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ABSTRACT 

In combinatorial auctions (CAs), bidders are allowed to bid on any combination 

of items. Although CAs are economically efficient mechanisms for resources allocation, 

most auctioneers are hesitant to adopt them due to the fact that the CA winner 

determination process is a non-deterministic polynomial hard (NP-hard) problem. If an 

exhaustive search technique is used to solve the problem realistically, the number of 

auctioned items and bids must be small enough to be handled by the technique due to the 

constraints of today's computation power. Arising from the demand for CAs, this thesis 

presents a novel but also practical combinatorial auction winner determination approach. 

Such an approach has been designed and implemented into a system called CADIA. 

CADIA is able to generate results with high accuracy and good performance in CAs of 

hundreds of items and thousands of bids. CADIA's knowledge for winner determination 

is discovered from a process of mining the auction data using item association. Such 

knowIedge is then used to identify particular bids as winners. Both potential winners and 

possible losers identified during the auctions are used as additional knowledge to further 

improve the results. Empirical evaluation shows that CADIA is more efficient than brute- 

force technique based systems in terms of running time when searching for the optimal 

revenue. In situations where obtaining the optimal revenue becomes unrealistic to be 

handled by the brute-force technique, as in auctions of hundreds of items and thousands 

of bids, CADIA finds better approximate revenue than greedy search based systems. 
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CHAPTER ONE: 
INTRODUCTION 

In combinatorial auctions (CAs), bidders are allowed to bid on any combination 

of items with the constraint that each item can be allocated to no more than one bidder. 

CAs are important in situations where the value of an item to a bidder strongly depends 

on other items he wins. Economists believe that combinatorial auctions (CAs) allow 

resources to be allocated in a more efficient way due to the exhibition of complementarity 

and substitutability when buyers valuate a set of items [Huberman et al., 1997; Boutilier 

et al., 1999; Huberman et al., 2000; Krishna, 20021. From the auctioneer's point of view, 

the ultimate goal of a CA is to maximize the revenue from selecting some winning bids. 

Since the winner determination process in CAs is a very complex optimization problem, 

the number of auctioned items and bids must be small' enough if an exhaustive search 

technique is used to obtain the optimal revenue. Airport slots allocation, resources 

allocation by NASA space station, Sears transportation acquisition auction, supply chain 

formulation, and spectrum auctions by the US Federal Communications Commission 

(FCC) are examples of real-world CA [Rothkopf, et al., 2000; Rassenti et al., 19821. Due 

to the increasing demand for CAs, the winner determination problem has recently 

received considerable attention in the fields of economics and computer science. 

I An exhaustive search algorithm belongs to the con~plexity class of 2". It takes 1 hour and 1 decade to 
solve problen~s of size n=5 1 and n=68 respectively on a supercomputers performing a single floating-point 
operation in 10-l2 seconds [Johnsonbaugh and Schaefer, 20041. The term "small" is used throughout the 
thesis to refer to problem size n <= 50,  i.e., 50 items in the case of CAs. 



Unfortunately, CA winner detennination belongs to the class of non-deterministic 

polynomial hard (NP-hard) problem [Rothkopf, 1998; Fujishiina et al., 1999; Bjorndal 

and Jornsten, 20001. The number of items and bids directly impact the time of finding the 

winners. For M items, there are (2M - 1) combinations of items; and for B bids, there are 

(2B - 1) combinations of candidate winners. The CA winner determination problem 

becomes computationally intractable when the number of items and number of bids are 

large2. For instance, a system based on the brute-force, exhaustive search technique 

running on a Pentium personal computer is able to find the optimal revenue for an 

auction of 9 items and 10 bids in 3 minutes, but will take about 4 minutes and 30 minutes 

when the number of items is increased by 1 and 2 respectively. Systems based on the 

exhaustive search technique are impractical in real world auctions when there are 

hundreds of items and thousands of bids. 

In recent years, some techniques were proposed to find the optimal or 

approximate solution for CA winner determination. Integer programming (IP) technique 

[Andersson et al., 20001, which is able to obtain the optimal revenue, can practically 

handle CA winner determination in auctions of hundreds of items and thousands of bids. 

However, one of the leading commercial implementations based on IP called CPLEX 

states in its user's guide that some common difficulties are encountered when solving IP  

problems [ILOG, 20051. These difficulties are "running out of memory", "failure to 

prove optimality". A few heuristics techniques [Sandholm, 1999; de Vries and Vohra, 

2000; Hoos and Boutilier, 2000; Nisan, 2000; Sandholm et al., 2000; Sandholm, 20021 

were proposed and proved to be able to solve the problems with hundreds of items and 

The term "large" is used throughout the thesis to refer to problem size n > 100. In recent publications, 
sample auctions of hundred items and thousands of bids are used when evaluating proposed techniques. 



thousands of bids. However, these techniques include one of or a coinbination of greedy 

search, depth-first search. and branch-and-bound tree search strategies. The drawbacks of 

these techniques are that the results may or may not be optimal if the algorithms 

implementing the techniques are terminated prematurely. 

CADIA, which is a CA winner determination system developed upon the proven 

knowledge discovery technique in data mining called item association. provides a novel 

and practical approach to solve the problem. Since auction is a real world business 

process, it is worthwhile to use the item association pattern as knowledge in problem 

solving. CADIA applies such knowledge discovered from the auction data in winner 

determination which has been overlooked in any published techniques. In addition, 

CADIA uses a tactical-bid-elimination technique to fh-ther improve its result. 

In an evaluation where the goal is to obtain the optimal revenue, CADIA is 

compared to a brute-force (exhaustive search) technique based system and is concluded 

empirically to be a practical system and runs at least 20 times faster than a brute-force 

technique. When there are hundreds of items and thousands of bids, a comparison of the 

brute-force technique and CADIA becomes unrealistic due to the large size of problem 

instance. Thus, in another evaluation, CADIA is compared to an approximation system 

that is based on the greedy and depth-first search technique. Empirical results show that 

CADIA always tind better revenue. The current implementation of CADIA uses in- 

memory storage and search techniques that can practically handle up to five hundred 

items and two thousands bids running on a Pentiuin based personal computer. Such a 

limitation can be overcome when external memory storage and search techniques are 

employed in the trade off of speed. 



In Chapter 2, 1 review the major characteristics and benefits of CAs followed by 

the definition of the CA format. I also present the CA winner determination problem and 

survey the state of knowledge about techniques that are able to find optimal or 

approximate solutions. Chapter 3 describes item association, which is the core technique 

adopted by CADIA, and its importance in association rule mining applications. Chapter 4 

presents CADlA's hypothesis, core structure, and algorithms. An auction example of 10 

items and 10 bids will be used to illustrate the core concepts of CADIA. Chapter 5 

describes how CADIA is evaluated in tenns of data collection, setup, and experimental 

results. Chapter 6 and 7 presented an improved version of CADIA and its evaluation 

respectively. Chapter 8 discusses CADIA's practicality and the shortcomings of CADIA 

and other evaluated techniques. Chapter 9 presents the conclusion and possible future 

research directions. 



CHAPTER TWO: 
COMBINATORIAL AUCTIONS 

2.1 Social Benefits 

In CAs, the bidders' valuations in most cases are not additive [Bichler, 19991 

because the value of a combination of items may not be equal to the sum of the values of 

the same items unbundled. A bidder considers a set of items as a complement bundle of 

items when he values the bundle higher than the sum of the single item values. 

Contrarily, a bidder considers a set of items as a substitute bundle of items when he 

values the bundle lower than the sum of the single item values [Krishna, 20021. Because 

combinations of items in bids generally overlap, the CA winner determination becomes 

an optimization problem. 

Even though the CA winner determination is a NP-hard problem [Rothkopf, 1998; 

Fujishima et al., 19991, CA is believed to be an efficient way to allocate resources to 

buying agents whose preferences exhibit complex structure with respect to 

complementarity and substitutability [Rassenti et al., 1982; Rothkopf et al., 1998; 

Wellman et al., 20011. If complementarities and substitutability exist among auctioned 

items. evidence suggests that it is more appropriate to permit bidders to bid for 

combinations, rather than on individual item because bidders do not get stuck with partial 

bundles of low value [Banks et al., 19891. If an exhaustive search technique is used to 



solve the problem realistically, the number of auctioned items and bids must be small 

enough to be handled by the technique due to the constraints of today's computation 

power. 

Combinatorial auctions were first proposed by Jackson [I9761 for radio spectrum 

rights. Later, Rassenti et al. [I9821 proposed such auctions to allocate airport time slots. 

Strevell and Chong [I9851 described the use of an auction to allocate vacation time slots. 

Banks et al. [I9891 proposed a combinatorial auction for selecting projects on the space 

shuttle, but the prototype was tested experimentally and was never implemented due to 

political reasons. Olson et al. [2000] described the design and use of a combinatorial 

auction that was employed by Sears in 1993 to select carriers. In this auction, delivery 

routes were bid upon. Since bidders were allowed to bid on combinations of routes, they 

had the opportunity to construct routes that utilized their trucks as efficiently as possible. 

Graves et al. [1993] described the auction of seats in a course that was executed regularly 

at the University of Chicago's Business School. Srinivasan et al. [I9981 proposed a 

mechanism for trading financial securities that allowed buyers and sellers to offer bundles 

of financial instruments. In 1994, Federal Communications Commission (FCC) planned 

to use a CA auction to allocate spectrum rights [Cramton, 1997; Cramton and Schwartx, 

20001 because bidders were interested in different collections of spectrum licenses. 

In recent years, a number of logistics consulting firms offered CA software [Case, 

20011. For example, SAITECH-INC offers a software product called SBlDS that allows 

trucking companies to bid on bundles of lanes. In 1998, OptiMark Technologies offered 

an automated trading system that allowed bidders to submit price-quantity-stock triples 

along with a priority list. The Securities and Exchange Commission (SEC) approved 



Pacific Stock Exchange's proposal to implement this electronic trading system. In 1998, 

the NASDAQ announced plans to introduce this technology to its dealers and investors. 

Logistics.com claims that by January 2000 more than $5 billion in transportation 

contracts had been bid on using a CA system called OptiBid by Ford Motor Company, 

Wal-Mart, and Kmart [de Vries, S. and Vohra, R., 20001. CombineNet claims that its Rev 

technology runs much faster than the state-of-art general purpose mixed integer 

programming solver. Its customer includes some of the Fortune 100 and Global 1000 

companies. 

2.2 Auction Format 

The three major issues one must deal with in designing a CA are bidding protocol, 

allocation, and payment [Nisan, 20001. Each bidder must be able to express bids on 

combinations of items. Each bid may be interpreted as the maximum amount of money 

that the bidder is willing to pay for. The bidding protocol determines how this bidding 

communication is done. The items in the auction must be allocated among the different 

bidders. The allocation will attempt to optimize some objective function, usually the 

auctioneer's revenue. Each winner of a set of items will pay according to the payment 

rules. A well-designed auction will ensure that the intended goals of the auction are met 

when all bidders act according to their chosen strategies. 

CA design becomes an interdisciplinary study and has received considerable 

attention in the fields of economics and computer science. Bidding protocol, allocation, 

and payment have been treated as independent research topics by economists and 

7 



computer scientists in recent years. Resembling many other CA related computer science 

research [Gonen and Lehmann, 2000; Sandholm, 20021, my research focuses only on the 

allocation problem. Bidders are assumed to act non-strategically and bids are sealed and 

assumed to be simply the bidders' valuations. As stated, the allocation attempts to 

optimize the auctioneer's revenue according to the declared bids. Although the 

auctioneer's ultimate goal is to attain maximum revenue, he will find it coinputationally 

intractable when the numbers of items and bids are large due to the NP-hard nature of the 

winner determination problem. For M items, there are (2" - 1) combinations of items for 

a bidder who fully expresses its preferences must bid on all these combinations. This is 

definitely undesirable because it is computationally intractable to determine one's 

valuation for any given combination [Parkes, 19991. 



2.3 Winner Determination Problem 

The CA winner determination problem can be represented mathematically by the 

following notation [Sandholm et al., 200 1 a]. Let M={O, 1,2, . . .m) be the set of 

auctioned items, and B={bo, b l ,  b2, . . .b,) be the set of bids, and each bid is a tuple bi = 

(Si, pi), where Sj M is a subset of M and p, 2 0 for all j E (0, 1,2,  . . ., n) is a price 

offered by bi. 

xi is called a decision variable and its value is 1 when bi is a winner, 0 otherwise. 

The CA winner determination is to identify the bids as winners or losers with the aim to 

maximize auctioneers' revenue under the constraint that each item can be allocated to at 

most one bid. For example, when M = (0, 1 ,2,  . . ., 9) and B = {bo, b l ,  b2, . . .., bs), we 

may have the following bidding pattern. 

{bid} {a set of items} {bidding price} 

{O, 4, 6, 71 {206 .28l 
{o, 1, 3 ,  41 {207.28} 
{O, 61 {205.00) 
10, 4, 5, 91 1208.28) 
12, 4, 5, 81 1108.28) 
11, 2, 71 155.741 
11, 2, 3, 61 155.74) 
12, 91 t152.001 
10, 4, 81 1154.74) 
{O, 4, 6, 7, 8) (205.501 

Figure 1 A file containing the bidding pattern of 10 items and 10 bids. 

9 



A typical CA winner detennination system, as described in Figure 1,  accepts a 

number of items and a number of bids as inputs and identifies a subset of all bids as 

outputs. The output bids become the winners. 

\ 

Inputs CA W~nner 
B~ds, Items Determmation System 

- 

\ 

Figure 2 A combinatorial auction winner determination system. 

The constraint for the system is that each item can be allocated to at most one bid. 

Since the CA winner determination is a NP-hard problem, a more realistic system should 

possess the following characteristics: 

1. the system should generate approximate revenue that is close to the 

optimal revenue, and 

2. the system should be capable to handle a large number of items and bids 

in a single auction. 

The CA winner determination can be translated to another NP-hard problem such 

as the weighted set-packing problem [Rothkopf, et al., 1998; Karp, 19721. A problem is 

assigned to the NP-hard class if it can be solved by a NP algorithm. A NP algorithm is a 

two-phase procedure. During the "nondeterministic" phase, a candidate solution is 

generated. In the "verification" phrase, the candidate solution is verified using a 

deterministic algorithm. For example, if a problem is known to be NP, and a solution to 



the problem is somehow known, then demonstrating the correctness of the solution can 

always be reduced to polynomial (P) time verification. The proof of a problem is a NP 

problem can be summarized in the following three steps [Sipser, 19971. The CA winner 

determination problem is used here to illustrate these steps. 

1. A subset of bids B can be selected from all bids non- 

deterministically. 

2. B can be verified using a deterministic algorithm. That is, B must 

contain no conflicted bids to claim itself as a solution. 

3. If the verification test passes, the solution is accepted; otherwise, it 

is rejected. 

If an instance of the NP-hard problem in question is small, we might be able to 

solve it by the brute-force search algorithm described in Section 2.5.1. Even though this 

approach works in principle, its practicality is very limited because the number of 

instance parameters is usually very large in real-world problems [Levitin, 2003, 

Johnsonbaugh and Schaefer, 20041. 

2.4 Feasible, Approximate or Optimal Solution 

The CA winner determination problem is in fact an optimization problem because 

it aims to maximize auctioneers' revenue as the objective function subject to the 

constraint that each item can be allocated to at most one bid. The terms feasible, 

approximate, and optimal solutions have been used very often in the research of 

optimization problems, and thus a formal definition for each is needed here. In computer 



science terminology [Levitin, 20031, a feasible solution to an optimization problem is a 

point in the problem's search space that satisfies all the problem's constraints, while the 

optimal solution is a feasible solution with the best value of the objective function. An 

approximate solution is also a feasible solution with good but not necessarily the best 

value. When obtaining the optimal solution is unrealistic, an approximate solution is 

preferred to a feasible solution. The three different kinds of solutions to the CA winner 

determination problem can be represented mathematically [Papadimitriou and Steiglitz, 

19981 by the following notation. 

An instance of the CA optimization problem is a pair (F, r), where F is 

the set that contains all feasible solutions; r is the revenue function. 

When searching for a feasible solution, we need to find solution sf E F 

for which r(sf) 2 0. 

When searching for the optimal solution, we need to find solution sopt 

E F for which sopt must be a feasible solution and r(sopt) 2 0 and r(sopt) 

2 r(sf) for all sf E F. 

When searching for an approximate solution, we need to find solution 

s, E F for which s, must be a feasible solution and r(s,) 5 r(sopt). In 

addition, the bid set B, used to obtain s, must not be a subset of bid set 

Bf of any other feasible solution sf E F. 

The brute-force based techniques are able to obtain the optimal solution, but these 

techniques are impractical and are used only when the size of the problem instance in 



question is small. When the instance size is large, the approach of finding an approximate 

solution becomes more attractive. The generic greedy search based techniques are 

guaranteed to obtain a feasible solution. However, there is no guarantee whether such a 

solution is a good approximate solution or not. Thus, a formal approach of evaluating a 

proposed technique should measure both its accuracy ratio and performance ratio. Such 

an approach has been adopted in CADIA's evaluation as described in Section 5. 

2.5 Optimization Problem Solving Techniques 

Because of the intractability nature [Papadimitriou and Steiglitz, 1998; Sipser, 

19921 of the CA winner determination problem, much research has focused on sub-cases 

of the problem that are tractable [Rothkopf et al., 1998; Lehmann et al., 1999; 

Tennenholtz, 2000; Ronen, 20011. For example, both the number of auctioned items and 

bids can be restricted to be stnall enough to be handled by an optimal revenue search 

technique within the constraints of today's computation power. Unfortunately, these sub- 

cases are very restrictive and therefore are not applicable to inany CA domains. In fact, 

there is no substitute for a CA if an auctioneer aims to allocate resources efficiently. 

Thus, many researchers have begun to propose heuristic techniques for winner 

determination in CAs. 

All proposed heuristic techniques can be classified into exact methods and 

approximate methods [de Vries and Vohra, 20001. An exact method for solving the CA 

problem is one that is guaranteed to produce an optimal solution if run to completion. 



With approximate methods, one seeks a feasible solution fast and hopes that it is near 

optimal. This raises the obvious question of how close to optimal the solution is. 

2.5.1 Brute-Force Technique 

If problem solving is seen as a search in the state space [Russell and Norvig, 

20031, the brute-force technique would be described as an exhaustive search for all 

possible states in the problem space with an aim to optimize some objective function. The 

implementation of a winner determination based on the brute-force technique is quite 

straightforward (Algorithm 1). First, all bid combinations based on the available bids are 

generated. Second, a bid combination will be removed if it has conflicts among its bids. 

A conflict is found when an item is wanted by more than one bid. Last, the bid 

combination which has the highest total price becomes the set of winners. 



Algorithm: CA winner determination based on the 
brute-force technique 

Input : all bids B, bi EB and bid tuples (Sitpi), 
where Siis a subset of wanted items and pi is 
the bid price, and ie { O ,  1, ... n} . 

Output : a set of winners, BWinners 
Begin 

Generate all bid combinations B, from B 

Bcandidate 
for each bid combination B, E Be 

for each bid bi E B, 
for each bid bj E B, and j # i 

if (S, n Sj # 0) 
Bcandidate t Bcandidate - Ba 

BWi,,,, t highestsrice-bid-comb ( Beandidate) 
End 

Function highestsrice-bid-comb ( Beandidate) 
Begin 

ph t 0, Bh t 0 
for each bid combination Bi E Brandidate 

Pi = totalsrice (Bi) 
if (Pi > ph){ 

~h t Pi 
Bh t Bi 

1 
return Bh 

End 

Function totalsrice (B) 
Begin 

Pt = 0 
for each bid bi E B 

Pt = Pt + Pi 
return pt 

End 

Algorithm 1 CA winner determination based on the brute-force technique. 

As an illustration, suppose we have two auctioned items, M = (0, 1 ), three bids, B 

= {bo, b l ,  b2) and the bid data as shown in Figure 3. The number of all possible item 

combinations is (22 - 1) or 3. That is, a bidder who hl ly  expresses its preferences may 

bid on all three combinations. 



{bid) {a set of items) {bidding price) 

Figure 3 An example of hid data. 

The number of all possible bid combinations is (23 - 1) or 7. The brute-force 

technique will search for all bid combinations with an aim to maximize the revenue. 

According to Algorithm 1, all combinations of bids are generated. They are {bo), {bl ), 

{b2), {bo, bl  1, (bo, b:!), {bl, b:!) and {bo, b l ,  b2). A conflict exists when an item is wanted 

by more than one bid. Since ba conflicts with b l ,  bl  conflicts with b:!, and bl .  b2. bs are in 

conflict with each other, the bid combinations (bo, bl ), {bl,  b2) and {bo, b ~ ,  b2) are 

discarded. At last, the bid combination that generates the highest revenue among all 

remaining combinations becomes the set of winners. Since the remaining combinations 

are {bo), {bl ), {b2), {bo, b2), the winner goes to (bo, b2) because it generates the highest 

revenue of $20. 

For the CA winner determination problem solving, the brute-force technique leads 

to an algorithm that is extremely inefficient because it has a running time complexity of 

an exponential order of magnitude of (2IB1) when generating all bid combinations. When 

IBl= 100, for example, the order of magnitude becomes 2'" or I .?x10~". As a result, if 

the brute-force technique is applied, the winner determination problem can be solved in 

polynomial time only if there are an infinite number of processors and if conflicts among 

all bids can be identified at once. 



2.5.2 Greedy Search Technique 

Greedy search makes use of a heuristic function to order the searched nodes 

within the search space [Lawler, 1985; Lawler et al., 19921. Thus, the search technique 

will choose the searched node that appears to be the best based on the function, regardless 

of its position in the state space. When the technique is applied to the CA winner 

determination problem, all bids can be treated as nodes within the search space. Since the 

goal is to maximize the revenue, a greedy search will start expanding the node that is 

estimated to be closest to the goal state, that is, a bid with the highest bidding price. 

Algorithm 2 describes the technique when applied to the CA winner determination 

problem. 

When the algorithm is applied to the same data as described in Figure 3, bl  will 

become the first winner because it offers the highest bidding price. It is also the only 

winner because bo and b2 have conflicts with b l .  As a result, the revenue generated (i.e. 

