
CADIA: COMBINATORIAL AUCTION WINNER
DETERMINATION USING ITEM ASSOCIATION

Chi Hong Law

B.Sc. (Hons) Computer Science, Acadia University, 1992
Master of Computer Science, Dalhousie University, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY, INFORMATION TECHNOLOGY

In the School of
Interactive Arts and Technology

0 Chi Hong Law 2005

SIMON FRASER UNIVERSITY

Fall 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: LAW, Chi Hong

Degree:

Title of Thesis:

PhD, Information Technology

CADIA: COMBINATORIAL AUCTION WINNER
DETERMINATION USING ITEM ASSOCIATION

Examining Committee:

Chair:

Dr. Tom Calvert
Professor Emeritus, Interactive Arts & Technology

Date Approved:

Dr. Marek Hatala
Senior Supervisor
Assistant Professor, Interactive Arts & Technology

Dr. Vive Kumar
Supervisor
Assistant Professor, Interactive Arts & Technology

Dr. Rob Woodbury
Supervisor
Professor, Interactive Arts & Technology

Dr. Michael Brydon
External Examiner
Assistant Professor, Business Administration
Simon Fraser University

Dr. Holger H. Hoos
External Examiner
Assistant Professor, Computer Science
University of British Columbia

04 August 2005

DECLARATION OF
PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection, and, without changing the
content, to translate the thesislproject or extended essays, if technically possible,
to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

ABSTRACT

In combinatorial auctions (CAs), bidders are allowed to bid on any combination

of items. Although CAs are economically efficient mechanisms for resources allocation,

most auctioneers are hesitant to adopt them due to the fact that the CA winner

determination process is a non-deterministic polynomial hard (NP-hard) problem. If an

exhaustive search technique is used to solve the problem realistically, the number of

auctioned items and bids must be small enough to be handled by the technique due to the

constraints of today's computation power. Arising from the demand for CAs, this thesis

presents a novel but also practical combinatorial auction winner determination approach.

Such an approach has been designed and implemented into a system called CADIA.

CADIA is able to generate results with high accuracy and good performance in CAs of

hundreds of items and thousands of bids. CADIA's knowledge for winner determination

is discovered from a process of mining the auction data using item association. Such

knowIedge is then used to identify particular bids as winners. Both potential winners and

possible losers identified during the auctions are used as additional knowledge to further

improve the results. Empirical evaluation shows that CADIA is more efficient than brute-

force technique based systems in terms of running time when searching for the optimal

revenue. In situations where obtaining the optimal revenue becomes unrealistic to be

handled by the brute-force technique, as in auctions of hundreds of items and thousands

of bids, CADIA finds better approximate revenue than greedy search based systems.

DEDICATION

To my parents who have given me the greatest love and care, and especially to my

wife Sisie and my son Gabriel who have given me their warmest support.

ACKNOWLEDGEMENTS

I take this opportunity to express my greatest thanks to Dr. Marek Hatala who has,

in various ways, helped me to attain my objective of preparing this thesis. I also thank Dr.

Rob Woodbury, Dr. Vive Kumar, Dr. Holger Hoos, Dr. Robert Holte and Finnegan

Southey for their valuable suggestions. The thesis would not have been completed

without the above mentioned people.

TABLE OF CONTENTS

. Approval 11

...
Abstract ... 111

Dedication ... iv

.. Acknowledgements v

... Table of Contents vi
...

List of Figures ... vlll

List of Tables .. x

... List of Algorithms xi

... Chapter One: Introduction 1

Chapter Two: Combinatorial Auctions .. 5
... 2.1 Social Benefits 5

2.2 Auction Format .. 7
2.3 Winner Determination Problem ... 9
2.4 Feasible. Approximate or Optimal Solution .. 11

... 2.5 Optimization Problem Solving Techniques 13
... 2.5.1 Brute-Force Technique 14

... 2.5.2 Greedy Search Technique 17
.. 2.5.3 Integer Programming 19

.. 2.5.4 Branch and Bound 22
... 2.5.5 Constraint Programming 23

...................................... 2.5.6 Other Techniques and Commercial Implementations 26

