fast to find an actual optimum

for hard problems, particularly for multimodal problems [I151 like CSPs. The no-hope

and re-hope strategies discussed so far, are designed to help the swarm to escape from a

local optimum. But, they only take place when a no-hope situation occurs. In that case,

the swarm has probably already been trapped. Different from these no-hope and re-hope

strategies, Vesterstrprm and Riget proposed a diversity control system to monitor the

17gener i c~op is based on the Continuous model, binaryHop and grayHop are on the Discrete model, and
bcspHop is upon the BCSP model.

"CSPS typically have multiple solutions. For PSO, these multiple solutions mean multiple optima in the
search space.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 49

distance among the particles and actively prevent the swarm from converging too soon

[115]. Their research has shown that the new system is capable of finding better optima

than the traditional PSO in a continuous search space. However, with the time given for this

research, we cannot find proper parameter settings for the generzcAttractRepulse algorithm

to work with integer domains; thus, we can only leave this system for future research.

4.2.2.6 Partner exchange: genericExchange

Fast convergence is a merit of PSOs in dealing with unimodal problems in which only

one optimal solution exists, but fast convergence may cause the swarm to prematurely stop

in solving multimodal problems such as CSPs [115]. As discussed in Section 3.3.1, the

neighbourhood structures of the swarm affect the speed of convergence. So, we propose to

arrange a particle's neighbours to maintain the diversity of the swarm and slow down the

convergence. Specifically in the generzcExchange algorithm, we have the particles exchange

partners every so often across different neighbourhoods before the entire swarm converges.

Suppose we have a swarm structured in a logical ring with Ic = 2 as shown in Figure 4.7,

where each neighbourhood includes 3 particles. Before exchanging partners, we have parti-

cles (PI , P2, P3), (P4, P5, P6) and (P7, Ps, P9) as three groups in Figure 4.7(a). When some

predefined criterionlg arrives, the exchange partner mechanism takes place and we randomly

swap the members of each neighbourhood as shown in Figure 4.7(b), for example. After the

swap, particles update their velocities based on the new neighbourhood information.

4.2.2.7 Local dept h-first search: genericDFS

If the swarm converges and the particles lack in power to fly around a local area,20 there

may be other solutions unvisited around the area. Such scenarios can be explored with a

depth-first search (DFS) to systematically look for an optimum locally. However, relying on

a complete search too much may not only defeat the purpose of using the swarm in the first

place, but also prolong the search if the problem is too big. Therefore, we should keep the

genericDFS algorithm under control while integrating a depth-first search. For example, we

divide all n CSP variables into several groups to keep the local DFS manageable. Further

l g ~ o r the experiment, we define a counter and have the swarm perform the strategy periodically when the
counter increments at certain times.

20gbest and pbest cannot give a particle enough velocity to move around the local area thoroughly.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Figure 4.7: Exchanging partner is taking actions.

details on setting up the algorithm is available under Section A.3.1.

4.2.2.8 Hybrid PSO: genericHybrid

All the strategies discussed so far have different characteristics and contribute to the search

differently. Enabling the application of different strategies at different situations, the hybrid

PSO (genericHybrid) integrates the no-hope and hop, partner exchange and local depth-

first search strategies described in the previous sections. In addition, our early experiments

showed that the more particles the more effectively the swarm performs in general;21 or at

least, there may be a better chance to get good "guessers" who can produce good initial

solutions. Therefore, we also enable the genericHybrid algorithm to spawn or generate

more particles when there is no hope for improving the solutions. However, we do not rely

on spawning more particles to work on its own because the performance of a generic swarm

does not become better by simply increasing the number of particles for complex problems.

Besides, the run time of each iteration grows as the number of particles increases. Therefore,

we only allow the swarm to spawn more particles when a serious stagnation in the progress of

2 1 ~ h i s is only a general comment to some extent, not a conclusion. More experiments should be done.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 51

the algorithm is detected. When the nehope and re-hope strategies cannot help to improve

the solutions and the swarm obviously needs more alternative solution such as the doubling

of the nehope count, the swam then spawns more particles to continue searching.

4.2.3 Neighbourhood structures

In this research, all the particle swarm algorithms are implemented with three different

neighbourhood structures. Besides a star and a ring that are adopted from the traditional

PSOs, we mixed the two to have a star-ring structure. In a star neighbourhood, a particle

uses the global best information (gbest and xgbest) and its own experience (pbest and

xpbest) in decision-making. In a ring, a particle updates its velocity and position according

to its neighbours' (local) best information (lbest and xlbest) and its own experience (pbest

and xpbest). In a star-ring structure, a particle works with two different neighbourhood

structures. Not only does it globally retrieve information from all the particles in a star,

but it also interacts with its local neighbourhoods22 in rings. Computationally, xgbest,

xlbest and xpbest all contribute to particles' velocity updates as follows:

$(t) = $(t - 1) + q c l (xpbesti - xi(t - 1)) +r2c2(xgbest - xi(t - 1)) + r3c3(xlbestk - xi(t - 1))

(4 4
where rl, 7-2 and 7-3 are random numbers between 0 and 1, and cl, c2 and c3 are the

acceleration constants.23

4.2.4 Summary of particle swarm algorithms

Table 4.1 summarizes all the particle swarm algorithms that have been implemented as part

of this research. Aside from the algorithms based on the BCSP model, the rest of them

use the two objective functions discussed in Section 4.1.2 to guide the search. These two

objective functions, the conflict count function and the distance estimation function, are

used individually with each algorithm and not in conjunction.

2 2 ~ particle may belong to multiple local neighbourhoods as described in Section 3.3.1.

23Acceleration constants are discussed in Section 3.3.2 for a star or a ring neighbourhood structure.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Table 4.1: This table summarizes the PSO algorithms developed in this research.

Algorithm

genericPS0
binaryPSO
grayPSO
bcspPSO
genericzigzag
binary Zigzag
gray Zigzag

genericHop
binaryHop
grayHop
bcs pH0 p

genericAttract-
Repulse

genericHy brid

Model

Continuous
Discrete
Discrete
BCSP
Continuous
Discrete
Discrete
BCSP
Continuous

Continuous
Discrete
Discrete
BCSP

Continuous

Continuous

Continuous
Continuous

Continuous

Continuous

Continuous

Strategy

generic

zigzag

no-hope&
rehope

no-hope &
hop

piggy bank

diversity
control

DFS
zigzag +
DFS

partner ex-
change
partner
exchange
+ zigzag

no- hope&
hop+ DFS
+ spawned
particles+
partner
exchange

Strategy description

The original algorithm with
minimal modifications to prevent
the particles from falling out of
CSP domains.
Instead of traditionally moving in
all n dimensions a t once, these
zigzag particles move one
dimension a t a time.
Once a no-hope is detected, the
swarm restarts and brings more
hopes to the system.
Integrating the no-hope& re-hope
mechanism and a repair-based
method, the particles try to fix
constraint violations in the
dimensions that have the most
number of conflicts.
The swarm keeps multiple global
best found so far of the same eval-
uation and replaces the current
best with a banked one when a no-
hope situation occurs.
The swarm monitors the distance
among particles and actively pre-
vents the swarm from prematurely
converging.
When some predefined criterion
arrives, each particle performs a
complete depth-first search over
their own responsible variables on
the best solution found so far.
The swarm exchanges partners
among different neighbourhoods
periodically; after each swap, the
particles compute their velocities
based on the newly formed
neighbourhood experience.
In addition to the features in
genericHop, genericDFS and
genericExchange, it includes
spawning particles when the
swarm is seriously stagnant (e.g.
twice of the no-hove count)

Section

4.2.1.1
4.2.1.2
4.2.1.2
4.2.1.3
4.2.2.1
4.2.2.1
4.2.2.1
4.2.2.1
4.2.2.2

4.2.2.3
4.2.2.3
4.2.2.3
4.2.2.3

4.2.2.4

4.2.2.5

4.2.2.7
4.2.2.1+
4.2.2.7

4.2.2.6

4.2.2.1+
4.2.2.6

4.2.2.3+
4.2.2.6+
4.2.2.7

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

4.3 Application Problem-PC Configuration

Random constraint satisfaction problems are often used for benchmarking algorithms, but

they may not be practical [32]. Thus, rather than experimenting with many random con-

straint satisfaction problems, we will evaluate the performance of the algorithms on more

realistic problems.

4.3.1 Introduction

Configuration problems are a class of problems related to considering how to assemble a

product from a set of components under a set of limitations [103]. It includes a wide range of

complex real-life problems such as equipment configuration, product configuration, network

configuration, software configuration and service configuration. Because of the nature of

the constraints of the problems, much problem solving research is focused on reasoning

approaches [84] or constraint-based methods [49].

A PC configuration problem is a practical configuration problem, which configures com-

puter parts to build a functional personal computer. This problem can be very complex

and involves many kinds of hardware specifications. For example, certain CPUs can only

fit into certain motherboards, for which the sockets must be the same, the frequency must

be compatible, and so on. A basic barebone PC may easily involve twelve essential parts

and a number of limitations to put them together. Besides, we also need to consider con-

sumers' budget and preference. Solving such a problem can not only help computer stores

to assemble computers based on the hardware specifications efficiently, but also assist both

power users and naive users to purchase computer systems effectively with their preference

taken into account. The PC configuration CSP I1041 lends itself as a good candidate for

our experimentation. As the purpose of this research focuses on solving CSPs as opposed

to optimizing them, all constraints will be treated as hard constraints that must be satisfied

concurrently. The test problems are modelled in the CSP Python framework [20] and used

to evaluate the particle swarm algorithms described earlier.

4.3.2 Modelling a PC configuration problem in Python CSP Framework

To model the PC configuration problem, a set of variables, their domain values, and a set

of constraints need to be defined. A PC configuration problem deals with a set of hardware

components and each component has a set of specifications. Hardware components include

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 54

CPUs, memories, motherboards, interface cards and various peripheral items. Hardware

compatibility and user preference are the two major types of constraints. For instance,

CPU socket must fit into a motherboard, memory pins have to match, and the interface

cards should be supported. Manufacturers, colour and monitor size are examples of common

user requirements.

By analyzing the problem with the sample data taken from the ~ n t e r n e t , ~ ~ we consider

two formulations below. Each of them models the problem to different levels of depth.

4.3.2.1 Simple formulation - Formulation I

Our first formulation is similar to Tam and Ma's model for building a web-based configura-

tion application [104, 1051. The categories of the hardware components are identified as the

problem variables. Component compatibility and user requirements are preprocessed and

turned into good list constraints.

The benefit of this formulation is that the search space is much smaller and the problem

is much simpler than the second formulation introduced in Section 4.3.2.2. Much work has

already been done during the preprocessing phase. For example, a number of constraints

between CPU and motherboard such as (CPU socket vs. motherboard socket) and (CPU

speed vs. motherboard frequency) can be reduced to one good list constraint. On the

other hand, it is not as user friendly in terms of formulating a CSP. It requires constraint

preprocessing among different components and does not fully take advantage of CSP repre-

sentation. Moreover, it has to preprocess the constraints once again if more components or

constraints are added later on, and it is less obvious how to represent user requirements.

4.3.2.1.1 CSP variables and the domains. In this formulation, we define only a set

of component variables to represent the categories of the computer components such as

varcp,, var,,, and var,b for CPU, RAM and motherboards. Figure 4.8 illustrates the

variables of a sample problem.

To represent the sample components as a set of integers for each component variable,

we enumerate the components of the variable. For example, 10 CPU components are listed

in Table 4.2. These CPU components are numbered from 0 to 9 and the domain Dcpu is

set to {O,1 , 2 , . . . ,9). Likewise, the domains of var,,, and var,b are set to {O,1, 2,. . . ,9)

2 4 ~ h e components are partially chosen from the hot sale list of http://www.ncix.com on October 2004
and the specifications are gathered from various manufacturers' online information.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Figure 4.8: The CSP variables of a PC configuration problem under Formulation I.

representing the RAM and motherboards listed in Table B.2 and Table B.3 respectively.

For the rest of the sample components and their domain assignments, see Section B.1.1.

4.3.2.1.2 CSP Constraints. Tam and Ma assume the availability of a preprocessed,

centralized database is available and the data is consistent [104). The only constraints ex-

plicitly considered are on user budget, CPU type and memory bus speed; all other compo-

nents are not constrained. When computers are configured however, hardware compatibility

alone is in fact much more complicated than only CPU and memory constraints. Although

this research is not about how to represent a configuration problem, we want to make the

test problem reasonably realistic; thus, we add additional realistic constraints to model the

problem. For example, several constraints among CPU, RAM and motherboard are listed in

Table 4.3. For the rest of the constraints in Formulation I, see Table B.16 in Section B.1.2. In

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Table 4.2: Sample CPUs for varcpu and their integer representation.

Component specification

AMD ATHLON 64 3000+ 2.0GHz S754 800fsb
AMD Mobile ATHLON XP-M 2500+ 1.86GHz SOCKETA 266fsb
INTEL PENTIUM 4 3.0GHz S478 800fsb
AMD ATHLON 64 3200+ 2.2GHz S754 800fsb
AMD ATHLON 64 3500+ 2.2GHz S939 2000fsb
AMD SEMPRON 2500+ 1.75GHz SOCKETA 333fsb
INTEL PENTIUM 4 2.8GHz S478 800fsb
INTEL PENTIUM 4 3.0GHz S478 800fsb
AMD ATHLON 64 2800+ 1.8GHz S754 1600fsb
INTEL PENTIUM 4 3.2GHz S478 800fsb

Enumeration

The domain of var,, is the enumeration of the sample components in (1, 2, . . . , 9).

this formulation, we preprocess the data into good list constraints on a number of variables

to enforce corresponding constraints.

Table 4.3: Sample constraints on var,,,, var,,, and var,b under Formulation I .

I Constraint I Description

memory pins and the slots on a MB have to match;
GOOD (warmb, warTam)

if RAM is a dual RAM. motherboard must sumort it

GOOD (war,, , warmb)

I x 1

/ GOOD(var,,, war,,, warmb) 1 total price 5 budget

CPU socket must fit on a motherboard;
fsb (front side bus) should be compatible.

4.3.2.1.3 Formulation I in the Python CSP Framework. To implement this for-

mulation in the Python CSP Framework [20], we extend the Framework and define one

constraint for each compatibility limitation. Without any specification variablesz5 how-

ever, there is not a clear way to represent these constraints descriptively. Besides, it is fairly

inefficient to reprocess the component specification strings such as "CPU INTEL Pentium 4

2.8GHz Sockets478 800fsb" and "MB ASUS Sockets478 dualRAM 184pin (800,533,400)fsbV

25A set of variables represents the specifications of the hardware components. Refer to Section 4.3.2.2 for
detail.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Table 4.4: Four n-ary constraints are added to the Python CSP Framework for Forn~ulation I.

Constraint I arity

G O O D l i s t

Condition

if the assignment is on the list, returns true
if the assignment is not on the list, returns true
if "total price 5 user budget", returns true
if "total price 2 user budget", returns true

"Arity" indicates the number of arguments of a. constraint. If the condition is true, the con-
straint will return TRUE.

in every constraint check. Thus, most of the component constraints shown in Section B.1.2

are preprocessed into corresponding good lists or bad lists, except for the user budget. Four

n-ary constraints: GOODlist, B A D l i s t , UPPERprice and LOWERprice listed in Table 4.4, are

defined in the Framework.

4.3.2.2 Detailed formulation - Formulation I1

Besides the component variables in the Formulation I, we can model the problem more

descriptively with a set of specification variables. These specification variables represent

the specifications of hardware components such as brand name, model, capacity, and so

on. Together with the Python CSP Framework, this formulation interestingly describes

connection constraints and user constraints for component compatibility and user

requirements.

4.3.2.2.1 CPS variables and the domains. In addition to the component variables

that represent the categories of the computer components: cpu, ram, mb, etc., we further

define a set of specification variables to describe the specifications of the components such as

CPubrand, CPumodel, CpUsoc~et for a CPU. Figure 4.9 shows the variables of a sample problem

in Formulation 11.

Similar to the domains in Formulation I, the components of each category are enumer-

ated as the integer domain values for the corresponding component variable. The values

of each component specification are also enumerated as the domain values for the corre-

sponding specification variable. Taking the sample CPUs in Table 4.2, we have specification

variables CPubrand7 cpum0del, ~ p u , ~ ~ ~ k , cpusOcket and CpUfsb for the the brand name, model,

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 58

CPU clock, socket and f ~ b . ~ ~ Table 4.5 illustrates how to enumerate the values of individual

specifications. For the rest of the sample specifications, see Section B.2.1.

Table 4.5: Sample values of CPU specifications and the enumerated domain.

enurn W b r a n d

0
1 AMD
2 INTEL
3
4
5
6
7

The rows in the tables do not represent a product, but the enumerated values. For example,
AMD of cpubrand is 1, ATHLON of qum,del is 0, PENTIUM of cpum0de~ is 2, SOCKETA of
cpusocket is 3, and so on.

enum W m o d e l

0 ATHLON
1 M A T H L O N ~ ~
2 PENTIUM
3 SEMPRON
4
5
6
7

4.3.2.2.2 CSP Constraints. We define three types of constraints in this formulation:

component constraints, connection constraints and user constraints. Component con-

straints relate specification variables to their corresponding component variables in forms

of good lists to describe individual hardware components. For instance, to enforce "CPU:

AMD ATHLON 64 3000+ 2.0GHz S754 800fsbV, we lookup the CPU from Table 4.2 and

its specifications from Table 4.5. Consequently, the CPU has a value cpu = 0 in Table 4.2.

By parsing the specifications and looking up the corresponding values in Table 4.5, we get

CpUbTand = 1, CPumodel = 0, ~ p ~ d ~ ~ k = 3, ~ p ~ ~ ~ ~ k ~ t = I and CpUfsb = 2, respectively. We can

then put these values in a tuple (cpu, cpuhand, cpumodel, cpuclock, Cpusocket, cpufsb) = (0, 1,

0, 3, 1, 2). After processing all the sample CPUs collectively, we have a 6-ary component

constraint G O O D C ~ U (C ~ U , CpUbTand, cpum0del, CpuclOck, Cpusocket, q u f s b) and a good list of

CPUs as in Table 4.6. For the rest of component good lists under Formulation 11, refer to

Section B.2.2.1.

Connection constraints enforce component compatibility. Instead of using good lists as

those in Formulation I, these constraints can be represented in arithmetic relations to work

within the Python CSP Framework. Sample connection constraints are listed in Table 4.7.

For a complete list of connection constraints, see Table B.39 in Section B.2.2.2.

2 6 ~ specification of CPU, stands for front side bus and represents the speed.

enum C P U C ~ O C ~

0 1.75
1 1.8
2 1.86
3 2.0
4 2.2
5 2.8
6 3.0
7 3.2

enum C@socket

0 S478
1 S754
2 S939
3 SOCKETA
4
5
6
7

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

TOWER
TOWERbrand
TOWERform

VGAface
VGADVI
VGATV
VGAVGA

Figure 4.9: The CSP variables of a PC configuration problem under Formulation 11.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS 60

Table 4.6: Sample CPUs in good tuples, and the entire list represents "GOODcpu" constraint.

Table 4.7: Sample PC connection constraints in Formulation 11.

Constraint expression

CPU-socket == MB-socket
RAM-pin == MB-pin

arity I Description

CPU socket must fit on a motherboard
memory pins and the slots on a MB
have to match
if a MB has a sound chip, a sound card
is optional

SND-face < 4 and
((((SND-f ace+l) * (MB-PCI*lOO)

/ lO**SND-face) % 10) > 0

User constraints are defined for user requirements or preference. The requirements can

be varied and sample user constraints are listed in Table 4.8.

1
3

4.3.2.2.3 Formulation I1 in the Python CSP Framework. In addition to the

GOODLIST, BADLIST, UPPERprice and LOWERprice constraints (shown in Table 4.4), a special

arithmetic expression ' I ' for 'OR' have been implemented. Several connection constraints

have been described using such an expression such as (SND-brand ! = 0) I (MB-snd ! = 0)

(from Table 4.7). This expression is interesting because traditionally all CSP constraints

are logically handled with AND relations and all of them must be satisfied at the same time.

if a sound card is to use, the interface
must be supported

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

Table 4.8: Sample PC user constraints in Formulation 11.

FDD-external == 1 1 1 I want to have an external floppy drive

Constraint expression

UPPERprice (items, 1800)
LOWERprice(items , 1500)

However, in reality some constraints may be satisfied in one way or another. The OR expres-

sion enhances the flexibility of the Framework in expressing constraints and the user can

have an option to specify more varieties of constraints in the Framework.

arity

n
n

CD-writer != 1

4.3.3 PC configuration test problems

Description

budget upper bound $1800
price lower bound $1500

In order to test the particle swarm algorithms on both Formulation I and 11, different sets

of test problems have been defined.

1

4.3.3.1 Problems for Formulation I

do not want a CD writer

A total of 6 test problems have been defined under Formulation I. These problems are

listed in Table 4.9. Among these problems, problem 10.3 and problem 10.41 are for overall

experiments and the others focus on dealing with n-ary price constraints. See Section B.1.3

for problem description of each problem.

4.3.3.2 Problems for Formulation I1

A total of 14 test problems have been defined under Formulation 11. These problems are

divided into seven problem sets 20, 21, . . .26 listed in Table 4.10. The complexity of these

problem sets progressively increases. Each problem set contains a base problem and each

problem of a problem set is developed by incrementally adding a number of constraints. See

Section B.2.3 for problem description of each problem.

CHAPTER 4. PARTICLE SWARM OPTIMIZATION FOR SOLVING CSPS

problem
no.

10.3
10.41
10.53
10.55
10.62
10.64

Table 4.9: PC configuration problems for Formulation I.

1. It takes too much time to estimate. After running the estimation program for days,
we still cannot retrieve the result. Based on the number of nodes in the search space
examined, we know the solution density of problem 10.53 is smaller than 2.0 x The
solution density of problem 10.55 is not available either.

2. The 14 constraints in problem 10.3 are all connection constraints for compatibility. The
additional constraints added to problem 10.41 relate to user requirements: one for exter-
nal colour and the other two for the budget upper bound and the lower bound.

var
n

14
14
14
14
14
14

Table 4.10: P C configuration problems for Formulation 11.

problem I var

domain
size

10 - 40
10 - 40
10 - 40
10 - 40
10 - 40
10 - 40

domain
size

2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40

search
space

1.01 x 1015
1.01 x loi5
1.01 x loi5
1.01 x l0l5
1.01 x 1015
1.01 x loi5

no.

20.3

search
space

9.81 x 1016
5.89 x 10l8
3.62 x
1.16 x
3.36 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
1.14 x

n
32

-
constraints

20
20
23
23
3 1
3 1
35
39
45
33
33
33
33
3 1

constraints

14
17
16
16
16
16

min.
arity

1
1
1
1
1
1
1
1
1
1
1
1
1
1

max.
arity

12
12
12
14
14
14
14
14
14
14
14
14
14
15

min.
arity

2
2
2
2
2
2

approx.
density

(note: 1)

no solution
no solution

1. It takes too much time to estimate. After running the estimation program for days,
we still cannot retrieve the result. Based on the number of nodes in the search space
examined, we know the solution density of problem 20.3 is smaller than 2.5 x None
of the others is available either.

max.
arity

14
14
14
14
14
14

approx.
density

1.1 x lo-'
7.4 x
(note: 1)

no solution
no solution

Chapter 5

Experiment and Evaluation

5.1 Introduction

In Section 3.6, we stated our research questions. In Chapter 4, we described a number of

new particle swarm algorithms developed for this research. In this chapter, we focus on

the answers. In support of our answers, we empirically tested the new algorithms in three

phases, the Exploration, Comparison and all .-diff phases. In the Exploration phase, we

explored the algorithms and their parameter settings, and determined which algorithms and

what parameter settings for the Comparison phase. In the Comparison phase, we tested

the algorithms on PC configuration test problems and collected the data for comparing the

effectiveness and efficiency of the algorithms. From the Exploration and Comparison phases,

we realized that the particle swarm algorithms have difficulty in solving n-ary constraints

for large n, and so we set up the a l l -d i f f experiment to examine the observation. Based

on the results, we evaluated the algorithms on a set of measures.