$18) is not optimal. Although the greedy technique can always find a solution quickly, its 

revenue may not be optimal and sometimes far from approximate. 



Algorithm: CA winner determination based on the 

greedy search technique 

Input : all bids bi EB and bid tuples (Si,p,) , 
where Siis a subset of wanted items and pi is 
the bid price, and ic {O, 1, ... n} . 

Output : a set of winners, BwinneXs 
Begin 

Bwinners + (01 
Loop until each bid bi E B has been identified as a 
winner or loser { 

bh t highestgrice-bid (B) 

Bwinners + Bwinners + bh 
B t B - b h  
B t B - all-con•’ licted-bids (bh) 

1 
End 

 unction highest-price-bid (B) 

Begin 

~ h t  0 
for each bid bi E B 

if (pi > ph) { 

ph t Pi 
bh t bi 

1 
return bh 

End 

Function all-conflicted-bids (bh) 

Begin 

Blosers t I 0  1 
for each bid bi E B 

if (Sh n Si # 0) 

Blosers t Blosers + bi 
return BloSers 

End 

Algorithm 2 CA winner determination based on the greedy search technique 



However, the greedy technique can be used to determine the lower bound revenue 

during a CA winner determination algorithm and may be considered part of a CA system 

design. Some recently proposed CA winner determination systems that use the greedy 

technique with random starts have shown that the revenue can be improved significantly 

[Holte, 20011. 

2.5.3 Integer Programming 

Integer programming (IP) [Nemhauser and Wolsey, 1999; Miller, 20001 has been 

used to solve optimization problems. It is a technique that aims to maximize an objective 

function subject to the constraint that the solution values of the variables be integers. 

IP problem can be illustrated graphically with the following simple example. 

Suppose we would like to maximize the objective function based on values of two 

variables xl and x2. A common approach for solving integer programming problems is to 

start by relaxing IP problems to linear programming (LP) problems. A LP problem is a 

problem of optimizing a linear function of several variables subject to constraints in the 

fonn of linear equations and linear inequalities. The LP problem can then be solved by 

the simplex method, which was developed by George B. Danzig in 1947 [Cooper and 

Steinberg, 1974; Haeussler et al.. 20021. 

With a LP, we may have the graph depicted in Figure 4. Since only integer values 

for the variables are allowed, we may have a solution (shown as x) bounded by the 

feasible region. Intuitively, we may be tempted to round up or down the values of X I  and 



xz as final solutions, but such an approach may end up with an infeasible solution. By 

using the cutting-plane method, we can derive the region that connects the "outermost" 

feasible lattice points. As a result, the integer optimum will be interior to the region 

bounded by the dotted lines, and the lines when xl=O, and x3=0 (Figure 5). 

Figure 4 An IP problem is relaxed as a LP problem. 

Figure 5 The optimal integer solution can be derived with cutting-plane method. 

Thus, the allocation problem in CA winner determination can be formalized as an 

integer programming (IP) [Andersson et al., 20001 problem since its aim is to maximize 

the revenue as the goal subject to the constraint that the solution values of the variables 

2 0 



(i.e. bids) be whole numbers (i.e. 0 or 1 ) .  As an illustration, the auction example 

described in 2.5.1 can be formalized as the following IP problem: 

Maximize z = lobo + 18bl + lobz 

subject to bo + b, I 1 

bl + b2 2 1 

with bo, b,, b2 = 0 or 1 

The IP program is then relaxed as a LP problem. 

Maximize revenue = lobo + 18b, + lob2 

subject to bo + b, + b 3 =  1 

bl + b2 + b4 = 1 

with bo. bl, b2, b3, b4 2 0 and I 1 

Since the problem involves more than two variables, the simplex method is 

recommended because the graphical method is usually too inefficient. The optimal 

solution is found when bo and b2 = 1, and b l ,  b3 and b4 = 0. The maximum revenue is $20. 

Theoretically, integer programming is guaranteed to find an optimal solution 

[Rothkopf et a]., 1998; Pekei: et al., 20001. However, one of the leading commercial 

implementations based on IP called CPLEX states in its user's guide that some common 

difficulties are encountered when solving IP program [ILOG, 20051. These difficulties 

include "running out of memory" and "failure to prove optimality". 



2.5.4 Branch and Bound 

Nisan [2000] suggests a branch-and-bound technique based on integer 

programming (IP) relaxation. The technique is able to return the optimal revenue. In 

essence, the technique [Hoffman and Padberg, 1993; Gonen and Lehmann, 20001 

generates a treelike structure to identify and solve a set of increasingly constrained sub- 

problems, derived from the original integer linear program. In branch and bound, the 

technique first explores the most promising directions as is done by the greedy search 

technique. This will hopefully provide very good lower bounds quickly. It is expected 

that the upper bounds obtained using the IP relaxation will usually be close enough to the 

optimal. Combined with good lower bounds, further search can be reduced. As an 

illustration (Figure 6), instead of testing for each possible candidate solution (shown as 

*), the technique picks a candidate (e.g. when X I  = c) as a temporary solution and then 

tests for the possibility of branching out to improve the solution further. The idea is to 

divide the feasible solution space for this problem into two sub-spaces during each 

branch until no further improvement is possible. 

X2 

I 

C 

Figure 6 The solution space is divided during the branching process. 
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The branch-and-bound technique is sensitive to the upper and lower bound values 

obtained during the process. CPLEX, which also uses branch-and bound technique, is 

known to "run out of memory" when the branch and bound tree is large [ILOG, 20051. 

That is, the search tree can grow so large that there are too many sub-spaces to be 

investigated. Besides, in a problem with a hundred variables such as the CA, it becomes 

arguable why a particular variable is chosen for initial branching. In addition, it is 

difficult to know from the beginning which branches are better than others. 

2.5.5 Constraint Programming 

Constraint programming (CP) is an alternative approach for solving combinatorial 

optimization problems [Smith et al., 1997; Lustig and Puget, 20011 because the problems 

can be formulated as constraint satisfaction problems (CSPs). A CSP consists of a set of 

variables, each with a finite set of possible values (its domain), and a set of constraints 

which the values assigned to the variables must satisfy. In a CSP that is also an 

optimization problem, there is an additional variable representing the objective; each time 

a solution to the CSP is found, a new constraint is added to ensure that any future solution 

must have an improved value of the objective, and this continues until the problem 

becomes infeasible, when the last solution found is known to be optimal. 

As an illustration, the problem in Section 2.5.1 can be formulated as a CSP and 

can be solved with CP. The problem is to detennine the winners in an auction of two 

auctioned items, M = 10, 1 ) and three bids, B = {bo, b l ,  bZ) and the bid data as shown in 

Figure 3. First, we define the variable to be the bids: bo, b l ,  and b2. Each variable's 
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domain is the set { {O), { 1 ), (0, 1 ) 1 and its value is detennined based on the bid content. 

The constraint requires that each item can be allocated to at most one bid. 

Since the number of variables in our example is small, the CSP can be visualized 

as a constraint graph [Russell and Norvig, 20031, as shown in Figure 7. The nodes of the 

graph correspond to variables of the problem and the arcs correspond to constraints. 

Figure 7 The auction problem represented as a constraint graph. 

The most common CP algorithm for solving CSP is backtracking. Backtracking 

[Levitin, 20031 can be seen as a more intelligent variation of the brute-force technique. 

The idea is to construct a depth-first search tree one node at a time and evaluate if a 

partially constructed tree is a feasible solution. Its root represents an initial state before 

the search for a solution begins. The nodes of the first level in the tree represent the 

choices made for the first component of a solution; the nodes of the second level 

represent the choices for the second component, and so on. Leaves represent either dead 

ends (shown as x) or feasible solutions (shown as 4). The search tree for the auction 

problem is shown in Figure 8, where we have assigned variables in the order bo, b l ,  and 

b2. 



Figure 8 The search tree for the auction problem 

Whenever a partially constructed tree violates a constraint (shown as x), 

backtracking is able to eliminate a subspace during the search. For example, once we 

assign item-0 to bo, we can infer that now only item-1 is available and any bids that 

request item-0 will violate the constraint. Thus, the construction of the tree bo+ bl  is not 

feasible. As a result, the constraints can help us reduce the problem search space. 

Besides, the bid ordering in an auction is commutative because the order of the nodes has 

no effect on the outcome. That is, the solutions given by the trees b2+ bo and bo+ b2 are 

the same. Once the former has been explored, the latter becomes redundant. As a result, 

the inclusion of the commutativity property can further eliminate the search space. 

CP can further be improved through constraint propagation. The most popular 

technique is forward checking [Russell and Norvig, 20031. In forward checking, 

whenever a current variable X is assigned, it looks at each future variable Y that is 

connected to X and removes temporarily from Y's domain any value that conflicts with 



this assignment. The technique is able to conclude a partial solution is not feasible if the 

domain of Y is empty. As a result, the technique allows branches of the search tree that 

will lead to failure to be pruned earlier than with simple backtracking. When forward 

checking is used in the auction winner determination problem, it simply checks if future 

variables conflict with the current variable since the values of all variables have been 

assigned. 

Although backtracking is better than the brute-force technique, its running 

complexity for most nontrivial problems is still exponential. A paper by Smith et al. 

[I9971 concludes that CP is useful only if the assignment of a value to a variable can 

trigger the pruning of a significant amount of problem search space. He also added that 

CP is less useful when the problem involves large numbers of variables. 

2.5.6 Other Techniques and Commercial Implementations 

Sandholm [2001b, 20021 described an algorithm called CABOB (Combinatorial 

Auction Branch On Bids), and had run tests on randomly generated instances, the largest 

of which involved 400 items and 2000 of bids. CABOB is in fact a depth-first, branch- 

and-bound tree search technique. In addition, the algorithm addresses several special 

cases during the search, and uses LP for upper bounding and a relatively simple greedy 

algorithm for lower bounding. The algorithm performs a short dynamic analysis of the 

underlying LP problem, and then uses the most suitable bid ordering heuristic. Empirical 



results indicate that CABOB solves CA problems within seconds for auction size of 

hundred of items and thousands of bids, but also show that it cannot guarantee a 

polynomial running time for every input. 

Fujishjima et al. [I9991 proposed a set of approximate methods called CASS 

(Combinatorial Auction Structured Search). CASS uses "binning" where the bids are 

grouped into mutually exclusive bins or subsets. The maximal revenue comes either from 

a single bid or from the sum of the maximal revenues of two disjoint exhaustive subsets. 

The time saving comes from the fact that the number of bids to be dealt with is much 

smaller in the subsets as compared to a set containing all bids. It is obvious that the 

technique does not scale well because it requires an exhaustive search for all mutually 

exclusive bids. To overcome this issue, CASS applies pruning to reduce the search space. 

Hoos and Boutilier [2000] described a stochastic local search approach to solve 

the CA problem, and characterized its performance with a focus on time-limited 

situations. Since it is a local search approach, it uses a goal test to estimate the distance to 

the goal state. The test involves ranking bids according to expected revenue. One obvious 

problem is that a local search algorithm can get caught in local maxima. Once at the top 

of the locally best solution, moving to any other node would lead to a node with less 

optimal results. Another possibility is that a plateau or flat spot exists in the problem 

space. Once the search algorithm gets up to this area all moves would have the same 

result and so progress would be halted. However, the stochastic nature of the search will 

randomly choose moves to avoid the problem. 

CA winner determination algorithms have been implemented commercially [de 

Vries, S. and Vohra, R., 20001. Logistics.com's OptiBid software has been used in 



situations where the number of items averages 500. OptiBid does not limit the number of 

distinct subsets that bidders bid on or the number of items allowed within a bid. OptiBid 

is based on the integer programming technique with a series of proprietary formulations 

and heuristic algorithms. SAITECH-INC's SBlD is also based on the integer 

programming and proprietary techniques. SAITECH-INC reports that SBlD is able to 

handle problems of a similar size as OptiBid. CombineNet's Rev technology is based on 

the tree searching algorithm, combining with branch and bound, cutting planes, and a 

series of proprietary algorithms. 



CHAPTER THREE: 
ITEM ASSOCIATIONS 

3.1 Concepts 

CADIA's core algorithm is based on the item association [Han and Kamber, 

2001 ; Dunham, 20031 technique which has been widely adopted in many real-world data 

mining applications. For instance, a sales manager may wonder, "Which sets of items are 

customers likely to purchase together?" A more specific question may be "How likely is 

item xl to be purchased after item x2 is purchased?" The answers to these questions, 

which become the domain knowledge, can help decision makers to strategically 

encourage the overall sale. CADIA uses the technique to discover knowledge fiom the 

auction data which has been overlooked in any published techniques. Such knowledge is 

used in an informed search to identify winners. The concept of item association, which 

depends on identifying all frequent itemsets [Pasquier et al, 1999; Pei et al., 20001 in 

transactions, can be defined by the following characteristics as: 

Let I = f 1 ,2  ,..., m) be a set of items and T = {tl, tz ,..., t,,) be a 

database of transactions where ti c I, and Supportmi, be an expert- 

defined minimum support count. 

1. A set of items is called an itemset. An itemset that contains k items is a k- 

itemsets. 



2. A candidate k-itemset's frequency count is the number of transactions 

that contains k-itemset. 

3. A candidate k-itemset Ck becomes a frequent k-itemset Fk if its frequency 

count is greater than or  equal to Supportmi,. 

4. The set of candidate 1-itemsets CI is I. The set of candidate -itemsets Ck 

,where k = 2'3, ... m, is generated by joining Fk-, with itself as 

Fk-l D d  Fk+ 

The following algorithm, which is based on the Apriori property [Agrawal et al., 

19931, is used to identify all frequent itemsets. 

Algorithm: Identifying all Frequent Itemsets 
Input : transaction database T= { tl, tz, ..., t,) , 

a list of Items I={l, ..., m), and Supportmin 
Output : all frequent itemsets F1, F2, ..., F, 
Begin 

candidate 1-itemsets C L  t I 

for each itemset cj E C1 

if ( frequency ( c, ) 2 Support,,,) 
Fl t Fl u C, 

for i E {2. .m) { 

Generate candidate i-itemsets Ci by Fi.l D a  F,_; 

for each itemset cj E Ci  

if ( frequency ( c, ) 2 Supportmin) 
F; t Fi U C, 

1 
End 

Function frequency (c) 
Begin 

return (number of transactions that contain c) 
End 

Algorithm 3 Identify all frequent itemsets. 



As an illustration, given a transaction T= {tl,  t2, t), t4, t5 } containing five 

transactions, a list of items I={] ,2,3,4,5), and an expert-assigned Support,,,,,=2, the sets 

of candidate itemsets CI,  C2, Cj and the sets of frequent iteinsets F I ,  F2 are generated 

(Figure 9). 

Transaction T 

Figure 9 Generation of candidate itemsets and frequent itemsets from transaction. 

As a result, the frequent itemsets that have been identified are (1 ), (21, (31, (41, 

{1, 21, and {2,4}. 



3.2 Association Rule Mining 

Item association has been used for years in market basket analysis [Brin et al., 

1997al. If every item in a store is treated as a Boolean variable, each shopping basket can 

then be represented by a Boolean vector of values assigned to these variables [Hans and 

Kamber, 20011. Knowledge of buying patterns can then be obtained through analyzing 

these Boolean vectors in the form of association rules. In fact, item association is a 

technique inspired by the association rule data mining model [Agrawal et a]., 1993; 

Mannila et al., 1994; Agrawal et al., 19961. Very often, association rules are used to 

uncover the relationships between data items in a database with huge amounts of data. 

Combining the item association property, the concept of association rule mining can be 

represented mathematically as: 

Let I = (1, 2 ,..., m) be a set of items and T = Itl, tz ,..., t,,) be a 

database of transactions where ti I, and Supportmill be an expert- 

defined minimum support count. An association rule is an implication 

of the form A s B where A, B are itemsets and A n B = 0. The 

support(s) for an association rule A s B is the percentage of 

transactions in the database that contains A v B. The confidence for 

an association rule A s B is the ratio of the number of transactions 

that contain A v B to the number of transactions that contain A. 



The confidence for an association rule is simply a measure of the rule 

interestingness and reflects the certainty of discovered rules [Agrawal and Srikant, 1995; 

Agrawal et a1.,1997]. The item association algorithm can then be enhanced to include the 

formation of association rules (Algorithm 4) as follows: 

Algorithm: Association Rules Mining 
Input : transaction database T= { t,, t,, ..., t,) , 

a list of Items I={l, ..., m), and Supportmin 
Output : a set association rules with confidence R 
Begin 

All frequent itemsets IF1, ..., Fm) = 

Algori thm-3 (T, I, Supportmin) 

for each frequent i-itemset Fi E IF1, ..., F,} { 

/ /  A g  I a n d B ~  I 

/ /  e.g. if Fi={1,2,3}, 

//A = IIl),Il,2),{1,3),I1,2,3); same as B 

if (A g Fi and B g Fiand A n B = 0){ 

R t R u R(A 3 B) 

support (A 3 B) t P (A u B) 
confidence(A 3 B) t P(B]A) 

1 
1 
//P(A u B) is the percentage of transactions in 

//T that contain (A u B )  . 

//P(B(A) is the percentage of transactions in 

//T containing A that also contain B. 

End 

Algorithm 4 Association rule mining. 

The example in the previous section can be used here to illustrate association rule 

mining. A frequent itemset that contains only a single item cannot be used to form an 

association rule. Since (1 }, (21, (3) are single-itemset, we can translate only {1,2} and 
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{2,4) into the rules. The resulting association rules are as shown below, each listed with 

its confidence: 

First rule : 1 3 2 ,  confidence = 213 = 66.67% 

Second rule: 2 3 1 ,  confidence = 214 = 50% 

Third rule: 2 3 4 ,  confidence = 214 = 50% 

Fourth rule: 4 3 2 ,  confidence = 212 = 100% 

If we are interested only in rules that have confidence greater than 50% 

(minimum confidence threshold), the knowledge discovered from the transaction data can 

be interpreted as: (first rule) when a customer purchases item 1, the chance of him 

purchasing also item 2 is 66.67%; (last rule) when a customer purchases item 4, the 

chance of him purchasing also item 2 is 100%. 

3.3 Implementation Problems 

It can be seen that the association rule mining algorithm suffers from two major 

costs: space and time [Agrawal and Srikant, 1994; Han and Fu, 1995; Park et al., 1995; 

Savasere et al., 1995; Toivonen, 1996; Brin et al., 1997b; Silverstein et al., 1998; 

Aggarwal and Yu, 1999; Agrawal et al., 2000; Han et al., 2000; Park et al., 20001. The 

algorithm will generate a huge number of candidate sets before it can identify the 

frequent itemsets and then the association rules. Besides, the algorithm will scan all 

transactions repeatedly to perform the frequency counts. There are no trivial solutions 



because the algorithm has a running time complexity of an exponential order of growth 

(2") where n is the number of available items. If there are three items a, b, and c, the total 

number of itemsets will be 2'-1. The 1-itemsets, 2-itemsets, and 3-itemsets are 

"{a}, {b ). , {c) "; " {a,b) , {a,c} , {b,c} "; and " {a,b,c)" respectively. If there are 20 items, the 

total number of itemsets will be 220- 1. 

Although CADIA depends on the item association technique to form its 

knowledge base, it will not suffer from the exponential growth problem. It is because 

CADIA identifies only the smallest and least frequent iteinsets instead of all frequent 

itemsets as described in Section 4.1. CADIA's structure and core algorithms are 

presented in detail in the next chapter. 



CHAPTER FOUR: 
COMBINATORIAL AUCTION WINNER 

DETERMINATION USING ITEM ASSOCIATION (CADIA) 

4.1 Hypothesis 

In many cases, auctions are used to sell items when the auctioneer is unsure about 

the value of the item being sold. Such an uncertainty regarding values facing both 

auctioneers and bidders is an inherent feature of auctions [Kelly and Steinberg, 2000; 

Klemperer, 2000; Lavi and Nisan, 2000; Leyton-Brown et al., 2000bI. The word 

"auction" itself is derived from the Latin "augere", which means "augment" [Krishna, 

20021. In an open-bid, single-item, first-price auction, the sale is conducted by an 

auctioneer who begins by calling out a low price and raises it. It continues as long as 

there are at least two interested bidders and stops when there is only one. In a sealed-bid, 

single-item, first-price auction, bidders submit bids in sealed envelopes. The person who 

submits the highest valuation as the bid price for the item will win the item and pays what 

he bid. When there is a large enough number bidders, we can safely assume that the most 

wanted item that attracts the largest number of bidders will be sold at the highest 

valuation among all its valuations. CAs, on the other hand, sell items in bundles instead 

of one item at a time. Such a form of auction has been believed to be an efficient way for 

resource allocation. However, the larger numbers of auctioned items and bidders have led 

to a very complex decision problem. CADIA, which is a CA winner determination 



system, is proposed to solve such a problem. The motivation to adopt the item association 

technique in CADIA is based on the following fact: 

CA winner determination is a real-world, complex decision problem 

that involves a large amount of auction data. Item association is good 

at discovering interesting patterns from large amounts of data. 

Domain knowledge discovered from auction data in the form of item 

association can help to solve the problem. 

The following hypothesis is proposed and has been adopted by CADIA when 

identifying winners. In a single-item auction, if item x is wanted by most bidders, x will 

be included in most bids. On the contrary, x will bc included in very few or no bids if it is 

not wanted by most bidders. Thus, the number of bids containing the least frequently 

wanted item (or least frequent item in short) must be less than that containing the most 

frequently wanted item (or most frequent item in short). Intuitively, an auctioneer may 

want to sell the least frequent item as early as possible because an unsold item will induce 

further cost (e.g. storage and handling). Since a higher valuation of an item always 

implies higher revenue, it is then expected that an auctioneer may sell the most frequent 

item as late as possible because such an item can always attract the highest possible 

valuation. Such a belief is relaxed and applied when designing CADIA. In a 

combinatorial auction, items are valuated as sets. If itemset S is wanted by most bidders, 

S will be included in most bids. On the contrary, S will be included in very few or no bids 

if it is not wanted by most bidders. Thus, the number of bids containing the least frequent 

itemset must be less than that containing the most frequent itemset. An auctioneer may be 



tempted to sell the least frequent itemset as early as possible and the most frequent 

itemset as late as possible. The least frequent itemset is defined as follows: 

A set of items is called an itemset. An itemset that contains k items is a 

k-itemset (Section 3.2). The least frequent k-itemset is an itemset 

whose number of occurrences is the smallest among all frequent k- 

itemsets. 