Chapter Three: Item Associations .. 29
.. 3.1 Concepts 29

... 3.2 Association Rule Mining 32
3.3 Implementation Problems .. 34

Chapter Four: Combinatorial Auction Winner Determination Using Item
Association (CADIA) ... 36

4.1 Hypothesis ... 36
... 4.2 Structure 40

4.2.1 Item Association Generation Unit (IAG) .. 41
.. 4.2.2 Winner Determination Unit (WIN) 4 4

.. 4.3 Example 4 6

Chapter Five: Evaluation (I) ... 52
.. 5.1 Purpose 52

5.2 Combinatorial Auction Testing Suite .. 54

.. 5.3 Experimental Setup 54
5.3.1 Comparison of CADIA and BFT .. 55
5.3.2 Comparison of CADIA and GST .. 56

5.4 Empirical Results and Analysis ... 56
5.4.1 Comparison of CADIA and BFT .. 57
5.4.2 Comparison of CADIA and GST .. 60

Chapter Six: Improving CADIA .. 64
6.1 Motivation ... 64
6.2 New Structure .. 65

6.2.1 Pre-Processing Unit (PRE) ... 68
6.2.2 Tactical Bids Elimination Unit (TBE) .. 72

... 6.3 Example 75

Chapter Seven: Evaluation (11) .. 83
7.1 Purpose .. 83
7.2 Experimental Setup .. 83

7.2.1 Comparison of CADIA and BFT .. 84
7.2.2 Comparison of CADIA and GST, Four Hill Climbers and ESG 85
7.2.3 Running Time Measurement of CADIA .. 86

7.3 Empirical Results and Analysis ... 87
7.3.1 Comparison of CADIA and BFT .. 88
7.3.2 Comparison of CADlA and GST, Four Hill Climbers and ESG 96
7.3.2.1 Comparison of CADIA and GST ... 96
7.3.2.2 Comparison of CADIA and Four Hill Climbers ... 103
7.3.2.3 Con~parison of CADIA and ESG ... 112
7.3.3 Running Time Measurement of CADIA .. 117

Chapter Eight: Disscussion .. 123
8.1 Discussion on CADIA's Performance ... 123
8.2. Discussion on CADIA's Practicality .. 125

... Chapter Nine: Conclusion and Future Work 130

Appendix A .. 133
Sample Bid Input File .. 133

Appendix B .. 150

Source Code for Brute Force Technique ... 150

Appendix C .. 176
.. Source Code for Greedy Search Technique 176

Bibliography .. 183

vii

LIST OF FIGURES

............................. Figure 1 A file containing the bidding pattern of 10 items and 10 bids 9

..................................... Figure 2 A combinatorial auction winner determination system 10
. .

Figure 3 An example of bid data .. 16

Figure 4 An IP problem is relaxed as a LP problem .. 20
.......... Figure 5 The optimal integer solution can be derived with cutting-plane method 20

............................. Figure 6 The solution space is divided during the branching process 22

Figure 7 The auction problem represented as a constraint graph 24
Figure 8 The search tree for the auction problem ... 25

Figure 9 Generation of candidate itemsets and frequent itemsets from transaction 31

Figure 10 Structure of CADIA ... 40
Figure 1 1 Bid data ... 46
Figure 12 Auction data is represented internally as a matrix in CADIA 46

Figure 13 Frequent 1 -itemsets during the first iteration ... 47

Figure 14 Frequent 2-itemsets during the first iteration ... 48
Figure 15 Degrees of confidence for itenisets with the least support count 48

Figure 16 Degrees of conflict for itemsets with highest confidence 48
Figure 17 Bid b7 becomes a winner after the first iteration ... 49

Figure 18 Bid b3, b4, b5. b6 become losers after the first iteration 49
Figure 19 Frequent 1 -itemsets during the second iteration .. 50
Figure 20 Degrees of conflict for itemsets with maximum confidence during the

second iteration ... 50
Figure 2 1 Bid b becomes a winner after the second iteration ... 51