This chapter begins with the presentation of the test problems and the measures. In

Section 5.3, the use of facilities and the implementation issues of the algorithms are ex-

plained. In Section 5.4, the experimental results are reported and analyzed. Finally in

Section 5.5, based on the experimental results, the research questions stated in Section 3.6

are addressed.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.2 Experiment Setup

5.2.1 Test algorithms

In order to solve CSPs, we developed new particle swarm algorithms based on three original

PSOs: the continuous PSO [53], binary discrete PSO [54] and Schoofs and Naudts' PSO

for solving binary CSPs (BCSP) [go]. We refer to these particle swarm algorithms as the

Continuous model, Discrete model and BCSP model with respect to their origins. Table 4.1

provides a list of algorithms and their description. The development of our algorithms has

been explained in Section 4.2, and each of these algorithms has been designed to work with

different neighbourhood structures to communicate globally, locally or both.' Our research

focuses on constraint satisfaction problems rather than on constraint optimization problems;

therefore, all constraints must be satisfied simultaneously.

Except for the BCSP-based algorithms that are already designed to work with the con-

flict count objective function, the rest of them use the two objective functions discussed in

Section 4.1.2 to guide the search. These two objective functions, the conflict count function

and the distance estimation function, are used individually with each algorithm and not in

conjunction. We divide the algorithms into five classes according to their original models

and the objective functions, and list them in Table 5.1.

Table 5.1: The five classes of particle swarm algorithms in this research.

Model
Continuous

The Continuous-Conflict algorithms are derived from the Continuous model with conflict
counts objective function.

Discrete
BCSP
Continuous
Discrete

In this research, we seek to propose several particle swarm algorithms which are good for

solving general CSPs, so we do not emphasize on tuning parameter settings to improve the

Objective function
conflict counts

'we denote each of these as "pg", "pl" and 'blg"; with these struct.ures, particles take information from
the global best gbest and the individual best pbest, or from the local best lbest and the individual best pbest,
or from the global best gbest, the local best lbest and the individual best pbest respectively.

Referred name
Continuous-Conflict

conflict counts
conflict counts

distance estimation
distance estimation

Discrete-Conflict
BCSP
Continuous-Distance
Discrete-Distance

CHAPTER 5. EXPERIMENT AND EVALUATION 65

performance of the algorithms. Thus, most of the parameter settings for the experiments

are obtained from previous particle swarm research. Anyone interested in the effects of the

parameters may further tweak the algorithms as needed for their particular problem.

5.2.1.1 Algorithms for the Exploration phase

In the Exploration phase, we examined all the algorithms shown in Table 5.2.2 For each

algorithm, we set the swarm size to 20, 50 and 100 with an iteration limit of 10000. To

experiment with neighbourhood structures, we have the swarm set up to work with a global

neighbourhood structure, a local neighbourhood structure of size 7 (i.e. k = 6), and a mix

of both structures. The detailed settings of the algorithms are in Table C.l in Section C.l

and the parameters used to control the behaviour of the swarm are explained in Table 5.3.

Table 5.2: The PSO algorithms used in the Exploration phase.

model-objective

Continuous-conflict

algorithm

genericPSO

genericzigzag

genericHop

genericRestart

genericMultigbest

genericDFS

zigzagDFS

genericExchange

zigzagExchange

binaryDiscrete

grayDiscrete

binaryzigzag

grayzigzag

binaryHop

grayHop

sect.

4.2.1.1

4.2.2.1

4.2.2.3

4.2.2.2

4.2.2.4

4.2.2.7

4.2.2.7

4.2.2.6

4.2.2.6

parameters in use

w l , c1 and c~~

W , c1 and c2

w, cl and c2, nohope3, poprate4

w, cl and c2, nohope, pop-prate

W , c1 and c2, nohope

W , C I and c2, nohope, df s-size5

W , c1 and c2, nohope, dfs-size

w, cl and c2, regroup6, stop-group7

w, cl and c2, regroup, stop-group

$1, $27 urnax, Vrnin

$1 , $27 V m a x , urnin

$1 $27 urnax, umin

$1 , $ 2 , vmaz, urnin, nohope'', pop-rate12

$1 , $2 , urnax, Vmin, nohope, Pop-rate

cpl and p213, deflect7:0n'~, nohope15

cpl, (~ 2 , de f ledion, nohope

2 ~ n Table 5.2, we also provide information about the section number and the related parameter settings
for reference.

CHAPTER 5. EXPERIMENT AND EVALUATION 66

model-objective

r------

I model-objective

algorithm

genericRest art

genericMultigbest

genericDFS

zigzagDFS

binary Zigzag

gray Zigzag

binaryHop

grayHop

sect. parameters in use

4.2.2.3 1 cpl, rpg, deflection, nohope, pop-rate16

4.2.1.1 1 wl, cl and cz2

4.2.2.1 1 w, cl and c2

4.2.2.3 / w, cl and cr, nohope3, pop-~ate4

4.2.2.2 / w, cl and c2, nohope, pop-prate

4.2.2.4 (w, cl and c2, nohope

4.2.2.7 1 w, cl and c2; nohope, dfs-size5

4.2.2.7 (w, cl and c2, nohope, df s-size

4.2.2.6 1 w, cl and c2, regroup6, stop-group7

Table 5.3: Parameters used in the Exploration phase

parameter

POP
k

ITER

W

(~ 1 ~ ~ 2)

nohope

description

the population of the swarm

the size of neighbourhood

the maximum of iterations

an inertia weight in computing particle's velocity, deter-

mines the effect of the previous velocity a t time t - 1

the acceleration constants in computing particle's velocity,

determines the influence of the global (or local) best infor-

mation and the individual best information

an iteration count, defines when the swarm has no more im-

provement for so long, the swarm performs a certain strat-

egy to break the situation

CHAPTER 5. EXPERIMENT AND EVALUATION 67

model-objective parameter

pop-rat e

df s-size

regroup

stop-group

spawn

4 1 and 4 2

nohope

pop-rate

$91, $92

deflection

nohope

pop-rate

description

the percentage of particles to perform the given strategy

after the nohope count kicks in; for instance, poprate = 0.5

means half of the population should perform the specific

strategy

defines the number of variables in each depth-first search

group assigned to a particle; see Section 4.2.2.8

an iteration count, defines when the swarm should per-

form such a strategy; only used in algorithms involving

"exchange partner" strategy

an iteration count, defines when to stop regrouping particles

and return to normal

an iteration count, defines when to spawn more particles;

used in genericHybrid algorithm

the acceleration constants in computing particle's velocity

the velocity upper bound and lower bound in determining

particle's velocity

same as in the Continuous

same as in the Continuous

the coefficients are used in computing particle's velocity

serves as a switch to refine particle's moving direction, i.e.

whether a particle should flip the direction or not

exists in the original BCSP model for individual particles

to determine when it has done no improvement and should

restart; we also use this parameter globally to the swarm

similar to the nohope in the Continuous model

same as in the Continuous

same as Continuous/conflict

same as Discretelconflict

5.2.1.2 Algorithms for the Comparison phase

Based on the results from the Exploration phase, several algorithms were eliminated for two

reasons. One, we could not find proper parameter settings for those algorithms within the

CHAPTER 5. EXPERIMENT AND EVALUATION 68

time constraint. Also, in order to include additional algorithms (described below) that we

would like to examine within the limited time for this research we removed several algorithms

from the experiment.

Additional algorithms are developed and included by integrating the strategies we have

examined. "zigzagHop" type algorithms including "zigzag" style movement (as described

in Section 4.2.2.1) and a repair-based "no-hope and hop" strategy (as discussed in Sec-

tion 4.2.2.3) are added. Each of these zigzagHop algorithms will be referred to as gener-

icZigzagHop of the Continuous PSO, binayZzgzagHop and grayZigzagHop of the Discrete

PSO with different encoding, and bcspZigzagHop of the BCSP PSO. Another algorithm

added is genericHybrid, which integrates the "no-hope and hop", "partner exchange", and

"local depth-first search" strategies as discussed in Section 4.2.2.8. Table 5.4 lists the algo-

rithms used in this phase.

As for the parameter settings, we only used a subset of those from the Exploration phase

because it is outside the scope of this research to exhaustively run all the settings on the

selected algorithms. Some parameter settings; however, have been adjusted. First, we find

that swarm size 20, 50 and 100 are more than sufficient for the purposes of the experiment.

More particles imply more processing time for each iteration. Some experiments showed that

we can differentiate the algorithms in the experiment with fewer particles, so we reduced

the swarm size to 3, 5 and 10.

Second, with the time we save by reducing the particles, we increased the iteration limit

to 20000. In addition, the results from the Exploration phase indicated that zigzag type

algorithms complete an iteration quickly because they only process one dimension each

time. Given approximately the same amount of time, we can assign a larger iteration limit

to these algorithms. Therefore, we allow zigzag and zigzagHop type algorithms to run for a

maximum of 50000 iterations.

CHAPTER 5. EXPERIMENT AND EVALUATION

Table 5.4: PSO algorithms used in the Comparison phase.

model-objective

Continuous-conflict

algorithm sect. parameters in use

genericPSO 4.2.1.1 w, cl and cz
genericzigzag 4.2.2.1 w, cl and cz
genericHop (4.2.2.3 1 w, cl and cz, nohope, pop-rate
genericzigzag~opl w, cl and cz, nohope, pop-rate
zigzagDFS 4.2.2.7 w, cl and cz, nohope, df s-size
zigzagExchange 4.2.2.6 w, cl and c2, regroup, stop-group
genericHybrid 1 4.2.2.8 1 w, cl, cz, nohope, pop-rate, df s-size,

regroup, stop-group
binaryDiscrete 4.2.1.2 $1 and $2 , vmax and vmin
grayDiscrete 4.2.1.2 $1, $2, vmax, vmin
binaryzigzag 4.2.2.1 $1, 4 2 , vmax, vmin
gray Zigzag 4.2.2.1 $ 1 , $2, vmaxr vmin
binaryHop 4.2.2.3 41, $2, vmax, Vmin, nohope, pop-rate
grayHop 4.2.2.3 $ 2 , urnax, vmin, nohope, pop-rate
binaryzigzagHop2 $1, $2 , V m a x , Vmin, nohope, pop-rate
grayZigzagHop3 $1, $2 , V m a x , urnin, nohope, pop-rate
bcspPSO 4.2.1.3 cpl and cpz, deflection, nohope
bcspzigzag 4.2.2.1 cpl, cp2, deflection, nohope
bcspHop 4.2.2.3 cpl , 9 2 , deflection, nohope, pop-rate
bcspZigzagHop4 I I c p l , cpz, de fledion, nohope, pop-rate
genericPS0 (4.2.1.1 1 w, cl and cz -

genericzigzag 4.2.2.1 w, cl and cz
genericHop 4.2.2.3 w, cl and cz, nohope, pop-rate
genericzigzagHopl w, cl and cz, nohope, pop-rate
zigzagDFS 4.2.2.7 w, cl and cz, nohope, d f s s i z e
zigzagExchange 4.2.2.6 w, cl and cz, regroup, stop-group
genericHy brid 4.2.2.8 w, c l , cz, nohope, pop-rate, df s-size,

I regroup, stop-group
binaryDiscrete 1 4.2.1.2 1 $1 and &, vmax and vmin

1. genericZigzagHop algorithm combines the strategies used in genericzigzag and generi-
cHop algorithms.

2. binaryZigzagHop algorithm combines the strategies used in binaryzigzag and binaryHop.
3. grayZzgzagHop algorithm combines the strategies used in grayZigzag and grayHop.
4. bcspZigzagHop algorithm combines the strategies used in bcspZigzag and bcspHop.

CHAPTER 5. EXPERIMENT AND EVALUATION 70

Third, we also changed the neighbourhood structure settings for the experiment. Among

the three neighbourhood structures, the local i~eighbourhood structure (pl) performs better

than the other two in the Exploration phase. Much research in the field also use similar

structures only. Taking the time limitation for this research into account, we choose the

local neighbourhood structure for the Comparison phase experiment. Owing to the change

of the swarm size, we modify the size of a neighbourhood to 3 (i.e. k = 2) correspondingly.

See Table C.2 for the detailed algorithm settings.

5.2.1.3 Algorithms for the all-diff phase

The Exploration and Comparison phases of the experiment indicated our particle swarms

have difficulty dealing with n-ary constraints for large n, such as the price constraints in

the PC configuration problem and the a l l -d i f f constraints in an n-queens problem. These

constraints become more difficult to the swarm as n grows. One obvious reason is that

the particles lose their ability to distinguish the culprit variables whose assignments are

the actual cause of the constraint violations. To observe the ability of the algorithms to

handle n-ary constraints, we tested the same algorithms used in the Comparison phase with

the same parameter settings on a set of n-queens problems for the al l -dif f phase. With

the n-ary a l l -d i f f constraint in n-queens problems, we can systematically increment the

size n and observe the results of the experiment. See Table 5.4 and Table C.2 for a list of

algorithms and the parameter settings respectively.

5.2.2 Test problems

5.2.2.1 Test problems for the Exploration phase

In the Exploration phase, we tested the particle swarm algorithms on a number of basic

PC configuration problems3 and n-queens problems to explore the algorithms and their

parameter settings, and so we could determine the algorithms and the parameter settings

for the Comparison phase. The problem specifications are listed in Table 5.5 and Table 5.6.

Refer to Section B.1.3 and Section B.2.3 for detailed problem descriptions.

3These include both Formulation I and Formulation 11. Formulation I has been discussed in Section 4.3.2.1
and Formulation I1 can be found in Section 4.3.2.2

CHAPTER 5. EXPERIMENT AND EVALUATION

Table 5.5: PC configuration problems in the Exploration phase.

7
size

approx.
density

1.1 x 10-I
3.6 x

10.3
10.40
20.3
21.3
22.3
23.3
24.3
25.3
26.3

Problem 10.3 and 10.40 are under Formulation I, and the rest are under Formulation 11.

search
space

1.01 l0l5
1.01 x loi5
9.81 x 10l6
5.89 x 1018
3.62 x
1.16 lo25
3.36 x lo2'
6.72 x lo2'
1.14 x

Table 5.6: n-queens problems in the Exploration phase.

constraints

14
15
20
20
23
23
3 1
3 1
31

niin.
arity

2
2
1
1
1
1
1
1
1

14
14
32
36
46
51
58
59
70

max.
arity

14
14
12
12
12
14
14
14
15

10 - 40
10 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40

5.2.2.2 Test problems for the Comparison phase

To evaluate the algorithms on a variety of problems, we create more test problems by

adding more constraints to each problem set,4 in addition to the basic test problems in

the Exploration phase. The problem specifications are summarized in Table 5.7. Refer to

Section B.1.3 and Section B.2.3 for detailed problem descriptions.

The special test problems, numbered 53, 55, 62, and 645 that contain more difficult price

constraints, require additional explanation. For these problems, the distance objective func-

tion has been modified to evaluate the price constraint and return a value between 1 and 0.

If the return value is greater than one, the solution fails. If the value is zero, it implies the

problem
no.

I

4-queens
5-queens
&queens
7-queens
8-queens

4~roblem set 10 are represented in Formulation I and problem set 25 are in Formulation 11. Both formu-
lations have been discussed in Section 4.3.2.

5i.e. 10.53, 10.55, 10.62, 10.64, 25.53, 25.55, 25.62 and 25.64

var
n

4
5
6
7
8

domain
size

4
5
6
7
8

constraints

13
2 1
3 1
43
57

search
space

256
3125

46656
823543

16777216

min.
arity

2
2
2
2
2

solution

2
10
4
40
92

max.
arity

4
5
6
7
8

solution
density

7.81 x lo-3'
3.20 x
8.57 x lop5
4.86x1OW5
5.48 x lo-6

CHAPTER 5. EXPERIMENT AND EVALUATION

Table 5.7: P C configuration problems in the Comparison Phase.

domain
size

10 - 40
10 - 40
10 - 40
10 - 40
10 - 40
10 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40
2 - 40

search
space

1.01 x 1015
1.01 1015

1.01 x 1015
1.01 x 1015
1.01 x 1015
1.01 x 1015
6.72 x loz5
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
6.72 x loz9
6.72 x lo2'
6.72 x lo2'
6.72 x lo2'
9.81 x lo1"
5.89 x 10l8
3.62 x
1.16 x
3.36 x lo2'
6.72 x lo2'
1.14 x

constraints

approx.
density

1.1 x 10-I
7.4 x 10-5

no solution
no solution

no solution
no solution

Problem number beginning with 10 are from problem set 10, which are represented in Formu-
lation I. Problem number beginning with 25 are from problem set 25, which are represented in
Formulation 11.

problem has been successfully solved. Otherwise, the result will be interpreted as an "accept-

able" ~ o l u t i o n , ~ and that price constraints are the only constraints unsatisfied. The conflict

count function weighing all constraints by their arity has no such benefit. Also, problems

62 and 64 are intentionally set to unsolvable with constraint 'UPPERprice(items, 500) '.
These are only used to test those algorithms using distance objective function. Different

from problem 62, the search space of problem 64 is arranged in the order of the item price.

Similarly, problem 53 and 55 are a pair of test problems. These two problems are solvable,

but with a harder constraint 'UPPERprice (items, 750) '. The search space of problem 53

is non-ordered and the search space of problem 55 is ordered.

61n other words, the problem is treated as optimization problem for the distance objective function.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.2.2.3 Test problems for the all-diff phase

To observe the ability of the algorithms in handling n-ary constraints, we test the algorithms

on n-queens problems for n = 4,5,6, . . . , l o , and 15. The problem specifications are listed

in Table 5.8.

Table 5.8: n-queens problems in the all-diff phase.

problem
no.

var
n
- -

4
5
6
7
8
9
10
15

5.2.3 Comparison measures

To evaluate the particle swarm algorithms and to answer the research questions, we will

measure the effectiveness and efficiency of the algorithms. As particle swarms are closely

related to evolutionary computing, we will use the measures in that field to evaluate the

particle swarm algorithms. The discussion of Craenen et al. in 1171 on comparing a set of

evolutionary algorithms on solving binary CSPs provides a general reference.

domain
size

4
5
6
7
8
9
10
15

5.2.3.1 Measuring effectiveness

max.
arity

4
5
6
7
8
9
10
15

PSOs are incomplete search algorithms and so cannot guarantee to find a solution if one

exists. Therefore, to compare the effectiveness of the algorithms, we have two measures:

solution

2
10
4

40
92

352
724

2279184

search
space

256
3125

46656
823543

16777216
387420489

1.00 x 10l0
4.38 x 1017

1. At first, we want to know whether the algorithms can solve a test problem and the

probability for the algorithms to solve a problem if they cannot guarantee to solve

it. For this, we can use the percentage of successful runs that the algorithms find

solutions, i.e. the success rate (SR) as one of the measures.

2. Giving our constraint handling approaches, conflict counts and distance estimation,

constraints

13
2 1
31
43
57
73
9 1
21 1

min.
arity

2
2
2
2
2
2
2
2

CHAPTER 5. EXPERIMENT AND EVALUATION 74

the evaluation value (EV) of the objective functions equal to zero means a perfect so-

lution has been found; otherwise, the higher the value, the worse the solution quality.7

Since a particle swarm algorithm does not guarantee to converge on a perfect solution,

the EV may not always be zero. The quality of a solution at termination%uggests the

effectiveness of an algorithm. Considering that an algorithm will be tested multiple

times, we will use a mean evaluation value (MEV) to estimate the effectiveness of the

algorithms. A mean evaluation value comes from both the successful cases and the

failures. Normally, an algorithm with a better success rate tends to have a lower MEV

because whenever the algorithm solves a problem, its objective function yields zero.

Without replacing the measure of MEV, we also want to examine odd cases where for

example, an algorithm may have a good success rate on average but a high EV when

it fails. For such cases, we divide the sum of the evaluation values of each algorithm

over its number of failures and produce mean evaluation value on failures (FEV).

While examining the mean evaluation value and the mean evaluation value on failures,

we must bear two issues in mind:

The two objective functions measure solutions differently, so we cannot compare

the values across the objective functions. We will separate the comparison into

two groups: Continuous-Conflict, Discrete-Conflict and BCSP models as Group 1

for the algorithms that use the conflict count function, and Continuous-Distance

and Discrete-Distance as Group 2 for the algorithms using the distance function.

An evaluation value is only an estimation, not absolute. A potential solution

with a lower evaluation value may not guarantee to find an actual solution faster.

For those partial solutions with the same evaluation value, the quality may not

be the same. So, we only use the mean evaluation value in supporting the results

from evaluating the success rate.

5.2.3.2 Measuring efficiency

To evaluate efficiency, we have incorporated several variables into the test algorithms to keep

track of program elapsed run time, the number of iterations and the number of consistency

7 ~ h i s is just a general rule, unless the objective function is able to provide perfect information of a
potential solution.

'A PSO program terminates when either it finds a solution or it reaches a maximum number of iterations.

CHAPTER 5. EXPERIMENT AND EVALUATION

checks that the algorithms perform:

1. The elapsed run time (RT) that an algorithm takes to solve a problem or to exceed the

iteration limit, is straightforward and generally provides an indication of the eficiency

of an algorithm. After all, we want to know how long it would take to receive an answer

from an algorithm. However, RT can be complex to analyze because of its dependency

on the hardware and implementation. Without careful control, an elapsed time can

be affected by the environment even more. Therefore, we need an auxiliary measure

besides using run time. Similar to the mean evaluation value, we can compare the

mean run time (MRT) of each algorithm over a number of test runs.

2. The number of iterations (IT) is an internal counter, which suggests how long a pro-

gram takes. If a problem is not solved, the maximum number of iterations is recorded.

Generally, the higher the number of iterations, the longer the run time. But, not all

algorithms spend the same amount of time for each iteration. For instance, running

different numbers of particles takes different amount of time for each iteration. One

remedy is to multiple the number of iterations by the population of a swarm, and we

then have the number of evaluations (ES) of an algorithm. Even so, some algorithms

may spend more time on creating or evaluating a good potential solution, while oth-

ers may quickly generate a so-so solution each time. In effect, measuring number of

iterations or number of evaluations is not so good as measuring number of consistency

checks discussed below.

3. The number of consistency checks (cc) is the number of verifying constraint violations

of a current (potential) solution. It is usually considered as an atomic operation [17]

for CSP algorithms. In other words, a consistency check is the most basic and critical

operation in a CSP algorithm. It is performed by all the algorithms and generally

consumes the most computational time. Many CSP algorithms traditionally use this

measure to evaluate themselves against others. Although the number of consistency

checks also ignores the setup time of potential solutions, in support of the comparison

of the algorithm run time, it has the advantage over the number of iterations or number

of evaluations for several reasons. Each algorithm may perform different numbers of

consistency checks in each iteration and so take different amount of time to complete

an iteration. Thus, the number of consistency checks can more accurately imply how

much time an algorithm runs than the number of iterations can. Also, since it is

CHAPTER 5. EXPERIMENT AND EVALUATION 76

commonly used for evaluating CSP algorithms, we can compare not only among the

PSO algorithms with it, but also between PSO algorithms and other CSP algorithms

potentially.

In summary, we will evaluate the effectiveness of the particle swarm algorithms by their

success rate (SR) with the support of the mean evaluation value (MEV), and compare their

efficiency by the mean run time (MRT) with the support of the number of consistency checks

(cc>.

5.3 Experiments

Experiments on particle swarm algorithms are resource intensive; thus, reasonable limits

have been imposed on the experiments. Program speed is a critical issue too; thus, much

effort has been put into speeding up the programs as will be discussed in Section 5.3.3.

5.3.1 Runs

The experiment is set t o collect 10 runs per algorithm per test problem. For each of the test

problems, we randomly and independently generated 10 sets of initial solutions (or initial

states) namely set A, B, C, . . . , J. Each set contains 10 initial solutions. All the algorithms

will begin with these 10 sets of initial solutio~ls, one set per test run. Depending on the

population of the swarm, an algorithm will take the first 3, 5 or 10 initial solutions to begin.

5.3.2 Experimental facilities

5.3.2.1 Computer hardware and software environment

Owing to the availability of the facilities and the nature of the experiments of different

phases, we have employed different types of computers and software environment in each

phase. In the Exploration phase, we wanted to determine what algorithms to study further

and what parameter settings to work with, so using identical computers across the entire

experiment was not critical. In order to complete this phase as soon as possible, we decided

to use available computers in the labs. We only made sure that the same kind of computers

and environments were used across the algorithms for one particular test problem. On the

other hand, in order to evaluate as fairly as possible in the Comparison phase, we used

a number of identical computers running the same operating system. In all-diff phase,

CHAPTER 5. EXPERIMENT AND EVALUATION 77

speed was not a major concern. Thus, all the algorithms were run on an Intel Pentium 4.