In a single-item auction, a tie happens when the item is wanted by more than one 

bid. The resolution strategy is simply to assign the bid with a highest bidding price as the 

winner for that item. When itemsets are considered in the design of CADIA, an 

assumption that a bid containing the least frequent itemset is having less conflict than one 

containing the most frequent itemset is made. It is understood that such an assumption 

may not be justified theoretically and may cause error in winner determination. However, 

adjustments have been made to minimize such errors and are described in Chapter 6. 

Another issue that must be considered when designing CADIA is the 

identification of the least frequent itemsets. If frequency count is the only measure used, 

it is possible to have more than one itemset whose frequency counts are the same. In such 

a situation, additional measures such as the degree of confidence and the degree of 

conflict, which are defined below, will be applied. 



Suppose item x and y are in the same itemset; the degree of confidence 

is either the ratio of the number of bids that contain x and y to the 

number of bids that contain x, or  the ratio of the number of bids that 

contain x and y to the number of bids that contain y, whichever is 

higher. 

Bid bi conflicts with any other bids if there is an item wanted by bi 

that is also wanted by other bids. Suppose Si is the set of items wanted 

by bid bi and C is the itemset of maximum confidence where C c Si. 

The degree of conflict of C is the total number of bids that conflicts 

with bi. 

The least frequent itemsets are used in winner determination. It is possible to have 

tied bids (candidate winners) if the least frequent itemset is wanted by more than one bid. 

The tie resolution strategy adopted by CADIA is to award the candidate winner that 

offers the highest bidding price as the final winner. If there is a further tie on the bidding 

price, the candidate winner that is submitted at the earliest time becomes the final winner. 

Bids are assigned with a number based on their submission time in CADIA. The lower 

the number, the earlier the time the bid was submitted. Thus, bo is submitted at an earlier 

time than bl .  The hypothesis can be summarized as: 

To maximize revenue in a CA, the bids containing the least frequent 

itemset should be processed first and are declared as candidate 

winners during each iteration of the winner determination process. 

When identifying the least frequent itemsets, the measures of 

frequency count, degree of confidence, and degree of conflict are 



compared. The bid among all candidate winners that offers the 

highest bidding price becomes the winner. In the case of a tie on the 

bidding price, the bid that was submitted at the earliest time becomes 

the winner. 

4.2 Structure 

Figure 10 depicts the structure of CADIA, which is composed of two major 

components. They are: 

1. Item Association Generation Unit (IAG) 

2. Winner Determination Unit (WIN) 

Input: 
Bids, Items ' 

CAD lA h 
Item Assoc~at~on 

Generat~on Un~t (IAG) 

\ \ 
Least Frequent 
ltemsets 

2 

Winner Determlnatlon Un~t 
(WIN) 

Output: 
Bids (Winners) 

Figure 10 Structure of CADIA. 
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4.2.1 Item Association Generation Unit (IAG) 

The Item Association Generation Unit (IAG) is used to form the knowledge in the 

form of item association on which the winner determination strategy is based. Instead of 

looking for all frequent itemsets that satisfy the minimum support count as in most 

association rule mining applications, IAG attempts to identify only the least frequent 

itemsets according to the hypothesis stated in section 4.1 . Consequently, IAG does not 

have the inherent problem of time and space complexities as discussed in Section 3.3. 

That is, even if there are many itemsets whose counts are greater than the minimum 

support count, IAG looks for only those that have frequency count equal to the minimum 

support count. In addition, IAG identifies only the smallest frequent itemsets instead of 

all frequent itemsets. That is, even if there are hundreds of items, IAG always start 

counting frequent 1 -itemsets, followed by 2-itemsets, 3-itemsets, and so on. IAG's 

default value for the minimum support is assigned to 1, which is the smallest non-zero 

integer. Our empirical results show that IAG always returns the least frequent itemsets 

before it generates the 3-itemsets. Whenever there is a tie, the degrees of confidence and 

conflict of all least frequent itemsets are compared. In other words, CADIA will identify 

the smallest and least frequent itemset with the highest degree of confidence and the 

lowest degree of conflict at IAG. Algorithm 5 and 6 are the core algorithms adopted by 

IAG. 



Algorithm: Identifying the smallest and least frequent 
itemsets during each iteration 

Input : all available items M={1,2, ..., m) , 
all available bids B= {bo, bl, ..., b,,} , 
minimum support count ( Supportmin) 

Output : the smallest and least frequent itemsets F,, 
Begin 

End 

found t FALSE 

candidate 1-itemsets C1 t M 

for each itemset cj E C1 

if (frequency (cj) = Supportmin) { 
Csl t Csl u Cj 
C,I = highestconf idence~temset (c,,) 
Fsl = lowestconf lict~temset (cS1) 
found t TRUE 

1 
if (found = TRUE) //if LFI is found in 1-itemset 

return F,, 

/ / 2 -  or higher level itemsets must be generated 
//before frequency counting 
for i E {2. .m) { 

Generate candidate i-itemsets C, by Fi-l x Fi-l 

for each itemset c, E Ci { 

if ( frequency (c, ) = Supportmi,) { 

Csl t Csl U Cj 

C,, = highestconfidence~temset (CSl) 
F,1 = lowestconf lictItemset (Csl) 
found t TRUE 

1 
if (found = TRUE) 

return FS1 
1 

1 

Function frequency (c) 
Begin 

return (number of transactions that contain c) 
End 

Algorithm 5 Identify the smallest and least frequent itemset 
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Function highestConfidenceItemset (C) 
Begin 

highestconfidence t 0 
highestConfdItemset t 0 
for each itemset C, E C 

/ / A c  1 a n d B c 1  

if (A c ci and B c ciand A n B = 0)t 

confidence(A,B) t P(BIA) 
if (highestconfidence <= confidence(A,B)) { 

highestconf idence t con•’ idence (A, B) 
highestConfdItemset t highestConfdItemset U ci 

1 

J 

return highestConfdItemset 

End 

E'unction leastConflictItemset (C) 

Begin 
leastconflict t very large constant 
leastConflictItemset t 0 
for each itemset cj. E C { 

conflictCount t 0 
find bi E B where ci c Si 
for each bid bj E B where j#i { 

if ( S j  n S, # 0 )  
conflictCount = conflictCount + 1 

1 
if (leastconflict >= conflictCount) ( 

leastconflict t conflictCount 
leastcon•’ 1ictItemset t c; 

1 
1 
return 1eastConflictItemset 

End 

Algorithm 6 Functions highestConfidenceItemset and IeastConflictItemset 
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4.2.2 Winner Determination Unit (WIN) 

CADIA can be treated as an informed search system because its Winner 

Determination Unit (WIN) uses problem-specific knowledge in the foi-m of item 

association to look for solutions. Since it is possible to have multiple winners during a 

CA, WIN uses the least frequent itemset output from IAG in its candidate winner 

determination process. Given the least frequent itemset, WIN identifies those bids 

containing the itemset as candidate winners. A conflict exists when there is more than 

one bid containing the least frequent itemset. Conflicts among bids are resolved by WIN 

using the following measures: 

1.  The bid which offers the highest bidding price becomes a winner. 

2. If there is a tie on bidding price, the bid which is submitted at the earliest 

time becomes a winner. 

Algorithm 7 iterates over all bids to identify the candidate winners. Algorithm 8 

identifies the winner from all candidate winners based on the bidding price and bid 

submission time. 



Algorithm: Identify all candidate winners 

Input : the least frequent itemset, S, , 
all bids bi EB and bid tuples (Si,pi), i~(O,l, ... n). 

Output : a list of all candidate winners, L. 

Begin 

for each bid bieB ( 

if Si 2 S, 

L t L u b ,  

1 
return L; 

End 

Algorithm 7 Identify all candidate winners. 

Algorithm: Identify a winner 

Input : all candidate winners, Bc 

all bids bi EB and bid tuples (Si, pi), ie {0, 1, ... n) 
Output : a winner, winneri 

Begin 

highestprice t 0 
for each bid bi€Bc ( 

if (~~>highest~rice) { 

winneri t bi 
highestprice t pi 

1 

Algorithm 8 Identify a winner 



4.3 Example 

A simple example is presented here to illustrate the CADIA's core concept and 

algorithms. The sample data contains 10 auctioned items and 10 bids as presented in 

Figure 11. At the beginning, CADIA will read the bid data as inputs and organize them 

into a matrix in the memory as described in Figure 12. 

I 
{bid) {a set of items) {bidding price) 

Figure 11 Bid data. 

Figure 12 Auction data is represented internally as a matrix in CADIA. 



During the first step, IAG of CADIA sets the minimum support count to one (a 

non-zero least support count), starts generating frequent I -itemsets (Figure 13), and 

checks if there are itemsets whose frequency counts are equal to but not greater than the 

minimum support count. That is, IAG identifies the smallest but also least frequent 

itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1-  

itemsets have frequency counts greater than the minimum support count. Thus, IAG is 

required to generate frequent 2-itemsets (Figure 14). Now, twenty-one out of forty-five 

itemsets have frequency counts equal to the minimum support count. Additional 

measures such as the degree of confidence and the degree of conflict will then be applied 

according to algorithm 5 and 6 to reduce the total number of itemsets. It is shown in 

Figure 15 and 16 that the highest degree of confidence and the lowest degree of conflict 

are found to be 50% and 5 respectively. As a result, the itemset {2,9) is determined as the 

least frequent itemset, which will be used by WIN to determine candidate winners. 

Figure 13 Frequent 1-itemsets during the first iteration. 



Figure 14 Frequent 2-itemsets during the first iteration 

Figure 15 Degrees of confidence for itemsets with the least support count 

Figure 16 Degrees of conflict for itemsets with highest confidence. 



In the next step, WIN of CADIA will identify all candidate winners. WIN starts 

looking for those bids that include the least frequent itemset (2,9). In this example, only 

b7 contains itemset {2,9). Consequently, b7 is detennined as a winner (Figure 17). After 

the winner is declared, those bids that conflict with it are labelled as losers (Figure 18). 

Since we can have multiple winners in an auction, we can only say that b7 is one of the 

winners and b3, b4, bs and b6 are losers during the first iteration. 

Figure 17 Bid b7 becomes a wiiwer after the first iteration. 

Figure 18 Bid b3, b4, b5, b6 become losers after the first iteration. 



In the second iteration, the available qualified bids are bo, b l ,  bz, b8 and bs. IAG 

will update the item association pattern based these bids. IAG again sets the minimum 

support count to one, generates frequent 1 -itemsets (Figure 19), and checks if there are 

itemsets whose frequency counts are equal to the minimum support count. In addition, 

the degree of confidence and the degree of conflict are checked for each itemset. It is 

shown in Figure 20 that the highest degree of confidence and the lowest degree of 

conflict are found to be 100% and 5 respectively. Since both itemsets { 1 ] and {3) have 

satisfied the condition of being the least frequent itemsets, they are used for candidate 

winners determination. 

Figure 19 Frequent 1-itemsets during the second iteration. 

Figure 20 Degrees of conflict for itemsets with maximum confidence during the second iteration. 



In candidate winners determination, WIN looks for those bids that include the 

least frequent itemset (1) or {3). As a result, bl is determined to be a winner during the 

second iteration (Figure 2 1). After the winner has been declared. all bids that conflict 

with it are determined as losers (Figure 22). After the second iteration, WIN stops 

because all bids have been processed. As a result, b l  and b7 are the winners which 

generate the total revenue of $359.28. In fact, such revenue is the optimal revenue for this 

sample problem. 

l X l X l  I ) x 1 208.28 1 loser ( 
I b4 I I 1 x 1  1 x 1 ~ 1  1 1 x 1  1 108.28 1 loser I 

b5 I 

Figure 21 Bid b, becomes a winner after the second iteration. 

b7 
b8 

b9 

X  55.74 loser 

x 152.00 winner 
X  154.74 loser (6 

X  X  X  205 50 loser 

X  1 x 1  

Figure 22 Bids bo, b2, b8, b9 become losers after the second iteration. 
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CHAPTER FIVE: 
EVALUATION (I) 

The following plan is used for CADlA evaluation: 

Understand the evaluation purpose. 

Set up the experiments. 

Select a sample of inputs. 

Implement a prototype CADIA. 

Run CADIA on the sample's input and record the results. 

Summarize and analyze the results. 

5.1 Purpose 

The purpose of the evaluation is to evaluate CADIA's accuracy and performance. 

The evaluation of CADIA's accuracy is straightforward. To conclude that CADIA is a 

technique capable of finding the optimal solution, the revenue generated by CADIA 

during an auction must be equal to that generated by an optimal revenue search system 

such as the brute-force technique based system. In CADIA's performance evaluation, we 

may be tempted to use mathematical analysis. Though mathematical analysis can be 

applied to many simple algorithms, the power of mathematics is still far from limitless. 

Most heuristic techniques that solve the class NP problems are believed to be very 



difficult to analyze with mathematical precision and certainty [Goodrich and Tamassia, 

2002; Johnsonbaugh and Schaefer, 20041. Thus, empirical analysis [Levitin, 20031 is 

adopted in CADIA's evaluation. 

The two major approaches of analyzing an algorithm empirically are: 

1. Count the number of times the algorithm's basic operation is executed by 

inserting a counter in the algorithm. 

2. Time the algorithm. 

CADIA's core algorithm requires an update of its item association knowledge in 

each of the iterations of the winner determination process. The process is so dynamic that 

the first approach of counting the number of operations becomes inappropriate. In 

addition, CADIA's implementation is in fact a combination of many algorithms. Thus, 

the second approach of timing the prototype of CADIA is used. Since CADIA is 

implemented in the C programming language, the built-in system function "clock( )3" has 

been used to return the start time Tstafl and the finish tiine Tfi,,isl,. The running tiine 

required, which has been converted into seconds, is equal to the difference between Tstalt 

and Ttinish. 

3 
clock() returns wall-clock time used by the calling process. 

[http://n~sdn.n~icrosoft.comllibrary/default.asp?url=/library/en-us/vclib/html/~crt~clock.asp] 



5.2 Com binatorial Auction Testing Suite 

Many researchers have recently begun to propose algorithms for determining the 

winners of CAs, with encouraging results. This wave of research has given rise to a new 

problem, however. In the absence of real world CA data, the only option is to generate 

auction data artificially. However, it is necessary to use a standard test suite with 

simulated data to test and improve the proposed algorithms. A test suite called 

Combinatorial Auction Test Suite (CATS) for testing combinatorial auction algorithms 

has been proposed and developed by Leyton-Brown et al. [2000a]. CATS includes the 

ability to generate bids according to all previous published test distributions and has been 

used in a number of recent papers [Sandholm et al., 2001b; Sandholm, 20021. In 

CADIA's evaluation, CADIA is tested on CATS'S arbitrary distribution. All sample 

auctions are generated using CATS instance generators with default parameters. 

5.3 Experimental Setup 

The test implementation of CADIA in the C programming language running on a 

1GHz Pentium PC with 512MB RAM was evaluated on auction data generated by CATS. 

Five hundreds sample auctions were generated using CATS. Two different tests were 

performed in the evaluation. The objective of the first test was to justify the conclusion 

that CADIA is capable of finding the optimal revenue. Thus, CADIA was compared with 

the brute-force technique (BFT) based system in terms of revenue generation and running 

time. The objective of the second test is to justify the conclusion that CADIA is a good 
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approximation system that always guarantees a better than or cqual to the lower bound 

revenue. Thus, CADIA was compared with an implementation that is based on the greedy 

search technique (GST). Thc bidding price is adopted as the objective function for the 

GST. 

The software implementation of CADIA takes four parameters during its 

execulion. They are: 

1. a file containing tlrc list of auctioned items, 

2. a file containing the hid data, 

3. an integer corresponding to the number of items in the auction, 

4. an integer corrcsponding to the nr~mbcr of bids in thc auction 

CADIA can be executed from the cornmand linc as shown in Figure 23. The 

co~ninand says that CADIA will determine the winners in a CA of 500 items and 1000 

bids. 

Figure 23 Kxecote CADIA with 4 arguments from cornnland line. 

5.3.1 Comparison of CADIA and BFT 

The objective of the first test is to justify the conclusion that CADIA is capable of 

finding the optimal revenue. Due to the fact that the CA winner determination problcm is 
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a NP-hard problem, the test becomes realistic only if the sample auctions contain a 

reasonably small number of bids items. Thus, CADIA was compared with BFT in terms 

of revenue generation and running time on two hundred sample auctions with ten items 

and ten bids each. BFT is also implemented in the C programming language based on the 

algorithm described in Algorithm 1. 

5.3.2 Comparison of CADIA and GST 

The objective of the second test was to justify the conclusion that CADIA is a 

good approximation system that always guarantees a better than or equal to the lower 

bound revenue. Since GST is based on greedy search technique, it can handle more items 

and bids that cannot be handled by BFT and always returns feasible results in reasonable 

time. Thus, CADIA was compared with GST in terms of revenue generation on two 

hundred sample auctions with twenty items and one thousand bids each. GST is also 

implemented in the C programming language based on the algorithm described in 

Algorithm 2. 

5.4 Empirical Results and Analysis 

In this section, the results of the tests described in Section 5.3.1 and 5.3.2 are 

documented in Section 5.4.1 and 5.4.2 respectively. The results will be used to justify the 

hypothesis in designing CADIA. 



5.4.1 Comparison of CADIA and BFT 

Even BFT works in principle, however it is practically limited by the number of 

items and bids it can process. CADlA may or may not find the optimal revenue. Thus, it 

is interesting to know how accurate CADIA is. The accuracy of CADIA can be 

quantified by the size of the accuracy ratio R,,,,,,,, [Levitin, 20031 of CADlA where 

SGlo,,, and SHFT represent the solutions of CADlA and BFT respectively to the objective 

function ,f of the winner determination problem (i.e. the revenue). The closer Rflcc,,,,,, is 

to 1, the better the proposed technique is. 

Table 1 reports the results for all two hundred sample auctions. The accuracy ratio 

of BFT in all sample auctions is always one because BFT always finds the optimal 

revenue and thus is used as the standard for comparison. CADIA has an average accuracy 

ratio of 0.979 and is not able to find the optimal revenue in 36 out of 200 auctions. The 

results are sorted and plotted as a line chart (Figure 24). In addition, the average running 

time of BFT and CADIA are 21 1.722 seconds and 0.199 seconds respectively. 
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Table 1 Accuracy ratio comparison of BFT aud CADlA (sample 1-200). 



5.4.2 Comparison of CADIA and GST 

When there are too many items and bids, it becomes impractical to compare BFT 

and CADIA. BFT takes more than 200 seconds to process an auction of ten items and ten 

bids, but requires about 1800 seconds to process an auction with one additional item. 

Since it is worthwhile to measure CADIA's performance when there are hundreds of 

items and thousands of bids, CADIA is compared with GST in terms of revenue 

generation. The performance of CADIA in revenue generation can be quantified by the 

size of the performance ratio Rpel,ol,rrnlrcP of CADIA where S, ,,,, and S,,, represent the 

solutions of CADIA and GST respectively to the objective function f of the winner 

determination problem (i.e. the revenue). The higher the value of Rp~l,ol l ,rn,rrP,  the better the 

performance of the proposed technique. 

In this test, each sample auction contains twenty items and one thousand bids. The 

number of items has been selected in such a way that it cannot be handled realistically by 

BFT, but it is still small enough as compared to the number of bids. The purpose of such 

a setup is to simulate realistic CAs in which there are always conflicts among bids. Table 

2 summarizes the performance ratios of GST and CADIA for two hundred sample 

auctions. The accuracy ratio of GST in all sample auctions is always one because it is 

used as the standard for comparison. 



1 50 1 1.118 1 100 1 1.239 ( 150 1 1.131 1 200 11.111 

Table 2 Performance ratio comparison of GST and CADIA (sample 1-200). 



The data in the table is then used to form a line chart (Figure 25). Results show 

that CADlA has an average performance ratio of 1.186 and outperforms GST in 191 out 

of 200 auctions. In other words, CADlA on average outperforms GST by 18.6% in our 

evaluation. 





CHAPTER SIX: 
IMPROVING CADIA 

6.1 Motivation 

It has been shown in Section 5.4.1 that CADIA has an average accuracy ratio of 

0.979 for the two hundred sample auctions. That is, CADIA may or may not find the 

optimal revenue. Such a defect is due to the fact that the comparison of the valuation of 

an itemset wanted by bids is relaxed to a comparison of the valuation of all the items 

wanted by bids. Suppose the bid tuples of bids bi and bj are (Si, pi) and (Si, pj) respectively 

and Si M, S, M and pi > pj. If there is a least frequent itemset F where F c Si and F c 

S;, bi will conflict with bj. Based on the hypothesis in Section 4.1, bi will become the 

winner because it offers a higher valuation on Si. The comparison is actually based on the 

prices for Si and Si but not on F offered by bi and bi. The ideal situation would be for each 

bidder to submit a valuation for each subset of auctioned items in order to attain true 

valuation comparison as suggested by the Vickrey-Clarke-Grooves (VCG mechanism) 

[Klemperer, 2000; Krishna, 20021. However, the VCG mechanism is impractical and 

rarely used because no bidder is willing to valuate all subsets of auctioned items [PekeC 

and Rothkopf, 20001. Even if there are only 20 auctioned items, it is not likely every 

bidder is willing to work out 2?'-1 or 1048574 valuations. In spite of the relaxation on 

valuation, CADIA is able to minimize or even correct the error via an adjustment. Instead 

of immediately declaring a bid b; as a winner based on the item association technique, 



CADIA first declares bi as a potential winner. It then measures the revenue generated 

when bi is not a winner. Comparing the revenue generated with and without bi, it is 

possible to improve the revenue via the selection of a new set of winners. Such an 

adjustment procedure is performed at the Tactical Bids Elimination (TBE) component of 

CADIA, which is described in detail in Section 6.2.2. TBE becomes an additional 

component to make CADIA a system capable of finding the optimal revenue. 