Figure 22 Bids bo. b2. bg. b9 become losers after the second iteration 51

Figure 23 Execute CADIA with 4 arguments from command line 55

Figure 24 Accuracy ratio comparison of BFT and CADIA ... 58
Figure 25 Performance ratio comparison of GST and CADIA .. 63

Figure 26 Structure of CADIA ... 67
Figure 27 Bid data .. 75

Figure 28 Auction data is represented internally as a matrix in CADIA 75
Figure 29 Bid b9 becomes a loser after PRE .. 76

Figure 30 Frequent 1 -itemsets during the first iteration ... 77

Figure 3 1 Frequent 2-itemsets during the first iteration ... 77
Figure 32 Degrees of confidence for itemsets with the least support count 77

Figure 33 Degrees of conflict for itemsets with maximum confidence 78
Figure 34 Bid b7 becomes a winner after the first iteration ... 78

Figure 35 Bid b3. b4. bs. b6 become losers after the first iteration 79

Figure 36 Frequent I -itemsets during the second iteration .. 79

Figure 37 Degrees of conflict for itemsets with maximum confidence during the
... second iteration 80

.. Figure 38 Bids bo. bl . b2. bs become candidate winners 80

Figure 39 Bid b l becomes the potential winner ... 81
Fibmre 40 Bids bo. b2. bs become possible losers ... 81
Figure 4 1 Execute CADIA with 5 arguments from command line 84

Fibmre 42 Accuracy ratio comparison of BFT and CADIA (all 200 auctions) 89

Figure 43 Accuracy ratio comparison of BFT and CADIA (enlarged view of
Figure 42) .. 90

Figure 44 Performance ratio comparison of GST and CADIA 102

Figure 45 Performance ratio comparison of PRICE and CADIA 108
Figure 46 Performance ratio comparison of N2NORM and CADIA 109

Figure 47 Performance ratio comparison of KO and CADIA 110
Figure 48 Performance ratio comparison of DEMAND and CADIA 111

Figure 49 Performance ratio comparison of ESG and CADIA 116
Figure 50 Running time of CADIA for different number of items 118

Figure 5 1 Running time of CADIA for different number of bids 119

Figure 52 Logarithm of running time of CADIA for different number of items 120
Figure 53 Logarithm of the running time of CADIA for different number of bids 121

Figure 54 Running time of CADIA for different values of Csf 128

LIST OF TABLES

Table 1 Accuracy ratio comparison of BFT and CADIA (sample 1.200) 59

.................. Table 2 Performance ratio comparison of GST and CADIA (sample 1-200) 61
Table 3 CADIA runs eight times for bid and revenue analysis 82

Table 4 Test plan for measuring CADIA's running time ... 87
Table 5 Accuracy ratio comparison of BFT and CADIA (sample 1.50) 91
Table 6 Accuracy ratio comparison of BFT and CADIA (sample 5 1 . 100) 92
Table 7 Accuracy ratio comparison of BFT and CADIA (sample 101 -1 50) 93

Table 8 Accuracy comparison of BFT and CADIA (sample 15 1.200) 94
Table 9 Accuracy ratio comparison of BFT and CADIA ... 95

Table 10 Running time comparison of BFT and CADIA ... 95
Table 1 1 Performance ratio comparison of GST and CADIA (sample 1-50) 97

Table 12 Performance ratio comparison of GST and CADIA (sample 5 1-1 00) 98
Table 13 Performance ratio comparison of GST and CADIA (sample 10 1 . 150) 99
Table 14 Performance ratio comparison of GST and CADIA (sample 15 1 -200) 100
Table 15 Performance ratio comparison of GST and CADIA 101
Table 16 Performance ratio comparison of 4 Hill Climbers and CADIA (sample

1-50) .. 104

Table 17 Performance ratio comparison of 4 Hill Climbers and CADIA (sample
51-100) .. 105

Table 18 Performance ratio comparison of 4 Hill Climbers and CADIA (sample
101-1 50) ... 106

Table 19 Performance ratio comparison of 4 Hill Climbers and CADTA (sample
151.200) ... 107

Table 20 Performance ratio comparison of hill climbers and CADIA 112

..................... Table 21 Number of Auction that CADIA outperforms the hill climbers 112