The systems used in different phases of the experiment are listed in Table 5.9.

Table 5.9: The systems used in the three-phase experiment.

I Phase I CPU
I

5.3.2.2 The accuracy of the experiment

Memory
MB

1024
1024
512
512
512
512
512

Exploration

Comparison
all-dif f

When we discuss the evaluation measures in Section 5.2.3, we mentioned the accuracy of

using real time run time, i.e. total elapsed time. Before we use it to evaluate the efficiency of

the particle swarm algorithms (although our conclusion will be supported by the auxiliary

measure the number of consistency checks), we must understand what possible issues may

affect the accuracy of the measure and the data.

Run time is straightforward; but it is affected by hardware, software environment and

implementation besides the time a swarm actually needs to set up initial solutions, search,

and evaluate solutions. For example, different CPUs give different performance, and different

amounts of memory may support a program differently. Even with so-called "identical"

machines, the CPUs may not perform exactly the same. Particularly, it is sometimes difficult

to avoid every possible external process in Windows environment. If the run time of all the

algorithm is mostly large, this effect will not be so significant. Otherwise, we should be

aware the effect may be critical.

Another influence comes from the implementation of the algorithms such as the choice of

language or particular techniques in use. For example, certain operations can be fast in Java

but slow in Python, or vice versa. Depending on the required operations, there might be a

case that algorithm A is faster than B if they are implemented in Java, but B is faster than

A if they are in Python. One other issue also related to implementation is the memoization,

Intel P4, 3.0GHz
Intel P4, 3.0GHz
Intel P4, 2.8GHz
Intel P4, 2.4GHz
Intel P4, 2.4GHz
Intel P4, 2.8GHz
Intel P4, 2.4GHz

Number
of PC

5
1

20-35
1

10-15
20-35

1

Operating
system

Windows XP
Linux

Windows XP
Windows XP
Windows XP
Windows XP
Windows XP

Python
version

2.4
2.3
2.3
2.4
2.3
2.3
2.4

CHAPTER 5. EXPERIMENT AND EVALUATION 78

which will be discussed in the next section. In all, because of the problems just described,

we should carefully consider and cannot rely on real-time as the sole measure of efficiency.

5.3.3 Programming issues

We choose Python as the implementation language. While Python is not generally the most

efficient language available, it is a good choice for prototyping and experimenting with new

algorithms.

In order to improve the speed, we used Python packages such as Pysco [79] and Python

Numeric module [69] that approximately doubled the performance. Other optimizations

were made based on the results of profiling the code, and using memoizationg [9, 621. How-

ever, it turns out that there is a downside to memoization. If the swarm keeps generating

new assignments, the memory usage grows quickly. Eventually memory context switching

may kick in, and the performance will considerably decrease. This happened sometimes

during the experiment when the system ran out of memory. Thus, we should be aware of

any abnormally huge and sudden changes in run time of an algorithm, which may be simply

caused by running out of memory rather than by the algorithm itself.

5.4 Experimental results

We look at the experimental results from two aspects. One aspect is the particle swarm

algorithms10 of the three models. From the results, we can analyze and determine whether

Schoofs and Naudts' algorithm [go] can be extended to solve n-ary CSPs and whether the

traditional PSOs can be modified to solve n-ary CSPs.ll Another aspect compares the

results across the PSO models, from which we can determine if any of the three models is

better or promising for solving n-ary CSps.12 TO compare fairly among the PSO models, we

only use the same types of algorithms from each model, i.e. the generic type, zigzag type, hop

type and zigzagHop type algorithms to assess their performance. Several other algorithms

based on genericPS0 will be considered as individual algorithms. While analyzing the

 or the definition of memoization, see online material http://en.wikipedia.org/wiki/Memoization. An
example in Python Cookbook at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52201.

''See Table 4.1 for a list of algorithms as needed.

"These are for the first research question and the second research question.

1 2 ~ h i s corresponds to part of the second research question stated in Chapter 3.6.

CHAPTER 5. EXPERIMENT AND EVALUATION 79

algorithms, we mainly consider the overall per:€ormance across different parameter settings.

The resulting data came from both the Comparison phase and all-diff phase of the

experiment.13 The results of the all-diff phase are used to discuss the effectiveness of the

particle swarm algorithms in handling n-ary constraints. The outcomes of the Comparison

phase provide both the effectiveness and efficiency of the particle swarm algorithms, for

which we look at the following measures:

success rate (sR);

mean evaluation value (MEV) (in support of success rate);

run time (RT);

number of consistency checks (cc) (in support of run time).

In this section, we present the results and briefly examine the outcomes. More specific

discussion and analysis on the research questions will be in presented Section 5.5.

5.4.1 Effectiveness

5.4.1.1 The data from the Comparison phase

The overall success rate of the PSO models in Figure 5.1 shows that the conflict count ob-

jective function provides more help than the distance objective function in PC configuration

problems.14 If we verify the results of the mean evaluation values in Figure 5.2, the particle

swarms using the distance function yield a slower growth as the complexity of the problems

increases (the number of constraints of the problems increases). The lower success rate and

flatter mean evaluation values suggest that the distance estimation does not provide suffi-

cient information to distinguish the quality of solutions for the PC configuration problem

and so prevents the swarm from improving solutions.

As groups of algorithms, the two Discrete models are slightly more effective than the

Continuous models and the BCSP model on problems in Formulation I, but perform much

worse than the Continuous models and the BCSP model on the problems in Formulation

13i.e. the experiments on the PC configuration problems and the n-queens problems, respectively

14Compared with problem set 25, problem set 10 are relatively simple. The difference between the two
objective functions in problem set 10 is not obvious in the success rate.

15Problems in problem set 10 are formulated in Formulation I, and problem set 25 and problems 20.3 to
26.3 are in Formulation 11.

CHAPTER 5. EXPERIMENT AND EVALUATION

(a) The success rate of PSO models from test problem set 10.'

6.9 % Continuous-conflict
99.8 % Discrete-conflict

BCSP (conflict)
Continuous-distance

100.0 % Discrete-distance

(b) The success rate of PSO models from test problem set 25.

Continuous-conflict
Discrete-conflict
BCSP (conflict)
Continuous-distance
Discrete-distance

(c) The success rate of PSO models from test problems 20.3 to 26.3.

68.5 % Continuous-conflict
Discrete-conflict

70.3 % BCSP (conflict)
Continuous-distance
Discrete-distance

Figure 5.1: The success rate of PSO models from the Comparison phase.

The outcomes include all PC configuration problems from the Comparison phase, except for
the result of problem set 10. The result of problem set 10 comes from only problem 10.3 and
10.41, which are simpler than problem 10.53, 55, 62 and 64. Problem 10.53, 55, 62 and 64 were
not completed for pop = 10, so we do not take them into account. The partial results suggest
that the success rates of problem set 10 are 54.4%. 59.9%, 52.0%, 57.9% and 65.0% respectively.
Each model is assessed on the generic, zigzag, hop and zigzagHop type algorithms.

(see Figure 5.1 and Table 5.10). Formulation I and I1 represent different classes of problems.

While the CSP domains in Formulation I are consecutive and most of the domains are

consistent,16 the domains of the test problems under Formulation I1 are not all consecutive

and the domains across different CSP variables are much different. Being able to solve the

test problems under Formulation I and not under Formulation I1 suggests that the Discrete

models can solve the problems where the domains are consecutive and consistent, but do

not perform well on the problems where the domains are non-consecutive or inconsistent.

%ee Definition 2.1.1 for the definitions of consecutive domain and consistent domains. Also, refer to
Section 4.2.1.2 for more discussions.

CHAPTER 5. EXPERIMENT AND EVALUATION 81

The Continuous-conflict model and the BCSP model have similar success rates on av-

erage, but the BCSP model yields lower mean evaluation values in Figure 5.2. Among the

problems in problem set 25, the Continuous-conflict model has better success rate as the

complexity of the problems increases. Both models have great difficulty with hard problems

such as problems 25.53 and 25.55 (see Table 5.10 as needed).

None of the generic type algorithms17 have impressive performances. They could not

solve any problem in problem set 25 as shown in Table 5.11 and their mean evaluation

values are relatively high compared with the other algorithms as shown in Figure 5.3. The

generic BCSP algorithm (bcspPS0) is the worst among all the generic type algorithms for

problems involving n-ary constraints such as problems 10.41, 20.3 to 26.3 and the problems

in problem set 25.

For the performance of the proposed strategies, we focus on the "zigzag" movement

and "no-hope and hop" strategy. Table 5.11 and Figure 5.3 show that these two strategies

except for genericzigzag, greatly improve the genericPS0-conflict and bcspPSO algorithms

for most of the test problems. Although genericzigzag does not improve genericPSO's

success rate by much, it does render lower mean evaluation values. The zigzagHop strategy

combining the two strategies performs even better. genericZigzagHop and bcspZigzagHop

are the best algorithms in this r.esearch, and binary~igzag~opl8 is also the best among

the discrete particle swarms. The "partner exchange" and "DFS" strategies on the other

hand, do not contribute to the improvement very much.lg Hence, the improvement that

genericHybrid20 has inflicted on the genericPS0 algorithm mostly comes from the "no-hope

and hop" strategy and the spawned particles.

Observing the data more closely, we can see how the swarm population and parameter

p ~ p - r a t e ~ ~ affect the algorithms. Among the three population settings 3, 5 and 10, bigger

17i.e. those algorithms directly derived from the original PSOs including genericPS0, binaryDiscrete,
grayDiscrete and bcspPSO

" ~ i k e other discrete algorithms, the performance of binaryZigzagHop is also restricted by the CSP domains.

lgThe "partner exchange" improves the mean evaluation value but it does not obviously improve the
success rate; the "DFS'does not contribute to the improvement much in either the success rate or mean
evaluation value.

2 0 ~ t integrates the "no-hope and hop", "parter exchange" and "DFS" strategies together, as well it will
adaptively spawn more particles when no improvement has been done for too long.

21pop-rate in the "no-hope and hop" strategy defines the percentage of the population to perform the
strategy. It applies to all the hop type and zigzagHop type algorithms and genericHybrid algorithm.

CHAPTER 5. EXPERIMENT AND EVALUATION 82

swarms are generally found to be more effective (see Figure 5.4 and Table C.4 as needed)."

In the Comparison phase, we set poprate to 0.25, 0.5 and 0.75 for the hop type and

zigzagHop type algorithms, and 0.2 for the genericHybrid algorithm.23 Both the success

rate and mean evaluation value versus poprate relations (in Figure 5.5 and Figure 5.6)

suggest that with the higher poprate (i.e. more particles hop at the same time), the swarm

performs more effectively in general.

We have mentioned that the improvement done by genericHybrid to the genericPS0 al-

gorithm mostly comes from the "no-hope and hop" strategy and the spawned particles. We

can see that genericHybrid's poprate is not so high as those of genericHop or genericZigza-

gHop, and so its success rate is not as good as those of the two, especially in problem 25.50.

Also, genericHybrid's success rates of different parameter settings on the same problem do

not change much, which may suggest that those settings do not very effectively change the

behaviour of the swarm (see Table C.4).

Comparing problem pairs (53 vs. 55) and (62 vs. 64), the price-ordered search space

does not affect the algorithms very much in improving the quality of the search on these

harder problems. To be more accurate, only genericPS0, genericHop, genericZigzagHop,

binaryDiscrete and binaryHop are more sensitive to such an ordering and have a decreasing

mean evaluation value in Figure 5.3.

In support of the success rate, the results of the mean evaluation value in Figure 5.3

and Figure 5.7 are generally consistent with those of the success rates as we have seen.

While inspecting the mean evaluation value on failures, we do not find any inconsistent

result. An additional observation from the mean evaluation values in Figure 5.7 is that

most of the algorithms in the figure show obvious hikes at problem 25.50; those are more

than likely caused by the 11-ary price constraints because the constraints contribute 1 for

every dollar exceeding the budget to the distance objective function. For example, if some

potential solution is $100 more than user budget, the solution would have at least EV = 100

when every other constraints are satisfied. Such a system implies user budget is absolutely

critical. When an algorithm cannot resolve the price constraint, its mean evaluation value

becomes high. The evaluation of the price constraint has been changed in problem 25.53,

55, 62 and 64 as described in Section 5.2.2.2, so the situation is mostly leveled out and the

mean evaluation values are generally reduced.

2 2 ~ e only show several algorithms in Table (3.4; the other algorithms share the similar observation.

23generic~ybrid has many features to manipulate already, so we set only one poprate for the experiment.

CHAPTER 5. EXPERIMENT AND EVALUATION

L
t I t I t #

prob.25.3 prab. prab pmb. prob. prub. prola. pub.
25.43 25 47 25.50 25.53 25.55 25 62 35 64

Problem

Figure 5.2: The mean evaluation value of PSO models from problem set 25.

1. See Figure C.2 for problem set 10 and problems 20.3-26.3.
2. All models have growing mean evaluation values (MEVs) while the complexity (the num-

ber of constraints) of the problems increases. The MEVs of the PSOs using the distance
objective function grow at a slower rate.

3. The MEVs have an obvious escalation as the complexity of the problems increases. BCSP
model is the best among the models using the conflict count function.

4. The price constraints in problems 25.53, 55, 62 and 64 of the PSOs using the distance
function are measured in a much smaller scale, so we can see the MEVs going downward
after problem 25.50 for both the Continuous-distance and Discrete-distance models.

CHAPTER 5. EXPERIMENT AND EVALUATION

Table 5.10: The success rate of PSO models from the Comparison phase.

The success rate of PSO models
Class

Model Objective

Continuous conflict
Discrete conflict

conflict
Continuous distance
Discrete distance

Discrete conflict
conflict

Discrete distance

Discrete conflict
conflict

Discrete distance

1. The outcomes are the individual PC configuration problems from the Comparison phase.
2. Each model includes the generic, zigzag, hop and zigzagHop type algorithms.
3. The Discrete model performs effectively in Formulation I, but can solve only few test

problems in Formulation 11.
4. The Continuous-conflict model and BCSP model perform competitively; but, the Con-

tinuous model handles harder problems (as problems 10.41, 25.47, 25.50 and up) slightly
better than the BCSP model, except for problem 26.3. However, none of the models have
acceptable performance on problems 25.53 and 25.55.

5. Problems 10.53, 55, 62 and 64 were not completed for pop = 10 so the results shown are
only partial. Since swarms with pop = 3 or 5 are not usually as effective as those with
pop = 10, the partial results appear to be really low. We might expect better result if
the experiment had been done.

Problem

10.41

93.8%
99.6%
78.9%
89.2%
100%

25.43

70.8%
0%

73.0%
27.9%

0%

21.3

77.1%
11.3%
78.1%
51.3%
11.7%

10.53

0.6%
0%
0%

67.5%
71.3%

25.47

67.9%
0%

60.6%
19.2%

0%

22.3

72.9%
0%

75.4%
38.3%

0%

10.55

3.3%
0%

0.5%
90.8%
100%

25.50

53.8%
0%

51.9%
3.8%
0%

23.3
72.1%

0%
75.6%
37.1%

0%

10.62

0%
0%

25.53
4.2%
0%

2.4%
0%
0%

24.3

72.1%
0%

72.8%
27.5%

0%

10.64

0%
0%

25.55
13.3%

0%
2.6%
0%
0%

25.3

72.1%
0%

73.5%
28.8%

0%

25.62
-

0%
0%

26.3

36.3%
0%

38.1%
11.3%

0%

CHAPTER 5. EXPERIMENT AND EVALUATION

1 :

A
lg

or
rt

hm

$--

-g
en

er
~c

P
S

O

I
I

F
I

1
t

pr
ob

.2
5

3
pr

ob
 2

5
43

pr

ab
.2

5
47

pl

ab
.2

5.
50

pr

ob
 25

 5
3

pr
ob

 7
5
55

P
ro

bl
em

F
ig

u
re

 5
.3

:
T

h
e

m
ea

n
 e

v
al

u
at

io
n

 v
al

u
e

of
 P

S
O

 a
lg

o
ri

th
m

s
fr

o
m

 p
ro

b
le

m
 s

et
 2

5.

1.

T
h

e
ou

tc
om

es
 p

re
se

nt
 t

h
e

in
di

vi
du

al
 P

C
 c

on
fi

gu
ra

ti
on

 p
ro

bl
em

 s
et

 2
5

fr
om

 t
h

e
C

om
pa

ri
so

n
ph

as
e.

T

he
se

 a
lg

or
it

hm
s

us
e

th
e

co
nf

li
ct

 c
ou

nt
 f

un
ct

io
n.

2.

 W
e

ca
n

ro
ug

hl
y

di
vi

de
 t

h
e

al
go

ri
th

m
s

in
to

 f
ou

r
gr

ou
ps

 i
n

th
is

 f
ig

ur
e.

T

h
e

bc
sp

P
SO

 a
lg

or
it

hm
 a

lo
ng

 w
it

h
ge

ne
ri

cP
S0

an

d

ge
ne

ri
cz

ig
za

g
st

ay
 a

t
th

e
to

p
,

ge
ne

ri
cZ

ig
za

gH
op

,
ge

ne
ri

cH
op

,
bc

sp
Zi

gz
ag

H
op

 a
n

d
 b

cs
pH

op
 a

re
 a

t
th

e
b

o
tt

o
m

,
bc

sp
Zi

gz
ag

 r
ai

si
ng

gr

ad
ua

ll
y

is
 a

lo
ne

 s
li

gh
tl

y
ab

ov
e

th
e

b
o

tt
o

m
 g

ro
up

 a
nd

 t
h

e
re

st
 o

f
di

sc
re

te
 a

lg
or

it
hm

s
ar

e
in

 t
h

e
m

id
dl

e
ab

ov
e

bc
sp

Zi
gz

ag
.

T
h

e
M

E
V

s
of

 t
h

e
lo

w
er

 g
ro

up
 s

ta
rt

 s
m

oo
th

ly
 a

n
d

 s
ud

de
nl

y
in

cr
ea

se
 a

t
pr

ob
le

m
 2

5.
53

.
3.

 O
n

e
sp

ec
ia

l
ca

se
 i

s
bi

na
ry

Z
ig

za
gH

op
, w

hi
ch

 a
p

p
ea

rs
 a

 m
od

es
t

de
cr

ea
se

 b
et

w
ee

n
pr

ob
le

m
 2

5.
3

to
 2

5.
50

 a
n

d
 t

h
en

 g
ro

w
s

ag
ai

n
a

t
pr

ob
le

m
 2

5.
53

 a
n

d
 5

5.
 T

h
is

 im
pl

ie
s

th
at

 b
in

ar
yZ

ig
za

gH
op

 p
er

fo
rm

s
an

d
 s

ca
le

s
be

tt
er

 t
h

an
 t

h
e

ot
he

r
di

sc
re

te
 a

lg
or

it
hm

s.
 G

iv
en

en

ou
gh

 t
im

e,
 i

t
m

ay
 p

ot
en

ti
al

ly
 s

ol
ve

 t
h

e
pr

ob
le

m
s.

CHAPTER 5. EXPERIMENT AND EVALUATION

(a) The success rate of populations from test problem set 25.

pop = 3
pop = 5
pop = BO

(b) The success rate of populations from test problems 20.3 to 26.3.

pop = 3
42.4% pop=5

50.2 % pop = 10

Figure 5.4: The success rate of populations from the Comparison phase.

1. The outcomes include all PC configuration problems in Formulation I1 from the Compar-
ison phase. Each model includes the generic, zigzag, hop and zigzagHop type algorithms.

2. The result of problem set 10 is incomplete and not shown. If we consider only the
completed problems 10.3 and 10.41, the success rates are 92.8%, 95.1% and 96.5% with
respect to pop = 3, 5, and 10. The partial results of the problems in problem set 10, the
success rates of problem set 10 become 49.3%, 52.7% and 75.3% respectively.

(a) The success rate of the hop strategy from test problem set 25.

poprate = 0.25
popsate = 0.5
poprate = 0.75

(b) The success rate of the hop strategy from test problems 20.3 to 26.3.

59.0% poprate = 0.5
62.9 % pop-rate = 0.75

Figure 5.5: The success rate of pop-rate: hop and zigzagHop algorithms from the Comparison phase.

1. The outcomes include all PC configuration problems under Formulation I1 from the
Comparison phase.

2. The result of problem set 10 is incomplete and not shown. If we consider only the
completed problem 10.3 and 10.41, the success rates are 99.4%, 98.8% and 99.5% with
respect to puprate = 3, 5, and 10. The partial results of the problems in problem set
10, the success rates of problem set 10 become 63.3%, 61.1% and 61.1% respectively.

CHAPTER 5. EXPERIMENT AND EVALUATION

.50

pop-rate

Figure 5.6: The mean evaluation value of pop-rate from problem set 25.

1. The outcomes include PC configuration problems in problem set 25 from the Comparison
phase. The algorithms are the hop and zigzagHop algorithms using the conflict count
function. See Figure C.l for the algorithms using the distance function as needed.

2. Generally, the higher the poprate, the lower the mean evaluation value. Some changes
between poprate = 0.5 and 0.75 are not obvious because poprate = 0.5 renders relatively
high success rate on the test problems and poprate = 0.75 has only limited improvement,
and the mean evaluation value of binaryHop slightly increases when poprate grows.

1
I

1
I

t
1

I
I

pr
ob

 2
5

3
pr

o8
.2

5
13

or
oh

 2
5

47

pr
ab

 2
5

50

pr
ob

 2
5

53

pr
ob

 2
5

55

pr
ob

 2
5.

62

p
~

o
b

 25
 t

i4

P
ro

bl
em

F
ig

u
re

 5
.7

:
T

h
e

 m
ea

n
 e

v
al

u
at

io
n

 v
al

u
e

of
 P

S
O

 a
lg

o
ri

th
m

s
fr

om
 t

h
e

 C
o

m
p

ar
is

o
n

 p
h

as
e.

1
.

T
h

e
ou

tc
om

es
 p

re
se

nt
 t

h
e

in
di

vi
du

al
 P

C
 c

on
fi

gu
ra

ti
on

 p
ro

bl
em

s
in

 p
ro

bl
em

 s
et

 2
5

fr
om

 th
e

C
om

pa
ri

so
n

ph
as

e.
 T

he
se

 a
lg

or
it

hm
s

us
e

th
e

di
st

an
ce

 f
un

ct
io

n.

2.

O
nl

y
ge

ne
ri

cH
op

's
 a

nd
 b

in
ar

yZ
ig

za
gH

op
's

 M
E

V
s

ar
e

in
 t

h
e

m
id

dl
e

of

th
e

fi
gu

re
,

an
d

th
e

ot
he

rs
 a

re
 a

bo
ve

 t
he

m
.

L
ik

e
bi

-
na

ry
Z

zg
za

gH
op

-c
on

fl
ic

t i
n

F
ig

ur
e

5.
3,

 b
in

ar
yZ

ig
za

gH
op

-d
is

ta
nc

e
he

re
 a

pp
ea

rs
 a

 l
it

tl
e

bi
t

of

de
cr

ea
se

 a
s

th
e

co
m

pl
ex

it
y

of

th
e

pr
ob

le
m

s
in

cr
ea

se
s.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.4.1.2 From t h e all-diff phase - t h e n-queens experiments

The experimental results of the Exploration and Comparison phases show that the particle

swarm algorithms have difficulty in dealing with n-ary constraints for large n. To observe

the ability of the particle swarm algorithms to deal with n-ary constraints, we examine

the results from the all-diff phase. The arity of the all-diff constraints equals to the

number of queens.

The success rate of the PSO models and particle swarm algorithms are shown in Fig-

ure 5.8 and Table 5.12 respectively, from which we have several observations. First, none

of the algorithms can solve 15-queens problem. Although most of the algorithms have

their success rates above zero percent on 10-queens, only bcspZzgzagHop is most promising.

Overall, the zigzagHop type algorithms perform best among the algorithms studied.

Second, the Discrete models perform much better in this phase than they did in the

Comparison phase on PC configuration problems under Formulation 11. The domains of

n-queens problems are consecutive and c o n ~ i s t e n t , ~ ~ and the fact that the discrete algorithms

can solve n-queens problems confirms our previous observation. That is, the Discrete models

can solve the problems where the domains are consecutive and consistent, but do not perform

well on the problems where the domains are not consecutive or not consistent.