When improving CADIA, the performance affected by having redundant bids has 

been taken into consideration. For instance, a bid that bids on the same combination of 

items as others but offers a lower bidding price should be removed. The additional 

component Pre-Processing Unit (PRE), which is described in detail in Section 6.2.1, is 

thus added to CADIA to remove redundant bids. 

6.2 New Structure 

With the additional components, CADIA can be described as an "aggressive" 

system because it improves its results on successive iterations during the winner 

determination process. 



Figure 26 depicts the new structure of CADIA, which is composed of four major 

components. They are: 

1. Pre-Processing Unit (PRE) 

2. Item Association Generation Unit (IAG) 

3. Winner Determination Unit (WIN) 

4. Tactical Bids Elimination Unit (TBE) 

The four components form the four consecutive phases of the winner 

determination process. Outputs from one component may flow back to a previous 

component during the process. For example, outputs from TBE will flow back to PRE to 

further improve the results. 
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Figure 26 Structure of CADIA. 



6.2.1 Pre-Processing Unit (PRE) 

The Pre-Processing Unit (PRE) is used to remove redundant bids. A bid is 

considered as redundant and removed if 

1. it bids on the same combination of items as others and offers a 

lower bidding price. Mathematically, let the bid tuples of b, and by 

be (S,, p,) and (S,, p,) respectively. bi is removed if S,=S,, but 

Px<Py. 

2. it bids on the same combination of items as others and offers the 

same bidding price, but it is submitted at a later time. 

Mathematically, let t, and t, be the time of bids submitted by b, 

and b, respectively. b, is removed if S,=S, and p,=p,, but t,>t,. 

3. its bidding set of items is a superset of another bid's, but it offers a 

lower bidding price. Mathematically, b, is removed if S, 2 S, and 

Px<PY. 

4. its bidding price is less than a lower bound price which is 

determined by Algorithm 9. (This criterion was not used when 

evaluating CADIA against other techniques. The inclusion of it is to 

improve CADIA's practicality which will be discussed in Chapter 8). 



5. its bidding set of items is a superset of that of the union of two or 

more mutually exclusive bids, but it offers a lower bidding than 

the total price of these bids. Mathematically, b, is removed if S, 2 

SyI u S y2 u ... u S yn and Si n Sj=O where i, j E {yl, y2 ,..., yn) and 

i#j and P,<(P,I + P ,2 +.. + P ,,I. 

The implementation of criteria 1, 2 and 3 is straightforward. Criterion 4 will filter 

out those bids whose bidding prices are lower than a reference value called the lower 

bound price. Such a lower bound price is determined based on a greedy search algorithm. 

Thus, the higher the lower bound price, the less the number of bids will be qualified for 

the next processing phase. Algorithm 9 describes how the lower bound price is 

calculated. A scale factor Csf , whose value between 0 and 1 is selected by the auctioneer, 

can be used to scale down the lower bound price to allow more bids to be qualified for 

the next phase. CSf has been set to 0.5 by default. Chapter 8 will discuss the impact of the 

lower bound price on the running time of the results. 



Algorithm: Calculate the lower bound price for each bid 

Input : all bids bi E B and bid tuples {Si, pi), 

iE{O, 1, ... n), 
all items M = {I, 2 ,..., m), 
scale factor Csf = {O..l), 

Output : the lower bound price bi.lbPrice for all bids b i € B  

Begin 

//use Algorithm 2, a set of winning bids Bgreedy is obtained 

Bgreedy t Greedy-Search-Winner-Determinat ion (B) 

greedyRevenue t 0 
for each bid bi E BgreedY 

greedyRevenue t greedyRevenue + pi 

1bPricePerItem t greedyRevenue / 1 ~ 1  

for each bid bi E B 

bi. lbprice t 1bPricePerItem x 1 si 1 x Csf 

End 

Algorithm 9 Determine the lower bound price for each bid. 

Criterion 5 can be met if an exhaustive search technique is adopted because it 

requires a search for all bidding sets of items to determine if it is a superset of the union 

of any other bidding sets. CADIA has delayed the implementation of the criterion until 

WIN. That is, CADIA checks if a bid is a redundant bid just before it is about to be 

declared as a candidate winner. The objective of such a delay is to perform the task only 

when it is needed in order to reduce the overall running time. Nevertheless, the larger the 

number of items and bids in an auction, the more time is required to perform the search. 

To further reduce the running time, WIN has been customized to perfonn a partial search 

instead. That is, it searches for all bidding sets of items to determine if it is a superset of 
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the union of any two or three sets only. The partial search is recommended especially for 

auctions of more than 500 items and 1000 bids. Algorithm 10 depicts the algorithm for 

determining if a bid's set of items is a superset of the union of any other three bids', but 

offers a lower bidding price than the sum of that of the three. 

Test if bid b,'s bidding set of items S, is a 

superset of the union of any other 3 mutually exclusive bids, 

but offers a lower bidding price than the total price of the 3 

bids. 

Input : all bids bi E B and bid tuples {S,, pi}, i~ ( 0 ,  1, ... n} . 
Output : TRUE if S, is a superset with lower price, 

FALSE otherwise. 

Begin 

for each bid bieB { 

for each bid bj€B { 

for each bid bkcB { 

if (i # j # k) { 

if (isSupersetOf3 (x, i, j , k) =TRUE) { 

if P,< ( ~ i + ~ j + ~ k )  
return TRUE; 

else 

return FALSE; 

1 
1 

1 
I 

1 
return FALSE; 

End 

Function isSupersetOf3 (x,i,j,k) 

//test if S, is a superset of the union of Si ,Sj and Sk 

Begin 

if (S, 2 (Si u Sj u Sk) 
return TRUE; 

else 
return FALSE; 

End 

Algorithm 10 Determine if a bid is a superset of others. 
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6.2.2 Tactical Bids Elimination Unit (TBE) 

It has been discussed in the Section 4.1 that the biggest concern in CADIA's 

design is the completeness of search for the optimal solution based on the least frequent 

itemset. A bid which attempts to be granted the winner status may tactically bid on the 

least wanted itemset. In fact, such a worry is unnecessary because the least wanted 

itemset is not obvious in auctions of hundreds or even thousands of bids. 

Nevertheless, the TBE of CADIA has eased the above concern because it 

provides further analysis on all potential winners and possible losers that are output from 

WIN. Suppose bi is a potential winner, TBE will first assume bi to be a tactical bid and 

test the revenue generated if bi is removed for the auction. An improvement on the 

revenue may or may not conclude if bi is a tactical bid, but it will definitely suggest that 

bi should not be a winner and be removed fiom the auction. In CADIA's design, TBE 

will improve the revenue during the winner determination process using either one of the 

two different strategies. 

In the first strategy, TBE tests the expected revenue when N potential winners and 

possible losers, which are identified from the previous round of winner determination, are 

removed fiom the auction. The integer N, which is specified as an argument when 

executing CADIA, is referred to as the number of analysis bids. Suppose 2 analysis bids 

are specified in auction, CADIA will iterate 3 times to search for better revenue. The first 

iteration does not remove any bids. The second iteration removes the first winner and last 

loser determined during the first iteration, and the third iteration removes the first two 

winners and last two losers determined during the second iteration. 



TBE in the second strategy also uses both the potential winners and possible 

losers to improve the revenue but requires a slight complex implementation and thus a 

detailed description is given next. Suppose N analysis bids are specified in an auction, 

TBE tests the expected revenue when N/2 potential winners and N/2 possible losers are 

removed from the auction. CADIA will iterate 2N times to search for better revenue. The 

algorithm for testing if a combination of potential winners and losers should be removed 

is described in Algorithm 11. 

The lists of potential winners and possible losers can be seen as additional 

knowledge discovered during the process. The incorporation of TBE and such knowledge 

has made CADIA able to search for better or even the optimal revenue. TBE with the 

second strategy applied a more extensive search than that with the first one, and thus able 

to obtain better results. Thus, TBE with the second strategy is used when evaluating 

CADIA with an optimal revenue search technique such as the BFT. The drawback of the 

second strategy is that it requires more time to complete the search process. In an auction 

of 20 items, 1000 bids and 6 analysis bids, the second strategy requires 130 seconds but 

the first strategy requires only 27 seconds for the whole process. For faster result in 

auction size of hundred items and thousands of bids, TBE with the first strategy may be 

used. Thus, TBE with the first strategy is used when evaluating CADIA with other 

approximation techniques. 



Loop until c >= Ca ( //c=O, 1,2 ... 
Lanalysis t Lanalysis + Lwinners [C I 
Lanalysis t Lanalysis + Llosers [cI 
c t c + 2  

highestRevenue t CADIA (B) 
for each combination of bids Bi c LanalYsis ( 

revenue = CADIA (B-Bi) 
if (highestRevenue < revenue) ( 

highestRevenue t revenue 
CmbOfBidsToBeRemoved = Bj 

1 
1 

End 

Function CADIA (B) 

Algorithm: Identify the combination of potential winners 
bi~LWinners and possible losers bjcLlosers to be removed 
to further improve the revenue 

Input : all bids bi E B, and bid tuples (Si,pi) , i~ (O,l, ... n) . 
lists of potential Lwinners and possible L,,,,,s , 
Number of analysis bids Ca. 

Output : the combination of potential winners and possible 
losers to be removed from the auction 
CmbOfBidToBeRemoved. 

Begin 
//make up a list of analysis bids from winners and losers 

//return the revenue generated for an auction containing the 
//set of bids B 
Begin 

//use Algorithm 8 - find a winner 
For each winner b, E B 

revenue t revenue + p, 
return revenue 

End 

-- 

Algorithm 11 Remove potential winners and losers for result improvement. 



6.3 Example 

The improved CADIA is demonstrated with the same data (Figure 27) used in the 

Section 4.3. At the beginning, CADIA will read the bid data as inputs and organize them 

into a matrix in the memory as described in Figure 28. 

{bid) {a set of items) {bidding price) 

Figure 27 Bid data. 

Figure 28 Auction data is represented internally as a matrix in CADIA. 

b8 
b9 

During the first step at PRE, any redundant bids will be removed. Since the bid 

tuples of b9 and bo are (S9,p9)= { {O,4,6,7,8), 205.50) and (So,po)= { {0,4,6,7), 

x 
x 

206.28}respectively, b9 will be removed because it is a superset of bo but it offers a lower 
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bidding price (i.e., S9 2 So but pg < po) according to the criterion 4 stated in Section 

6.2.1. The qualified bids after the filtering process at PRE are b ~ ,  bl ,  b2, b3, b4, b5, b6, b7, 

and bg (Figure 29). 

b7 X x 152.00 

b8 X X X 154.74 

b9 x x x x x  205 50 loser de 
Figure 29 Bid b9 becomes a loser after PRE. 

During the second step, IAG of CADIA sets the minimum support count to one (a 

non-zero least support count), starts generating frequent 1-itemsets (Figure 30) and 

checks if there are itemsets whose frequency counts are equal to but not greater than the 

minimum support count. That is, IAG identifies the smallest but also least frequent 

itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1 - 

itemsets have frequency counts greater than the minimum support count. Thus, IAG is 

required to generate frequent 2-itemsets (Figure 3 1). Now, twenty-four out of forty-five 

itemsets have frequency counts equal to the minimum support count. Additional 

measures such as the degree of confidence and the degree of conflict will then be applied 

according to Algorithms 5 and 6 to reduce the total number of itemsets. Figure 32 and 

Figure 33 show that the highest degree of confidence and the lowest degree of conflict 
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are found to be 50% and 5 respectively. As a result, the itemset {2,9} is determined as the 

least frequent itemset, which will be used by WIN to determine candidate winners. 

Figure 30 Frequent 1-itemsets during the first iteration. 

Figure 31 Frequent 2-itemsets during the first iteration 

Figure 32 Degrees of confidence for itemsets with the least support count 
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Figure 33 Degrees of conflict for itemsets with maximum confidence. 

In the next step, WIN of CADIA will identify all candidate winners. WIN starts 

looking for those bids that include the least frequent itemset {2,9). In this example, only 

b7 contains itemset {2,9). Consequently, b7 is determined as a potential winner (Figure 

34). After the potential winner is declared, all bids that conflict with it are determined as 

possible losers (Figure 35). Since winner determination is a multi-round process 

involving both WIN and IAG, we can only say that b7 is one potential winner and b3, b4, 

b5 and b6 are some possible losers during the first iteration. 

Figure 34 Bid b7 becomes a winner after the first iteration. 

78 

b7 

b8 
b9 

x 
x 

x 
x 
x x x 

x 
x 

x 152.00 

154.74 
205.50 

winner 

loser 

4e 



Figure 35 Bid bs, b4, bj, b6 become losers after the first iteration. 

In the second iteration, the qualified bids are boy bl ,  b2 and bs. IAG will update the 

item association pattern based on the current available qualified bids. IAG again sets the 

minimum support count to one, generates frequent 1 -itemsets (Figure 361, and checks if 

there are itemsets whose frequency counts are equal to the minimum support count. In 

addition, the degree of confidence and the degree of conflict are checked for each itemset. 

It is shown in Figure 37 that the highest degree of confidence and the lowest degree of 

conflict are found to be 100% and 4 respectively. Since itemsets {1), {3), (7) and (8) all 

have satisfied the condition of being the least frequent itemsets, they are used for 

candidate winners determination. 

Figure 36 Fr eequent 1-itemsets during the se lcond iteration. 



Figure 37 Degrees of conflict for iteinsets with maximum confidence during the second iteration. 

In candidate winners determination, WIN looks for those bids that include the 

least frequent itemset (1 ), (31, (71 or (8). Bids bo, b l ,  and b8 become candidate winners 

because bo contains itemset {7), b~ contains itemset {I  } and (31, and b8 contains itemset 

(8). According to the criterion 1 in Section 4.2.2, bo, b l ,  and bs are conflicted bids and 

the bidding price comparison strategy must be applied to select only one potential winner. 

As a result, bl  is determined to be the potential winner during the second iteration (Figure 

39). After the potential winner has been declared, all bids that conflict with it are 

determined as possible losers (Figure 40). After the second iteration, WW stops because 

all bids have been processed. As a result, b 1 and b7 are the potential winners which 

generate the total revenue of $359.28. 

Figure 38 Bids bo, b,, b2, b8 become candidate winners. 

8 0 

b7 
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b9 
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x 
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I  I I  x I  l x l x l  I 1 206.28 1 I 

I b6 I l X l X l X l  1. 1 x 1  I I 1 55.74 1 loser I 

b l  

b2 

b3 

b4 

b5 

I b7 I 1 1 x 1  I I I I I I x  1 152.00 1 winner I 

x  
x  
x  

Figure 39 Bid bl becomes the potential winner. 
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b9 
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1 b4 I 1 x 1  l x l x l  I 1 x 1  1 108.28 1 loser 1 

x  
x  

b l  

b2 

b3 

x 
x 

x 
x 

x  
x  -- 
x  

b5 

b6 

b7 

During the fourth step at TBE of CADIA, all potential winners and possible losers 

will be analysed to hrther improve the revenue. The second strategy of TBE described in 

Section 6.2.2 is used in this illustration. In WIN'S implementation, all potential winners 

and possible losers are recorded in two separate lists. The time during which a winner or 

a loser is identified will determine its order in the lists. According to Algorithm 1 1, the 

x 

b8 
b9 

x 

X 

I 

x 
x 

x 

x 
x 

Figure 40 Bids bo, b2, bs become possible losers. 
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order of elements in LWinnew (list of winners) and L1,,,,, (list of losers) become {b7, bl  f and 

(b3, b4, b5, b6, bo, b2, b8) respectively. TBE will then form the analysis bid list Lanalysis 

based on Lwinnem and LlOse,., . Suppose the number of analysis bids specified by the user of 

CADIA is 3, the content of L,n,l,sis, which is made up by picking the first winner, 

followed by the last loser, and then the second winner, becomes (b7, bR, bl f .  Since 

IBanalySis1 = 3, CADIA will run in the first round without removing any bids, and then 

additional seven times to search for better revenue because there are seven different ways 

of combining these analysis bids. TBE will remove each of these combinations and 

record the revenue generated in each run. The results, which have been summarized in 

table 3. 

Table 3 CADIA runs eight times for bid and revenue analysis. 

In this example, the best result remains the one initially detem~ined by WIN. That 

is, the winners and revenue remain b l ,  b7, and $359.28 respectively. In this example, 

$359.28 is in fact the optimal revenue. 



CHAPTER SEVEN: 
EVALUATION (TI) 

7.1 Purpose 

The purpose of the evaluation is to evaluate the new implementation of CADIA's 

accuracy and efficiency. The same evaluation plan as described in Chapter 5 is adopted. 

7.2 Experimental Setup 

Three different tests were perfomled in the evaluation. The objective of the first 

test was to justify the conclusion that CADIA is capable of finding the optimal revenue 

for the generated sample auctions. Thus, CADIA was compared with an optimal revenue 

search technique in terms of revenue generation and running time. The objective of the 

second test was to justify the conclusion that CADIA is a good approximation system 

Thus, CADIA was compared with some approximation techniques. The objective of the 

third test was to justify the conclusion that CADIA is still an efficient system even 

though its running time grows exponentially. Thus, CADIA's running time was measured 

against different numbers of auctioned items and bids. 

The software implementation of the extended version of CADIA takes five 

parameters during its execution. They are: 



1. a file containing the list of auctioned items, 

2. a file containing the bid data, 

3. an integer corresponding to the number of i t e m  in the auction, 

4. an integer corresponding to the number of bids in thc auction, and 

5. an integer corrcsponding to the number of analysis bids, which are 

composed from the lists of winners and losers, for further rcvenue 

inlprovcment. 

CADIA can be executed from the command line as shown in Figure 41. The 

coiii~nand says that CADIA will deterniine the winners in a CA of 500 items and I000 

bids; in addition the number of analysis bids is 10 .  

liigr~re 41 Execute CADI/\ with 5 argrments from c o n i ~ n a ~ ~ d  line. 

7.2.1 Conlparison of CADIA and BFT 

Tlie objective of the first tcst is LO justify the coliclusion that CADIA is capable of 

generate the optimal revenue. Thus. CADIA was compared with BFT in tei-tns of revenue 

generation and running time on two hundred sample auctions with ten items and ten bids 



each. According to the results described in Section 5.4.1, CADIA may not be able to 

obtain the optimal revenue after its first iteration of the winner determination process. 

With the adjustments made at the TBE (Section 6.2.2) based on the information of 

analysis bids, CADIA is able to obtain better revenue at successive iterations. In this 

evaluation, TBE with the second strategy as described in Second 6.2.2 is adopted. Thus, 

the revenue generated when the number of analysis bids equals two, four, and six are 

recorded accordingly. Additionally, the total time required by CADIA to reach the 

optimal revenue is recorded in each auction. The results are documented and analyzed in 

Section 7.3.1. 

7.2.2 Comparison of CADIA and GST, Four Hill Climbers and ESG 

The objective of the second test is to justify the conclusion that CADIA is a good 

approximation system that always guarantees a better than or equal to the lower bound 

revenue. Since GST is based on greedy search technique, it can handle more items and 

bids that cannot be handled by BFT and always returns feasible results in reasonable 

time. Thus, CADIA was compared with the GST. Besides, CADIA was compared with 

some approximation systems including the four hill climbers (PRICE, N2NORM, KO, 

DEMAND) [Holte, 20011 and the Exponential Subgradient (ESG) [Schuurmans et al., 

2001lin terms of revenue generation in two hundred sample auctions with twenty items 

and one thousand bids each. 

Each of the hill climbers uses a different objective function. PRICE'S function, 

which is based on the bid prices, selects the search path which results in the greatest 
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increase in the value of the included bids. N2NORM's function is based on the 2-norm. It 

divides the bid's price by its "size", where the size of bid j is the square root of the sum of 

squares of the fi*i, the fraction of the re~naining quantity of item i that bid j requires. KO's 

function is based on the division of the bid's price by its "knockout cost", where a bid's 

knockout cost is the sum of the prices of the available bids that are eliminated if this bid 

is chosen. DEMAND'S function is based on a given "price" that is derived from the sum 

of the values of all bids referencing that item. A bid is weighted based on how much it is 

willing to pay versus the amount of money willing to be paid by other bids for the 

requested items. ESG, which is based on the gradient search method, attempts to find a 

directional derivative so that the search can proceed in the direction of the steepest ascent 

in the search space. In ESG, constraints are used to penalize movements that do not 

approach the optimum or, to reward those that approach the optimum. The idea is to find 

the right step size to guarantee the best rate of improvement over several iterations. 

Since CADIA is able to generate higher revenue at successive iterations, the 

results with different number of analysis bids are recorded. All results are documented 

analyzed in Section 7.3.2. 

7.2.3 Running Time Measurement of CADIA 

The objective of the third test is to justify the conclusion that CAD IIA is still an 

efficient system even though its running time grows exponentially. The running time 

comparisons of CADIA with the approximation techniques have been ignored in the 

evaluation because CADIA in general runs slower than other approximation techniques. 
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Such a slower response time is due to the obvious fact that CADIA's core knowledge 

requires some time to generate. 

CADIA's running time is measured against different number of auctioned items 

and bids. The sample sizes of the auctioned items and bids are selected in the range of 

100 to 500 and 200 to 2000 respectively. The results are then plotted as two separate 

graphs. The first measures the running time when the number of bids is fixed and the 

number of items varies. The second measures the running time when the number of items 

is fixed and the number of bids varies. The test plan is outlined in Table 4. The results are 

documented and analyzed in Section 7.3.3. 

Table 4 Test plan for measuring CADIA's running time 

7.3 Empirical Results and Aizalysis 

In this section, the results of the tests described in Section 7.2.1, 7.2.2, and 7.2.3 

are documented in Section 7.3.1, 7.3.2, and 7.3.3 respectively. The results will be used to 

justify the hypothesis in designing CADIA. 



7.3.1 Comparison of CADIA and BFT 

Even though BFT works in principle, it is practically limited by the number of 

items and bids it can process. CADIA may find the optimal revenue with or without the 

adjustments made by TBE. Thus, it is interesting to know how accurate CADIA is before 

and after TBE adjustments. 