.............. Table 22 Performance ratio comparison of ESG and CADIA (sample 1-100) 114
Table 23 Performance ratio comparison of ESG and CADIA (sample 101 .200) 115

................... Table 24 CADIA's Average running time in 50 different sizes of auction 118

LIST OF ALGORITHMS

Algorithm 1 CA winner determination based on the brute-force technique 15
Algorithm 2 CA winner determination based on the greedy search technique 18
Algorithm 3 Identify all frequent itemsets ... 30

. . . .
Algorithm 4 Assoc~at~on rule mining ... 33

Algorithm 5 Identify the smallest and least frequent itemset ... 42
Algorithm 6 Functions highestConfidenceItelnset and 1eastConflictlternset 43
Algorithm 7 Identify all candidate winners .. 45

. .
Algorithm 8 Identify a winner .. 45
Algorithm 9 Determine the lower bound price for each bid ... 70
Algorithm 10 Determine if a bid is a superset of others .. 71

Algorithm 1 1 Remove potential winners and losers for result improvement 74

CHAPTER ONE:
INTRODUCTION

In combinatorial auctions (CAs), bidders are allowed to bid on any combination

of items with the constraint that each item can be allocated to no more than one bidder.

CAs are important in situations where the value of an item to a bidder strongly depends

on other items he wins. Economists believe that combinatorial auctions (CAs) allow

resources to be allocated in a more efficient way due to the exhibition of complementarity

and substitutability when buyers valuate a set of items [Huberman et al., 1997; Boutilier

et al., 1999; Huberman et al., 2000; Krishna, 20021. From the auctioneer's point of view,

the ultimate goal of a CA is to maximize the revenue from selecting some winning bids.

Since the winner determination process in CAs is a very complex optimization problem,

the number of auctioned items and bids must be small' enough if an exhaustive search

technique is used to obtain the optimal revenue. Airport slots allocation, resources

allocation by NASA space station, Sears transportation acquisition auction, supply chain

formulation, and spectrum auctions by the US Federal Communications Commission

(FCC) are examples of real-world CA [Rothkopf, et al., 2000; Rassenti et al., 19821. Due

to the increasing demand for CAs, the winner determination problem has recently

received considerable attention in the fields of economics and computer science.

I An exhaustive search algorithm belongs to the con~plexity class of 2". It takes 1 hour and 1 decade to
solve problen~s of size n=5 1 and n=68 respectively on a supercomputers performing a single floating-point
operation in 10-l2 seconds [Johnsonbaugh and Schaefer, 20041. The term "small" is used throughout the
thesis to refer to problem size n <= 50, i.e., 50 items in the case of CAs.

Unfortunately, CA winner detennination belongs to the class of non-deterministic

polynomial hard (NP-hard) problem [Rothkopf, 1998; Fujishiina et al., 1999; Bjorndal

and Jornsten, 20001. The number of items and bids directly impact the time of finding the

winners. For M items, there are (2M - 1) combinations of items; and for B bids, there are

(2B - 1) combinations of candidate winners. The CA winner determination problem

becomes computationally intractable when the number of items and number of bids are

large2. For instance, a system based on the brute-force, exhaustive search technique

running on a Pentium personal computer is able to find the optimal revenue for an

auction of 9 items and 10 bids in 3 minutes, but will take about 4 minutes and 30 minutes

when the number of items is increased by 1 and 2 respectively. Systems based on the

exhaustive search technique are impractical in real world auctions when there are

hundreds of items and thousands of bids.

In recent years, some techniques were proposed to find the optimal or

approximate solution for CA winner determination. Integer programming (IP) technique

[Andersson et al., 20001, which is able to obtain the optimal revenue, can practically

handle CA winner determination in auctions of hundreds of items and thousands of bids.