Third, the distance objective function works better with n-queens problems than it does

with PC configuration problems. We have seen that the distance objective function does

not provide sufficient estimation for good list or bad list constraints and price constraints.

An n-queens problem contains only several arithmetic relation constraints and an all-dif f

constraint, for which the distance objective function provides better estimation and performs

competitively to the conflict count objective function.

Table 5.12: The SR of PSO algorithms from the all-diff phase.

The success rate of PSO algorithms on n-queens problems

Algorithm 4-q

Continuous-conflict 91.3%

2 4 ~ e e Definition 2.1.1 for definition as needed.

CHAPTER 5. EXPERIMENT AND EVALUATION 91

problems The success

Algorithm

genericHop

rate of PSO algorithms on n-queen:

I

binaryDiscrete

binaryzigzag

binaryHop

binary ZigzagHop

grayDiscrete

gray Zigzag

grayHop

binaryDiscrete

binary Zigzag

binaryHop

binary ZigzagHop

grayDiscrete

grayzigzag

CHAPTER 5. EXPERIMENT AND EVALUATION 92

5.4.2 Efficiency

The success rate of PSO algorithms on n-queens problems

We have discussed the complication of using (elapsed) real run time to evaluate the efficiency

of the algorithms in Section 5.2.3.2 and 5.3.2.2. While investigating the run time of the

particle swarm algorithms, we did see some exceptionally high run time, irregular data and

suspicious huge hikes in various cases such as in Figure 5.9, Figure 5.10 and Figure 5.11.

One reason for these high run time and irregular hikes in the graphs to occur could be the

actual performance of the algorithms under certain parameter settings, and some algorithms

really need higher run time. In such cases, the algorithms have more consistently high run

time across a number of test runs.

The memoizer explained in Section 5.3.3 running out of memory could be another cause

of the irregular high run time and the sudden hikes in the graphs. These cases create

extremely huge mean run time error barsz5 and can usually be detected from the raw data.

One example is the hike in Figure 5.9. Examining both Figure 5.9 and Figure 5.10, we can

see that binaryZigzagHop as a hybrid of a zigzag type algorithm and a hop type algorithm

is suspicious. The program run time increases irregularly while the number of consistency

checks does not increase that much. Although hop type algorithms have higher run time

per iteration, zigzag type algorithms generally run fast. From the raw data summarized in

Table 5.13, we find that binaryZigzagHop could not solve problem 25.50 and ran for 50000

iterations each time. The Python object garbage collector did not take place between each

test run, so the memory usage exceeded what we expected at the end of test runs. The huge

amount of memory usage caused the system running out of memory. If we remove the last

exceptional runs from the data, the hike at problem 25.50 disappears.

Looking at the overall run time of the PSO models, we can see that the BCSP model and

the Continuous-conflict model are much more efficient than the two Discrete models. The

25We generated error bars while computing the mean of run time of the algorithms with confidence interval
level set to 95%.

Algorithm

P Y H O P

8-q

70%

9-q

56.7%

4-q

100%

6-q

97.8%

5-q

100%

10-q

20%

7-q

97.8%

15-q

0%

CHAPTER 5. EXPERIMENT AND EVALUATION 93

The success rate of PSO models of n-queens problems: n = 4, 5, . . . , 15

Continuous-conflict
66.7 % Discrete-conflict

BCSP (conflict)
Continuous-distance

71.8 % Discrete-distance

Figure 5.8: The success rate of PSO models from the all-diff phase.

Table 5.13: The average run time and the number of consistency checks of binaryZigzagHop-distance.

avg. RT

85.0
102.6
118.3
134.1
165.0
197.6
281.1
384.6

39244.1

pop
3
3
3
5
5
5

10
10
10

On problem 25.50 for 50000 iterations.

Continuous-distance model performs as efficiently as the BCSP model and the Continuous-

conflict model on the test problems in Formulation 11, but it is much more expensive on

problems 10.3 and 10.41. Verifying the results with the number of consistency checks, the

BCSP model has the best on average, closely followed by the two Continuous models for the

problems in Formulation 11. The Continuous-conflict model however has the highest number

of consistency checks for the problems in Formulation I.

Examining Figure 5.9, Figure 5.10! Figure C.4 and the average run time per iteration of

the particle swarm algorithms, we can see some large mean run time at problems 10.41 and

25.50. Running out of memory is the major reason for the huge hike at problem 25.50 .~~

popra t e

0.25
0.5
0.75
0.25
0.5
0.75
0.25
0.5
0.75

2 6 ~ e e Figure 5.9 for detail as needed.

avg. CC
= 3.0 x lo5
= 3.6 x lo5
= 3.85 x lo5
= 5.0 x lo5
= 5.9 x lo5
% 6.5 x lo5
= 10.7 x lo5
NN 13.2 x lo5
NN 14.4 x lo5

CHAPTER 5. EXPERIMENT AND EVALUATION 94

Investigating the high run time at problem 10.41 requires more care. The numbers of consis-

tency checks of the algorithms are not exceptionally high at problem 10.41 (see Figure C. l l

as needed). The algorithms using the distance objective function spend significant amount

of time evaluating the potential solutions in each iteration for problem 10.41, which con-

tributes the considerably high run time at the problem.27 For the issues between problems

25.50 and 10.41, we have two observations.

First, the price constraint is more expensive to evaluate in problem 10.41 than it is in

problem 25.50 because the arity of the constraint is higher in problem 10.41. Also, the

memoizer potentially works better in problem 25.50 than in problem 10.41. Problem 10.41

has 14 variables and all the variables are involved in the price constraint; if any of the 14

variables changes its assignment, the assignment to the price constraint is changed. If the

newly generated assignment is not in the memoizer, the evaluation computation must be

done. On the other hand, problem 25.50 has 59 variables and only 11 variables are involved

in the price constraint. So the chances to change a value from one of the 11 variables in the

price constraint in an iteration is relatively lower than the 14 variables in problem 10.41. In

turn, the algorithm may have a better chance to take advantage of the memoizer and so the

evaluation is faster. This is especially true in zigzag type algorithms since they deal with

one variable at a time.

Second, the average run time per iteration of the PSO algorithms indicates that the

conflict count function evaluates a potential solution faster than the distance function does,

particularly on GOODLIST and BADLIST constraints. The conflict count function only needs

to check whether an assignment exists in the good listlbad list or not. Besides checking

for existence, the distance function requires additional computation to estimate the quality

of the assignment. The connection constraint^^^ in problem set 10 are all good list and

bad list constraints whereas those in problem set 25 are mostly in arithmetic forms. Even

with a few GOODLIST and BADLIST component c o n ~ t r a i n t s ~ ~ in problem set 25, the lengths

of the lists are much shorter than those in problem set 10. Therefore, it is more expensive

for the distance function to estimate the quality of the assignment for the problems under

Formulation I.

2 7 ~ h i s is not so significant to the algorithms using the conflict count function.

2s~nforcing the compatibility between components, the length of these constraints can be up to some
cross-product of the n components, typically 2 or 3 components at least.

29~ef ining components and their specifications, the length of these constraints is the number of the com-
ponent items.

CHAPTER 5. EXPERIMENT AND EVALUATION 95

As for the efficiency of the individual particle swarm algorithms, the zigzag type and

zigzagHop type algorithms generally run faster and have lower number of consistency checks

as shown in Figure 5.10, Figure 5.11, Figure 5.13, and Figure 5.14. Even with a higher it-

eration limit,30 the zigzag type algorithms tend to maintain stable run time and number of

consistency checks. The algorithms involving "hop" strategy on the other hand, tend to vary

in run time and be more sensitive to the difficulty of the problems. Among the algorithms

using the conflict count function, genericZzgzagHop and bcspZzgzagHop are the most effi-

cient algorithms besides zzgzagDFS and genericzigzag. Algorithm genericZzgzagHop scales

better and exhibits consistency with respect to its speed from problem 25.3 through 25.50.

Algorithm bcspZigzagHop starts slightly better than genericZzgzagHop. genericZigzagHop

becomes more efficient than bcspZigzagHop as the complexity of the problems increases. We

can conclude similarly from examining the number of consistency checks in Figure 5.13 and

Figure 5.14. For large problems such as problem 26.3, bcspZigzagHop performs better than

genericZzgzagHop.

Similar to what we found in Section 5.4.1, we also noticed that the discrete algoritlims

perform competitively to the other algorithms (using the same strategies) on the problems

in Formulation I,31 but badly on problems in Formulation 11. Especially, binaryDiscrete and

binaryHop are the worst among all the algorithms in Figure 5.10, Figure 5.11, Figure 5.13,

and Figure 5.14. Algorithm binaryZzgzagHop runs rather fast compared with other dis-

crete algorithms shown in Figure 5.10 and Figure 5.11, but it is still slower than the other

algorithms.

Algorithm bcspPSO cannot solve any problems in problem set 25, but its run time re-

mains relatively fast among the BCSP swarms. bcspZzgzag is relatively slow among the

BCSP algorithms. bcspZzgzagHop starts as the fastest algorithm, but its run time gradu-

ally grows as the complexity of the problems increases. We will discuss more about these

algorithms in Section 5.5.1.1.

As for parameter settings, we investigate the swarm population pop and the percentage

of the population poprate to execute 'hop' strategy. The more the number of particles, the

more the computational cycles translated into updating particles' velocities and positions,

3 0 ~ h e zigzag type and zigzagHop type algorithms can run up to 50000 iterations versus the other algorithms
only run up to 20000 iterations.

31~igure C.4, Figure (2.6, Figure C.9 and Figure (3.11 also show the low numbers of consistency checks of
those discrete algorithms on problems in problem set 10.

CHAPTER 5. EXPERIMENT AND EVALUATION 96

and propagating the knowledge to the neighbours. If a problem is too hard, a large swarm

naturally requires more time to complete and performs many more consistency checks. But

if a large swarm can solve a problem more effectively than a small swarm, the total run time

can be shorter and the number of consistency checks can be lower. We can generally see

that the change of the mean run time versus population tend to be more insensitive to those

effective algorithms although we still find that the bigger the swarm, the higher the mean

run time.32 For those ineffective algorithms such as binaryDiscrete, binaryHop, grayDiscrete

and grayHop, more number of particles definitely implies more time to terminate.

Similar to pop, higher pop-rate means more particles to perform 'hop' strategy at the

same time and each 'hop' takes time to determine which variables to fix. Thus, an algorithm

with higher poprate generally requires more time and be less efficient to complete the search.

However, an algorithm with a higher poprate may be more effective and so more efficient

to solve a problem. These two factors offset the effects of each other and so pop-rate does

not change the efficiency of the algorithms very much. Some algorithms such as genericHop

and binaryHop can even have better efficiency with higher poprate as shown in Figure 5.15

and Figure 5.16.

3 2 ~ e e Figure C.13 and Figure C.14 as needed.

CHAPTER 5. EXPERIMENT AND EVALUATION

AlgGlass
-*"+

Cmrlinuous model
(conflict tiiude)
Discrete mdel
(conflld mode)

- B C . 9 mo&l
[conflict mods]
Continuous model
(distance mode)

- - Discrete model
-(distance mode)

I
I I t 1 I 1 L

prob25.3 prob prob prob. prab. plob prob. prob
29.43 2547 25.50 2553 25.55 25 62 25.64

Problem

Figure 5.9: The mean run time of PSO models from problem set 25.

The outcomes present the individual PC configuration problems in problem set 25 from
the Comparison phase. See Figure C.3(a) and Figure C.3(b) for problem set 10 and
problems 20.3 to 26.3, respectively.
The problems in problem set 25 are hard for both Discrete models. Because these algo-
rithms cannot solve the problems, they run to the iteration limit and then quit. Hence,
we can see their mean run times are relatively flat at a level from problems 25.3 to 25.55.

CHAPTER 5. EXPERIA4ENT AND EK4LUATION

CHAPTER 5. EXPER,IMENT AND E K4 L UATION

CHAPTER 5. EXPERIMENT AND EVALUATION

proh.25.3 prob. prob prob. prob. prob prob. y~ob
25 43 25 47 25.50 15 53 25 55 25.62 25 54

Problem

AlgClass
--- Continuous model

[conflict niode)
Oiscrete modal

" ^ (conflict niode)

- BCSP nicpdel
[conflict mode]

- e Continuous model
(distance mode)

- - D~tcre?s model
(dldancs mode)

Figure 5.12: The mean number of consistency checks of PSO models from problem set 25.

1. The outcomes include PC configuration problem set 25 from the Comparison phase. See
Figure C.8(a) and Figure C.8(b) for problem set 10 and problems 20.3-26.3, respectively.

2. The numbers of consistency checks of both the Continuous-conflict model and the BCSP
model are relatively low and grow slowly. The BCSP model has lower number of consis-
tency checks across all problems.

3. Both Discrete models have similar numbers of consistency checks between problems 25.3
and 25.50. The evaluation of the distance function is changed and the solutions are
considered as 'acceptable' once its EV is smaller than 1 in problems 25.53, 55, 62 and
64. Therefore, the number of consistency checks of Discrete-distance then becomes lower
than the one of Discrete-conflict.

P
ro

bl
em

F
ig

u
re

 5
.1

3:
 1

'1
~

lr

lc
ai

l
n

u
n

lb
er

 o
f

co
ll

si
st

,e
nc

y
ch

ec
k

s
of

 P
S

O
 a

lg
o

ri
th

rr
ls

 f
ro

m
 p

ro
b

le
rn

 s
ct

 2
5.

1.
 T

h
e

ou
tc

om
es

 p
re

se
nt

 t
li

c
in

di
vi

du
al

 1
'C

 c
on

fi
gu

ra
ti

on
 p

ro
bl

em
s

in
 p

ro
bl

eu
l

se
t

25
 f

ro
m

 t
,h

e
C

on
lp

ar
is

on
 p

ha
se

.
T

he
se

 a
lg

or
it

hn
ls

us

e
th

e
co

nf
ii

ct
 c

ou
nt

 h
ln

ct
io

n.
 S

ee
 F

ig
ur

e
C

.9
 a

nd
 F

ig
ur

e
C

.1
0

fo
r

pr
ob

le
m

 s
et

 1
0

an
d

pr
oh

lc
ni

s
20

.3
-2

6.
3.

2.

T

h
e

al
go

ri
t.h

ni
s

ca
ll

 b
e

rl
i\

.id
ed

 i
nt

o
tn

.o
 g

ro
rl

ps
.

bi
.n

nr
vy

l)
i.s

c~
el

e a
nt

i
D

zn
or

yH
op

 h
av

e
th

c
ni

os
t

n
u

ll
~

b
e~

.
of

 c
on

si
st

,c
ll

cy
 c

he
ck

s.

3.
 S

in
ce

 p
ro

bl
em

 2
5.

50
 h

as
 tl

ic
 m

os
t

nu
m

be
r

of
 c

on
st

ra
in

ts
.,

nl
os

t,
of

 t
.h

e
al

go
ri

th
m

s
m

or
e

or
 l

es
s

co
m

e
to

 a
 p

ea
k

at
 p

ro
bl

en
l

25
.5

0
ex

ce
pt

 f
or

 g
en

e-
r-

ic
Zi

gz
ag

 an
d

ge
ne

l.
ic

Z
ip

ag
H

op
.

w
hi

ch
 a

re
 n

ot
 s

o
 o

bv
io

us
.

C
he

ck
in

g
fo

r
th

e
co

ns
tx

ai
nt

s
on

 a
 p

ar
ti

cu
la

r
va

ri
ab

le

at
. a

 t
im

e,
 n

o
st

 o
f

th
e

zi
gx

ag
 a

nd
 z

ig
za

gH
op

 t
y

p
e

al
go

ri
th

nl
s

ar
e

p
re

tt
y

 e
ff

ic
ie

nt
 a

n
d

 h
a

w
 ~

nr
ic

h s
m

oo
th

er
 l

in
es

 c
om

pa
re

d
t,o

 th
e

ho
p

ty
p

e
al

go
ri

t.l
in

is
.

CHAPTER 5. EXPERIMENT AND E W L UATION

CHAPTER 5. EXPERIMENT AND EVALUATION

I t I
.25 .50 .75

pop-rate

(a) Algorithms using conflict function

pop-rate

(b) Algorithms using distance function

Figure 5.15: The mean run time of PSO poprate: problem set 25 from the Comparison phase.

CHAPTER 5. EXPERIMENT AND EVALUATION

1 1 I
2 5 50 75

pop-rate

(a) Algorithms using conflict function

" * * " b . + * = ..,*> - . "-- x b . - - -. - - " - - - -

I I f
2 5 50 75

pop-rate

(b) Algorithms using distance function

Algorithm
generl~Hop

- gensneEigragHop
-bmaryHop
--- - bmaryL1gzagHop

Figure 5.16: Mean number of consistency checks of poprate: problem set 25 from Comparison phase.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.5 Discussion and Answers

In this section, we will summarize the research results and discuss our research questions.

Each of the following subsections corresponds to a research question stated in Section 5.1.

5.5.1 Can we extend Schoofs and Naudts' PSO to solve general n-ary

integer CSPs effectively?

Schoofs and Naudts' original algorithm (bcspPS0) has difficulty in handling n-ary con-

straints (n > 2) and cannot solve n-ary CSPs effectively. The strategies we proposed,

improve the performance of the bcspPSO algorithm. bcspZzgzagHop extending the bcspPSO

and combining the zigzag movement and no-hope and hop strategy, is one of the best

performing algorithms in this research. It can reasonably solve n-ary CSPs effectively on

non-hard problems.

5.5.1.1 Discussion - the BCSP PSOs

To solve binary CSPs (BCSP), Schoofs and Naudts extended the traditional PSO [53] with

a set of operators and a conflict count objective function [go]. Based on their pseudocode,

we implemented the algorithm as will be referred to as bcspPSO. Extending this algorithm,

we developed three particle swarm algorithms: bcspZigzag, bcspHop and bcspZzgzagHop.

The experimental results in Section 5.4.1.1, Section 5.4.1.2 and Section 5.4.2 show that

Schoofs and Naudts' particle swarm (bcspPS0) cannot mailage n-ary constraints in the PC

configuration problem nor solve 4- or 5-queens test problems effectively. While reviewing the

algorithm, we found that their vector-like operators and the conflict count function cause

the ineffectiveness. In bcspPSO, a particle updates its position in each dimension33 only

from the choice of four: the global best position so far, its individual best position so far,

its current position, or a random position. A random position may be chosen only when

the corresponding variable (varj) is in conflict and the particle's current position equals

its individual best position so far. Even so, the probability of choosing between a random

position and the global best position so far relies on the deflection operator,34 which was

set to either 0, l /n , or 2/n in the experiment. Since the chance for a random position to be

33A particle position is a complete CSP assignment and consists of n elements (val l , valz , . . . , val,). Each
element is an assigned value to its corresponding CSP variable varj where j = 1,2 , . . . , n.

34See Section 3.5 and Section 4.2.1.3 as needed.

CHAPTER 5. EXPERIMENT AND EVALUATION 106

explored is rather low especially when n is big, the swarm has a hard time moving to other

area to find a better solution.

As for the choice among the three other positions, it depends on whether the correspond-

ing variable (v a r j) is in conflict or not. If val- j is in conflict, the two best positions so far

can be chosen; otherwise, the current position remains. Since the conflict count objective

function cannot usually give accurate information on which variables are really in conflict in

an n-ary constraint, all variables in the violated constraint are marked as in-conflict. If more

variables are marked as in-conflict than there actually are, the swarm tends to converge to

the global best position faster owing to the operation of the vector-like operators. This is

obviously problematic to the algorithm while dealing with n-ary constraints because the

information provided by the objective function is not as informative as while dealing with

binary constraints. This quick convergence can be also observed from the fast run time of

the algorithm although bcspPSO is very ineffective. Nothing much can be done after con-

verging at local optima except reinitializing the algorithm whenever a no-hope count arrives

or quickly looping through the remaining iterations. Even to reinitialize the algorithm, it

may quickly converge to local optima again. So, the algorithm is generally faster than other

particle swarm algorithms although it is ineffective in solving a problem.

Algorithms bcspZzgzag, bcspHop and bcspZzgzagHop improve upon the bcspPSO algo-

rithm. bcspZigzag recomputes the constraint violations every step and provides more ac-

curate information about the current positions than bcspPSO does. Empirically, we have

shown that bcspZigzag improves the success rate of the bcspPSO algorithm. bcspZigzag does

not appear to be more efficient overall than bcspPSO on run time. Running for the same

time limit, bcspPSO does 20000 iterations, whereas bcspZigzag can do 50000. Algorithm

bcspHop improves the bcspPSO algorithm even more, but the speed is a tradeoff as problems

become harder. Unlike bcspPSO cycling between convergence and reinitialization, bcspHop

spends time searching and improving solutions. As a CSP solver, bcspZzgzagHop is not yet

ready for solving hard problems. However, combining the merits of the zigzag movement

and no-hope and hop strategy,35 bcspZzgzagHop improves the bcspPSO algorithm most. It is

the best performing algorithm in this research, the most effective particle swarm algorithm

in the a l l -d i f f experiment and has potential for further research.

35~efe r to Section 4.2.2.1 and Section 4.2.2.3 as needed for the detail description.

CHAPTER 5. EXPERIMENT AND EVALUATION 107

5.5.2 How can we modify the traditional PSOs to solve n-ary integer

CSPs? How do the algorithms extending the traditional PSOs com-

pare with Schoofs and Naudts' PSO?

This research question includes two sub-questions and the answers to each of them involve

two PSO models: the continuous PSO [53] and the discrete PSO [54]. We will discuss

these two models in Section 5.5.2.1 and Section 5.5.2.2 respectively. The answers to the two

questions are as follows:

1. Unlike Schoofs and Naudts' PSO (the BCSP PSO), the continuous PSO and the

discrete PSO were not originally designed to solve CSPs. So, we have to first modify

them so that the swarms understand and work with integer CSPs. In answering the

question in Section 5.5.1, we have discussed some potential problems with Schoofs and

Naudts' vector-like operators with n-ary constraints. Mathematically, the arithmetic

computation of the original PSOs is simple and straightforward. Thus, we decided

to keep the original formulae for updating particles' velocity and position. In order

to restrain the particles from searching out of CSP domains, we relocate them to a

closest legal spot as soon as they fly out of domain.36

2. The genericZigxagHop algorithm is the most effective algorithm among the continu-

ous particle swarm algorithms in this research, and binayZigxagHop is the one among

the discrete algorithms. The genericZigxagHop-conflict algorithm37 performs competi-

tively to bcspZigxagHop on most of the test problems, but not so good as bcspZigxagHop

on large problems. The binaryZigxagHop algorithm can be as effective as bcspZigza-

gHop as well, but the capability of binaryZigxagHop is more restricted by the domains

of the constraint satisfaction problems. The bina yZigxagHop algorithm has difficulty

with problems in which the domains are not consecutive or not c~nsistent.~'

36Refer to Section 4.2.1 as needed.

37Short for the genericZigzagHop using the conflict count objective function

38See Definition 2.1.1 for the definitions of a consecutive domain and consistent domains.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.5.2.1 Discussion - the continuous PSOs

With the modification we have done, the continuous PSO can search discrete integer do-

mains, and genericPS0 is the basic implementation of the continuous particle swarm. Ex-

tending genericPS0, we developed a number of algorithms such as generzcZzgxag, genericHop

and genericZzgzagHop. Besides these algorithms, we also implemented other algorithms to

experiment with several interesting strategies. For instance, the genericHybrid algorithm

combines partner exchange, local depth-first search, and no-hope and hop strategies with

the ability to spawn more particles.

The experimental results show that genericPS0 is more effective than bcspPSO because

genericPS0 can explore more freely from its arithmetically computed particle positions and

velocities rather than bcspPSO's vector-like operation. The genericPS0 algorithm tends to

work better with consecutive CSP domains because of its continuous nature as indicated

by its success rate of solving the P C configuration problems and the n-queens problems.

However, genericPS0 gets stuck at local optima quickly and is unable to escape from local

optima. The zigzag movement alone improves the speed of the algorithm, but it does not

improve the effectiveness very much.