Tables 5, 6, 7, and 8 report the results for all two hundred sample auctions. The 

abbreviations AO, A2, A4, and A6 after the word CADIA mean that zero, two, four, and 

six analysis bids are used by CADIA. The accuracy ratio of BFT in all sample auctions is 

always one because BFT always generates the optimal revenue and thus is used as the 

standard for comparison. CADIA has an average accuracy ratio of 0.979 (Table 9) and is 

not able to find the optimal revenue in 36 out of 200 auctions when no analysis is used. 

The results of these 200 auctions are sorted by accuracy ratio for CADIA (AO) and 

plotted as a line chart (Figure 42 and Figure 43). The Figure 43, which is an enlarged 

view of the 36 auctions, shows how the result is improved when more and more analysis 

bids are included. It is found in the 200 sample auctions that CADIA attains the accuracy 

ratio of 1.0 and returns the optimal revenue for all sample auctions when six analysis bids 

are used. 
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Table 5 Accuracy ratio comparison of BFT and CADIA (sample 



Table 6 Accuracy ratio comparison of BFT and CADIA (sample 5 



Table 7 Accuracy ratio coniparison of BFT and CADIA (sample 1 



Table 8 Accuracy conlparison of RFT and CADlA (sample 151-200). 



I Average 1 1.000 1 0.979 1 0.993 1 0.998 1 1.000 1 
Table 9 Accuracy ratio comparison of BFT and CADIA. 

Table 10 summarizes the results of the running time comparison of BFT and 

CADIA with various numbers of analysis bids. Results show that BFT has an average 

running time of 21 1.722 seconds. CADIA's average running time is in the range 0.199 - 

10.138 seconds when up to six analysis bids are considered. As expected, the larger the 

number of analysis bids involved, the longer running time CADIA takes. 

I Average 1 21 1.722 1 0.199 1 0.754 1 2.749 1 10.138 1 

Table 10 Running time comparison of BFT and CADIA. 

Since each sample auction contains a total number of ten bids, the maximum 

number of analysis bids becomes ten. When the maximum number of analysis bids is 

used, CADIA is guaranteed to find the optimal revenue. The more the analysis bids are 

considered, the better the revenue will be generated. In most cases, CADIA may not use 

the maximum number of analysis bids before the optimal revenue is found. CADIA was 

able to return the optimal revenue in all our test cases when six analysis bids were 

considered. When six analysis bids are considered, CADIA will take only 10.138 

seconds, which is about 4.8% of the time required by BFT, to identify the optimal 



revenue. From the empirical results and analysis, CADIA can be concluded as a system 

that is capable of generating the optimal revenue and that runs much faster than BFT 

based systems. 

7.3.2 Comparison of CADIA and GST, Four Hill Climbers and ESG 

7.3.2.1 Comparison of CADIA and GST 

When the there are too many items and bids, it becomes impractical to compare 

BFT and CADIA. CADIA is compared with GST in terms of a revenue generation. In 

this test, each sample auction contains twenty items and one thousand bids. The number 

of items has been selected in such a way that it cannot be handled realistically by BFT, 

but it is still small enough as compared to the number of bids. In this evaluation, the ratio 

of the number of items to the number of bids is 50. The purpose of such a setup is to 

simulate realistic CAs in which there are always conflicts among bids. Tables 11 to 14 

summarize the performance ratios of GST and CADIA with various numbers of analysis 

bids for two hundred sample auctions. The first strategy of TBE as described in Section 

6.2.2 is adopted here to organize the analysis bids. The results are sorted by performance 

ratio for CADIA (AO) and plotted as a line chart (Figure 44). 



Table 11 Performance ratio comparison of GST and CADIA (sample 1-50). 



Table Perforniance ratio comparison of GST and CADIA (samp 



Table 13 I Performance ratio comparison of GST and CADIA (sampl 



Table 14 Performance ratio comparison of GST and CADIA (sample 



Table 15 Performance ratio comparison of CST and CADIA. 

Table 15 summarizes the average performance ratios. The larger the number of 

analysis bids used, the better CADIA's perfoi-n~ance will be. For instance, in Auction No. 

126, CADIA has a performance ratio of 1.342 when no analysis bid is used; it has 

successfully improved the ratio to 1.344 and 1.345 when two and four analysis bids are 

used respectively at successive iterations during the winner detennination process. 

Results show that CADIA has an average performance ratio of 1.186, 1.186, 1.187 and 

1.1 87 when zero, two, four and six analysis bids are used respectively. In other words, 

CADIA outperforms GST by l8.6'/0, 18.6%. 1 8.7?4 and 18.7% when zero, two, four and 

six analysis bids are used in 200 sample auctions. 
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7.3.2.2 Comparison of CADIA and Four Hill Climbers 

Tables 16, 17, 18, and 19 report the results of comparing CADIA with the four 

climbers, which have also been plotted as line charts (Fig. 45,46,47, and 48) for all two 

hundred sample auctions. The abbreviations AO, A2, A4, and A6 after the word CADIA 

mean that zero, two, four, and six analysis bids are used. The first strategy of TBE as 

described in Section 6.2.2 is adopted here to organize the analysis bids. The performance 

ratio of PRICE is used as a reference for the comparison and is thus set to one. 



Table 16 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 1-50). 



- I I00 I 1.000 1 1.242 1 1.242 r 1.239 1 2 3 9  1 1.239 1 11242 1 1:242 ] 

Table 17 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 51-100). 



Table 18 Performance ratio comparison of 4 Hill Climbers and CADlA (sample 101-150). 



Table 19 Performance ratio comparison of 4 Hill Climbers and CADlA (sample 151-200). 
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Table 20 Performance ratio comparison of hill climbers and CADIA. 

Table 20 summarizes the average performance ratios. On average, DEMAND. 

which had a performance ratio of 1.186, performed best among all hill climbers. On the 

other hand, results show that CADIA had an average performance ratio of 1.1 85, 1.1 86, 

1.187 and 1.187 when zero, two, four and six analysis bids were used respectively. We 

also recorded that in all 200 auctions, the number of auctions that CADIA achieved better 

revenue than PRICE, N2NORM, KO and DEMAND were 191, 148, 148 and 133 

respectively (Table 2 1). 

Table 21 Number of Auction that CADIA outperforms the hill clin~bers. 

7.3.2.3 Comparison of CADIA and ESG 

Tables 22 and 23 report the results of comparing CADIA with ESG, which have 

also been plotted as line chart (Figure. 49) for all two hundred sample auctions. The 

abbreviation A6 aAer the word CADIA means that six analysis bids are used. The first 

strategy of TBE as described in Section 6.2.2 is adopted here to organize the analysis 

bids. Since ESG is able to obtain better results at successive iterations of execution, for a 

fair comparison, we ran ESG in 460 iterations to match the execution time of CADIA. 



The performance ratio of CADlA (Ah) is used as a reference for the comparison and is 

thus set to one. 



Table 22 Performance ratio comparison of ESG and CADlA (sample 1-100). 



Table 23 Performance ratio comparison of ESC; and CADIA (sample 101-20 





Results show that CADIA and ESG are very competitive because their average 

perfonnance ratios are 1.0000 and 1.0002 respectively. We also recorded that in all 200 

auctions, the number of auctions where CADIA outperfonned ESG was 130 but the 

difference of the achieved revenue is within 0.3% in most cases. There was only 1 out of 

200 auctions where ESG outperformed C'ADIA. Both achieved the same revenue in 69 

out of 200 cases. 

Since the 200 sample auctions do not cover all possible bid patterns, we may not 

conclude that CADIA is better than other approximation systems in all cases. However, 

from the empirical results, we found that CADIA can achieve better revenue than the hill 

climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has 

its contribution to the CA determination problem. 

7.3.3 Running Time Measurement of CADIA 

In Section 7.2.3, a test plan for measuring the efficiency of CADIA by time 

clocking is presented. The sample sizes of the auctioned items and bids are selected in the 

ranges of 100 to 500 and 200 to 2000 respectively. There are a total of five hundred 

sainple auctions grouped into fifty categories of size. Each category has the same number 

of items and bids. Table 24 summarizes the results of the average i-unning time of 

CADIA for each category. Figure 50 depicts the running time for different numbers of 

items when the number of bids are fixed. 



Table 24 CADIA's Average running time in 50 different sizes of auction. 

Running Time of CADIA against Number of Items 

2000 bids 

1800 bids 

1600 bids 

1400 bids 
1200 bids 
1000 bids 

800 bids 
600 bids 
400 bids 

200 bids 

200 300 400 

Number of Items 

Figure 50 Running time of CADIA for different number of items. 
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As expected, the running time increases when the number of items or bids 

increases. 

Running Time of CADIA against Number of Bids 

500 items 

items 

items 

items 

items 

Figure 51 Running time of CADIA for different number of bids. 

Similarly, Figure 5 1 depicts the running time for different numbers of bids when 

the number of items are fixed. The running time of CADIA grows more rapidly than a 

linear function. 



Running Time (log,) of CADIA against Number of ltems 

2000 bids 
1800 bids 

1600 bids 
1400 bids 
1200 bids 
1000 bids 
800 bids 
600 bids 

400 bids 

200 bids 

300 

Number of ltems 

Figure 52 Logarithm of runuing time of CADIA for different number of items 



Running Time (log2) of CADIA against Number of Bids 
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Figure 53 Logarithm of the running time of CADIA for different number of bids. 

Figure 52 and 53 shows the results for Figure 50 and 51 in logarithmic scale 

respectively. The shapes of the graphs in Figure 52 and 53, which appear to be concave 

and straight lines respectively. suggest that CADIA's efficiency in auctions of no more 

than 500 items and 2000 bids are bounded by the complexity class of O(2"). Although 

both CADIA and BFT belong to the complexity class of 0(2"), CADIA's running time 

grows much slower than that of the BFT (Figure 53). When BFT is used, in an auction of 

10 items and 10 bids the winner determination time takes about 2 12 seconds but 1800 

seconds with one additional item. If these values are converted into logarithm of base 2, 



we will obtain 7.72 and 10.8 1 respectively. The graph of BFT has a much steeper slope 

and Y-intercept value as drafted in dashed line in Figure 53. 



CHAPTER EIGHT: 
DISSCUSSION 

8.1 Discussion on CADIA 's Performance 

Although the 200 sample auctions do not cover all possible bid patterns, it allows 

us to identify some bid patterns that CADIA performs better or worse than others. We 

will analyse 2 cases that demonstrate the advantages and shortcomings of CADIA and 

other evaluated techniques. The results of such an analysis will be considered in 

CADIA7s future enhancement. 

In sample Auction-78, the revenue generated using CADIA, PRICE, N2NORM, 

KO, DEMAND, and ESG were $1935.830, $1 637.610, $1 835.670, $1636.870, 

$193 1.300, and $183 1.000 respectively. When the bid patterns are examined, it was 

found that both PRICE and KO included the highest price bid (bid-1 1) as one of its 

winners. It is due to the fact that the objective hnctions of both depend directly on bid 

prices. As a result, both PRICE and KO were trapped in local optima during the search. 

N2NORM uses both the bid price and bid size as the parameters in its objective function. 

That is, the higher the bid price per item the bid offers, the higher the chance it becomes a 

winner. Thus, bid-140 became one of its winners since it offered over $100 per item as 

compared to only $50 offered by other bids. However, such an objective function inay 

also lead to a local optimum result. DEMAND weights a bid based on its bid price per 

item versus the prices offered by others for that item. Since DEMAND took its 



neighbour's evaluation into consideration, it generated a better result in Auction-78 than 

other climbers. Rather than depending directly on the bid price in its objective function as 

found in some of the climbers, ESG starts with a candidate solution and generates a new 

solution using an update rule based on gradient. Since ESG relies on gradient 

information, the result could get stuck at a local optimum. Although CADIA, DEMAND 

and ESG were very competitive in Auction-78, CADIA, which does not rely on any local 

search techniques, was able to obtain the best result among all techniques. It was due to 

the fact that the search space in Auction-78 contained many local optima and all other 

methods are stuck at some local optima during the search. 

A different result was observcd in sample Auction-83. The revenue generated 

using CADIA, PRICE, N2NORM, KO, DEMAND, and ESG were $2077.000, 

$1389.1 60, $2033.530, $1441.160, $2129.900 and $2843.000 respectively. Both PRICE 

and KO were trapped in local optima during the search, which ended up much lower 

revenue, due to the same reason as described above (bid -222 offered the highest bid 

price among all). Since N2NORM considered also the bid size, it did not consider bid- 

222 a winner. Both DEMAND and ESG outperformed CADIA in this auction. When the 

winner pattern of the best performer ESG was examined, it was found that the winners 

were those who wanted one or two items. Since CADIA's objective function is based on 

the relaxation of the concept of itemsets, CADIA was misled by some bids that included 

the least frequent itemsets but offered lower bid prices. 

In summary, the hill-climbers exploit the best avaiIable solution for possible 

improvement but neglect exploring a large portion of the search space. Gradient-based 

search methods are well-known for situations when the search space has a bowl shape. 



When it is not the case, they could get stuck at local optima since the pritnary 

consideration relies on gradient information. In many cases, the success or failure of 

many hill-climbers and some gradient-based methods is determined by the initial start 

point. For problems with many local optima, particularly those where these optima have 

large basins of attraction, it's often very difficult to locate a globally optimal solution. 

CADIA attempts to explore the search space thoroughly but foregoes exploiting 

promising regions of the space. In addition, the cost required for CADIA to generate its 

knowledge makes CADIA runs much slower than all evaluated approximate techniques. 

For instance, the current implementation of CADIA takes two minutes to solve a problem 

of size of 100 items and 2000 bids. but almost an hour when the number of items is 

increased to 500. On the other hand, all evaluated approximate techniques takes less than 

a minutes to solve problems of size of hundred of items and thousands of bids. 

8.2. Discussion on CADIA 's Practicality 

All sample auctions described in the thesis contain no more than five hundred 

items and two thousands bids. Such an upper limit of sample size for testing a proposed 

system has been adopted in most current research because it becomes uncommon to have 

a CA selling more than five hundred non-identical items. However, it may be common to 

have more than two thousand bids in a CA, especially if it is held on the Internet. The 

best CA winner determination system is one that always generates the optimal revenue 

(best accuracy) with the shortest running time (best perfomlance) among all proposed 



systems. Some techniques such as BFT focus primarily on the accuracy, while others 

such as GST focus solely on the performance. 

CADIA has been evaluated in terms of its accuracy in Chapter 7. With the 

adjustments made at the TBE, CADIA is capable of finding the optimal revenue. The 

idea is to use analysis bids for revenue improvement at successive iterations during the 

winner determination process. In an auction of thousands of bids, it becomes impractical 

to analyze all bids if the winners have to be announced within minutes after the expiry of 

bids submission. Thus, CADIA has been designed to accept the number of analysis bids 

as an argument from the user during its execution. If more time is allowed, a more 

accurate result can be obtained by including more analysis bids. 

If performance in terms of running time is the only concern, a greedy search 

based system is perhaps the most practical system because its objective function is based 

on the search for the highest bidding price. Such a system performs very well only in 

auctions of too many items but too few bids in which the chance of having bid conflicts is 

very low. In auctions of two hundred items and five thousand bids, for example, a greedy 

search based system may be trapped in a local maximum due to a high degree of conflicts 

among bids. Other domain-based heuristic systems may include a pre-processing step 

before they apply the core winner determination algorithms. For example, a system that 

has removed ninety percent of the bids during its pre-processing phase can definitely 

determine the winners in seconds even in auction of hundreds of items and thousands of 

bids. As a result. it becomes misleading to evaluate a CA technique or system based only 

on its performance but not accuracy. 



CADIA has been evaluated in terms of its performance in Chapter 7. The graphs 

of CADIA's running time on sample auctions of up to 500 items and 2000 bids suggest 

that CADIA is bounded by the efficiency class O(2"). The inclusion of the scale factor 

variable CSr (Section 6.2.1) is to address the practicality issue when the winner 

determination time is a major concern. By adjusting the value of Cqr, CADIA is able to 

determine winners in minutes or even in seconds. Csf has been set to 0.5 by default and it 

is believed that bids with an unacceptably low bidding price will be rejected. That is, a 

bid whose bidding price is lower than half of the lower bound price is rejected. C,f's 

value domain is between 0 and 1. When it is set to 1, more bids are rejected because the 

full lower bound price is used instead. When it is set to 0, all bidding prices will not be 

checked. Figure 48 shows the relationships between running time and number of bids for 

different Csrin auctions of 500 items. 



Each auction contains 500 items 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Number of Bids 

Figure 54 Running time of CADIA for different values of Csf. 

In Figure 48, the graphs show that the running time grows much slower when CSf 

is set to 1 than it is set to 0.5 or 0.0. Thus, an auctioneer will have an option to trade off 

accuracy for efficiency. However, in some cases, a non-zero Csf may accidentally reject a 

valuable bid and cause a non-optimal result. Thus, the value of Csf must be selected with 

caution. The strategy is to compare the revenue generated for different values of Csf . For 

example, Csf can be started with I ,  and is then decremented by 0.25 in each subsequent 



test. The decrement continues only when the revenue is improved, and more importantly, 

when the time is allowed. 



CHAPTER NINE: 
CONCLUSION AND FUTURE WORK 

The subjects of this thesis are the proposal and d e s i g  of a novel and practical 

combinatorial auction winner determination approach using item association. The 

approach was developed and implemented into the system called CADIA. The thesis has 

reviewed the characteristics and benefits of CAs and surveyed the state of knowledge and 

techniques for solving the winner determination problem, followed by the hypothesis and 

core algorithms of the new approach, and its design and implementation. CADIA consists 

of four major components. In the first component PRE, redundant bids are removed. In 

the second component IAG, qualified bids output from PRE are used as seeds to generate 

candidate itemsets. IAG attempts to identify the smallest and least wanted itemsets fi-om 

the candidate itemsets. In the third component WIN, the output fi-om IAG is used in the 

identification of candidate and potential winners. In the fourth component TBE, both 

potential winners and possible losers are used for further analysis and improvement. 

The empirical results show that CADIA is a practical technique that is able to 

handle CA auctions of hundreds of items and thousands of bids. The study of its accuracy 

and performance in terms of revenue generation and running time shows that it has met 

the criteria and goals of the design in achieving good approximate results. Although both 

CADIA and BFT belong to the class of 0(2"), CADIA's running time grows much 

slower than that of the BFT. CADIA was found to be a good approximation system 

because its accuracy can be improved when analysis bids are used. 
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Since the 200 sample auctions do not cover all possible bid patterns, we may not 

conclude that CADIA is better than other approximation systems in all cases. However, 

from the empirical results, we found that CADIA can achieve better revenue than the hill 

climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has 

its contribution to the CA determination problem. The current limitation of CADIA is 

that it runs slower than all the evaluated approximation techniques. Such a slower 

response time is due to the obvious fact that CADIA's core knowledge requires some 

time to generate. 

There are a number of possible extensions and enhancements for the work 

presented here. CADIA's optimal strategy in the winner determination process can be 

seen as a number of iterations running the same set of algorithms on auction data from 

where tactical bids are removed. The number of iterations depends directly on the number 

of analysis bids selected. From the empirical results and observations, TBE with the 

second strategy as described in Section 6.2.2 has been very successful in searching for 

better revenue using the potential winners and possible losers as the knowledge. Since all 

potential winners and possible losers are the output from WIN during the first iteration of 

the process, it is possible to distribute all subsequent iterations of search on a number of 

processors. For example, if 4 analysis bids are used, there are (24 -1) or fifteen ways of 

removing the tactical bids from the original bid file which translates into additional 

fifteen iterations of search. Instead of running CADIA fifteen times sequentially on a 

single processor, it may be desirable to run CADIA on a multi-processor system, a multi- 

threading system, or even on multiple machines to further improve its performance. 



CADIA's optimal strategy is based on the knowledge discovered from the auction 

data. Historical data from previous auctions will definitely help to enhance such 

knowledge. That is, when auctioned items are distributed in a similar pattern from 

auction to auction, it is possible to have the knowledge accumulated and used in future 

auction winner detennination. Besides the item association technique, other data mining 

techniques such as clustering and decision trees can also be applied to structure the 

knowledge in a different way to aid in the revenue search. 

Since each search space is different for each auction in CA problems, there seems 

no way to choose a single search method that can serve well in every case. Nevertheless 

each technique offers its own merit. Better solutions to CA problems can often be 

obtained by hybridizing different approaches. Effective search techniques should provide 

a mechanism for balancing the conflicting objectives: exploiting the optimal solutions 

and at the same time exploring the search space. 



APPENDIX A 

Sample Bid Input File 

This appendix provides a sample bid input file containing one thousand bids and 

one hundred items, and the output files summarizing the results. 

Input File: 1000 bids and 100 items 

















(812) (35 42 50) 1155.74) 

48131 (60 83 321 (55.74) 

(814) (Oj (151.001 

{El51 (98 38 28) (155.74) 

1816) (38 84 18) 1155.741 

(817) {98 68 27) 1155.74) 

(818) (28 51 72) (154.74) 

(819) 128) 151.001 

(8201 (98 261 (103.30) 

(8211 (98 1) (103.30) 

18221 (26 641 (3.30) 

(823) 1951 151.00? 