However, one of the leading commercial implementations based on IP called CPLEX

states in its user's guide that some common difficulties are encountered when solving IP

problems [ILOG, 20051. These difficulties are "running out of memory", "failure to

prove optimality". A few heuristics techniques [Sandholm, 1999; de Vries and Vohra,

2000; Hoos and Boutilier, 2000; Nisan, 2000; Sandholm et al., 2000; Sandholm, 20021

were proposed and proved to be able to solve the problems with hundreds of items and

The term "large" is used throughout the thesis to refer to problem size n > 100. In recent publications,
sample auctions of hundred items and thousands of bids are used when evaluating proposed techniques.

thousands of bids. However, these techniques include one of or a coinbination of greedy

search, depth-first search. and branch-and-bound tree search strategies. The drawbacks of

these techniques are that the results may or may not be optimal if the algorithms

implementing the techniques are terminated prematurely.

CADIA, which is a CA winner determination system developed upon the proven

knowledge discovery technique in data mining called item association. provides a novel

and practical approach to solve the problem. Since auction is a real world business

process, it is worthwhile to use the item association pattern as knowledge in problem

solving. CADIA applies such knowledge discovered from the auction data in winner

determination which has been overlooked in any published techniques. In addition,

CADIA uses a tactical-bid-elimination technique to fh-ther improve its result.

In an evaluation where the goal is to obtain the optimal revenue, CADIA is

compared to a brute-force (exhaustive search) technique based system and is concluded

empirically to be a practical system and runs at least 20 times faster than a brute-force

technique. When there are hundreds of items and thousands of bids, a comparison of the

brute-force technique and CADIA becomes unrealistic due to the large size of problem

instance. Thus, in another evaluation, CADIA is compared to an approximation system

that is based on the greedy and depth-first search technique. Empirical results show that

CADIA always tind better revenue. The current implementation of CADIA uses in-

memory storage and search techniques that can practically handle up to five hundred

items and two thousands bids running on a Pentiuin based personal computer. Such a

limitation can be overcome when external memory storage and search techniques are

employed in the trade off of speed.

In Chapter 2, 1 review the major characteristics and benefits of CAs followed by

the definition of the CA format. I also present the CA winner determination problem and

survey the state of knowledge about techniques that are able to find optimal or

approximate solutions. Chapter 3 describes item association, which is the core technique

adopted by CADIA, and its importance in association rule mining applications. Chapter 4

presents CADlA's hypothesis, core structure, and algorithms. An auction example of 10

items and 10 bids will be used to illustrate the core concepts of CADIA. Chapter 5

describes how CADIA is evaluated in tenns of data collection, setup, and experimental

results. Chapter 6 and 7 presented an improved version of CADIA and its evaluation

respectively. Chapter 8 discusses CADIA's practicality and the shortcomings of CADIA

and other evaluated techniques. Chapter 9 presents the conclusion and possible future

research directions.

CHAPTER TWO:
COMBINATORIAL AUCTIONS

2.1 Social Benefits

In CAs, the bidders' valuations in most cases are not additive [Bichler, 19991

because the value of a combination of items may not be equal to the sum of the values of

the same items unbundled. A bidder considers a set of items as a complement bundle of

items when he values the bundle higher than the sum of the single item values.

Contrarily, a bidder considers a set of items as a substitute bundle of items when he

values the bundle lower than the sum of the single item values [Krishna, 20021. Because

combinations of items in bids generally overlap, the CA winner determination becomes

an optimization problem.

Even though the CA winner determination is a NP-hard problem [Rothkopf, 1998;

Fujishima et al., 19991, CA is believed to be an efficient way to allocate resources to

buying agents whose preferences exhibit complex structure with respect to

complementarity and substitutability [Rassenti et al., 1982; Rothkopf et al., 1998;

Wellman et al., 20011. If complementarities and substitutability exist among auctioned

items. evidence suggests that it is more appropriate to permit bidders to bid for

combinations, rather than on individual item because bidders do not get stuck with partial

bundles of low value [Banks et al., 19891. If an exhaustive search technique is used to

solve the problem realistically, the number of auctioned items and bids must be small

enough to be handled by the technique due to the constraints of today's computation

power.

Combinatorial auctions were first proposed by Jackson [I9761 for radio spectrum

rights. Later, Rassenti et al. [I9821 proposed such auctions to allocate airport time slots.

Strevell and Chong [I9851 described the use of an auction to allocate vacation time slots.