Using the proposed strategies, the continuous particle swarm algorithms are able to solve

the test problems with both consecutive and non-consecutive domains. For example, once

the swarm has confined to a local optimum, genericHop repairs constraint violation to con-

tinue improving the solutions. genericHybrid also improves the performance of generzcPS0

but not as much as genericHop improves, which we have discussed in Section 5.4.1.1.

Implemented with the same strategies, the genericZzgxagHop-conflict algorithm is the

only swarm that can compete with bcspZigxagHop. The genericZigzagHop7s efficiency tends

to be more stable across different problems, but bcspZzgzagHop scales better on the sizes

of the test problems. For example, bcspZzgxagHop outperforms genericZigxagHop-conflict

in solving the largest problems in the Comparison phase and the all-diff phase. bc-

spZzgxagHop's ability to restart the swarm besides the no-hope and hop strategy, may have

contributed to its performance in solving these large problems. When we tried to reduce

genericZzgxagHop's duration of no-hope cycle from nohope = 2500 to 1000 on problem 26.3,

the experiment shows the potential to improve the algorithm by reducing its nohope count.

CHAPTER 5. EXPERIMENT AND EVALUATION

5.5.2.2 Discussion - the discrete PSOs

According to the authors of [54] and [55], two binary encodings can be used to encode integers

and they suggest that Gray encoding works better than Binary encoding. We implemented

the discrete particle swarms with both encodings3' but we find that Gray encoding is not

necessarily better than Binary encoding in the CSP context because CSP domains are not

always consecutive over a range and they can be sparse as discussed in Section 4.2.1.2.

The discrete particle swarms perform well on the PC configuration problems in For-

mulation I and the n-queens problems; but, not being able to solve the test problems in

Formulation I1 is a major drawback. Compared with the algorithms from the other PSO

models, the effectiveness of the discrete algorithms greatly depends on the distribution of

CSP domains. Since a discrete particle computes velocities and uses the velocities as proba-

bility thresholds to change its position bit string, the distribution of the CSP domain values

and the consistency across all domains are important as discussed in Section 4.2.1.2. The

domains of the test problems in Formulation I and the n-queens problems are rather con-

sistent and consecutive, so the discrete algorithms are able to solve those problems more

effectively.

As discussed in Section 3.3.3, each particle position in the Discrete model is a bit string

of length xn if the domain value of a variable can be encoded in x bits. Regardless of the

efficiency of the program implementation, the time complexity of the Discrete algorithms is

x times of those of the continuous and BCSP algorithms for the same number of iterations.

When the discrete particle swarms cannot solve a problem effectively and run up to the

iteration limit, their total run time is high and inefficient.

The binaryZzgzagHop algorithm improves binaryDiscrete's success rate the most among

the discrete particle swarm algorithms in this research. In solving PC configuration problem

set 10 and the n-queens problems, it performs better than genericZzgzagHop, but slightly less

effective than bcspZzgzagHop. Similar to the other discrete particle swarms, binaryzzgza-

gHop could not solve any PC configuration test problems in Forinulation I1 because the

distribution of the CSP domains is not suitable for the algorithm.

3 9 ~ h e algorithms with Binary encoding are binaryDiscrete, binaryZigzag, binaryHop and binaryZzgzagHop;
and the algorithms with Gray encoding are grayDiscrete, grayzigzag and grayHop

Chapter 6

Conclusion

In this research, we developed a number of particle swarm algorithms to solve general n-ary

integer constraint satisfaction problems (CSPs) based on three existing particle swarm opti-

mization (PSO) approaches. Among these three PSOs, one of them was developed to solve

binary constraint satisfaction problems (BCSP) but not general n-ary CSPs. Although stud-

ies [80] show that it is possible to convert n-ary constraints to equivalent binary constraints,

not all n-ary CSPs are suitable to be converted to equivalent binary ones in terms of the

complexity of the problems. A CSP can become easier or harder to solve after the conversion

[102], depending on the nature of the constraints. In addition, the process of converting an

n-ary CSP to its equivalent binary CSP can be complicated and, not all the conversions

can be done properly and produce semantically equivalent representation [47, 1021. More-

over, n-ary constraints provide a natural formulation for modelling real-world problems [86].

Thus, we did not limit our development for solving only binary CSPs. While developing the

new particle swarm algorithms, we studied and modelled the relationship between the three

PSOs and CSPs.

The two original PSOs [53, 541 were not originally designed for solving CSPs, so we first

presented a way for the particle swarms to search through integer CSP domains. Extending

the existing PSOs, we introduced algorithms appropriate for the CSP paradigm. For in-

stance, some algorithms move the particles one dimension at a time in a zigzag style, which

we have not seen before in the PSO research. With such movement, the particles can quickly

step through the search space and evaluate more CSP assignments that differ only in some

variables. Extending Schoofs and Naudts' no-hope and rehope mechanism [go] and CSP

repair-based methods, we added a no-hope and hop technique to fix constraint violations

CHAPTER 6. CONCLUSION 111

when the regular swarm stops improving the search. Both the zigzag movement and the

no-hope and hop strategy outperform the original particle swarm algorithms in most of the

test problems.

To handle constraint satisfaction, we made use of the PSO optimization mechanism and

used two objective functions: conflict count and distance estimation. The distance function

works well for arithmetic constraints, but it is more expensive and less effective than the

conflict count function for evaluating goodlists, badlists and price constraints. Thus, the

conflict count function is better in the PC configuration problem and the distance function is

better in the n-queens problems where no goodlist or badlist constraints are used. However,

none of these two functions provide information good enough to efficiently resolve n-ary

constraints for large n.

In addition to developing the new particle swarm algorithms, we also used two different

formulations to model a P C configuration problem as our major test problems in the Python

CSP framework [20]. The first formulation is based on Tam and Ma's web-based configu-

ration research [104]. With this formulation, the problem is simpler but requires a larger

amount of preprocessing effort to make the data consistent. In the second formulation, we

utilize the arithmetic relations provided by the Python CSP framework [20] to describe the

constraints. This formulation gives much greater flexibility in representing the problem and

we can describe the problem in more detail. In addition, we implemented an 'OR' constraint

to enhance the Python CSP framework. With this disjunctive constraint, we can make CSP

representation more flexible and more expressive although harder to solve.

6.1 Summary of the Research Results

In Section 5.5, we have discussed and answered the research questions based on the exper-

imental results. From the results and discussions, we find that bcspZzgzagHop is the most

promising algorithm among the algorithms in this research as it has an average of 64% suc-

cess rate on a set of configuration test problems and 76.7% on the 10-queens problem. The

genericZigzagHop algorithm performing competitively to bcspZigzagHop with an average of

67% success rate on the same set of configuration problems, has the potential for further

improvement, although it is not as good as bcspZigzagHop on large problems.

CHAPTER 6. CONCLUSION

6.2 Future Work

Our research in developing particle swarm algorithms to solve general n-ary CSPs suggests

many opportunities for future research. More thorough experimentation and more sophis-

ticated n-ary constraint handling are needed. Other ideas for future research include:

0 More intelligent repair methods can be used in the no-hope and hop strategy. For

example, we can apply the min-conflict heuristic [65] to select a domain value. We have

shown that random 'hops' improve the performance of the particle swarm algorithms.

Applying more effective repair strategies, we may further enhance the algorithms.

0 A better no-hope detection mechanism or more sophisticated diversity control as in

[I151 may help. Some incomplete experiments suggest that the nohope count we

used in the experiment may not necessarily provide the right information for the

repair strategies to take place. For instance, when we tried to reduce the duration

of no-hope cycle of a particle swarm algorithm from nohope = 2500 to 1000, the

experiment showed the potential for improving the results.

0 The particles in the continuous and the discrete particle swarms only rely on the

calculated velocities to update their positions. The BCSP particle swarms however,

take constraint violation information into account for each variable. If a variable is not

in conflict, a BCSP particle will not change its assignment to the variable. This is one

of the reasons that the BCSP particle swarm algorithms perform more effectively and

efficiently than the algorithms of the other two PSOs. We may put the same strategy

into the continuous and discrete particle swarm algorithms to prevent particles from

wasting efforts to update variable assignments that are not in conflict.

0 In most of the algorithms of this research, each swarm consists of same types of parti-

cles, which all possess the same capability for solving CSPs. For example, in a zigza-

gHop type particle swarm, all the particles feature zigzag movement and the no-hope

and hop strategy. However, different types of particles may have different capabilities

to contribute. It will be interesting to see what interactions and collaboration may

occur among different types of particles. For example, we can try to put several zigzag

particles and several particles who know how to 'hop' together in a system, instead

of all particles featuring both strategies. As a related extension, it is also possible to

CHAPTER 6. CONCLUSION 113

build a particle swarm system which is able to learn a given problem, find the most

suitable particles, and adaptively adjust its settings to solve the problem.

0 We mentioned that some experiments on several strategies were not completed ow-

ing to time limitation. Some of these strategies, such as the piggy bank strategy

and diversity control described in Section 4.2.2.4 and 4.2.2.5, may be worth further

research.

0 Developing a particle swarm visualization system [91, 261 may help us understand how

the swarm searches through the CSP search space. We started a simple Zdimensional

system, which only takes 2-variable problems. To develop a visualization system that

can present an n-variable CSP, we need to resolve two major challenges. One is to

represent an n-dimensional space using an x-y plane, and another is to visualize n-ary

constraints.

To be practical, the studies on the applicability of the algorithms should be done and

several possible directions are:

- In addition to a PC configuration problem, many real-world problems can be

used such as scheduling problems, resource allocation, and so on. Also, taking

an actual real-world sized problem can be useful too.

- Applying the algorithms to the real-world problems, speed is an important issue.

Our experiments were only limited to several sets of parameter settings. Research

on tuning the parameter settings and improving the efficiency of the algorithms

can be helpful.

- Comparing particle swarm algorithms with other CSP algorithms is also an im-

portant subject.

0 Since PSO is able to start with any initial solutions and return a potential best solution

so far at any time, we may further extend our research results to dynamic environment.

Appendix A

Algorithms and Examples

A.l CSP Examples in Python CSP Framework

define var iab les :
v = var(1, 11) # i . e . a list of domain C1, 2, 3 , . . . 101

c rea te a CSP:
csp = problem(v)

add cons t ra in ts
csp += even(v)

Figure A.l: The warm-up example of Section 2.2.1 in the Python CSP framework.

def ine var iab les :
a , b, c = var(1, 311, var(1, 311, var(1, 31)

crea te a CSP:
csp = problem(a, b y c)

add cons t ra in ts
csp += a**2 + b**2 == c**2

Figure A.2: The Pythagorean triple example of Section 2.2.2 in the Python CSP framework.

APPENDIX A. ALGORITHMS AND EXAMPLES

crea te a CSP:
q = [so, q1, 92, q3, q4, q5, q6, q71
csp = problem(*q)

add cons t ra in ts
csp += a l l -d i f f (*q)
f o r i i n xrange(8):

f o r j i n xrange (8) :
i f i != j :

csp += q[i] - q[j] != abs (j - i)

Figure A.3: &Queens problem of Section 2.2.3 in the Python CSP framework.

Notation '*q7 is a feature of Python, for which one place a list of any number of variables as
needed; for instance csp = problem(*q) is equivalent to csp = problem(q0, ql , q2, q3, q4, q5,
q6, q7).

crea te a CSP:
csp = problem(s, e , n , d , m , o , r , y)

add cons t ra in ts
csp += a l l - d i f f (s , e , n, d , m , 0 , r , y)
csp += 1000*s + lOO*e + 10*n + d +1000*m + 1OO*o + 1O*r + e \

== 10000*m + 1000*o + 1OO*n + 1O*e + y

Figure A.4: The send-more-money puzzle of Section 2.2.4 in the Python CSP framework.

APPENDIX A. ALGORITHMS AND EXAMPLES

define variables:
enumerate color red = 1, green = 2, blue = 3
range(l,4) render a list El ,2,3]
RI, R2, R3 = var(range(l,4)), var(range(l,4)), var(range(l,4))
R4, R5 = var(range(l,4)), var(range(l,4))

create a CSP:
csp = problem(R1, R2, R3, R4, R5)

add constraints
csp += R1 != R2
csp += R1 != R4
csp += R1 != R5
csp += R2 != R3
csp += R2 != R4
csp += R3 != R4
csp += R3 != R5
csp += R4 != R5

Figure A.5: The sample graph colouring problem of Section 2.2.5 in the Python CSP framework.

APPENDIX A. ALGORITHMS AND EXAMPLES

A.2 Swarm Algorithms

PSO(problem, P, max-iter, cl , c:!, F)
comments: for minimization

1 gbest t initialized to some very big value
2 t t o
3 xi [t] t initialize particle's position
4 ui [t] t initialize particle's velocity
5 pbesti + initialized to some very big value

while t < max-iter
do for i t 1 to length[P]

do eual t evaluate xi [t] with some objective function F
comments: update pbesti and gbest if it is appropriate
if eual < pbesti

then pbesti +- eual
xpbesti + xi [t]

if eual < gbest
then gbest t eual

xgbest + X i [t]
t + t + l
for i + 1 to length[P]

do r l , r:! t random(), random()
comments: calculate velocity
ui [t] + ui [t - I] + rlcl (xpbesti - xi [t]) + r2c2 (xgbest - xi [t])
comments: update position
X i [t] + X i [t - I] + Ui [t]

return gbest, xgbest

Figure A.6: Pseudocode of the continuous PSO with global best information [55]

This pseudocode makes reference to page 296 in [55], but in more detail. Also, our goal is to
find an minimum whereas the one in 1551 is to find a maximum.

APPENDIX A. ALGORITHMS AND EXAMPLES

~ ~ s c ~ ~ ~ ~ P S O (p r o b l e m , P, dimension, max-zter, cl , c2, I?)
comments: for minimization

1 gbest + initialized to some very big value
2 t + O
3 xi [t] + initialize particle's position to some bitstring
4 vi[t] + initialize particle's velocity
5 pbesti t initialized to some very big value

6 while t < max-iter
7 do for i + 1 to length[P]
8 do eval t evaluate xi[t] with some objective function F

comments: update pbe& and gbest if it is appropriate
9 if eval < pbesti

10 then pbesti + eval
11 xpbesti + xi [t]
12 if eval < gbest
13 then gbest + eval
14 xgbest + xi [t]

15 t t t + l
16 for i t 1 to length[P]
17 do for d t 1 to dimension
18 do rl, 7-2 + random(), random()

comments: calculate velocity
19 vid [t] + Vid[t - 11 + rlcl (xpbestid - xid[t])

+~2~2(xgbe~ td - ~id [t])
comments: update position

20 if random() < sigmoid(-vij(t)) ## reference to [54, 551
21 then xid [t] t 1
22 else xid[t] t 0
23 return gbest, xgbest

Figure A.7: A pseudocode of a discrete version [54] of the PSO in Figure A.6

APPENDIX A. ALGORITHMS AND EXAMPLES

P S o ~ ~ ~ c S P ~ (p r o b l e m , P , max-iter, c p ~ , c p z , deflection, noHope)

randomly initialize the particles
initialize gbest, all lbest's and all pbest's, and xgbest, all xlbest's and all xpbest
t c l
while t < maximum number o f iterations:

do for i + 1 to population:
do for j c 1 to n:

do nbConf + conflict counts o f x i j [t - 11 o f particle Pi
if nbConf > cpl:

then v' + xpbestij BXij [t - 11
else v' c xij [t - 11 8 xij [t - 11

if nbConf > cpz:
then if random() < deflection:

#comments: it was 'if deflection' in [go]#
then v" + Rand(j) 8 xi j[t - 11
else v" c xgbestj 8 xij[t - 11

else v" +- xij [t - 11 8 X i j [t - 11
xij [t] + xij [t - 11 $ (v' 0 v")

fitnessi + conflict counts in particle Pi
if fitnessi < pbesti:

then xpbesti, &sti +- xi , fitnessi
if pbesti does not change for noHope times:

then randomly initialize xi
gbest, xgbest t update from pbest, xpbest
lbest, xlbest t update from pbest, xpbest
t + t + l

return gbest, xgbest

Figure A.8: Schoofs and Naudts' PSO for solving binary CSPs [go], named as bcspPSO in this
research.

It serves as the foundation of all algorithms derived from BCSP model in this research.
gbest is the global best fitness, lbest keeps the local best fitness values of all swarm neigh-
bourhoods, and pbest keeps the individual best fitness values of all particle.
xgbest is the global best position, xlbest keeps the local best positions of all swarm neigh-
bourhoods, and xpbest keeps the individual best positions of all particle.
population is the number of particles of the swarm.
cpl and cpz are some coefficients to determine that the velocity update relies more on global
best experience or on individual best experience.
R a n d (j) randomly returns a value from the domain D j .
noHope is an upper bound defined for determining when there is no hope for the swarm to
improve the solution and a no-hope mechanism should come in.

APPENDIX A. ALGORITHMS AND EXAMPLES

A.3 Particle Swarm Algorithms for Solving CSPs

A.3.1 Local depth-first search: genericDFS

In Section 4.2.2.7, we mentioned that we need to impose some control upon genericDFS

when we combine a local depth-first search with genericPS0.

Firstly, we divide all n CSP variables into several groups to keep the local DFS man-

ageable. If there are enough1 variables to be distributed among p particles, the n variables

can be simply divided into p groups. Otherwise, we may permute the variables to produce

p groups of variables such that no two groups are the same.' Each particle is assigned to

a group of variables to perform a local DFS. The former case is straightforward, but the

latter may require some explanation. For example, suppose we have a swarm of 9 particles

to perform DFS on some best solution so far and the problem consists of 5 variables. There

are obviously not enough variables to be distributed among the 9 particles, and so we per-

mute the variables and group them as shown in Figure A.9. While the swarm is executing

local DFS, each particle performs DFS only on the variables allocated to it (i.e. the DFS

variables assigned to the particle) but not on the remaining non-DFS variable^.^ For

instance, while a particle is performing DFS on the DFS variables {var4, varg and varl)

in Figure A.lO, the assignments of non-DFS variables remain the same. Since the size of a

DFS variable group is limited e.g. 3 or 4 variables, the execution time can be manageable.

We may use a graph colouring problem shown in Figure 2.5 to illustrate how the system

works. Five variables varl , varz, . . . , and varg correspond to the five regions R1, R2, . . . ,
and R5. For particles PI, P2, . . . , Pg to perform DFS, these 5 variables are arranged into 9

different variable groups of size 3 as shown in Figure A.12.

Besides randomly grouping the variables, we can also arrange the related variables to-

gether to improve the effectiveness of the complete search. That is, if there exist a number

of constraints among some variables, we should first consider putting these variables in a

group by applying the variable ordering techniques discussed in Section 2.3.3.3.

At least there are 2 to 3 variables per group but not too many so that the DFS can be meaningful and
manageable. We set the DFS size to 3 variables in our experiments.

2 ~ n effect, we can minimize the chance of evaluating the same potential solution. Nevertheless, if we
cannot avoid duplicates because of too many particles or too few variables, some overlaps may still be useful
because the non-DFS variables for each particle may not necessarily have assigned to the same values as
shown in Figure A.ll and ended up different solution states.

3 ~ a c h particle still evaluates the entire potential solution at each state to see if it finds some solution
better in its local DFS.

APPENDIX A. ALGORITHMS AND EXAMPLES

Figure A.9: Distribute 5 variables to 9 particles for performing DFS

5 variables cannot be distributed into 9 groups, so we may permute these 5 variables to produce
at least 9 different permutations. Since we want each particle to take on 3 (DFS) variables,
the first three variables of each permutation must be different so that no two particles are
responsible for the same variables.

APPENDIX A. ALGORITHMS AND EXAMPLES

val,
\

Figure A.lO: A particle performs depth-fist search on variable set {war4, wars, warl}

While a particle is performing depth-first search on its DFS variables (var4,vars,varl), the
values (vala and vals) of non-DFS variables remain. Whenever a state is generated, the particle
evaluates the entire potential solution to see if it finds some solution better. If it does find a
better solution, it updates the best solution so far gbest as a regular PSO. Then, it will continue
DFS until the local DFS is completed.

red blue red green

val,

Figure A.l l : Different non-DFS variable values generate different assignments in a graph colouring.

If we cannot avoid duplicates because of too many particles or too few variables, some overlaps
may still be useful because the non-DFS variables for each particle may not necessarily have
assigned to the same values and ended up with different solution states.

APPENDIX A. ALGORITHMS AND EXAMPLES

pJ, - - -. - - - - - - - - , - -- - - &!,; , ,
j VAR5 VAR, VAR, ~ A R , VAR,

Figure A.12: Particles perform depth-first search in the graph colouring problem.

Five variables v a n , varz, . . . , vars correspond to the five regions R1, R2, . . . , R5 in Figure 2.5.
For particles PI, P2, . . . , Pg t o perform DFS, these 5 variables are arranged into 9 different
variable groups of size 3. Typically, these "3-DFS variable" groups are all different. Each
particle is assigned to 3 DFS variables and 2 non-DFS variables, and it is responsible for
running DFS on the DFS variables as shown for particle Pg here.

Appendix B

PC Configuration Test Problems

B. l Formulation I

B . l . l The variables and the domains

A collection of the enumerated values is the domain of that component variable.