(824) (21) (51.001 

(825) 159 43 25) (55.741 

(8261 125 57 851 (54.741 

(827) (28) (51.00) 

1828) (63 741 (103.301 

(8291 (74 201 (103.30) 

(830) (36 731 (103.30) 

(83:) 1161 152.001 

(832) (56 39 95) (354.74) 

(833) (39 51 88) 1254.74) 

(834) (56 28 66) 1154.74) 

(835) (95 98 30) (55.74) 

(836) 113 66) 1104.30) 

(8371 (13 50) (103.30) 

(838) (13 95) (3.30) 

18391 145 741 1202.30) 

(8401 174 5) (103.30) 

(841) (45 77) (3.301 

(8421 (841 151.001 

(843: (9 34 76) 1255.74) 

(844) (34 93 39) 1354.741 

(845) (2) (51.001 

1846) (82) (151.00) 

(84'7) (48) 152.00) 

1848) (58) 151.001 

(849) 10 21) (202.30) 

(850) 121 19) (103.301 

(851) 10 7'7) (103.30) 

(852) 171 1151.00) 

(853) (0 ;  (15L.00) 

(854) (291 152.00) 

(8551 (71 801 14.301 

(856) 180 21 (3.30) 

(857) (4) 1151.00) 

(8581 1561 {51.001 

(8591 (431 (52.00) 

(8601 (89 53 96 62 44 57 561 (364.33) 

1861) 156 63 28 50 82 59 6) 1463.33) 

(8621 (44 27 95 72 69 61 391 (463.331 

(8631 157 88 22 19 48 79 62) 1365.331 

1864) (6? 74 9 88 54 55 49) (265.33) 

{86Si iS3 I1 H 95 66 15 87) (264.33) 





Output File(1): winners, total revenue, total running time when analysis bids=O 

C:\CAIJIA>caclia items.txt bids.txt 100 1000 0 

BidderID Bid Price 

Total Revenue = 7521.52 

0.010000 seconds 



Total Revenue = 7678.24 

42.572000 seconds 

maxRourid is 0 and maxRevenue is 7678.24 

Total time required: 42.572000 seconds 



Output F i l e ( 2 ) :  winners, total  revenue, total  running time when analysis bids=2 

C:\CADIA>cadia items.txt bids.txt 100 1000 2 

BidderID Rid Price 

T o t a l  Revenue = 7521.52 

0.010000 secorids 

ItemList 

3 2 

8 7 

2 9 

27 96 

8 49 82 84 

18 43 

6 5 

55 75 

97 

5 11 17 50 63 68 73 

7 35 46 67 90 

51 

0 37 70 88 94 

64 

7 8 

22 28 45 56 60 85 

14 20 92 

16 81 

57 

4 7 

19 21 31 36 52 69 77 91 

4 1 

7 1 

24 26 93 

5 8 

39 98 

12 34 8 3  

6 

38 54 99 

23 42 

6 2 

15 61 

80 

1 2 4 10 33 72 74 86 

13 66 

4 8 

25 40 44 79 95 

9 

3 



Total Revenue = 7678.24 

44.044000 seconds 

Use Winners & Losers Information to improve result 
----- -----Round #I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Delete: 734 Delete: 930 

BidderID Bid Price ItemList 

6 3 151.00 11 

7 5 1.51.00 2 8 



T o t a l  Revenue = 7975.34 

48.930000 seconds 



Total R e v e n u e  = 7 9 7 5 . 3 4  

4 9 .  i 8 0 0 0 0  seconds 



Tota, Revenue - 8420.84 
48.08'?000 seconds 

maxRound is 3 and maxRevenue is 8420.84 

T o t a l  t i m e  r e q u i r e d :  1 9 0 . 2 5 3 0 0 0  s e c o n d s  

- - .- - - - - - - - - - - - - - - - - - - - - - -. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 



APPENDIX B 

Source Code for Brute Force Technique 

This appendix provides the source code of the brute force technique (BFT) 

program used in the evaluation. The program can handle up to 10 bids and 10 items. 

Author: Andy Law 

Date: 2003 

Description: 

The program uses brute force technique (BFT) to identify winners in a 

combinatorial auctlon. 

Program Execution Format: 

bft.exe items-file.txt bids-file.txt 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

#define MAXLEN 

#detine MAXITEM 

#define MAXBIDDER 

#define TRUE 

#defineFALSE 

#define DELETED 

#define NO-ITEM 

typedef struct itemMatrix //item information ADT 

( 

double itemprice; 

1 ITEMMATRIX; 

typedef struct biclMatrix //bid information ADT 

( 

int bidderID; 

lnt itemList[MAXITEM]; 



double bidprice; 

int sold; //1 if sold, -1 if deleted 

1 RIDMATRIX; 

BIDMATRTX bMatrixiMAXBIDDER1; //bid information 

ITEMMATRIX iMatrixLMAXITEM1; //iterr information 

n t  hidderListIdx=O; //total number of bids 

int processedBidder=O; //number of jids 

int winner[MAXBIDDERI; 

double tempRev=O.O; 

void readInput(char *argv[l); 

void processItemInput(char *buf, int *itemNo, double *item'Jalue); 

void processBidInput(char *buf); 

void initialize ( ) ; 

void processAuction ( )  : 

int auctionCompete(int max); 

voj cl displayResult ( l ; 

int conflict2(int a1,int a2): 

inL conflict3iint a1,int a2, int a3); 

int conf;ict4(int a1,int a2, int a3, int a4) ; 

int conflict5iint a1,int a2, int a3, int. d4, int a5); 

int conflict6 (int al, int a2, int a3, int a4, int a5, int a6); 

int conflict7(int a1,int a2, ir.t a3, int a4, int a5,int a6,int a7); 

int coriflict8~ilit a1,int a2, ir-t a3, int a4, int a5,int a6,int a7,int aR) ;  

int contIict9(int a1,int a2, int a3, int a4, int a5,int a6,int a7,int a8,int a9); 

int conflictlO(int d1,int a2, int a3, int a4, int a5,int a6,int a7,int a8,int a9,int 
a10) : 

//main ( ) module. 

int main (in? argc, char* argv[l) ( 

clock-t start, finish; 

double duration; 

it (argc !=3) 

i 

printf("Usage: BFT <items-file> <bids-file>\nW); 

exit (1); 

1 

st.art = clock ( ) ; 

printf( .......................... \n") ; 

printf( " Best Search - Beginning\nM); 
printf ( " ~ ---------------- \nn ; 

initialize(); 

readIcput(argv); 

process~uction ( ) ; 

displayResult0; 

finish = clock(); 



printf( "-------------------------- - .. - - - - - - - - - - - - - - - - - -~ - - - - - - \n") : 

printf( " Best Search - Ending\nU); 
printf( "-------------------------- .......................... \ l l t t  ) ; 

d1urat.ion = (double) (finish - start) / CLOCKS-PER-SEC; 

printfi "8.61f seconds\nM, duration 1 ;  

retl~rn 0; 

1 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

iiInitializes the matrix for storing the bids information 

for (i=O;i<MAXBIDDER;i++) 

winner[il=-1; 

for (i=O;i<MAXBIDDER;i++) ( 

bMatrix[i].bidderID=-1; 

bMatrix[i] .bidprice=-1.0; 

bMatrix[i] .sold=FALSE; 

for (j=O; j<MAXITEM;j++) 

bMatrix[il.itemList[jl=-2; 

//Displays the auction result to the cornsand screen 

printf("Bidder1D Bid Price ItemList\n") ; 

for (i=O;i<bidderListIdx;i++) { 

if (winner[il== TRUE) { 

printf("85i " , bMatrix [ i I . bidderID) ; 
print•’("%-15.2f",b~atrix[i].bidPrice); 

rev=rev+bMatrix[i] .bidprice; 

tor (j=O;j<MAXITEM;j+t) ( 

if ibMatrix[i] .itemList [j]==l) 

print•’ ( 'Bi " ,  J ) ; 

) 

printf("\nV); 

1 

1 

printf("\nTotal Revenue = 8.2f\nU,rev); 

1 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//Reset the winner list 

void resec ( ) 

i 



//Auction is processed here using brute force technique. 

void processAuctlon0 { 

int al,a2.a3,a4,a5,ab,a7,a8,a9; 

jnt a10; 

int n=O; 

int ret=FALSE; 

double maxRev=O .0 : 

for (al=O;al<bidderListIdx;al++){ 

l f  (maxRev<bMatrix[all .bidprice) { 

maxRev=bMatrix[al] .bldPrice; 

reset ( ) ; 

winner[all=TRUE; 

1 

for (a2=O;a2cbidderListIdx;a2++) [ 

if (a1 ! =  a2) { 

ret=conflict2(al.a2); 

if (ret==FALSE) { 

rnaxRev=bMatrix[al].bid~rice+h~atrjx[a21.bidPrice; 

reset ( )  ; 

winner[al]=TRUE; 

winner[a2]=TRUE; 

1 

I 

I 
for (a3=O;a3<bidderListIdx;a3++)! 

if (al!=a2 && dl!= a3 && a2!=a3)! 

ret=conflict3 (dl, a2, a3) ; 

if (ret==FALSE) { 

maxRev=bMat.rix[al].bidPrice+bMatrix[a2].bidPrice+bMatrix[a3].bidPrice; 

reset ( ) ; 

winner [a1 I =TRUE; 
winner [ a2 I =TRUE; 

winner[a3l=TRUE; 

I 
1 

I 
for (a4=O;a4<bidderListIdx;a4++) { 

if (al!=a2 && dl!= a3 && al!=a4 && 



maxRev=bMatrix[al].bidPrice+b~latrix[a2].bidPrice+bMatrix[a3].bidPrice+bMatrix[a4]. 
bidprice; 

reset ( ) ; 

wlnner[all=TRUE; 

winnerla2]=~RUE; 

winner[a3l=TRUE; 

winner[aB]=TRUE; 

) 

for (aS=O;a5<bidderListIdx;a5++){ 

if (al!=a2 && al!= a3 & &  al!=a4 && al!=a5 && 

a2!=a3 && a2!=a4 && a2!=a5 && 

a3!=a4 & &  a3!=a5 && 

a4!=aS) { 

ret=conflict.5 (ai, a2, a3,a4, a5) ; 

if (ret==FALSE) { 

reset ( ) ; 

winner[al] 

winner [a2 1 

winner [ a3 ] 

winner[a41 

winner[a51 

1 

for (a6=0;a6<bidderiistIdx;a6++i( 

if (al!=a2 && al!= a3 && al!=a4 && al!=aS && al.!=a6 && 

a2!=a3 && a2!=a4 & &  a2!=a5 && a2!=a6 && 

a3!=a4 && a3!=a5 & &  a3!=a6 && 

a4!=a5 && a4!=a6 && 

aS!=a6) { 

ret=conflict6(al,a2,a3,a4,a5,a6); 

if (ret==FAiSE) ( 

if 
(maxRev~bMatrix[all.bidPrice+bMatrix[a2l.bidPrice+bMatrix~a3l.bidPrice+bMatrix[a41.bidPri 
ce+bMatrix[a5].bidPrice+ 

bMatrix[a6].bidPrice) { 



bMatrlx[a6].bidPrice; 

reset ( i ; 

winnerlall=TRUE; 

winner[a2l=TRUE; 

wlnner [a3 I :TRUE; 

winner[a41=TRUE; 

winner :a5 I =TRUE; 
winner[a6l=TRUE; 

I 

1 

I 

for (a7=O;a7<bidderListIdx;a7++) ( 

if (al!=a2 && al!= a3 && al!=a4 && al!=a5 && al!=a6 && al!=a7 && 

a2!=a3 && a2!=a4 & &  a2!=aS && a2!=a6 && a2!=a7 && 

a3!=a4 && a3!=a5 && a3!=a6 && a3!=a7 && 

a4!=aS &h a4!=a6 && a4!=a7 && 

a5!=a6 && a5!=a7 & &  

a6!=a7) { 

ret=conflict7(ai,a2,a3,a4,a5,a6,a7); 

if (ret==FALSE) i 

+bMatrix[a6].bidPrice+bMatrixla7! .bidprice; 

reset ( 1  ; 

winner [ a1 I =TRUE ; 
winner[a2l=TRUE; 

winner[a3]=TRUE; 

winner[a4]=TRUE; 

winner[aSl=TRUE; 

winner[a6]=TRUE; 

winner!a7!=TRUE; 

I 

I 

for (a8=O;a8<bidderListIdx;a8++) { 

if (al!=a2 && al!= a3 && al!=a4 && al!=a5 && al!:a6 && al!=a7 && 



+bMatrix[a61 .bidPrice+bMatrixla71.bid?rice+bMatrix[a8] .bidprice; 

reset ( )  ; 

winner[all=TRUE; 

winner [a21 =TRUE; 

winner[a3]=TRUE; 

winner[a4]=TRUE; 

winner[aS]=TRUE; 

winner[ah]=TRUE; 

winner[a7l=TRUE; 

winner[aEJ=TRUE; 

) 

1 

for (a9=O;a9ibidderList1dx; a9++) { 

+bMatrix[a6].bidPrice+bMatrix[a7] .bidPrice+bMatrix[a81 .bidPrice+bMatrix[a9].bidPri 
ce; 

reset ( ) ; 

winner[all=TRUE; 

winner [a2 I =TRUE; 

winner [a3 I =TRUE; 
winner [a4 I =TRUE; 

winner [a6 ] =TRUE; 

winner[a7l=TRUE; 

winner[a8]=TRUE; 

winner [ a9 1 =TRUE; 



I 

for ( a10=0 ;a10~b idc le r~ i s t I ( ix i a1O++){  

+bMatrix[a6].bid~rice+bMatrix[a7].bid~rice+bMatrix[a8].bidPrice+bMatrix[a9].bidPri 
ce+bMatrix[alOl .bidprice; 

winner[all=TRUE; 

winner [a2 1 =TRUE; 

winner [ a3 I =TRUE ; 

winner[a5]=TRUE; 

winner [ a6 I =TRUE ; 
winnerla7i=TRUE; 



for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[al].itemList[i]+bMatrix[a2].itemList[il)==2) 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[all.itemList[iI+bMatrix[a21 .itemList[il)==2 

return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[all .itemList[i]+bMatrix[a3].itemList[il)==2 

return TRUE; //there is a conflict 

1 
for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a2].itemList[il+bMatrix[a3].itemList[i])==2) 

return TRUE; //there is a conflict 

i 

return FALSE; 

1 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//conflict4 ( ) 

int conflict4(int al, int a2, int a3, int a4) { 

int i: 

for 

1 
for 

1 

i=O;i<MAXITEM;i++)( 

lf ((bMatrix[all .itemList[i]+bMatrix[a2] .itemList 

return TRUE; iithere is a conflict 

i=O;i<MAXITEM;i++)( 

if ((bMatrix[al].itemList[il+bMatrix[a3] .itemList 

return TRUE; //there is a conflict 

for (~=O;~<MAXITEM;~++){ 

if ((b~atrix[al].itemList[i]+bMatrix[a4].itemList[i])==2) 

return TRUE; //there is a conflict 



) 

for 

1 

for 

1 

i=O; i<MAXITEM; i++) { 

if ((bMatrix[a2].itemList!i]+bMatrix[a3].itemList~i1)==2) 

return TRUE; /:there is a conflict 

i=O;i<MAXITEM;i++)( 

if ((bMatrix[a2].itemList.[il+bMatrix[a4].ite1nList[i])==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a3].itemList[i]+bMatrix[a4].itemList[i])==2) 

return TRUE; //there is a conflict 

1 

return FALSE; 

) 

/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[al1.itemList[il+bMatrix[a2l.iternList[il)==2) 

return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++i { 

if ((bMatrix[al].itemList[i]+bMatrix[a3].iten~List[i~)==2) 

return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[al1.itemList!i1+bMatrix(a41.itemList[il)=:2) 

return TRUE; /;there is a conflict 

1 

for (i=O;icMAXI'l?EM;i++){ 

if ((bMatrix[al].itenList[i]+bMatrix[a5].itemList[i])==2) 

return TRUE; //there is a conflict 

1 

for (i=O;i<YTITEM;i++){ 

if ((bMatrix[a2].itemList[il+bMatrix[a3].itemList[i])==2) 

return TRUE; lithere is a conflict 

I 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a2l.itemList[ili-bMatrix[a4].itemList[i])==2) 

return TRUE; //there is a conflict. 

I 
for 

1 
for 

i=O;i<MAXITEM;i++) ( 

if ((b~atrix[a2].itemList[il+bMatrix[a5].item~ist[i] )==2) 

return TRUE; //there is a conflict 



if ((bMatrix[a3~.itemSistli]+bMat.rix[a4l.itemList[il)==21 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a3].itemList[il+bMatrix~a5l.it.emList[il)==7) 

return TRUE; lithere is a conflict 

1 

for (i=O;iiMAXITEM;i++) i 
if ((bMatrix[a4].itemList:i l+bMatrix[a5].itemList[il)==21 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[all .itemList[i ]+b~atrix[a2].iternList[i1)==2) 

return TRUE; //there is a cor,llict 

1 

for 

1 
for 

1 

for 

for 

1 
for 

for 

i 

(i=O; i<MAXITEM; i++) { 

if ((bMa:rix[all.itemListiil~bMatrix[a31.itemList[il)==21 

return TRUE; /ithere is a contlict 

(i=O;i<MAXITEM;i++l{ 

if ((bMatrix[alj.itemList[i]+hMatrix[a4].itemList[i])==2) 

return TRUE; //there is a conflict 

(i=O;i<MAXITEM;i+t) ( 

if ((bMatrix[all.itemList[il+bMatrix[a51.itemList[il)==2) 

return TRUE; /ithere is a conflict 

if l(bMatrix[all.itemList[il+bMatrixia6l.itemList[il)==2) 

return TRUE; //there is a conflict 

i=O; i<MAXITEM;i++l { 

if (~bMatrix[a2].itemList[il+b~atrix[a3].itemList[i])==2) 

return TRUE; //there is a conflict 

i=O;i<MAXITEM;i++) { 

if ((bMatrix[a2].itemList[i]+bMatrix[a4j.itemList[i])==2) 

return TRUE; lithere is a corlflict 

for (i=O;i<MAXITEM;i++){ 

if ((o~atrix[a2].itemList[i]+bMatrix[a51.itemList[il)==2) 

ret-urn TRUE; //there is a conflict 



J 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a2].itemList[i]+hMat.rix[a6].iternLi~t[i])==2) 

return TRUE;  here is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a3].itemList[i]+bMatrix[a4].itemList[i])==2) 

return TRllE; i/t.here is a conflict 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a3].itemList[i]+bMatrix[a5].itemList[il)==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a3].iternList[i]+bMatrix[a6].iternList[ 

return TRUE; lithere is a conflict 

for (i=O;i<MAXITEM;i++){ 

If ((bMatrix[a41.itemList[il+bMatrix[a51.itemList[ 

return TRUE; lithere is a conflict 

1 
for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a4l.itemList[il+bMatrix[a6l.itemList[il)=-2) 

return TRUE; lithere is a conflict 

I 

for (i=O;i<MAXITEM;ia+) { 

if ((bMatrix[a5].itemList[il+bMatrix[a6].itemList[i])==2) 

return TRUE; /it.here is a conflict 

return FALSE; 

i 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[al].iternList[il+bMatrix[a2].iternList[i! )==2) 

return TRUE; //t.here is a conflict 

1 

for (i=O;i<MAXITEM:i++) { 

if ((bMatrix[al].itemList[il+bMatrix[a3].itemList[il)==2) 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[al].itemList[iI+bMatrixia41 .itemList[11)==2) 

return TRUE; //there is a conflict 

1 
for (i=O;i<MAXITEM;i++) { 



if ((bMatrix[al].itemList[i]+bMatrix[a5].itemList[il)==2) 

return TRUE; //there is a conflict 

} 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[al].itemList[il+bMatrix[a61.itemList[il)==2) 

return TRUE; //there is a conflict 

I 
for (i=O;i<MAXITEM; i++) { 

if ((bMatrix[al].itemList[i]+bMatrix[a7].itemList[i])==2 

return TRUE; /:there is a conflict 

I 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemList[l])==2 

return TRUE; //there is a conflict 

I 
for (i=O;i<MAXITEM; i++) { 

if ((bMatrix[a2].itemList[i]+bMatrix[a4].itemList[i] )==2) 

return TRUE; //there is a conflict 

I 
for 

I 
for 

I 
for 

1 

for 

I 
for 

(i=O;i<MAXITEM;i++){ 

if ((bMatrix[a2].itemList[i]+bMatrix[a5] .itemList[il)==2) 

return TRUE; //there is a conflict 

(i=O;i<MAXITEM;i++) { 

if ((bMatrix[a2].itemList[i]+bMatrix[a6] .itemList[il)==2) 

ret.urn TRUE; //there is a conflict 

(i=O;i<MAXITEM;i++){ 

if ( (bMatrix[a2] .it.emList. [i] +bMatrix[a7] .itemList [i] ) ==2) 

return TRUE: //there is a conflict 

(i=O;i<MAXITEM;i++) { 

if ((bMatrixLa31 .itemLlst[il+bMatrix[a4].itemList[l])==2) 

return TRUP: lithere is a conflict 

return TRUE; //there is a conflict 

} 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrixla31 .itemList[iI+bMatrix[a61 .itemList[i1)==2) 

return TRUE; //there is a conflict 

} 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a3].itemList[i]+bMatrix[a7l.itemList[i])==2) 

return TRUE; lithere is a conflict 

I 
for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a4].itemList[i]+bMatrix[a5].itemList[i])==2) 

return TRUE; lithere is a conflict 



i 
for 

I 

for 

1 

i=O; icMAX1TEM;i++) ( 

if ((bMatrix[a41.icemList[i]+bMatri~[a6].itemList[i] ) = = 2 )  

return TRUE; lithere is a conflict 

i=O;icMAXITEM;i++){ 

if ( (bMatrix[a4] .itemL~st[i ] +bYatrix[a7] .itemList[i] )==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++)( 

if I (bMatrix[a5] .itemList[i]+bMatrix[a6l.itemList[i])==2) 

return TRUE; /;there is a conflict 

1 

for 

) 

for 

1 

i=O;i<MAXITEM;i++){ 

if ((bMatrix[a5].itemList[i!+bMaLrix[a7].itemLi~t[i])==2) 

return TRUE; lithere is a conflict 

i=O;i<MAXITEM:i++){ 

if (lbMatrix[a6] .itemList[il+bMatrix[a?l .itemTJist[il )-=2) 

return TRUE; //there is a conflict 

int conflict8(int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8){ 

int 1; 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[al].itemList[il+bMa~rix[a2].itemList[i])==2) 

return TRUE; /ithere is a conflict 

I 

for (i:O;i<MAXITEM;i++) { 

if ( (bMatrix[all .itemLisr[il +bMatrix[a31 .itemTJist [il ) ==2) 

return TR3E; //there is a conflict 

1 

for (i=O;i<MAXITEM; i++) { 

return TRUE; //there is a conflict 

1 
for (i=O;i<MAXITEM;i++) { 

return TRUE: ;/there is a conflict 

1 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[all .itcmSist[iI+bMaLrix[a6].itemList[i])==2) 

return TRUE; //there is a conflict 
1 

for (i=O;icMAXITEM;i++){ 



i 

for 

if ((bMatrix[al].itemlJist[i]+bMatrix[a71.itemList[i])==2) 

return TRUE: //there is a conflict 

return TRUE; lithere is a conflict 

1 

for (i=O; i<MAXITEM; ii-+) I 

if ((bMatrix[a2l.itemLi.st[il+bMatrix[a3l.itemList[il)==2 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2].itemList[il+bMatrix[a4].itemList[il)==2 

ret.urn TRUE; iithere is a conflict 

I 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a2].itemList[ij+bMatrix[a5].itemList[i])==2) 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++)i 

if ((bMatrix[a2].item~ist[i]+b~atrix[a6].itemList[il)==2) 

return TRUE; /ithere is a conflict 

for (i=O;i<MAXITEM;i++) ( 

return TRUE; iithere is a conflict 

1 
for 

I 
for 

) 

i=O;l<MAXITEM;i++) ( 

if (ihMatrix[a2].itemList[i]+bMatrix[aB] .itemList 

return TRUE; //there is a conflict 

i=O;i<MAXITEM;i++) { 

if ((bMatrix[a3].itemList[il+b~atrix[a4].itemList 

return TRUE: /ithere 1s a conflict 

for (i=O;  M MAX ITEM; i+ + )  { 

if ((b~atrix[a3].itemList[i]+bMatrix[a5].itemList[i] )==2) 

return TRTJE; //there is a conflict. 