Banks et al. [I9891 proposed a combinatorial auction for selecting projects on the space

shuttle, but the prototype was tested experimentally and was never implemented due to

political reasons. Olson et al. [2000] described the design and use of a combinatorial

auction that was employed by Sears in 1993 to select carriers. In this auction, delivery

routes were bid upon. Since bidders were allowed to bid on combinations of routes, they

had the opportunity to construct routes that utilized their trucks as efficiently as possible.

Graves et al. [1993] described the auction of seats in a course that was executed regularly

at the University of Chicago's Business School. Srinivasan et al. [I9981 proposed a

mechanism for trading financial securities that allowed buyers and sellers to offer bundles

of financial instruments. In 1994, Federal Communications Commission (FCC) planned

to use a CA auction to allocate spectrum rights [Cramton, 1997; Cramton and Schwartx,

20001 because bidders were interested in different collections of spectrum licenses.

In recent years, a number of logistics consulting firms offered CA software [Case,

20011. For example, SAITECH-INC offers a software product called SBlDS that allows

trucking companies to bid on bundles of lanes. In 1998, OptiMark Technologies offered

an automated trading system that allowed bidders to submit price-quantity-stock triples

along with a priority list. The Securities and Exchange Commission (SEC) approved

Pacific Stock Exchange's proposal to implement this electronic trading system. In 1998,

the NASDAQ announced plans to introduce this technology to its dealers and investors.

Logistics.com claims that by January 2000 more than $5 billion in transportation

contracts had been bid on using a CA system called OptiBid by Ford Motor Company,

Wal-Mart, and Kmart [de Vries, S. and Vohra, R., 20001. CombineNet claims that its Rev

technology runs much faster than the state-of-art general purpose mixed integer

programming solver. Its customer includes some of the Fortune 100 and Global 1000

companies.

2.2 Auction Format

The three major issues one must deal with in designing a CA are bidding protocol,

allocation, and payment [Nisan, 20001. Each bidder must be able to express bids on

combinations of items. Each bid may be interpreted as the maximum amount of money

that the bidder is willing to pay for. The bidding protocol determines how this bidding

communication is done. The items in the auction must be allocated among the different

bidders. The allocation will attempt to optimize some objective function, usually the

auctioneer's revenue. Each winner of a set of items will pay according to the payment

rules. A well-designed auction will ensure that the intended goals of the auction are met

when all bidders act according to their chosen strategies.

CA design becomes an interdisciplinary study and has received considerable

attention in the fields of economics and computer science. Bidding protocol, allocation,

and payment have been treated as independent research topics by economists and

7

computer scientists in recent years. Resembling many other CA related computer science

research [Gonen and Lehmann, 2000; Sandholm, 20021, my research focuses only on the

allocation problem. Bidders are assumed to act non-strategically and bids are sealed and

assumed to be simply the bidders' valuations. As stated, the allocation attempts to

optimize the auctioneer's revenue according to the declared bids. Although the

auctioneer's ultimate goal is to attain maximum revenue, he will find it coinputationally

intractable when the numbers of items and bids are large due to the NP-hard nature of the

winner determination problem. For M items, there are (2" - 1) combinations of items for

a bidder who fully expresses its preferences must bid on all these combinations. This is

definitely undesirable because it is computationally intractable to determine one's

valuation for any given combination [Parkes, 19991.

2.3 Winner Determination Problem

The CA winner determination problem can be represented mathematically by the

following notation [Sandholm et al., 200 1 a]. Let M={O, 1,2, . . .m) be the set of

auctioned items, and B={bo, b l , b2, . . .b,) be the set of bids, and each bid is a tuple bi =

(Si, pi), where Sj M is a subset of M and p, 2 0 for all j E (0, 1,2, . . ., n) is a price

offered by bi.

xi is called a decision variable and its value is 1 when bi is a winner, 0 otherwise.

The CA winner determination is to identify the bids as winners or losers with the aim to

maximize auctioneers' revenue under the constraint that each item can be allocated to at

most one bid. For example, when M = (0, 1 ,2, . . ., 9) and B = {bo, b l , b2,, bs), we

may have the following bidding pattern.