Table B. l : Sample CPUs for varCp,

Component specification

AMD ATHLON 64 3000+ 2.0GHz S754 800fsb
AMD Mobile ATHLON XP-M 2500+ 1.86GHz SOCKETA 266fsb
INTEL PENTIUM 4 3.0GHz S478 800fsb
AMD ATHLON 64 3200+ 2.2GHz S754 800fsb
AMD ATHLON 64 3500+ 2.2GHz S939 2000fsb
AMD SEMPRON 2500+ 1.75GHz SOCKETA 333fsb
INTEL PENTIUM 4 2.8GHz S478 800fsb
INTEL PENTIUM 4 3.0GHz S478 800fsb
AMD ATHLON 64 2800+ 1.8GHz S754 1600fsb
INTEL PENTIUM 4 3.2GHz S478 800fsb

Enumeration

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.2: Sample RAMS for war,,,

Component specification Enumeration

SAMSUNG 512MB 184pin PC3200 0
CORSAIR 1024MB 184pin PC3200 dual 1
OCZ 512MB 184pin PC3200 2
CORSAIR 1024MB 184pin PC3200 dual 3
SAMSUNG 256MB 184pin PC3200 4
KINGSTON 1024MB 184pin PC3200 dual 5
OCZ 512MB 184pin PC3200 dual 6
OCZ 1024MB 184pin PC3200 dual 7
INFINEON 512MB 184pin PC3200 8
KINGSTON 512MB 184pin PC3700 dual 9

Table B.3: Sample motherboards for var,b

Component specification Enum

SOLTEK SOCKETA dual RAM 184pin (400,333,266)fsb, onboard, IDE, AGP, PCI, USB 0
ASUS SOCKETA dual RAM 184pin (400)fsb, onboard, AGP, PCI, USB, WLAN, 1
Firewire
ASUS S754 184pin (800)fsb, onboard, IDE, AGP, PCI, USB, WLAN, Firewire 2
ASUS S478 dual RAM 184pin (8007533,400)fsb, onboard, IDE, AGP, PCI, USB, WLAN 3
SOLTEK S754 184pin (800)fsb, onboard, IDE, AGP, PCI, USB 4
MSI S754 184pin ?fsb, onboard, IDE, AGP, PCI, USB, Firewire 5
ASUS 5478 dual RAM 184pin (800,533,400)fsb, onboard, IDE, AGP, PCI, USB, WLAN, 6
Firewire
ASUS S754 184pin ?fsb, onboard, AGP, PCI, USB, Firewire 7
ASROCK SOCKETA 184pin (333,266,200)fsb, onboard, IDE, AGP, PCI, USB 8
ASUS SOCKETA 184pin (400,333,266,200)fsb, onboard, IDE, AGP, PCI, USB 9

Table B.4: Sample VGAs for waruga

Component specification Enumeration

AT1 RADEON X800 256MB (VGA,DVI,TV)out 0
MSI RADEON 9800 PRO 128MB (VGA,DVI,TV)out 1
LEADTEK GEFORCE 6800 128MB (VGA,DVI,TV)out 2
AT1 RADEON 9800 PRO 256MB (VGA,DVI,TV)out 3
LEADTEK GEFORCE 6800 256MB (VGA,DVI,TV)out 4
AT1 RADEON 9800 PRO 128MB (VGA,DVI,TV)out 5
SAPPHIRE RADEON 9550 128MB (VGA,DVI,TV)out 6
MSI GEFORCE 6800 Ultra 256MB (DV1,TV)out 7
SAPPHIRE RADEON 9800 PRO 128MB (VGA,DVI,TV) 8
BFG GEFORCE 6800 256MB (VGA,DVI,SV)out 9

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.5: Sample sound cards for var,,d

Component specification Enumeration

CREATIVE 0
CREATIVE 1
CREATIVE 2
CREATIVE 3
CHAINTECH 4
M-AUDIO 5
CREATIVE 6
AOPEN 7
M-AUDIO 8
CREATIVE 9

Table B.6: Sample NICs for var,i,

Component specification Enumeration

D-LINK (10,100)mbps PC1 0
SMC (10,100)mbps PC1 1
MICRONET (10,100,1000)mbps PC1 2
INTEL (10,100,1000)mbps PC1 3
D-LINK (10,100)mbps PCMCIA 4
INTEL (1000)mbps PC1 5
3COM (10,100)mbps PC1 6
SURECOM (10,100)mbps PC1 7
LINKSYS (10,100)mbps USB 8
LINKSYS (10,100)mbps PC1 9

Table B.7: Sample floppy drives for war f d d

Component specification Enumeration

MITSUMI BLACK 0
MITSUMI IVORY 1
Generic BLACK 2
Generic IVORY 3
SONY External BLACK 4
SONY External BLACK 5
ASUS IVORY 6

APPENDIX B. P C CONFIGURATION TEST PROBLEMS

Table B.8: Sample hard drives for Varhdd

Component specification Enumeration

WD 200MB 7200rpm 8mb IDE 0
SEAGATE 200MB 7200rpm 8mb IDE 1
SEAGATE 200MB 7200rpm 8mb SATA 2
SEAGATE 80MB 7200rpm 2mb IDE 3
SEAGATE 120MB 7200rpm 8mb SATA,IDE 4
SEAGATE 120MB 7200rpm 8mb IDE 5
MAXTOR 80MB 7200rpm 2mb IDE 6
WD 74MB lOOOOrpm 8mb SATA 7
WD 36MB lOOOOrpm 8mb SATA 8
WD 80MB 7200rpm 8mb IDE 9

Table B.9: Sample CD-ROMs for var,d

Component specification Enumeration

LG IVORY r EIDE
LITEON BLACK r EIDE
LG BLACK r EIDE
BENQ BEIGE r EIDE
ASUS BLACK r EIDE
SONY IVORY r EIDE
ASUS GREY r EIDE
LITEON IVORY r EIDE
MSI IVORY r EIDE
AOPEN WHITE r EIDE
LG WHITE r+w EIDE
LITEON IVORY r+w EIDE
LG BLACK r+w EIDE
TOSHIBA BEIGE r+w EIDE
LG BLACK r+w+dvd EIDE
BENQ BEIGE r+w EIDE
LG IVORY r+w+dvd EIDE
LITEON BLACK r+w EIDE
SONY WHITE r+w EIDE
LITEON BEIGE r+w+dvd EIDE

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.lO: Sample power supplies for Varpower

Component specification Enumeration

THERMALTAKE 420w 12V ATX PSI2 0
OCZ 520w 12V ATX PSI2 1
ANTEC 480w 12V ATX PSI2 2
ENERMAX 350w 12V ATX PSI2 3
SPARKLE 300w 12V ATX PSI2 4
generic 350w 12V ATX PSI2 5
ANTEC 430w 12V ATX PSI2 6
ANTEC 480w 12V ATX PSI2 7
ULTRA 500w 12V ATX PSI2 8
ANTEC 550w 12V ATX PSI2 9

Table B. l l : Sample casings for vartowe,

Component specification Enumeration

ANTEC BLACK ATX 380w, 5.25,3.5,USB,Firewire 0
ANTEC BLACK ATX 350w, 5.25,3.5,USB,PS/2 1
TSUNAMI IVORY ATX 400w, 5.25,3.5,USB 2
RAIDMAX BLACK ATX 420w, 5.25,3.5 3
ANTEC SILVER ATX no, 5.25,3.5,USB 4
ANTEC silver+black MicroATX 300w, 5.25,3.5,USB,Firewire 5
ASPIRE black,silver,blue,green,yellow ATX 350w, 5.25,3.5,USB 6
NGEAR BLACK+SILVER ATX 350w, 5.25,3.5 7
ANTEC BRONZE ATX 300w, 5.25,3.5,USB,PS/2 8
NGEAR BEIGE ATX 350w, 5.25,3.5,USB 9

Table B.12: Sample mice for varmoUse

Component specification Enumeration

LOGITECH USB RED optical 0
LOGITECH USB,PS/2 BLUE,RED,SILVER wireless 1
LOGITECH optical wireless 2
LOGITECH USB,PS/2 BLUE+SILVER optical 3
LOGITECH USB,PS/2 SILVER+BLACK optical 4
LOGITECH USB,PS/2 SILVER+BLACK optical 5
LOGITECH USB,PS/2 WHITE optical 6
MICROSOFT USB SILVER+BLACK 7
QTRONIX USB,PS/2 SILVER+BLACK optical 8

APPENDIX B. P C CONFIGURATION TEST PROBLEMS

Table B.13: Sample monitors for war,,,

Component specification

SAMSUNG 17 crt 1280x1024 IVORY D-Sub
SAMSUNG 17 crt 1280x1024 SILVER+BLACK D-Sub
LG 17 crt 1280x1024 BLACK D-Sub
LG 17 crt 1280x1024 WHITE D-Sub
LG 17 crt 1280x1024 IVORY D-Sub
VIEWSONIC 17 crt 1280x1024 SILVER+BLACK D-Sub
VIEWSONIC 17 crt 1280x1024 BLACK D-Sub
NEC 17 crt 1280x1024 WHITE D-Sub
VIEWSONIC 17 crt 1280x1024 WHITE D-Sub
VIEWSONIC 17 crt 1920x1440 IVORY D-Sub
SAMSUNG 19 crt 1600x1200 WHITE D-Sub
MITSUBISHI 19 crt 1920x1440 BLACK D-Sub
VIEWSONIC 19 crt 2048x1536 BLACK D-Sub
VIEWSONIC 19 crt 1600x1200 BLACK D-Sub
LG 19 crt 2048x1536 IVORY D-Sub
SAMSUNG 19 crt 1600x1200 BLACK+SILVER D-Sub
AOC 19 crt 1600x1200 WHITE D-Sub
SAMSUNG 19 crt 1920x1440 SILVER D-Sub
VIEWSONIC 19 crt 2048x1536 WHITE D-Sub
VIEWSONIC 19 crt 1600x1200 IVORY D-Sub
BENQ 19 lcd 1280x1024 SILVER+BLACK D-Sub,DVI
BENQ 17 lcd 1280x1024 SILVER+BLACK D-Sub,DVI
BENQ 17 lcd 1280x1024 SILVER+BLACK D-Sub,DVI
BENQ 15 lcd 1024x768 BLACK+SILVER D-Sub,DVI
BENQ 17 lcd 1280x1024 BLACK+SILVER D-Sub,DVI
VIEWSONIC 15 lcd 1024x768 SILVER+BLACK D-Sub,DVI
SAMSUNG 19 lcd 1280x1024 BLACK D-Sub,DVI
SAMSUNG 17 lcd 1280x1024 SILVER D-Sub,DVI
SAMSUNG 17 lcd 1280x1024 BLACK D-Sub,DVI
LG 17 lcd 1280x1024 SILVER D-Sub.DVI

Enumeration

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.14: Sample printers for var,,t

Component specification Enumeration

CANON 4800x1200 Parallel,USB,DPP color 0
CANON 4800x1200 USB,DPP color 1
CANON 4800x1200 USB color 2
CANON 4800x1200 Parallel,USB,DPP color 3
LEXMARK 4800x1200 USB color 4
EPSON 5760x1440 USB color 5
EPSON 5760x1440 Paralle1,USB color 6
CANON 4800x1200 USB color 7
HP 4800x1200 USB color 8
HP 4800x1200 color 9
BROTHER 1200x600 Paralle1,USB laser b/w 10
SAMSUNG 600x600 Paralle1,USB laser b/w 11
SAMSUNG 1200 Paralle1,USB laser color 12
HP laser color 13
SAMSUNG 1200x600 Paralle1,USB laser b/w 14
SAMSUNG 1200 Paralle1,USB laser b/w 15
LEXMARK 600 Paralle1,USB laser b/w 16
OKIDATA 1200x600 Parallel,USB,LAN laser color 17
BROTHER 600x600 Paralle1,USB laser b/w 18

Table B.15: Sample keyboards for varkb

Component specification Enumeration

ITRON BLACK PSI2 0
LOGITECH BLACK USB,PS/2 kb+mouse wireless 1
BENQ BLACK 2
MICROSOFT IVORY kb+mouse 3
EAGLE TOUCH SILVER+BLACK USB,PS/2 4
ELUMINX BLACK+BLUE PSI2 5
IONE BLACK USB,PS/2 6
ZIPPY SILVER+BLUE USB 7
LOGITECH BLACK USB,PS/2 8
TSUNAMI BLACK PSI2 kb+mouse 9

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B. 1.2 The constraints

Table B.16: PC connection constraints in Formulation I.

I power supply is optional
(~ a r , , ~ , , ~ a r , ~ , ~) I a monitor connector must be supported by a VGA

Constraint variables

(varcpu, varmb)

(varrnb, varrarn)

(varrnb,uarvga)

(varmb varsnd)

(uarmb, varnic)

(varrnb, uarfdd)
(varmb, varhdd)
(varmb, varui)
(varrnb, vartower)
(uartower varpower)

Description

CPU socket must fit on a motherboard (MB), and fsb
should be compatible
memory pins and the slots on a MB have to match; if RAM
is a dual RAM, a motherboard must support it
if a MB has a video chip onboard, a VGA is optional; if a
VGA is to use, the interface must be supported
if a MB has a sound chip, a sound card is optional; if a
sound card is to use, the interface must be supported
if a MB has a network chip, an NIC is optional; if an NIC
is to use, the interface must be supported
the connection interface must be supported by a MB
the connection interface must be supported by a MB
the connection interface must be supported by a MB
a motherboard formation factor must be consistent
if the tower case includes a power supply, an additional

B. 1.3 Description for Formulation I test problems

B.1.3.1 Problem 10.3

The is the base problem of problem set 10. It has 14 variables and 14 conilection constraints

among the variables. The domain size of each variable is at least 10 on average and several

variables have 30 to 40 samples. A list of constraints is shown in Table B.16. The search

space is 1,006,236,000,000,000 = 1.01 x 1015.

(varpTt, varmb, vartower)
(varkb, varmb, vartower)
(~ a ~ r n o u ~ ~ , Varmb, ~ a r ~ ~ ~ ~ ~)
(uarcpu, varrarn, varrnb,

a printer connector must be supported by a MB or a tower
a KB connector must be supported by a MB or a tower
a mouse connector must be supported by a MB or a tower
total price must be smaller than or equal to the budget

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B.1.3.2 Problem 10.40

Based on problem 10.3, an ext-color constraint is added and everything else stays the

same. The ext-color constraint enforces the colors of casing, floppy disk drive, CD-ROM,

monitor, keyboard and mouse to be consistent. For example, they must all be:

('BLACK', 'BRONZE', 'BLACK/SILVER'), or

('SILVER), 'GREY), ' SILVER/BLACK)), or

each tuple represents a set of compatible colors.

B.1.3.3 Problem 10.41

Based on problem 10.40, this problem takes user's budget into account and adds two 14-ary

price constraints. These two price constraints define an upper bound and a lower bound of

the budget: ' UPPERprice (items, 1800)) and ' LOWERprice (items, 1500) ' respectively.

B.1.3.4 Problem 10.53

Based on problem 10.3, we add a price constraint 'UPPERprice(items, 750) '. The price

constraint is harder than those in problem 10.41.

B.1.3.5 Problem 10.55

This problem is designed to compare the result with problem 10.53. The only difference

between these two problems is that the search space here is ordered; i.e. each set of domain

is arranged in the order of item prices.

B.1.3.6 Problem 10.62

Based on problem 10.3, we add a price constraint ' UPPERprice (items, 500) ' , which makes

the problem no solution. This problem test only those algorithms using distance objective

function. For this problem, the distance objective function is modified so that the evaluation

of the price constraint returns some value smaller than 1 and greater or equal to 0. The test

result will be accepted as soon as all constraints are satisfied, except for the price constraint.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS 133

B.1.3.7 Problem 10.64

This problem is designed to compare the result with problem 10.62. The only difference

between these two problems is that the search space here is ordered; i.e. each set of domain

is arranged in the order of it,em prices. Like problem 10.62, this is to test those algorithms

using distance objective function.

B.2 Formulation I1

B.2.1 The variables and the domains

Table B.17: Sample values of CPU specifications and the enumerated domain.

Enum cpubrand CPUrnodel CPUclock CPUsocket CPU f sb

0 ATHLON 1.75 S478 266
1 AMD Mobile ATHLON 1.8 S754 333
2 INTEL PENTIUM 1.86 S939 800
3 SEMPRON 2.0 SOCKETA 1600
4 2.2 2000
5 2.8
6 3.0
7 3.2

The rows in the table do not represent a product, but the enumerated values. For example,
AMD of CPUb~and is 1, ATHLON of p u m o d e l is 0, PENTIUM of p u m o d e l is 2, SOCKETA of
CP%ocket is 3, etc.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.18: Sample values of RAM specifications and the enumerated domain.

Enum T a m b r a n d T a m p i n T a m M B T a m d u a l

0 184 256 False
1 512 True
2 1024
3 SAMSUNG
4 CORSAIR
5 OCZ
6 KINGSTON
7 INFINEON

Variable r a m M ~ represents the capacity of a RAM. The rows in the table do not represent a
product, but the enumerated values. For example, KINGSTON of rambrand is 6, 512MB of
r a m M B is 1, etc.

Table B.19: Sample values of motherboard specifications and the enumerated domain.

Enum mbbrand mbsOcket m b f o r , Onboard1 m b P i , Drv/Slots/Dua12 m b f s b

0 S478 ATX False 184 False 200
1 S754 True
2
3 SocketA
4
5
6
7
8 SOLTEK
9 ASUS
10 MSI
11 ASROCK

True 266
333
400
533
800

Variable m b f o r , represents the formfactor of a motherboard. 'LOnboard" includes NIC and
Soundcard, "Drv" includes IDE or SATA and "Slots" include AGP, IDE, PCI, USB. The rows
in the table do not represent a product, but the enumerated values. For example, ASUS of
mbbrand is 9, S478 of mb30ck,t is 0, True of Onboard for mbSnd and mbni , is 1, etc.

1. Combinations of m b S n d and mbnic
2. Combinations of m b r o ~ , ~ ~ S A T A , ~ ~ A G P , m b p c r , m b u s ~ and mbdUal

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.20: Sample values of VGA specifications and the enumerated domain.

Enum vgabrand vgamodel vga f ace vgaDV I V P T V VgaV GA

0 GEFORCE AGP False False False
1 RADEON True True True
2 PC1
10 MSI
12 AT1
13 LEADTEK
14 SAPPHIRE
15 BFG

Variable vgaf,,, represents the interface of a VGA card, and v g a o v r , vgaTv and v g a v c a are
the connectors of a VGA card. The rows in the table do not represent a product, but the
enumerated values. For example, AT1 of vgabrand is 12, AGP of vga,,d,l is 0, etc.

Table B.21: Sample values of sound card specifications and the enumerated domain.

Enum sndbrand ~ n d f a c e

0 Dummy
2 PC1
16 CREATIVE
17 CHAINTECH
18 M-AUDIO
19 AOPEN

Variable sndface represents the interface of a sound card. "Dummy sound card" is used when
sound card is optional. The rows in the table do not represent a product, but the enumerated
values. For example, CREATIVE of sndbrand is 16, PC1 of s n d f ,,, is 2, etc.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.22: Sample values of NIC specifications and the enumerated domain.

Enum nicbrand ni~f ace n ~ ~ w i r e l e s s

0 Dummy False
1 True
2 INTEL PC1
3 USB
4 PCMCIA
20 D-LINK
21 SMC
22 MICRONET
23 3COM
24 SURECOM
25 LINKSYS

Variable nicrace represents the interface of a network card. "Dummy network card" is used
when network card is optional. The rows in the table do not represent a product, but the
enumerated values. For example, LINKSYS of nicbrand is 25, False of nicwireleSs is 0, etc.

Table B.23: Sample values of floppy drive specifications and the enumerated domain.

Enum f ddbrand f ddcolor f ddez t f ddf ace

0 False IDE
1 BLACK True
2 IVORY USB
9 ASUS
26 MITSUMI
27 Generic
28 SONY

Variable fddfac, represents the interface of a floppy drive, and fddeZt indicates whether a
floppy drive is external or not. The rows in the table do not represent a product, but the
enumerated values. For example, SONY of fddbrand is 28, IDE of fddfac, is 0, etc.

APPENDIX B. P C CONFIGURATION TEST PROBLEMS 137

Table B.24: Sample values of hard drive specifications and the enumerated domain.

Enum hddbrand h d d ~ ~ hddext hdd face hddrpm

0 36 False IDE 7200
1 74 True SATA 10000
2 80
3 120
4 200

29 WD
30 SEAGATE
31 MAXTOR

Variable hddfa,, represents the interface of a hard drive and h d d ~ ~ is the capacity of a hard
drive in Megabyte. The rows in the table do not represent a product, but the enumerated
values. For example, SEAGATE of hddbrand is 30, 120MB of h d d ~ ~ is 3, etc.

Table B.25: Sample values of CD-ROM specifications and the enumerated domain.

I Enum cdbrand cdcolor cdext cdface cdzurt

0 False IDE False
1 BLACK True True
2 IVORY
3 BEIGE
4 GREY
5 WHITE
9 ASUS
10 MSI
19 AOPEN
28 SONY
32 LG
33 LITEON
34 BENQ
35 TOSHIBA

Variable cdf,,, represents the interface of a CD-ROM drive and cdwrt indicates whether the
CD-ROM drive is a writer or not. The rows in the table do not represent a product, but the
enumerated values. For example, TOSHIBA of Cdbrand is 35, BLACK of cd,,l,, is 1, True of
cdWrt is 1, etc.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.26: Sample values of power supply specifications and the enumerated domain.

Enum powerbrand Powerwatts

0 DUMMY 0
1 300

2 350
3 420
4 430
5 OCZ 480
6 500
7 520
8 550
39 THERMALTAKE
40 ANTEC
41 ENERMAX
42 SPARKLE
43 generic
44 ULTRA

"Dummy power supply" is used when power supply is optional. The rows in the table do not
represent a product, but the enumerated values. For example, ANTEC of powerb,,,d is 40,
340w of powerwatt, is 2, etc.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.27: Sample values of tower case specifications and the enumerated domain.

Enum towerb,,,d tower fo,, towerpowe, towerpg t o w e r ~ s ~ towerwatt, tozuercolo,

0 ATX None False False 0

ANTEC
TSUNAMI
RAIDMAX
ASPIRE

MicroATX ATX True True 300
350
380
400
420

BLACK
IVORY
BEIGE

SILVER
SIB
BLUE
GREEN
YELLOW
B/S
BRONZE

48 NGEAR

The rows in the table do not represent a product, but the enumerated values. For example,
NGEAR of towerb,,,d is 48, SILVER of towercolo, is 7, etc. Color 'SIB' means silverlblack
and 'B/S' means black/silver

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B.2.2 The constraints

B.2.2.1 Component constraints

Table B.28: Sample CPUs in good tuples-component constraint "GOODcpu"

2) for brand,

Table B.29: Sample RAMS in good tuples-component constraint "GOODram".

RAM# Specification

0 (3, 0, 1, 0)
1 (4, 0, 2, 1)

2 (5, 0, 1, 0)
3 (4, 0, 2, 1)
4 (3, 0, 0, 0)
5 (6, 0, 2, 1)
6 (5, 0, 1, 1)
7 (5, 0, 2, 1)
8 (7, 0, 1, 0)
9 (6, 0, 1, 1)

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.30: Sample motherboards in good tuples-component constraint "GOODmb".

The sample motherboards (mb) in order of brand, socket, form factor, NIC, sound card, pin,
drvlDE, drvSATA, AGP, IDE, PCI, USB, dual type and fsb are the following. Because of
the multiple supported fsb, there can be multiple entries for some motherboard.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Table B.31: Sample VGAs in good tuples-component constraint "GOODvga".

Table B.32: Sample sound cards in good tuples-component constraint "GOODsndn

APPENDIX B. P C CONFIGURATION TEST PROBLEMS

Table B.33: Sample network cards in good tuples-component constraint "GOODnic" .

Table B.34: Sample floppy drives in good tuples-component constraint LLGOODfdd"

FDD# Specification

0 (26, 1, 0, 0)
1 (26, 2, 0, 0)
2 (27, 1, 0, 0)
3 (27, 21 0, 0)
4 (28, 1, 0, 0)
5 (28, 1, 1, 3)
6 (9, 2, 1, 3)

APPENDIX B. PC CONFIGURATION TEST PROBLEMS 144

Table B.35: Sample hard drives in good tuples-component constraint "GOODhdd".

Table B.36: Sample CD-ROM drives in good tuples-component constraint "GOODcd".

CD# Specification

0 (32, 2, 0, 1, 0)
1 (33, 1, 0, 1, 0)
2 (32, 1, 0, 1, 0)
3 (24, 3, 0, 1, 0)
4 (9, 2, 0, 1, 0)
5 (28, 3, 0, 1, 0)
6 (9, 4, 0, 1, 0)
7 (33, 2, 0, 1, 0)
8 (10, 2, 0, 1, 0)
9 (19, 5, 0, 1, 0)
10 (32, 5, 0, 1, 1)
11 (33, 2, 0, 1, 1)
12 (32, 1, 0, 1, 1)
13 (35, 3, 0, 1, I)
14 (32, 1, 0, 1, 1)
15 (34, 3, 0, 1, 1)
16 (32, 2, 0, 1, 1)
17 (33, 1, 0, 1, 1)
18 (28, 5, 0, 1, 1)
19 (33, 3, 0, 1, 1)

APPENDIX B. PC CONFIGURATION TEST PROBLEMS 145

Table B.37: Sample power supplies in good tuples-component constraint LLGOODpower".

Power# Specification

0 (0, 0)
1 (39, 3)
2 (5, 7)
3 (40, 5)
4 (41, 2)
5 (42, 1)
6 (43, 2)
7 (40, 4)
8 (40, 5)
9 (44, 6)
10 (40, 8)

Table B.38: Sample tower cases in good tuples-component constraint "GOODtower"

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B.2.2.2 Connection constraints

Table B.39: Sample PC connection constraints in Formulation 11.

Constraint expression

VGA-f ace < 4 and

((((VGA-face+l)

* (MB-AGP + MB-PcI*IOO))

/ lO**VGA-face) % 10) > 0

SND-face < 4 and

((((SND-face+l) * (MB-PCI*lOO))
/ lO**SND-face) % 10) > 0

(NIC-brand != 0) I (MB-nic != 0)

NIC-face < 4 and

((((NIC-face+l) * (MB-PCI*lOO))
/ lO**NIC-face) % 10) > 0

FDD-face < 3 and

((((FDD-face+l) * (MB-drvIDE
+ MB-IDE + MB-USB*lOO))

/ lO**FDD-face) % 10) > 0

HDD-face < 3 and

((((HDD-face+l) * (MB-drvIDE
+ MB-IDE + MB-drvSATA*lO

+ MB-USB*lOO)) / lO**HDD-f ace)

% 10) > 0

CD-f ace < 3 and

((((CD-f ace+l) * (MB-drvIDE + MB-IDE
+ MB-drvSATA*lO + MB-USB*lOO))

/ lO**CD-face) % 10) > 0

(TOWER-power != 0)

I (POWER-brand != 0)

Description

CPU socket must fit on a motherboard

CPU fsb should be compatible

Memory pins and the slots on a MB have to match

If RAM is dual, a motherboard must support it

If a VGA is used, the interface must be supported

If a MB has a sound chip, a sound card is optional

If sound card is used, interface must be supported

If a MB has a network chip, an NIC is optional

If an NIC is used, the interface must be supported

The interface must be supported by a MB

The interface must be supported by a MB

The interface must be supported by a MB

If the tower case includes a power supply,

an additional power supply is optional

APPENDIX B. P C CONFIGURATION TEST PROBLEMS

B.2.2.3 User constraints

Table B.40: Sample PC user constraints in Formulation 11.