I 

for (i=O;i<MAXITEM;i++){ 

if ( (bMatrix[a3] .iternList [ ; . I  +bMatrix[a6] .itemList [il ) ==2) 

return TRUE; //there is a conflict 

1 
for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a3].itemList[i]+bMatrix[a71.itemList[il)==2) 

return TREE; ::'there is a conflict 

1 

for (i=O;i<MAXITEM;i+l) { 

if ((bMatrix[a3].itemList[i]+hMatrix[aBj .iternList[il)==2) 

return TRUE; //there is a conflict 



j 

tor (i=O;i<MAXI7rEM;i++) { 

if ((hMatrix[a4l.itemL,ist[i1+bMatrix[a5].itemL.ist[i!)==2) 

return TRIJE; //there is a conflict 

j 

for (i=O;i<MAXITEM;i++)i 

if ((bMatrix[a4].iternList[i]+bMatrix[a6l.itemList[il)==2) 

return TRUE; //there is a conflict 

j 

tor (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a4l.itemList.[il+bMatrix[a7JJite~~List[i])==2) 

return TRUE; lithere is a conflict 

1 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a4].iternList[ijibMatrix[a8!.iterrrList[i])==2~ 

return TRUE; //'there is a conflict 

1 
for (i=O;i<NAXITEM; i++) { 

if ((bMatrix[a5j .iternList [ij+bMaLrix[ah] .itemList[i] )==2) 

return TRUE; !ithere is a conflict 

I 
for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a5].itemList[ij+bMatrix[a7!.itemList[i] )==2) 

return TRUE: ;/there is a conflict 

1 

for 

1 

for 

I 

i=O;i<MAXITEM;i++){ 

if ((bMatrix[a5].itemList[i]+bMatrix!a8!.itemList[il)==2) 

return TRUE: !ithere is a conflict 

i=O;i<MAXITEM;i++) { 

if ((bMatrix[a6].itemList[l]+bMaLrixja7].itemList[i])==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a6].itemList[i]+bMatrix[a8j.itemList[il)==2) 

return TRUE; !/there is a conflict 

1 
for (i=O;i<MAXITEM;i++){ 

if ( (bMatrix!a7] .iternList[i]+bMatrix[a8] .itemList[iI )==2) 

return TRUE; !/there is a conflict 

i 

return FALSE; 

I 

int conflict9(int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8,int a9) { 

int i ;  

for (i=O;i<MAXITEM;i++); 



if ((bMatrix[al].itemList[i]+bMatrix[a2].itemList[i])==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++) i 

if ((hMatrix[al].itemList[i]+bMatrix[a3] .itemList[il)==2) 

return TRUE; Ilthere is a conflict 

1 

for 

1 

for 

I 

i=O;i<MAXITEM;i++) ( 

if ((bMatrix[al].itemList[i]+bMatrix[a4].itemList[il)==2) 

return TRUE; //there is a conflict 

i=O;i<MAXITEM;i++) ( 

if ((bMatrix[al].itemList[i]+bMat.rix[a5].itemList[i])==2) 

return TRUE; //there is a confllct 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrjx[al].it.emList[il+bMatrix[a6].itemList[i])==2) 

ret-urn TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[all.itemList[il+bMatrix[a7l.itemList~il)==2 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[al].itemList[i]+bMatrix[a8].itemList[i1)==2 

return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ( (bMatrix[all .it:emList [il +bMatrix[a91 .itemL 

return TRUE; /ithere is a conflict 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemL 

return TRUE; lithere is a conflict 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2].itemList[i]+bMatrix[a4].itemList[i])==2) 

return TRUE; //there is a conflict 

1 

for 

I 
for 

1 

j=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2].item~ist[ij+bMatrix[a5].itemList[i])=~2) 

return TRUE; //there is a conflict 

i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2].itemList[i]+bMatrix[a6].itemList[i])==2) 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrixLa21 .itemListiil+bMatrix[a7].itemList[i])==2) 

return TRUE: //there is a conflict 



I 

for (i=O;i<MAXITEM;i++l { 

if ((bMatrix[a2].itemList[ij+bMatrix[a8].itemI~ist[il)==2) 

return TRUE; /:'there is a conflict. 

1 

f o r  (i=O:i<MAXITEM;i++) ( 

if ((bMatrix[a2].item~ist[i]+bMatrix[a9] .itemList[i] )==2) 

return TRUE; /;there is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrjx[a3].itemList.[i]+bMatrix[a4].itemList[il)==2) 

return TRUE; /ithere is a conflict 

I 
for 

1 

for 

1 

i=O;i<WITEM;i++){ 

if ((bMatrix[a3i.itemList[il+bMatrix[a5].itemList[i])==2) 

return TRUE; /;there is a conflict 

i=O;i<MAXI'I'EM;i++l { 

if ((bMatrix[a3].item~ist[i]+bMatrix[a6] .itemList[il)==2) 

return TRUE; !;there is a conflict 

for ( ~ = O ; ~ < M A X I T E M ; ~ ~ + ) (  

if ( (b~atrixia31 .itemList.ii ]+bMatrix[a7] .itemList[il )==2) 

return TRUE; lithere is a conflict 

I 
for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a3l.itemList[il+bMatrix[a8l.itemList[ 

return TRUE; !ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++l( 

if ((bMatrix[a3].itern~ist[i]+bMatrix[a9] .itemList[ 

return TRUE; !/there is a conflict 

} 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a41.itemList[i]+bMatrix[a5l.itemList[il)==2) 

return TRUE; lithere is a conflict 

I 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a4].iternList[i]+bMatrix[a61 .itemList[i])==2) 

return TRUE; !/there is a conflict 

I 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a4].itemList[i]+bMatrix[a7].itemList[i~)==21 

return TRUE; /ithere is a conflict 

I 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a4].itemList[i]+bMatrix[a8].itemList[i1)==2) 

return TRUE; //t.here is a conflict 

1 
for (i=O;i<MAXITEM;i++)( 



if ( (bMatrix[a4] .itemList [i] tbMatrix[a9] .it.emList [i] )==2) 

return TRUE; lithere is a conflict 

} 

for (i=O;i<MAXITEM;itt) i 

if ((bMatrix[a5J.itemListiilthMattrix[a6l.itemList[il)==2) 

return TRUE; lithere is a conflict 

} 

for (i=O;i<MAXITEM;i-kt) ( 

if ((bMatrix[a5].itemList[i~+bMatrix[a7].itemList[i1)==2) 

ret,arn THUE; /;there is a conflict 

i 

for (i=O;i<MAXITEM;it+)( 

if ((bMatrix[a5].itemList.[i]tbMatrix[a8].itemList[il)==2) 

return TRUE; /;there is a conflict 

1 

for (i=O;i<MAXITEM;itt) ( 

if ((bMatrix[a5].itemList[i]tbMatrixja9].itemList[il)==2) 

return TRUE; /:there is a conflict 

1 

for (i=O;i<MAXITEM;itt) ( 

if ((bMatrix[a6].itemList[iltbMatrix[a71.itemList[il)==2) 

return TRUE; /ittiere is a conflict. 

'i 

for (i=O;i<MAXITEM;it+) ( 

if ((bMat.rix[a6].itemListiil tbMatrix[a8I1itemList[.i])==2) 

return TRUE; iithere is a conflict 

1 
for 

1 

for 

i 

return TRUE; /;there is a conflict 

(i=O:i<MAXITEM;it+) ( 

if ((bMatrix[a7].itemList~i]+bMatrix[a8].itemList 

return TRUE; lithere is a conflict 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a7].itemListiij+bMatrix[a9].itemList 

return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;it+)( 

int conflictlO(int a1,int a2,int a3,int a6,int a5,int a6,int a7,int a8,int a9,int a10){ 

int i; 



for (i=O; i<MAXITEM;i++l { 

if ((bMarrix[al] .itemL,ist [il+hMatrix[aZ] .itemlist 

return TRUE; iithere is a confiict 

for (i=O;i<MAXITEM;i++) i 

if ((bMatrix[al].item;ist[i]+bMatrix[a3].itemList 

return TRUE; /ithere is a conflict. 

I 
for 

i 

for 

I 

for 

1 
for 

1 

for 

i 

for 

1 

for 

i 

for 

1 

for 

I 

for 

? 

for 

i.=O;i<MAXITEM; i++) { 

if ( (bMatrix[al] . iternlist [i]+bMatrix[a4]. itemList[i] )==2) 
return TRTJE: .!/'there is a conflict 

i=O;i<MAXITEM;i++){ 

if ((bMatrix[al].itemList[i]+bMatrix[a51.itemList[i])==2) 

return TRUE: //there is a conflict 

(i=O;i<MAXITEM;i++) { 

if ((bMatrix[alj.itemListli!+bMatrix[a61.itcmList[il)==2l 

return TRUE; !/there is a conflict 

(i=O;i<MAXITEM;i++l{ 

if ((bMatrix[al].itemList[i]+hMatrix[a7].itemList[i] )==2) 

ret-urn TXUE; /ithere is a conflict 

(i=O;i<MAXITEM;i++)( 

if ((bMatrix[al].itemList:i]+bMatrix[a8].itemList[i])==2) 

ret-urn TRUE; /ithere is a conflict 

(i-O;i<MAXITEM;i++l { 

if ((bMatrix[all.itemList[i~+bMatrix[a9].itemList[il)==2) 

return TRUE; /;there Is a conflict 

(i=O; i<MAXITEM; i++) { 

if !(bMatrix[al].itemList[i]+bMa~rix[alO].itemList[i])==21 

return TRUE; //there is a conflict 

(i=O; i<MAXITEM;i++) { 

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemiist~i~~==?) 

return TRUE; !/there is a conflict 

(i-O;i<MAXITEM;i++) ( 

if ((bMatrix[a21.itemLis~!iI+bMatrixla41 .itemList[i]!==2) 

return TRUE; /;there is a conflict 

(i=O;i<MAXITEM;i++) { 

if ((bMatrix[a2].itemList[ij+bMatrix[a5].itemList[i.l)==2) 

return TRUE; /,'there is a conflict 



if ((bMatrix[a2].itemt,ist[i]+hMatrix[a6] .itemList[il )==2) 

return TRUE; /;there is a conflict 

1 

for (i=O;i<MAXITEM;ia+) { 

if ((bMatrix[a2].itemt,ist[il+bMatrix[a7l .itemList[il)==2) 

return TRUE; !ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ( (bMatrix[a2] . iternList [il +bMatrix[aEl .itemList 
return TRUE; /ithere is a conflict 

1 

for (i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a2] .itemList[i]+bMatrix[a9] .itemList[ 

return TRUE; iithere is a conflict 

1 
for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a2].itemList[i]+bMat.rix[a101.itemList[il)==2) 

return TRUE; !ithere is a conflict 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrixra31 .itemList[i!+b~atrix[a4!.itemList[il)==2) 

return TRUE; lithere is a conflict 

i 

for (i=O;i<MAXITEM;i++) i 

if ((bMat.rix[a3].itemList[i]+bMatrix[a5].itemList[il)==2) 

return TRUE: lithere is a conflict 

1 

for 

1 
for 

1 

return TRUE; /;there is a conflict 

(i=O; i<MAXITEM; i++) { 

if ((bMatrix[a3l.itemList[il+bMatrix[a7].itemList[i])==2 

return TRUE; /;there is a conflict 

for (i=O;i<MAXITEM;i++)( 

if ((bMatrix[a3].itemList[i]+bMatrix[a8~.itemList[i1)==2 

return TRUE; /ithere is a conflict 

1 

for 

1 
for 

1 

i=O;i<MAXITEM;i++) ( 

if ((bMatrix[a3].itemList[i]+bMatrix[a9].itemList[i])==2) 

return TRUE; lithere is a conflict 

i=O;i<MAXITEM;i++){ 

if ((bMatrix[a3].itemList[iI+bMatrix[a101 .itemList[il)==2) 

return TRUE; /;there is a conflict 

for (i:O; i<MAXITEM; i++) { 

if ((b~atrix[a4].itemI~ist[i]+bMatrix[a5].itemList[i] )==2) 

return TRUE; /;there is a conflict 



1 

for (i=O;i<MAXITEM;i++){ 

if ((bMatrix[a4].itemList[ij+bMatrix[a6].itemList[i])==2 

return TRUE; //there is a conflict 

for (i=O;i<MAXITEM:i++)i 

If ( (bMatrix[a4] .itemList[i I +bMatrix[a7] .itcmList [il )-=2 
return TRUE; lithere is a conflict 

} 

for (i=O;i<MAXITEM;i++) { 

i 

for 

1 

for 

} 

for 

1 

for 

j 

for 

1 

tor 

1 

for 

if ((bMatrix[a4].itemList[i]+bMatrix[a8l.itemList[il)==2) 

return 'TRIJE; iithere is a confiict. 

i=O;l<MAXITEM;i++) { 

if ((bMatrix[a4l.itemList[i]+bMatrix[a9].itemI2ist[i])==2) 

return TRUE; /ithere is a conflict 

i=O;i<MAXITEM;i++){ 

if ((bMatrix[a4J.iten~List[i]+bMatrix[alOl.itemList[i])==2) 

return TRUE; 'ithere is a conflict 

(i=O; i<MAXITEM; i+t) i 

if ((bMatrix[a51.itemList[il+bMatrix[a6].itemList[il)==2) 

return TRUE; iithere is a conflict 

(i=O;i<MAXITEM;i++) { 

if ((bMatrix[a51.itemList[il+bMatrix[a7l.itemList[i])==2) 

return TRUE; iithere is a conflict 

(i=O; i<MAXITEM;i++l { 

if ((bMatrix[a5].itemList[i]+bMatrix[a8].itemList[i])==2) 

return TRUE; lithere is a conflict 

(i=O;i<MAXITEM;i++l( 

if ((bMatrix[a5l.itemList[~1+bMatrixla9l.itemList[il)==2) 

return TRUE; iithere is a conflict 

(i=O;i<MAXIrI'EM;i++) { 

if ((bMatrix[a5].itemList[il+bMatrix[alOl.itemList[il)==2) 

return TRUE; lithere is a conflict 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a6!.itemListlil+bMatrix[a7].itemList[i])==2) 

return TRUE; /;there is a co17.flicL 

for (i=O;i<MAXITEM;i++) { 

if ((bMatrix[a6].itemList[i]tb~atrix~a8].ltemList[i])==2) 

return TRUE; lithere is a conflict 

for (i=O;i<MAXITEM;i++){ 

17 1 



if ( (bMatrix[a6] . itemL,ist [i] +bMat.rix[a9]. i te~nList [il)==2) 

return TRUE; //there is a conflict 

1 

for (i=O;i<MAXITEM;i++i ( 

if ( (bMatrix[a6] .itemListIil+~~Matrix[alOl .itemList r1.1 ) = = 2 )  

return TRUE; //thers i~s a conflict 

1 
for (i=O;i<MAY.ITEM;i++) { 

if ((bMatrix[a7].iteniList[ij+bM~trix[a8].itemListli])==2~ 

return TRUE: lithere is a conflict 

1 
for (i=O;i<MAXITEM;i+i) { 

if ( (bMatrix[a7] .itemlist [ i l  +bMatrix[a9j .itemL,ist [i] )==2) 

return TRUE; /ithere is a conflict 

I 
for (i=O; i<MAXTTEM;i++) ! 

if ((bMatrix[a8].itemList[il+bMatrix[a9].itemList[i])==2) 

return TRUE; lithere is a conflict 

} 

for (i=O;i<MAXiTEM;i++){ 

if ((bMatrix[a81.itemLis:lil+bMatrix[alOl.itemList[ill==2) 

return TRUE; /ithere Is a conflict 

I 

for (i=O;i<MAXITEM;i+i { 

if ((bMatrix[a9].itemList[ij+bMatrix~].itemList[i])==2) 

return TRUE; .';there is a conflict 

1 
return FALSE; 

1 

//Once the bid with highest bidding price or highest profit is found, 

//all conflict bids will be deleted. 

/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

int auctionCompete(int m a ~ ) {  

int m,n; 

if (bMatrix[maxl .sold==DELETEI)) 

return 0; 

if (bMatrix[maxl .sold==FALSE) { 

bMatrix[maxl.sold=TRUE; 

processedBidder++; 

I 
for (m=O;m<bidderListIdx;m++) ( 

if (bMatrix[ml.sold==FALSE) { / /  

for (n=O;n<MAX!.TEM;n++) ( 

if ( (l>Matrix(maxl. itemList in )  +bMatrix[ml .ItemList [n] ) = = 2 )  { 

bMatrix [n!J . sold=DELETED; 
processedBidder+ t;  

break; 



1 

return 0; 

1 

//Reads input data into the internal memory strxctures. 

void readJnput (char 'argvl I ) { 

char buf[81]; 

lnt r;empl=O; 

double temp2=0.0; 

FILE *fpl, 'fp2; 

if ((fpl = fopen(argvll1, "r"))-=NULL){ 

printf("Cannot open citem file>\nV); 

exit (11; 

1 

if ((fp2 = fopen(argv[2], "r") )==NULL)! 

prir~tf ("Cannot open <bid Eile>\nV); 

exit ill; 

1 
while (TRUE){ 

if (tgets(buf, MAXLEN, fpl)==NULL) 

break; 

processItemInput(buf, &templ, &temp2); 

iMatrixItempl1 .iternPrice=ternp2; 

1 

while (TRUE) ! 

if (fgets(buf, MAXLEN, €p2)==N>LLI 

break; 

processRidInput (buf) ; 

1 

1 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//Reads items-file into iMatrix. 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

void processItemInput(char *buf, int *item"~, double *itemvalue) { 

int i=O,j=O, process=FALSE; 

char temp [MAXLEN 1 ; 

whlle (TRUE) { 

if (process==TRUE 1 1  1,MAXLEN) 
break; 

else if (buf [i++I==';'l i 

whlle (TRUE) { 

l f  ibu•’[ll==')'l{ 

process=TRUE; 

break; 



temp[j++]=buf[1]; 

1++; 

1 

temp[jl='\Ot; 

*itemNo=atoi(temp); 

1 
else 

i++; 

j=O; 

process=FALSE; 

while (TRUE) { 

if (process==TRUE I / i>MAXLEN) 

break; 

else if (buf [i++l==' ( ' )  { 

while (TRUE) { 

if (buf[i]==')')( 

process=TRUE; 

break; 

1 
temp[j++l=buf[il ; 

1++; 

1 
temp[j1='\Ot; 

*itemValue=atof(temp); 

I 

else 

i++; 

I 

1 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//Reads bids-file into bMatrix. 

void processBidInput(char *buf) i 

ink i=O,j=O, process=FALSE; 

char temp[MAXLENl; 

while (TRUE) { 

if (process==TRUE 1 1  i>MAXLEN) 
break; 

else if (buf [i++] = = '  ( ' ) ( 

while (TRUE) { 

if (b 

} 

temp [ 

i++; 

u f [ i  I==')') { 

process=TRUE; 

break; 

j++]=buf [i]; 



else 

i++: 

j=o; 

process=FALSE; 

while (TRUE) I 

if (process==TRUE ( 1  i>MAXLEN) 
break; 

else if (buf[i++]=='{')( 

while (TRUZI { 

if (buf[i]=-')') { 

process=TKUE; 

break; 

1 
temp[j++l=buf[il; 

1 + + ;  

1 

temp[jl='\07; 

1 

else 

1 ++ ; 

j = O ;  

process=FALSE; 

while (TRUE) ( 

if (process==TRUE ( i>MAXLEN) 

break; 

else if (buf[i++l=='{') ( 

while (TRUE) { 

if [buf[ij==')'){ 

process=TRUE; 

break; 

1 

ternp[j++l=huf [ i l ;  

I++; 

1 
temp[jl='\O'; 

bMatrix[bidderI.istIdxl .bidPrice=atof(temp); 

1 
else 



APPENDIX C 

Source Code for Greedy Search Technique 

This appendix provides the source code of the greedy search technique (GST) 

program used in the evaluation. 

Author: Andy Law 

Date: 2003 

Description: 

The program uses greedy search technique (GST) to identify winners in a 

combinatorial auction. 