B.2.3 Description for Formulation I1 test problems

B.2.3.1 Problem set 20 - problem 20.3.

These problems are the simplest set of problems in Formulation 11. Problem 20.3 is a base

problem that includes 32 variables, 8 component constraints and 12 arithmetic connections.

The variables are listed in Table B.41 and the size of the domains varies from 2 to 20. Sample

component constraints are listed in Table B.28 to Table B.38, and connection constraints

are included in Table B.39. The search space is 98,099,527,680,000,000 z 9.81 x 1016.

Constraint expression

UPPERprice (1800)
LOWERprice (1500)
FDD-external == 1
CD-writer != 1

Table B.41: CSP variables of problem set 20.

Description

budget upper bound $1800
price lower bound $1500
want to have an external floppy drive
do not want a DVD writer

Component
variables

CPU
r a m
m b

v9a
f dd
hdd
power
tower

Specification
variables

CPUsocket CPU f sb

Tampin Tamdual
mbsocket, m b d r v ~ ~ ~ , m b d r v ~ ~ ~ ~ , mbf orm, mbpin,
~ ~ A G P , ~ ~ Z D E , ~ ~ P C Z , mbi7s~, mbdual, mbfsb
vgainter f ace

f ddco~or f ddinter face, f ddezterna~
hddinter f ace

Power w att s

towerco~or tower f orm towerwatts

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B.2.3.2 Problem set 21 - problem 21.3.

This set of problems are composed of 36 variables, 8 component constraints and 12 arith-

metic connections. The variables are listed in Table B.42 and the sizes of the domains are

between 2 to 20. Sample component constraints are listed in Table B.28 to Table B.38,

and connection constraints are included in Table B.39. The size of the search space is

5,885,971,660,800,000,000 = 5.89 x 1018.

Table B.42: CSP variables of problem set 21.

variables

CPU
ram
mb

u9a
f dd
hdd
power
tower

B.2.3.3 Problem set 22 - problem 22.3.

The size of this set of problems becomes 46, and the base problem 22.3 contains 9 component

constraints and 14 arithmetic connections. The variables are listed in Table B.43 and the

sizes of the domains are between 2 to 20. Sample component constraints are listed in

Table B.28 to Table B.38, and connection constraints are included in Table B.39. Its search

space is 361,634,098,839,552,000,000,000 = 3.62 x

APPENDIX B. P C CONFIGURATION TEST PROBLEMS

Component
variables

CPU

ram
mb

fdd
hdd
cd
power
tower

Table B.43: CSP variables of problem set 22.

- --

Specification
variables

ugamodel, Ugainter f ace

f ddcolor f ddinterface , f ddezternal
hddinter face , hddexternal hddmb, hddcache hddrpm
cdcolor cdinter f ace, cdexternal, cdwriter
Powerwatts
 tower,,^,, towerform, towerpsl2, toweruss , towerwatts

Problem set 23 - problem 23.3.

The problem size is 51 and the variables are listed in Table B.44. The number of constraints

of the base problem 23.3 is the same as problem 22.3. Sample component constraints are

listed in Table B.28 to Table B.38, and connection constraints are included in Table B.39.

The search space is 11,572,291,162,865,664,000,000,000 % 1.16 x

Table B.44: CSP variables of problem set 23.

Component
variables

CPU

r a m
mb

U P

f dd
hdd
cd
power
tower

Specification

ugamodel, ugainter f ace

f ddcolor f ddinterface, f ddexternal
hddinterface hddezternal, hddmb hddcache , hddrpm
cdcolor cdinter f ace, cdexternal cdwriter
Powerwatts
 tower,,^,, towerform, towerps12, t o w e r ~ s ~ , towerwatts

APPENDIX B. PC CONFIGURATION TEST PROBLEMS 150

B.2.3.5 Problem set 24 - problem 24.3.

The base problem consists of 58 variables, 11 component constraints and 20 arithmetic

connections. The variables are listed in Table B.45, sample component constraints are

listed in Table B.28 to Table B.38, and connection constraints are included in Table B.39.

The space becomes 336,059,335,369,618,882,560,000,000,000 % 3.36 x lo2'

Table B.45: CSP variables of problem set 24.

Component
variables

CPU
ram
mb

'"g a
snd
nic
f dd
hdd
cd
power
tower

Specification
variables

CPUmodel, cpusocket, CPU f sb

rampin, rammb, ramdual
mbsocket, m b d r v ~ ~ ~ , m b d r v s ~ ~ ~ , mbsndonboard, mbniconboard,
mbform, mbpin, ~ ~ A G P , ~ ~ I D E , ~ ~ P C I , ~ ~ U S B , mbdual, mbf sb

vgamodel, Vgainterface, VgaDVI, VgaTV, VgaVGA
sndbrand sndinter f ace

nicband, nicinter f ace, n i~wi re l e s s

f ddcolor f ddinterface, f ddexternal
hddinter ace, hddezternal hddmb, hddcache, hddrprn
cdcolor cdinter f ace, cdexternal , cdwriter
Powerwatts
towercolor, tower form, t o w e r p ~ / ~ , t o w e r u s ~ , towerwatts

B.2.3.6 Problem set 25 - problem 25.3.

There are 59 variables for this set of problems and they are listed in Table B.46. Its search

space is slightly increased to 672,118,670,739,237,765,120,000,000,000 % 6.72 x lo2'. The

base problem 25.3 contains 11 component constraints and 20 arithmetic connections. Sample

component constraints are listed in Table B.28 to Table B.38, and connection constraints

are included in Table B.39.

B.2.3.6.1 Problem 25.43. Based on the base problem 25.3, several user constraints

are added to the problem: ramMB, fddExt, cdDvd and cdwriter.

ramMB > 512MB defines the size of the RAM to be greater than or equal to 512MB.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

Component
variables

CPU
ram
mb

vga
snd
nic
f dd
hdd
cd
power
tower

Table B.46: CSP variables of problem set 25.

Specification
variables

Cpurnodel, Cpusocket CPu f s b

rampin, rammb, ramdual
mbsocket m b d r v ~ ~ ~ , m b d r v s ~ ~ ~ , mbsndonboard mbniconboard,
mbjorm, mbpin, ~ ~ A G P , ~ ~ Z D E , ~ ~ P C I , ~ ~ U S B , mbd~al, mbfsb
Vgamodel Vgainter face VgaDVI, VgaTV, VgaVGA
sndbrand ~ndinter face

ni~brand nicinter face ni~wireless
f ddcolor f ddinter face, f ddexternal
hddinter f ace hddezternal hddmb, hddcache hddrpm
cdcolor, cdinter face, cdexternal cdwriter ~ddvd
Powerwatts
towercol,, towerform, t o w e r p ~ / ~ , tower us^, towerwatts

fddExt f ddexternal != hddezternal == ~d~~~~~~~~ for that if floppy disk drive

external model, hard drive and CD-ROM must be internal; or vice versa.

cdDvd = 1 demands a DVD driver, rather than a CD-ROM.

cdWriter = 1 demands only a writer, not a reader.

B.2.3.6.2 Problem 25.47. In addition to the constraints added to problem 25.43, some

additional user constraints are added to this problem: hddcapacity, vgaModel, onboard

and ext-color.

hddcapacity > 120GB defines the capacity of the hard drive to be greater than or

equal to 120GB.

vgaModel = 'RADEON' requires the video card model to be 'RADEON'.

onboard (mbsndunboard == mbniconboard == 0) I (mbsndonboard != 0 != mbniconboard)

defines either both sound card and network card are built in on motherboard or neither

of them built in on motherboard.

ext-color enforces the colors of casing, floppy disk drive and CD-ROM to be con-

sistent. For example, they must all be ('BLACK', 'BRONZE', 'BLACK/SILVERJ), or

APPENDIX B. PC CONFIGURATION TEST PROBLEMS 152

(' SILVER', 'GREY', ' SILVER/BLACK'), or ('WHITE), ' I V O R Y) , 'BEIGE)) , and each

tuple represents compatible colors.

B.2.3.6.3 Problem 25.50. This problem is built on top of problem 25.47. A few user

constraints are added: powerwatts, colorBlack and the price constraints UPPERprice and

LOWERprice.

0 powerwatts >= 350 I towerwatts >= 350 requires the power of the power supplies

must be greater than or equal to 350 watts.

0 colorBlack (fddcoloT != t o ~ e r , , ~ ~ ~ == cdcol,) requests the casing and the CD-ROM

must be the same color, but the color of the floppy drive must be different.

0 UPPERprice <= 1800 defines price constraint upper bound.

0 LOWERprice >= 1500 defines price constraint lower bound.

B.2.3.6.4 Problem 25.53. Similar to problem 10.53 in problem set 10 (Formulation I),

this problem is defined to be harder than problem 25.50 with a harder price constraint upper

bound ' UPPERprice (items, 750) ' . The variables and the other constraints are exact same

as problem 25.3.

B.2.3.6.5 Problem 25.55. This problem is designed to compare the result with prob-

lem 25.53. The only difference is the search space of this problem is ordered; i.e. each set

of domain is arranged in the order of item price.

B.2.3.6.6 Problem 25.62. Based on the base problem 25.3, an additional price con-

straint ' UPPERprice (items, 500) ' is added to make the problem no solution. This prob-

lem is meant to test those algorithms with distance objective function. For this problem, the

distance objective function is modified in a way that the evaluation of the price constraint

returns some value smaller than 1 and greater or equal to 0. The test result will be accepted

as soon as all constraints are satisfied, except for the price constraint.

B.2.3.6.7 Problem 25.64. This problem is designed to compare the result with prob-

lem 25.62. The only difference is the search space of this problem is ordered; i.e. each set

of domain is arranged in the order of item price. Like problem 25.62, this is to test those

algorithms with distance objective function.

APPENDIX B. PC CONFIGURATION TEST PROBLEMS

B.2.3.7 Problem set 26 - problem 26.3.

The problem size is promoted to 70. The variables are listed in Table B.47. There are 11

component constraints and 20 arithmetic connections binding the 70 variables. The search

space jumps to 11,356,117,060,810,161,279,467,520,000,000,000,000 % 1.14 x Sam-

ple component constraints are listed in Table B.28 to Table B.38, and connection constraints

are included in Table B.39.

Table B.47: CSP variables of problem set 26

Component
variables

ram
mb

vga
snd
n ic
f dd
hdd
cd
power
tower

Specification
variables

Appendix C

Experimental Setup and

Evaluation Data

C. 1 Parameter Settings for Exploration Phase

Table C. 1: Parameter settings used in Exploration phase

model/objective

(across algorithm)

parameter

POP
k

ITER

W

(~ 1 , c2)

nohope

--

description

the population of the swarm

the size of neighbourhood

the maximum of iterations

an inertia weight in computing

particle's velocity v(t), deter-

mines the effect of v(t - 1)

the acceleration constants in

computing particle's velocity,

determines the influence of the

global (or local) best and the

individual best information

an iteration count, defines

when the swarm has no more

improvement for so long, the

swarm performs a certain

strategy to break the situation

--

values

20, 50, 100

6, global only1

10000

decreases from 0.9 to 0.4

500 (or 1000)2

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 155

parameter

pop-rate

df s-size

regroup

stop-group

spawn

41 and 4 2

(vmm 'vmin)

nohope

pop-rate

91' 9 2

de f ledion

poprate

description

the percentage of particles to

perform the given strategy after

the nohope count kicks in; for

instance, pop-rate = 0.5 means

half of the population should

perform the specific strategy

defines the number of variables

in each depth-first search group

assigned to a particle; see Sec-

tion 4.2.2.8

an iteration count, defines

when the swarm should

perform such a strategy; only

used in algorithms involving

"exchange partner" strategy

an iteration count, defines when

to stop regrouping particles and

return to normal

an iteration count, defines when

to spawn more particles; used in

genericHybrid algorithm

the acceleration constants in

computing particle's velocity

the velocity upper bound and

lower bound in determining

particle's velocity

same as in the Continuous

same as in the Continuous

the coefficients used in comput-

ing particle's velocity

serves as a switch to refine

particle's moving direction, i.e.

whether a particle should flip

the direction or not

same as in the Continuous

values

3333, 5000, 10000

2 x nohope

random(0,4) and 4 - q51

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 156

parameter

nohope

description

exists in the original BCSP

model for individual particles

to determine when it has done

no improvement and should

restart; we also use this

parameter globally to the

swarm similar to the nohope in

the Continuous model

1 values

Discrete/distance I I same as Discrete/conflict I
Continuous/distance

1. "Global only" means the entire swarm as one and the only one neighbourhood.

I

(same as Continuous/conflict

2. The nohope count is set depending on the maximum number of iterations (i.e. 1/20

of ITER); in turns, 500 is used in genericHop and genericRestart, and 1000 is used in

genericMultigbest, genericDFS and zigzagDFS.

C.2 Parameter Settings for Comparison Phase

Table C.2: Parameter settings used in Comparison phase

(across algorithm)

parameter

POP
k

ITER

description

the population of the swarm

the size of neighbourhood

the maximum of iterations

an inertia weight in computing

particle's velocity, determines

the effect of the previous veloc-

ity at time t - 1

the acceleration constants in

computing particle's velocity,

determines the influence of the

global (or local) best

information and the individual

best information

values

3, 5, 10

2

20000 (or 50000)"

decreases from 0.9 to 0.4

(3, 1)

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 157

parameter

pop-rate

nohope

df s-size

regroup

stop-group

spawn

description

the percentage of particles to

perform the given strategy after

the nohope count kicks in; for

instance, pop-rate = 0.5 means

half of the population should

perform the specific strategy

an iteration count, defines

when the swarm has no more

improvement for so long, the

swarm performs a certain

strategy to break the situation

defines the number of variables

in each depth-first search group

assigned to a particle; see Sec-

tion 4.2.2.8

an iteration count, defines

when the swarm should

perform such a strategy; only

used in algorithms involving

"exchange partner" strategy

an iteration count, defines when

to stop regrouping particles and

return to normal

an iteration count, defines when

to spawn more particles; used in

genericHybrid algorithm

the acceleration constants in

computing particle's velocity

the velocity upper bound and

lower bound in determining

particle's velocity

same as in the Continuous

same as in the Continuous

the coefficients used in comput-

ing particle's velocity

values

0.25, 0.5, 0.75

see note2

66667,10000, 20000

2 x nohope

-

random(0,4) and 4 -

see note2

0.25, 0.5, 0.75

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 158

nohope

model/objective

1 pop-rate

parameter

de f ledion

description

serves as a switch to refine

particle's moving direction, i.e.

whether a particle should flip

the direction or not

exists in the original BCSP

model for individual particles

to determine when it has done

no improvement and should

restart; we also use this

parameter globally to the

swarm similar to the nolzope in

the Continuous model

same as in the Continuous

same as Continuous/conflict

same as Discrete/conflict

values

see note2

1. Because zigzag and zigzagHop type algorithms only process one dimension per itera-

tion, it can generally do faster than other type algorithms. Thus, given approximately

same amount of run time, we can assign a much higher iteration upper bound to these

algorithms. For consistent, we define I T E R = 50000 for zigzag and zigzagHop type

algorithms, and 20000 is for all the other algorithms.

2. The nohope count is set depending on the maximum number of iterations (i.e. 1/20 of

I T E R) ; in turns, 1000 is used in genericHop and genericHybrid, 2500 is used in gener-

icZigzagHop, and 5000 is used zzgzagDFS algorithm.

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

C.3 Figures

Table C.3: The partial success rate of PSO algorithms: problem set 10 from the Comparison phase.

The success rate of PSO algorithms

PSO
Algorithm

genericPS 0
genericzigzag
genericHop
genericZigzagHop
genericExchange
zigzagExchange
zigzagDFS
genericHybrid
binaryDiscrete
binaryzigzag
binaryHop
binaryZigzagHop
grayDiscrete
grayzigzag
grayHop
bcspPSO
bcspzigzag
bcspHop
bcspZigzagHop

Continuous
conflict

43.3%
45%

56.4%
60.3%
67.1%
65.8%
52.3%
67.1%

-

Discrete
conflict

-

BCSP
conflict -

26.1%
51.3%
60%
60%

Continuous
distance

47.2%
49.4%
64.1%
58.1%
55.8%
59.6%
50%

69.5%

Discrete
distance

These figures are for reference only. The experiments with problem 10.53-10.64 are incomplete,
not including pop = 10.

Table C.4: The success rate of the PSO parameter settings.

I Algorithm and settings I Problem

pop pop-rate regroup I stop-group I deflectzon 1 25.3 1 25.43 / 25.47 1 25.50 / 25.53 1 25.55

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 160

genericZzgzagHop of the Continuous-conflict model

genericHybrid of the Continuous-conflict model

Algorithm and settings

I
bcspHop of the BCSP model

Problem

25.3

100%

90%

100%

100%

pop
5

10

10

10

pop-rate

0.75

0.25

0.50

0.75

def lec t ion 25.43

100%

90%

100%

100%

regroup stop-group 25.47

100%

90%

100%

100%

25.50

70%

70%

100%

90%

25.53

20%

0%

0%

10%

25.55

30%

10%

30%

20%

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA 161

POP

Algorithm and settings I Problem

the

pop-rate regroup stop-group

0.50

0.75

0.50

0.75

0.50 -
0.75

0.50

0.75

BCSP model

deflection

2 / n

2 / n
0.0

0.0

l / n

l / n

2 / n

2 / n

The outcomes are the individual PC configuration problem set 25 from the Comparison phase.

25.3

80%

100%

90%

100%

100%

100%

100%

100%

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

Algorithm - = - genericHop

- - - genericZ~gzagHop
% %. binaryHop

---- binaryZ~gzagHop

pop-rate

Figure C.l: The mean evaluation value of pop-rate: problem sets 25 from the Comparison phase.

This includes the hop and the zigzagHop type algorithms using the distance function and
the outcomes include all PC configuration problem set 25 from the Comparison phase. See
Figure 5.6 for the algorithms using the conflict count function. Generally, the higher the
poprate, the lower the mean evaluation value.

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

1 I I 1 i I
prob 10 3 prob 10 41 prob 1O 53 prob 10 55 prob 10 62 prob 10.54

Problem

(a) Problem set 10

AlgClass
..--- Contmuous-

confllct
-- D~screts-eonflrst

BCSP

= - . eontmuws-
distance

-.-. -Dscrets-ddance

AlgClass
= . - " cmlnuous-

corrfl~d
-- Discrete-conflrct

BCSP model

- - - contmuous-
chstance

- -Dlsclde-dlsance

t
I I I I I I

prob 20.3 prob 21 3 prob 23 3 p~ob 23 3 plob 24 3 pmb 5 53 proB 26 3

Problem

(b) Problems 20.3 to 26.3

Figure C.2: The mean evaluation value of PSO models from the Comparison phase.

For problems of Formulation I in Figure C.2(a), the BCSP model has the highest overall mean
evaluation value and all others do not show much difference, which is consistent with the
findings of the success rate. Problems 10.53-10.64 were incomplete on pop = 10.

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

D.! i
I I

6 I I 1 r
prob 103 prob.10 41 proh 10 53 prob 10 55 prob 10 62 pfob.10 64

Problem

(a) Problem set 10

- . . D~sc~ete-conflld ~-- BCSP

(b) Problems 20.3 to 26.3

Figure C.3: The mean run time of PSO models from the Comparison phase.

The experiments on problems 10.53-10.64 were incomplete with pop = 10. The mean run
time of all models in Figure C.3(b) grows as the complexity of the problems increases. Par-
ticularly, both Discrete models have much higher mean run time. The hikes at problem 10.41
in Figure C.3(a) are discussed in Section 5.4.2. The hike at problem 10.53 comes from bina-
ryZigzagHop caused by running out of memory.

APPENDIX C. EXPERIhIENT,4 L SETUP AND E VAL UATlON DATA

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

APPENDIX C. EXPER.IMENTAL SETUP AND EVALUATIOX DATA

APPENDIX C. EXPERIMENTAL SETlJP AND EVAI, UATION DATA

APPENDIX C. EXPERIMENTAL SETUP AND EVALUATION DATA

I I i f I
I

prob 10 3 prob.10 41 prob 10.53 prob 10 59 prob.10 62 p~ah 10.64

Problem

(a) Problem set 10

Algelass
- - Continuous-

uonfllci

Problem

(b) Problems 20.3 to 26.3

Figure C.8: The mean number of consistency checks of PSO models from the Comparison phase.

The experiments on problems 10.53-10.64 were incomplete with pop = 10.

APPENDIX C. EXPER.I&lENTA L SETUP AND E VAL UATION DATA

APPENDIX C. EXPERIMENTA4L SETIJP AND E VAL TJATION DATA

APPENDIX C:. EXPERIMEhTTAL SETUP AND EVA1,UATION DATA

APPENDIX C. EXPERIMEhTAL S E T U P AND EVALUATION DATA

APPENDIX C. EXPER,Ii.IENTAL SETUP AND EVAIJJATION DATA

1
i A,lgoritllm
i - genericPSO
1 - ganericiigxig
1 gsnericHop
I -genericZ~gzsgHop

genericPlgHop j -lAnaryDisuete
I - binaryHop
/ binaryZig;3gHop
i grayDiscrde
.- ' grayHop

I
bcspPSO
IxspZigzag

-- bcspHop

bcspZ~gzogHop
-- gensricErchange

:igzagExclmge I-- zigzag DFs
I - genericHyb~ id
i binat y Zigzag

Population

Population

Alyurithni - genericPSC1
- genericZig:ag

gene1 icHop
-generic Z'qxigHop

gena-icPkJHop
- IjinaryDiscreIe
- IjinaryHop

bmry ZigzagHop
grayDiscrete

-grayHop
i~snericEucliangc
=igrogExcliange

- 1igzayDFS
gensricHybrM

- binary Zigzag

grafZigzag

APPENDIX C. EXPER.fiklENTAL SET UP AND E VAL UATlON DATA

(I)
X
0
Q, s 400U000-
U
5
s
0)

r, 3000000- .-
(I)
C
0
U
s 20@0000-
rn

i!
1000000 -

0-

I I I
3 J 10

Population

(a) f\lgorit h ~ n s ~ ~ s i r l g cwnflicl, f'11nrtion

I
I I

3 1 0

Population

Bibliography

[I] Emile Aarts and Jan Korst. Simulated Annealing and Boltxmann Machines: A Sto-
chastic Approach to Combinational Optimixation and Neural Computing. John Wiley
& Sons, Inc., New York, NY, USA, 1989.

[2] Roman Bartak. Constraint programming: In pursuit of the holy grail. In Proceedings
of Week of Doctoral Students (WDS99), volume Part IV, pages 555-564, Prague, June
1999. MatFyzPress.

[3] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotics systems. In
Proceedings of NATO Advanced Workshop on Robots and Biological System, June
1989.

[4] Reinaldo A.C. Bianchi and Anna H.R. Costa. Ant-vibra: a swarm intelligence ap-
proach to learn task coordination. In G. Bittencourt and G.L. Ramalho, editors,
Proceedings of Advances i n Artificial Intelligence: 16th Braxillian Symposium on Ar-
tificial Intelligence, volume 2507 of Lecture Notes I n Computer Science, pages 195-204,
London, UK, November 2002. Springer-Verlag.

[5] Daniel W. Boeringer and Douglas H. Werner. Particle swarm optimization versus
genetic algorithms for phased array synthesis. IEEE Tmnsactions on Antennas and
Propagation, 52:771-779, March 2004.

[6] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: from Natural
to Artificial Systems. Oxford University Press, 198 Madison Avenue, New York, 1999.

[7] R. Brits, AP Engelbrecht, and F. van den Bergh. Solving systems of unconstrained
equations using particle swarm optimizatioin. In Proceedings of the 2002 IEEE Inter-
national Conference on Systems, Man, and Cybernetics, Piscataway, NJ, 2002. IEEE
Service Center.

[8] Lance D. Chambers. The Practical Handbook of Genetic Algorithms: Applications.
CRC Press, Boca Raton, FL, USA, second edition, 2000.

[9] Adrian J . Chung. Getting to grips with recursion. Python Journal, 2(2), 2001.