Program Execution Format: 

bft.exe items--file.txt bids-fj l.e.txt 

#def ine MAXLEN 8 0 

#define MAXITEM 2 0 
#define MAXBIDDER 1000 

#define TRUE 1 

#detineFALSE 0 
#define DELETED - 1 
#define NO-ITEM -- 2 

typedef struct itemMatrix iiitern information ADT 

i 
double itemprice; 

1 ITEMMATRIX; 

typedef struct bidMatrix 

( 
int bidderID; 

int itemList[MAXITSM]; 

double subrotalvalue; 

double bidprice; 

!/bid information ADT 



int sold; //1 if sold, -1 if deleted 
j BIDMATRIX; 

BIDMATRIX bMatrix[MAXBIDDER]; //bids information 

ITEMMATRIX iMatrixIMAXITEM1; //items information 

int bidderListIdx=O; //total number of bids 

int processedBidder=O; 

int winner [MAXBIDDER] ; 

double tempRev=O.O; 

void readInput(char *argv[lj; 

void processlternInput(char *buf, int *itemNo, double *item\ialue); 

void processBidInput(char *buf); 
void initialize(); 

void processAuction ( ) ; 

int auctionCornpete(int max); 

void displayResult0; 

int main (int argc, char* argv[]) ( 

clock-t start, finish; 

double duration; 

if (argc ! = 3 )  

{ 

printf("Usaye: auction <item_file> <bid-file>\nU); 

exit (1); 

1 
start = clock() ; 

printf ( "-----------.-----------A- - -. - - - - - - - - - - - - - -. - - - - - - - - - \n" ) ; 
printf( " Greedy Search - Beginning\nn); 
printf( .......................... \n") ; 

initialize0 ; 
readlnput(argv); 

processAuction0; 

displayResult0; 

finish = clock(); 
printf ( " - - - - - - - - - - - - - - - - - - - - .. - - - - .. \nu ) ; 

printf( " Gready Search - Endixg\nV); 
printf( -------------------------- ?nu); 

duration = (double) (finish - start) / CLOCKS-PER-SEC; 

printf( "8.61f seconds\nn, duration 1 ;  
return 0; 

//Initializes the matrix for storing the auction information 

void initialize() { 

int i, j ; 
for (i=O;l<MAXBIDDER;l++) 

winner[i]=-1; 

for (i=O;i<MAXBIDDER;i++) { 

bMatrix[i].bidderID=-1; 



bMatrix[i] .bi~dPrice=-1.0; 

bMatrix[i].sold=FALSE; 
bMatrix[il.subtotalValue=O; 

for (j=O;j<MAXlTEM;j++) 

bMatrix[i].itemList[j]=-2; //must be even number 

1 

//Displays the auction resu1.t~ to the command screen 

void displayResult0 { 

int i, j ; 

double rev=0.0; 

printf ( "BidderLD Bid Price 

for (i=O;i<bidderListIdx;i++) ( 

if (bMatrixli] .sold== TRUE) { 

printf !"%5i ",bMatrix[i].bidderID) ; 

print•’("%-15.2f",bMatrix[i].bidPrice); 

rev=revtbMatrixlil .bidprice: 

for (j=O;j<MAXITEM;j+t){ 

if (bMatrix[il.itemList[jl==l) 

printf ("%i " ,  j) ; 

1 
printf("\nW); 

1 
1 
printf 

printf 

printf 

( " \ n V ) ;  
("Total Revenue = %.2fW,rev); 

("\nV); 

//Auction is processed. 

void processAuction0 I 
int i=O, highest~idIdx=-1; 

double highestPrice=O.O; 

while (1) //always true 

i 
highestBidIdx=-1; 

higtiestPrice=O. 0; 

if (processedBidder == bidderListIdx) 

break; 

for (i=O;i<bidder~istIdx;i++) 

I 
if (bMatrix[i].sold==FALSE) 

//Once the bid with highest bidding price or highest profit is found, 

//all conflict bids will be deleted. 



int auctionCompete(int max) { 

int m,n; 

if (bMatrix[maxl .sold==DELETED) 

return 0; 

if (bMatrix[maxl.sold==FALSE)i 
bMatr~x[max~.sold=TRUE; 

processedBidder ++ ; 

I 
for (m=O;m<bidderListIdx;m++)l 

it ibMatrix[ml .sold==FALSE) { / /  

for (n=O;n<MAXITEM;n++) { 

i.•’ 
( (bMatrix[maxl .itemList [nj +bMatrix[ml .lternList in] ) ==2) { 

bMatrix[m].sold-DELETED; 

processedBidder++; 

break; 

I 
I 
return 0; 

I 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//Reads inputs into the internal memory structures. 

void readInput(char *argv[l) { 

char buf[81]; 

int templ=O; 

doub 

FILE 

if ( 

I 

*fpl. *fp2; 
(fpl = fopen(argv[lj, "rU))==NULLI{ 

printf("Cannot open <item Eile>\nU); 

exit (1); 

if ((fp2 = fopen(argv[2], "rU))==NULL){ 

prlntf("Cannot open <bid file>\nW); 

exlt (1); 

I 
while (TRUE) { 

if (fgets(buf, MAXLEN, Epl)==NULL) 

break ; 

processItemInpiit(but, &templ, &temp2); 

iMat.rix[templ].iternPrice=temp2; 

//printf("%i %.2f\nW,temp1, temp2 

I 
while (TRUE) { 

if (Egets(buf, MAXLEN, fp2)==NULL 

break; 

processBidInput ibuf ; 

1 

I 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

//Reads items-file.txt into iMatrix. 
/ / - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

void processItemInput(char *buf, int *itemNo, double *itemvalue) { 

int i=O,j=O, process=FALSE; 

char temp[MAXLENl ; 



while (TRUE) { 
if (process==:'Rl.JE 1 j i'.MAXLENi 

break; 

else i f  ( bu f  ii++l=='{')i 
while (TRUE) { 

if (t~uL[il==')'){ 

process=TRUE; 
break; 

temp[j++l=buflil; 

1 + t ;  

i 
temp[jl='\O'; 
*itemNo=atoi(temp); 

1 
else 

i t + ;  

I 

j=O; 
grocess=FALSE; 

while (TRUE) [ 
if (process-=TRUE i 1 i>MAXLEN) 

break ; 

else if ( b u f [ i i - + I = = '  ( ' )  { 

while (TRUE) { 
if (buf[il==')'){ 

process=TRUE; 

break; 

1 
temp(j++l:buf [il; 

1-+; 

.t 
else 

ill; 

1 



1 
trmp[jl='\O'; 
bMatrlx [biclderListIdx] . bidderID=atoi i temp) ; 

1 
else 

j =O ; 
process=FALSE; 

while (TRUE) ( 
l f  (process==TKUE I I L>MAXLEN) 

breok ;  

else if (buf[:-+I=='{') { 

while (TRUE) { 

if (buf[il-=')') { 

process=TRUE; 
break; 

> 
else 

j = O ;  

process=FALSE; 
while (TRUE) { 

if (process==TKtTE 1 1 i>MAXLEN) 

break; 

else if (buf[i++l==' { ' )  ( 

while (TRUE) ( 
if (buf[il==')') { 

process=TRUE; 

break; 

1 
temp[j++]=buf [il; 

1++; 

1 
temp[jl='\Ot; 
bMatrix:bidderListIdxl.bidPrice=atof(temp); 

1 
else 

i++; 

1 
bidderListIdx++; 

1 

//Stores those items that are wanted by particular bids in bidMatrix 

void processBidItem(char itemllst [ 1 ) ( 

char buf[10]; 

int len = strlen(itemL1st); 

int i=O, j=O, itemLlstIdx=-1; 



double subtotal=O.O; 

while (TRUE) ( 

if (i>len) 

break; 

else if (itemList[il==' ' / I itemList[il=='\O') ( 

buf [j]='\O'; 
1++; 

j=O; 

itemListIdx=atoi(buf); 

bMatrix[bidderListIdx].itemList[itemListIdx]=TRUE; 

subtotal=subtotal+i~atrix[i:emlistIdx] .itemprice; 

1 
else 

buf [j++]=it.emList[i++l; 

1 
bMatrix[bidderListldx] .subtotalValue=subtotal; 



BIBLIOGRAPHY 

[Agrawal et al., 19931 R. Agrawal, T. Imielinski, and A. Swami. Mining association rules 
between sets of items in large databases. In Proceedings of 1993 ACM-SIGMOD 
International Conference on Management of Data (SIGMOD'93), pages 207-2 16. 

[Agrawal and Srikant, 19941 R. Agrawal and S. Sarawagi. Fast algorithms for mining 
association rules in large databases. In Research Report RJ9839, IBM Almaden 
Research Center. 

[Agrawal and Srikant, 19951 R. Agrawal and S. Sarawagi. Mining sequential patterns. In 
Proceedings of International Conference on Data Engineering (ICDE), pages 3- 
14. 

[Agrawal et al., 19961 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. 
Verkamo. Fast discovery of association rules. Advances in Knowledge Discovery 
and Data Mining, pages 307-328. AAAIIMIT Press. 

[Agrawal et a1.,1997] R. Agrawal, A Gupta, and S. Sarawagi. Modeling multidimensional 
databases. In Proceeding 1997 lnternational Conference Data Engineering(ICDE), 
pages 232-243. 

[Agrawal et al., 20001 R. Agrawal, C. Aggarwal, and V.V.V. Prasad. A tree projection 
algorithm for generation of frequent itemsets. In Journal of Parallel and 
Distributed Computing. 

[Aggarwal and Yu, 19991 C.C. Aggarwal and P.S. Yu. A new framework for itemset 
generation. In Proceedings 1998 of ACM Symposium on Principles of Database 
Systems (PODS), pages 18-24. 

[Andersson et a1.,2000] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer 
programming for combinatorial auction winner determination. In ICMAS, pages 
39-46. 

[Banks et al., 19891 J.S. Banks, J.O. Ledyard, and D.P. Porter. Allocating uncertain and 
unresponsive resources: an experimental approach, Rand Journal of Economics, 
vol. 20, 1, pages 1-25. 

[Bichler, 19991 Martin Bichler. A roadmap to auction-based negotiation protocols for 
electronic commerce. In Proceedings of the 33rd Hawaii International Conference 
on System Sciences. 

[Bjomdal and Jornsten, 20001 Mette Bjurndal and Kurt Jemsten. An Analysis of a 
combinatorial auction. Department of Finance and Management Science, 
Norwegian School of Economics and Business Administration, Norway. 

[Boutilier ct al., 19991 C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions 
for the allocation of resources with complementarities. In Proceedings of IJCAI. 
Pages 527-534. 



[Brin et al., 1997al S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: 
generalizing association rules to correlations. In Proceedings of 1997 ACM- 
SIGMOD International Conference on Management of Data (SIGMOD), pages 
265-276. 

[Brin et al., 1997bl S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset 
counting and implication rules for market basket analysis. In Proceedings of 1997 
ACM-SIGMOD International Conference on Management of Data (SIGMOD), 
pages 255-264. 

[Case, 20011 James Case. Mathematical challenges of combinatorial auction design. 
SIAM News, Volume 34, Number 5. 

[Cooper and Steinberg, 19741 L. Copper and D. Steinberg. Methods and applications of 
linear programming. W.B. Saunders, Philadelphia. 

[Cramton, 19971 P. Cramton. The FCC spectrum auctions: an early assessment. Journal 
of Economics and Management Strategy 6:3, pages 43 1-495. 

[Cramton and Schwartx, 20001 P. Cramton, J.A. Schwartx. Collusive bidding: lessons 
from the FCC spectrum auctions. Journal of Regulatory Economics 17(3), pages 
229-252. 

[de Vries and Vohra, 20001 Sven de Vries and Rakesh Vohra. Combinatorial auctions: A 
survey. INFORMS Journal on Computing, Volume 15, No. 3. 

[Dunham, 20031 Margaret H. Dunham. Data mining. Pearson Education, Inc. New 
Jersey, USA. 

[Fujishima et al., 19991 Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. 
Taming the computational complexity of combinatorial auctions: Optimal and 
approximate approaches. In IJCAI, pages 548-553. 

[Gonen and Lehmann, 20001 R. Gonen, D. Lehmann. Optimal solutions for multi-unit 
combinatorial auctions: Branch and bound heuristics. In Proceeding of ACM 
Conference on Electronic Commerce (ACM-EC), pages 13-20. 

[Goodrich and Tamassia, 20021 M.T. Goodrich and R. Tamassia. Algorithm Design. John 
Wiley & Sons. 

[Graves et al., 19931 R. Graves, J .  Sankaran, and L. Schrage. An auction method for 
course registration, Interfaces, 23, 5. 

[Han et al., 20001 J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate 
generation. In Proceedings of 2000 ACM-SIGMOD International Conference on 
Management of Data (SIGMOD), pages 1-12. 

[Han and Fu, 19951 J. Han and Y. Fu. Discovery of multiple-level association rules from 
large databases. In Proceedings of 1995 International Conference on Very Large 
Data Bases (VLDB), pages 420-43 1. 

[Han and Kamber, 20011 Jiawei Han and Micheline Kamber. Data mining: concepts and 
techniques. Morgan Kaufmann Publishers, San Diego, CA, USA. 



[Haeussler et al., 20021 Ernest F. Haeussler, Richard P. Paul, and Tech Laurel. 
Introductory mathematical analysis for business, economics and life and social 
sciences, 10th edition. Prentice-Hall, Inc. 

[Hoffman and Padberg, 19931 K. Hoffinan, and M.W. Padberg. Solving airline crew 
scheduling problems by branch and cut, Management Science, 39,657-682. 

[Holte, 20011 Robert C. Holte. Combinatorial auctions, knapsack problems and hill 
climbing search. In the Proceedings of AI'2001 (the Canadian conference on 
Artificial Intelligence), a volume in Springer's LNAI series. 

[Hoos and Boutilier, 20001 Holger Hoos and Craig Boutilier. Solving cotnbinatorial 
auctions using stochastic local search. In Proceedings of the National Conference 
on Artificial Intelligence (AAAI), pages 22-29. 

[Huberman et al., 19971 Bernardo A Huberman, Rajan M. Lukose, and Tad Hogg. An 
economics approach to hard computational problems. Science, 275:5 1-54. 

[Huberman et al., 20001 Bernado A Huberman, Tad Hogg and Arun Swami. Using 
unsuccessful auction bids to identify latent demand, Xeror Palo Alto Research 
Center. 

[ILOG, 20051 ILOG. ILOG AMPL CPLEX Systemversion 9.0 User's Guide, pages 64- 
66. 

[Jackson, 19761 C. Jackson. Technology for spectrum markets, Ph. D. Thesis submitted 
to the Department of Electrical Engineering, School of Engineering, MIT. 

[Johnsonbaugh and Schaefer, 20041 Richard Johnsonbaugh and Marcus Schaefer 
Algorithms. Pearson Education, Inc. New Jersey, USA, pages 429-482. 

[Karp, 19721 R. M. Karp. Reducibility among combinatorial problems. Complexity of 
Con~puter Computations, Plenum Press, NY, pages 85-1 03. 

[Kelly and Steinberg, 20001 F. Kelly., R. Steinberg. A combinatorial auction with 
multiple winners for universal services. Management Science 46 (4), pages 586- 
596. 

[Klemperer, 20001 Paul Klemperer. The economic theory of auctions. Edward Elgar 
Publishing. 

[Krishna, 20021 Vijay Krishna. Auction theory. Academic Press, pages 1 - 10,223 - 232. 

[Lavi and Nisan, 20001 Ron Lavi and Noam Nisan. Competitive analysis of online 
auctions. In Proceedings of the 7"" ACM Conference on Electronic Commerce. 

[Lawler, 19851 E. L. Lawler. The travelling salesman problem: A guided tour of 
combinatorial optimization. Wiley. New York. 

[Lawler et al., 19921 E. L. Lawler, J. K. Lenstra, A. Kan, and D. B. Shmoys. The 
travelling salesman problem. Wiley Interscience. 

[Lehmann et al., 19991 D. Lehmann, L. O'Callaghan, and Y. Shoham. Truth revelation in 
rapid, approximately efficient cotnbinatorial auctions, manuscript. 



[Leyton-Brown et al., 2000al Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. 
Towards a universal test suite for combinatorial auction algorithms. In ACM 
Conference on Electronic Commerce, pages 66-76. 

[Leyton-Brown et al., 2000bl K. Leyton-Brown, M. Tennenholtz, and Y. Shoham. An 
algorithm for multi-unit combinatorial auctions. In Proceedings of AAAI. 

[Levitin, 20031 Anany Levitin. The design & analysis of Algorithms. Addison Wesley. 

[Lustig and Puget, 20011 Irvin J. Lustig and Jean-Francois Puget. Program Does Not 
Equal Program: Constraint Programming and Its Relationship to Mathematical 
Programming. In Interfaces 3 1 : 6 pages 29-53. 

[Mannila et al., 19941 H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms 
for discovering association rules. In Proc. AAA1'94 Workshop Knowledge 
Discovery in Databases (KDD'94), pages 18 1-192. 

[Miller, 20001 Ronald E. Miller. Optiinization. New York, John Wiley & Sons, Inc. 

[Nemhauser and Wolsey, 19991 G.L. Nemhauser and L.A. Wolsey. Integer and 
Combinatorial Optimization. John Wiley & Sons. 

[Nisan, 20001 Noam Nisan. Bidding and allocation in combinatorial auctions. In ACM 
Conference on Electronic Commerce, pages 1 - 12. 

[Olson et al., 20001 M. Olson, P.J. Ledyard, J .  Swanson, and D. Torma. The first use of a 
combined value auction for transportation services, Social Science Working Paper 
No. 1093, California Institute of Technology. 

[Papadimitriou and Steiglitz, 19981 C.H. Papadimitriou and K. Steiglitz. Combinatorial 
optimization: Algorithms and complexity. Dover Publications. 

[Park et al., 19951 J.S. Park, M.S. Chen, and P.S. Yu. Efficient parallel mining for 
association rules. In Proceedings of 4"' International Conference on Information 
and Knowledge Management, pages 3 1 -36. 

[Park et al., 20001 S. Park, W.W. Chu, J. Yoon, and C. Hsu. Efficient searches for similar 
subsequences of different lengths in sequence databases. In Proceedings of 2000 
International Conference on Data Engineering (ICDE), pages 23-32. 

[Parkes, 19991 David C Parkes. Optimal auction design for agents with hard valuation 
problems. In Agent-Mediated Electronic Commerce Workshop at the 
International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 
1999. 

[Pasquier et al, 1 9991 N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering 
frequent closed itemsets for association rules. In Proceedings of 7'" International 
Conference on Database Theory (ICDT), pages 398-416. 

[Pei et al., 20001 J. Pei, J. Han, and R. Mao, CLOSET: An efficient algorithm for mining 
frequent closed itemsets. In Proceedings of 2000 ACM-SIGMOD International 
Workshop Data Mining and Knowledge Discovery (DMKD), pages 11 -20. 

[Pekei: and Rothkopf, 20001 Aleksandar Pekei: and Michael H. Rothkopf. Combination 
auction design. School of Business, Duke University 



[Rassenti et al., 19821 S J Rassenti, V L Smith, and R L Bulfin. A combinatorial auction 
mechanism for airport time slot allocation. Bell J. of Economics, l3:402-4 17. 

[Ronen, 20011 Amir Ronen. On approximating optimal auctions (extended abstract). In 
the 31" ACM Conference on Electronic Commerce. 

[Rothkopf et al., 19981 Michael H Rothkopf, Aleksandar PekeC, and Ronald M Harstad. 
Computationally manageable combinatorial auctions. Management Science, 
44(8):1131-1147. 

[Rothkopf et al., 20001 Michael H Rothkopf and Aleksandar PekeC. Making the FCC's 
first combinatorial auction work well. An official filing with the Federal 
Communications Commission. 

[Russell and Norvig, 20031 Stuart Russell and Peter Norvig. Artificial intelligence. 
Pearson Education, Inc. New Jersey. USA, pages 712 - 762. 

[Sandholm, 19991 Tuolnas Sandholm. An algorithm for optimal winner determination in 
combinatorial auctions. In IJCAI, pages 542-547. 

[Sandholm, 20001 T. Sandholm. Issues in computational Vickrey auctions. In 
International Journal of Electronic Commerce 4 (3) (2000) 107-1 29. 

[Sandholm et al., 2001al T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner 
determination in combinatorial auction generalizations. In AGENTS Workshop 
on Agent-Based Approaches to B2B. 

[Sandholm et al., 2001 b] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast 
optimal algorithm for combinatorial auctions. In IJCAI. 

[Sandholm, 20021 T. Sandholm. Algorithm for optimal winner determination in 
combinatorial auctions. Artificial Intelligence, 135: 1-54. 

[Savasere et al., 19951 A. Savasere, E. Omiecinski, and S. Navathe. An efficient 
algorithm for mining association rules in large databases. In Proceedings of 1995 
International Conference on Very Large Data Bases (VLDB), pages 432-443. 

[Silverstein et al., 19981 C. Silverstein, S. Brin, R. Motwani, and J .  Ullman. Scalable 
techniques for mining causal structures. In Proceedings of 1998 lnternational 
Conference on Very Large Data Bases (VLDB), pages 594-605. 

[Sipser, 19921 M. Sipser. The history and status of the P versus NP question. Proceedings 
of 24"' ACM Symposium on Theory of Computing, pages 603-61 8. 

[Sipser, 19971 M. Sipser. Introduction to the Theory of Computation. PWS Publishing 
Company, Boston. Pages 223-271. 

[Smith et al., 19971 B.M. Smith, S.C. Brailsford, P.M. Hubbard, and H.P. Williams. The 
Progressive Party Problem: Integer Linear Programming and Constraint 
Programming Compared. 

[Srinivasan et al., 19981 S. Srinivasan, J .  Stallert, and A.B. Whinston. Portfolio trading 
and electronic Networks, manuscript. 

[Strevell and Chong, 19851 M. Strevell and P. Chong. Gambling on vacation, Interfaces, 
vol. 15, 63-67. 



[Schuunnans et al., 20011 D. Schuunnans, F. Southey, and R.C. Holte. The 
Exponentiated Subgradient Algorithm for Heuristic Boolean Programming. In 
Proceedings of the 1 7'" IJCAI. 

[Tennenholtz. 20001 M. Tennenholtz. Some tractable combinatorial auctions. In 
Proceedings of AAAI. 

[Toivonen. 19961 H. Toivonen. Sampling large databases for association rules. In 
Proceedings of 1996 International Conference on Very Large Data Bases 
(VLDB), pages 1 34- 145. 

[Wellman et al., 20011 M.P. Wellman. W.E. Walsh, P.R. Wunnan, and J.K. MacKie- 
Mason. Auction protocols for decentralized scheduling, Games and Economic 
Behavior. 35(1-2). 27 1-303. 