BIBLIOGRAPHY 177

[lo] Maurice Clerc. The swarm and the queen: Towards a deterministic and adaptive
particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation, CEC'99, volume 3, pages 1951-1957, Piscataway, NJ, 1999. IEEE Ser-
vice Center.

[ll] Maurice Clerc. Discrete particle swarm optimization: Illustrated by the traveling
salesman problem. http://clerc.maurice.free.fr/pso/pso~tsp/Discrete~PSO~TSP.htm,
February 2000.

[12] Maurice Clerc and James Kennedy. The particle swarm: Explosion, stability, and con-
vergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58-73, Feb 2002.

[13] Genevieve Coath and Saman K. Halgamuge. A comparison of constraint-handling
methods for the application of particle swarm optimization to constrained nonlinear
optimization problems. In Proceedings of the 2003 Congress on Evolutionary Com-
putation, CEC'03, volume 4, pages 2419-2425, Piscataway, NJ, 2003. IEEE Service
Center.

1141 Carlos A. Coello Coello. A survey of constraint handling techniques used with evo-
lutionary algorithms. Technical Report Lania-RI-99-04, Laboratorio Nacional de In-
formatica Avanzada, Xalapa, Veracruz, Mkxico, 1999.

[15] Carlos A. Coello Coello and Maximino Salazar Lechuga. Mopso: A proposal for
multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on
Evolutionary Computation 2002 (CEC2002), volume 2, pages 1051-1056, Piscataway,
NJ, USA, May 2002. IEEE Press.

1161 B.G.W. Craenen, A.E. Eiben, and E. Marchiori. How to handle constraints with
evolutionary algorithms. Practical Handbook of Genetic Algorithms: Applications,
pages 341-361, 2001.

1171 B.G.W. Craenen, A.E. Eiben, and Jano van Hemert. Comparing evolutionary algo-
rithms on binary constraint satisfaction problems. IEEE Transactions on Evolutionary
Computation, 7(5):424-444, Octobor 2003.

1181 Lawrence Davis. Genetic Algorithms and Simulated Annealing. Research Notes in
Artificial Intelligence. PitmanlMorgan Kaufmann Publishers Inc., London, 1987.

1191 Lawrence Davis. Handbook of Genetic Algorithm. Van Nostrand Reinhold, New York,
NY, USA, 1991.

[20] Toby Donaldson, I-Ling Lin, Victor Chen, and Wei Wang. Constraint programming
in python. presented at VanPy Workshop 2004, 2004.

[21] Marco Dorigo. About ant colony optimization, December 2004.
http://iridia.ulb.ac.be/-mdorigo/ACO/about .html.

BIBLIOGRAPHY 178

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system: an auto-
catalytic optimizing process. Technical Report No. 91-016 Revised, Department of
Electronic Information, Politecnico di Milano, Politecnico di Milano, Italy, 1991.

[23] Russell Eberhart and Yuhui Shi. Particle swarm optimization: Developments, appli-
cations and resources. In Proceedings of the 2001 Congress on E~~olut ionay Compu-
tation, CEC2001, volume 1, pages 81-86, Piscataway, NJ, 2001. IEEE Service Center.

[24] Russell C. Eberhart and Yuhui Shi. Comparing inertia weights and constriction fac-
tors in particle swarm optimization. In Proceedings of the Congress on Evolutionaqj
Computation, CEC2000, volume 1, pages 84-88, Piscataway, NJ, 2000. IEEE Service
Center.

[25] Andries P. Engelbrecht. Computational Intelligence: an Introduction. John Wiley &
Sons, Ltd, West Sussex, England, 2002.

[26] Kent Fitch. Particle swarm optimization (pso) visualization, April 2004.
http://www.projectcomputing.com/resources/psovis/.

[27] Alan M. Frisch, Ian Miguel, and Toby Walsh. CGRASS: A system for trans-
forming constraint satisfaction problem. In Recent Advances in Constraints: Joint
ERCIM/CologNet International Workshop on Constraint Solving and Constraint
Logic Programming, volume LNAI 2627 of Lecture Notes in Computer Science, pages
15-30, New York, NY, USA, 2003. Springer-Verlag Berlin Heidelberg.

[28] Yoshikazu Fukuyama. Fundamentals of particle swarm optimization techniques. In
IEEE PES Tutorial on Modern Heuristic Optimization Techniques with Application
to Power Systems, chapter 5. IEEE Service Center, Piscataway, NJ, 2001.

[29] Zwe-Lee Gaing. Particle swarm optimization to solving the economic dispatch consid-
ering the generator constraints. IEEE iPransactions on Power Systems, 18(3):1187-
1195, August 2004.

[30] John Gary Gaschnig. A general backtrack algorithm that eliminates most redun-
dant test. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence (IJCAI-77), volume 1, page 457, Cambridge, MA, USA, 1977. Morgan
Kaufmann.

[31] John Gary Gaschnig. Performance Measurement and Analysis of Certain Search Al-
gorithms. PhD thesis, Carnegie Mello University, Pittsburg USA, May 1979.

[32] Ian Gent and Toby Walsh. Computational phase transitions from real problems. In
Proceedings of the 8th International Symposium on AI, pages 356-364, 1995.

[33] S.P. Ghoshal. Optimizations of pid gains by particle swarm optimizations in fuzzy
based automatic generation control. Electric Power Systems Research, 72:203-212,
December 2004.

BIBLIOGRAPHY 179

[34] Fred Glover. Tabu search - part I. ORSA Journal on Computing, 1(3):190-206,
Summer 1989.

[35] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Leam-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, first edition,
January 1989.

[36] Solomon W. Golomb and Leonard D. Baumert. Backtrack programming. Journal of
the ACM (JACM), 12(4):516-524, October 1965.

[37] Robter M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artzficial Intelligence, 14:263-313, 1980.

[38] Pascal Van Hentenryck and Vijay Saraswat . Strategic directions in constraint pro-
gramming. A CM Computing Surveys (CSUR), 28(4):701-726, 1996.

[39] F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated bird
flocks. In S. Krasner, editor, The Ubiquity of Chaos. AAAS Publications, Washington,
DC, 1990.

[40] John H. Holland. Adaptation in Natural and Artificial Systems: an introductory analy-
sis with applications to biology, control, and artificial intelligence. University of Michi-
gan Press, Ann Arbor, June 1975.

[41] Xiaohui Hu. Particle swarm optimization, December 2004.
http://www.swarmintelligence.org/index.php.

[42] Xiaohui Hu and Russell Eberthart. Solving constrained nonlinear optimization prob-
lems with particle swarm optimization. In Proceedings of the Sixth World Multicon-
ference on Systemics, Cybernetics and Informatics (SCI2002), volume V, 2002.

[43] Xiaohui Hu, Russell C. Eberthart, and Yuhui Shi. Swarm intelligence for permutation
optimization: a case study on n-queens problem. In Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS2003), pages 243-246. IEEE, April 2003.

[44] Xiaohui Hu, Yuhui Shi, and Russell Eberhart. Recent advances in particle swarm. In
Proceedings of the 2004 Congress on Evolutionary Computation CEC2004, volume 1,
pages 90-97, Piscataway, NJ, June 2004. IEEE Service Center.

[45] ILOG Inc. ILOG solver, August 2004. http://www.ilog.com/products/solver/.

[46] Peter G. Jeavons, D.A. Cohen, and M. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1-2):251-265, March 1998.

[47] Peter G. Jeavons, Nick W. Dunkin, and Joe E. Bater. Why higher order constraints are
necessary to model frequency assignment problem. In Henri Prade, editor, Proceedings
of the 13th European Conference on Artificial Intelligence, ECAI98. John Wiley &
Sons, Ltd., 1998.

BIBLIOGRAPHY 180

[48] J . Jerald, P. Asokan, G. Prabaharan; and R. Saravanan. Scheduling optimisation
of flexible manufacturing systems using particle swarm optimisation algorithm. The
International Journal of Advanced Manufacturing Technology, pages 399-408, 2004.

[49] Ulrich Junker. Preference programming for configuration. Workshop on Configuration,
IJCAI-01, pages 50-56, August 2001.

[50] James Kennedy. The behavior of particles. In V. William Porto, N. Saravanan,
Donald E. Waagen, and A. E. Eiben, editors, Proceedings of the 1998 Evolutionary
Programming Conference, volume 1447 of Lecture Notes In Computer Science, pages
581-589, London, UK, March 1998. Springer-Verlag.

[51] James Kennedy. Small worlds and mega-minds: Effects of neighborhood topology
on particle swarm performance. In Proceedings of the 1999 Congress on Evolutionary
Computation, CEC99, volume 3, pages 1931-1938, Piscataway, NJ, 1999. IEEE Service
Center.

[52] James Kennedy. Recent Developments in Biologically Inspired Computing, chapter 10
Particle Swarms: Optimization Based on Sociocognition. Idea Group Publishing, 701
E Chocolate Avenue, Suite 200, Hershey PA17033, 2005.

[53] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks (ICNN'95), volume 4,
pages 1942-1948, Piscataway, NJ, USA, 1995. IEEE Service Center.

[54] James Kennedy and Russell C. Eberhart. A discrete binary version of the particle
swarm algorithm. In Proceedings of the Conference on Systems, Man, and Cybernetics,
pages 4104--4109, 1997.

[55] James Kennedy, Russell C. Eberhart, and Yuhui Shi. Swarm Intelligence : Collective,
Adaptive.. . Morgan Kaufman, San Francisco, second edition, 2001.

[56] Po-Chang KO and Ping-Chen Lin. A hybrid swarm intelligence based mechanism for
earning forecast. In Proceedings of the 2nd International Conference on Information
Technology for Application (ICITA2004), pages 193-198. Macquarie Scientific Pub-
lishing, 2004.

[57] Vipin Kumar. Algorithms for constraint satisfaction problems: a survey. A I Magazine,
l3(l) :32-44, Spring 1992.

[58] The Artificial Intelligence Laboratory. Jcl - the java constraints library, March 2004.
http://liawww.epfl.ch/JCL/index.htm.

[59] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99-118, February 1977.

BIBLIOGRAPHY 181

[60] Elena Marchiori and Adri Steenbeak. A genetic local search algorithm for random
binary constraint satisfaction problems. In Proceedings of the 14th ACM symposium
on Applied Computing (SAC 2000), pages 458-462, New York, NY, 2000. ACM Press.

[61] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction.
The MIT Press, Cambridge, Massachusetts, 1998.

[62] Alex Martelli and David Ascher. Python Cookbook. O'Reilly, Beijing, Farnham, 2002.

[63] Zbigniew Michalewicz, Dipankar Dasgupta, Rodolphe G. Le Riche, and Marc Schoe-
nauer. Evolutionary algorithms for constrained engineering problems. Computers 13
Industrial Engineering Journal, 30(4):851-870, September 1996.

[64] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving large-
scale constraint satisfaction and scheduling problems using a heuristic repair method.
In Proceedings of the 8th National Conference on Artificial Intelligence (AAAI-go),
volume 2, pages 17-24. AAAI Press/The MIT Press, 1990.

[65] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimiz-
ing conflicts: A heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence: Special Volume on Constmint Based Reasoning,
58(1-3):161-205, December 1992.

[66] Musi-Cal. Python performance tips, 2004.
http://musi-cal.mojam.com/-skip/python/fastpython.html.

[67] Shigenori Naka, Takamu Genji, Toshiki Yura, and Yoshikazu Fukuyama. Practical
distribution state estimation using hybrid particle swarm optimization. In Proceedings
of IEEE Power Engineering Society Winter Meeting, 2001, volume 2, pages 815-820,
Piscataway, NJ, 2001. IEEE Service Center.

[68] K. Nara and Y. Mishima. Particle swarm optimization for fault state power supply
reliability enhancement. In Proceedings of IEEE International Conference on Intelli-
gent Systems Application to Power Systems, ISAP2001, pages 172-176. IEEE, June
2001.

[69] Travis Oliphant. Numerical python, 2004. http://numeric.scipy.org/.

[70] R.H.J.M. Otten and L.P.P.P. van Ginneken. The Annealing Algorithm. SECS72.
Kluwer Academic Publishers, Boston, June 1989.

[71] Ulrich Paquet and Andries P. Engelrecht. A new particle swarm optimizer for lin-
early constrained optimization. In Ruhul Sarker, Robert Reynolds, Hussein Abbass,
Kay Chen Tan, Bob McKay, Daryl Essam, and Tom Gedeon, editors, Proceedings
of IEEE Congress on Evolutionary Computation 2003 (CEC 2003), pages 227-233,
Piscataway, NJ, USA, 2003. IEEE Press.

BIBLIOGRAPHY 182

[72] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Particle swarm optimization
method for constrained optimization problems. Intelligent Technologies - Theory and
Applications: New Rends in Intelligent Technologies, 76:214-220, 2002.

[73] Patrick Prosser. Hybrid algorithms for the constrai~it satisfaction problem. Compu-
tational Intelligence: an international journal, 9(3):268-299, August 1993.

[74] Patrick Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed back-
jumping. Technical Report 95-177, University of Strathclyde, Department of Com-
puter Science, University of Strathclyde, UK, 1995.

[75] Jean-Francois Puget and Michel Leconte. Beyond the glass box: Constraints as
objects. In Proceedings of the 1995 International Logic Programming Symposium
(ILPS795), Logic Programming, Research Reports and Notes, pages 513-527. The
MIT Press, January 1996.

1761 A. Ratnaweera, H. Watson, and S.K. Halgamuge. Optimization of value timing events
of internal combustion engines with particle swarm optimization. In Proceedings of
the lth International Conference on fizzy Systems and Knowledge Discovery 2002,
FSKD2002, pages 264-268, 2003.

[77] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. Com-
puter Graphics, 21(4):25-34, 1987.

[78] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Using cultural algo-
rithms for constraint handling in genocop. In D. Fogel, J. McDonnell, and R. Reynolds,
editors, Proceedings of the 4th Annual Conference on Evolutionary Programming,
Complex Adaptive Systems, pages 289-305. MIT Press, 1995.

[79] Armin Rigo. Psyco project, 2004. http://psyco.sourceforge.net/.

[80] Francesca Rossi, Charles Petrie, and Vasant Dhar. On the equivalence of constraint
satisfaction problems. In Luigia Carlucci Aiello, editor, Proceedings of the 9th Euro-
pean Conference on Artificial Intelligence, ECAI'90, pages 550-556, Stockholm, 1990.
Pitman.

[81] Pierre Roy, Anne Liret, and F'rancois Pachet. The framework approach for constraint
satisfaction. A CM Computing Surveys (CSUR), 32(les):13, March 2000.

[82] Pierre Roy and F'rancois Pachet. Reifying constraint satisfaction in smalltalk. Journal
of Object-Oriented Programming (JOOP), 10(4):43-51, 63, July/August 1997.

1831 Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Inc., Upper Saddle River, New Jersey, second edition, 2003.

[84] Daniel Sabin and Rainer Weigel. Product configuration frameworks - a survey. IEEE
Intelligent Systems, 13(4):42-49, July/August 1998.

BIBLIO GRAPHY 183

[85] J. Salerno. Using the particle swarm optimization technique to train a recurrent neural
model. In Proceedings of the 9th International Conference on Tools with Artificial
Intelligence, ICTA1797, pages 45-49, 1997.

[86] Miguel A. Salido and Federico Barber. Disjunction of non-binary and numeric con-
straint satisfaction problems. In Proceedings of the 5th Catalonian Conference on
Artiificial Intelligence, CCIA 2002, volume LNAI 2504, pages 159-172, New York,
NY, October 2002. Springer-Verlag Berlin Heidelberg.

[87] Ayed Salman, Imtiaz Ahmad, and Sabah Al-Madani. Particle swarm optimization for
task assignment problem. Journal of Microprocessors and Microsystems, 26:363-371,
January 2002.

1881 Luk Schoofs and Bart Naudts. Ant colonies are good at solving constraint satisfac-
tion problems. In Proceedings of the 2000 Congress on Evolutionary Computation,
CEC2000, volume 2, pages 1190-1195, Piscataway, NJ, 2000. IEEE Service Center.

1891 Luk Schoofs and Bart Naudts. Solving csps with ant colonies. In Hans-Pau Schwefel,
Marc Schoenauer, Kalyanmoy Deb, Giinter Rudolph, Xin Yao, Evelyne Lutton, and
Juan Julian Merelo, editors, Parallel Problem Solving from Nature - PPSN VI 6th
International Conference, pages 16-20, Paris, France, 2000. Springer Verlag.

[go] Luk Schoofs and Bart Naudts. Swarm intelligence on the binary constraint satisfaction
problem. In Proceedings of the 2002 Congress on Evolutionary Com,putation (CEC
2002), volume 2, pages 1444-1449. IEEE, May 2002.

1911 Barry R. Secrest and Gary B. Lamont. Visualizing particle swarm optimization -
gaussian particle swarm optimization. In Proceedings of the 2003 IEEE S w a m Intel-
ligence Symposium, 2003. SIS'03, pages 198-204, Piscataway, NJ, USA, April 2003.
IEEE Service Center.

[92] Bart Selman and Henry Kautz. Domain-independent extensions to GSAT: Solving
large structured satisfiability problems. In Ruzena Bajcsy, editor, Proceedings of the
13th International Joint Conference on Artificial Intelligence (IJCAI-93), volume 1,
pages 290-295, San Francisco, USA, 1993. Morgan Kaufmann Publishers.

[93] Yuhui Shi. A modified particle swarm optimizer. In Proceedings of IEEE Congress on
Evolutionary Computation, CEC1998, pages 69-73, Piscataway, NJ, 1998. IEEE.

[94] Yuhui Shi and Russell Eberhart. Fuzzy adaptive particle swarm optimization. In
Proceedings of the Congress on Evolutionary Computation 2001, volume 1, pages 101-
106, Piscataway, NJ, 2001. IEEE Service Center.

[95] Yuhui Shi and Russell C. Eberhart. Parameter selection in particle swarm optimiza-
tion. In V. William Porto, N. Saravanan, Donald E. Waagen, and A. E. Eiben, editors,
Evolutionary Programming VII, the Proceedings of the 7th International Conference

BIBLIOGRAPHY 184

on Evolutionary Programming, EP98, volume 1447 of Lecture Notes In Computer
Science, pages 591-600, London, UK, March 1998. Springer-Verlag.

[96] Yuhui Shi and Russell C. Eberhart. Empirical study of particle swarm optimization.
In Proceedings of the 1999 Congress on Evolutionary Computation, CEC99, volume 3,
pages 1945-1950, Piscataway, NJ, 1999. IEEE Service Center.

[97] Barbara M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In A.G.Cohn, editor, Proceedings of ECAI'94, pages 100-104. John Wiley
and Sons, 1994.

[98] Barbara M. Smith. A tutorial on constraint programming. Technical Report 95.14,
University of Leeds, School of Computer Studies, University of Leeds, April 1995.

[99] Christine Solnon. Ants can solve constraint satisfaction problems. IEEE Transactions
on Evolutionary Computation, 6(4):347-357, August 2002.

[loo] Tiago Sousa, Arlindo Silva, and Ana Neves. Particle swarm based data mining algo-
rithms for classification tasks. Parallel Computing, 30:767-783, May 2004.

[loll Olaf Steinmann, Antje Strohmaier, and Thomas Stutzle. Tabu search vs. random
walk. In Christopher Habel Gerhard Brewka and Bernhard Nebel, editors, Advances
in Artificial Intelligence: Proceedings of 21st Annual German Conference on Artificial
Intelligence, in KI-97, volume LNCS1303, pages 337-348. Springer Verlag, 1997.

[I021 Kostas Stergiou. Particle Swarms - Extensions For Improved Local, Multi-Modal, and
Dynamic Search in Numerical Optimiaation. PhD thesis, Department of Computer
Science, the University of Strathclyde, Glasgow, Scotland, January 2001.

[I031 Markus Stumptner, Michel Aldanondo, Gerhard Friedrich, Esther Gelle, Timo Soini-
nen, and Reijo Sulonen. Preface. In Configuration, the Proceedings of the Workshop at
ECAI 2000, the 14th European Conference on Artificial Intelligence, page vii, August
2000.

[I041 Vincent Tam and K.T. Ma. Applying genetic algorithms and other heuristic methods
to handle pc configuration problems. In V.N. Alexandrov, J.J. Dongarra, B.A. Juliano,
R.S. Renner, and C. J . Kenneth Tan, editors, Computational Science - Proceedings of
the International Conference on Computational Science, ICCS 2001, volume 2074 of
Lecture Notes in Computer Science, pages 439-446, New York, NY, USA, May 2001.
Springer-Verlag Berlin Heidelberg.

[I051 Vincent Tam and K.T. Ma. Optimizing personal computer configurations with
heuristic-based search methods. Artijicial Intelligence Review, 17(2):129-140, April
2002.

BIBLIOGRAPHY 185

[I061 Vipul Tandon. Closing the gap between cad/cam and optimized cnc end milling.
Master's thesis, Purdue School of Engineering and Technology, Indiana University
Purdue University, Indianapolis, 2001.

[I071 Peter Tarasewich and Patrick R. McMullen. Swarm intelligence: Power in numbers.
Communications of the ACM, 45(8):62-67, 2002.

[I081 Edward Tsang. Foundations of Constraint Satisfaction. Academic Press Inc., San
Diego, California, USA, 1993.

[log] Edward P.K. Tsang and Terry Warwick. Applying genetic algorithms to constraint
satisfaction problems. In Proceedings of the 9th European Conference on Artificial
Intelligence (ECAI 1990), pages 649-654. Pitman Publishing, 1990.

[I101 Supiya Ujjin and Peter J. Bentley. Particle swarm optimization recommender system.
In Proceedings of the IEEE S w a m Intelligence Symposium 2003 (SIS'03), pages 124-
131, Piscataway, NJ, 2003. IEEE Service Center.

[Ill] F. van den Bergh and A.P. Engelbrecht. A new locally convergent particle swarm
optimizer. In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics SMC 2002, pages 96-101, Piscataway, NJ, 2002. IEEE Service Center.

[I121 Jano van Hemert. Constraint satisfaction problems and evolutionary computation: A
reality check. In A, ven den Bosch and H. Weigand, editors, Proceedings of the 12th
Belgium/Netherlands Conference on Artificial Intelligence, BNAIC'OO, pages 267-
274, De Efteling, Tilburg, The Netherlands, November 2000. Dutch and the Belgian
A1 Association.

131 Jano van Hemert and Christine Solnon. A study into ant colony optimization, e v e
lutionary computation and constraint programming on binary con~t~raint satisfaction
problems. In Jens Gottlieb and Giinther R. Raidl, editors, Proceedings of the 4th
European Conference on Evolutionary Computation in Combinatorial Optimization,
EvoCOP2004, volume 3004 of Lecture Notes in Computer Science, pages 114-123,
New York, NY, USA, 2004. Springer-Verlag Heidelberg.

[I141 Guido van Rossum. Python performance tips, 2005.
http://wiki.python.org/moin/PythonSpeed/PerformanceTips.

[I151 Jakob Vesterstr~m and Jacques Riget. Particle swarms - extensions for improved
local, multi-modal, and dynamic search in numerical optimization. Master's thesis,
Department of Computer Science, University of Aarhus, May 2002.

[I161 Hirotaka Yoshida, Kenichi Kawata, Yoshikazu F'ukuyama, Shinichi Takayama, and
Yosuke Nakanishi. A particle swarm optimization for reactive power and voltage
control considering voltage security assessment. IEEE Tr-ansactions on Power Systems,
15(4):1232-1239, November 2000.

BIBLIOGRAPHY 186

[I171 Yangyang Zhang, Chunlin Ji, Ping Yuan, Manlin Li, Chaojin Wang, and Guangxing
Wang. Particle swarm optimization for base station placement in mobile communica-
tion. In Proceedings of 2004 IEEE International Conference on Networking, Sensing
and Control, volume 1, pages 428-432, Piscataway, NJ, 2004. IEEE Service Center.

[I181 Bo Zhao and Yi jia Cao. Multiple objective particle swarm optimization technique for
economic load dispatch. Journal of Zhejiang University Science, JZUS, 6A(5):420-
427, May 2005.

[I191 Ying Zhao and Junli Zheng. Particle swarm optimization algorithm in signal detection
and blind extraction. In Proceedings of the 7th Internation,al Symposium on Parallel
Architectures, Algorithms and Networks, ISPAN'O4, pages 37-41. IEEE, 2004.