{bid} {a set of items} {bidding price}

{O, 4, 6, 71 {206 .28l
{o, 1, 3 , 41 {207.28}
{O, 61 {205.00)
10, 4, 5, 91 1208.28)
12, 4, 5, 81 1108.28)
11, 2, 71 155.741
11, 2, 3, 61 155.74)
12, 91 t152.001
10, 4, 81 1154.74)
{O, 4, 6, 7, 8) (205.501

Figure 1 A file containing the bidding pattern of 10 items and 10 bids.

9

A typical CA winner detennination system, as described in Figure 1, accepts a

number of items and a number of bids as inputs and identifies a subset of all bids as

outputs. The output bids become the winners.

\

Inputs CA W~nner
B~ds, Items Determmation System

-

\

Figure 2 A combinatorial auction winner determination system.

The constraint for the system is that each item can be allocated to at most one bid.

Since the CA winner determination is a NP-hard problem, a more realistic system should

possess the following characteristics:

1. the system should generate approximate revenue that is close to the

optimal revenue, and

2. the system should be capable to handle a large number of items and bids

in a single auction.

The CA winner determination can be translated to another NP-hard problem such

as the weighted set-packing problem [Rothkopf, et al., 1998; Karp, 19721. A problem is

assigned to the NP-hard class if it can be solved by a NP algorithm. A NP algorithm is a

two-phase procedure. During the "nondeterministic" phase, a candidate solution is

generated. In the "verification" phrase, the candidate solution is verified using a

deterministic algorithm. For example, if a problem is known to be NP, and a solution to

the problem is somehow known, then demonstrating the correctness of the solution can

always be reduced to polynomial (P) time verification. The proof of a problem is a NP

problem can be summarized in the following three steps [Sipser, 19971. The CA winner

determination problem is used here to illustrate these steps.

1. A subset of bids B can be selected from all bids non-

deterministically.

2. B can be verified using a deterministic algorithm. That is, B must

contain no conflicted bids to claim itself as a solution.

3. If the verification test passes, the solution is accepted; otherwise, it

is rejected.

If an instance of the NP-hard problem in question is small, we might be able to

solve it by the brute-force search algorithm described in Section 2.5.1. Even though this

approach works in principle, its practicality is very limited because the number of

instance parameters is usually very large in real-world problems [Levitin, 2003,

Johnsonbaugh and Schaefer, 20041.

2.4 Feasible, Approximate or Optimal Solution

The CA winner determination problem is in fact an optimization problem because

it aims to maximize auctioneers' revenue as the objective function subject to the

constraint that each item can be allocated to at most one bid. The terms feasible,

approximate, and optimal solutions have been used very often in the research of

optimization problems, and thus a formal definition for each is needed here. In computer

science terminology [Levitin, 20031, a feasible solution to an optimization problem is a

point in the problem's search space that satisfies all the problem's constraints, while the

optimal solution is a feasible solution with the best value of the objective function. An

approximate solution is also a feasible solution with good but not necessarily the best

value. When obtaining the optimal solution is unrealistic, an approximate solution is

preferred to a feasible solution. The three different kinds of solutions to the CA winner

determination problem can be represented mathematically [Papadimitriou and Steiglitz,

19981 by the following notation.

An instance of the CA optimization problem is a pair (F, r), where F is

the set that contains all feasible solutions; r is the revenue function.

When searching for a feasible solution, we need to find solution sf E F

for which r(sf) 2 0.

When searching for the optimal solution, we need to find solution sopt

E F for which sopt must be a feasible solution and r(sopt) 2 0 and r(sopt)

2 r(sf) for all sf E F.

When searching for an approximate solution, we need to find solution

s, E F for which s, must be a feasible solution and r(s,) 5 r(sopt). In

addition, the bid set B, used to obtain s, must not be a subset of bid set

Bf of any other feasible solution sf E F.

The brute-force based techniques are able to obtain the optimal solution, but these

techniques are impractical and are used only when the size of the problem instance in

question is small. When the instance size is large, the approach of finding an approximate

solution becomes more attractive. The generic greedy search based techniques are

guaranteed to obtain a feasible solution. However, there is no guarantee whether such a

solution is a good approximate solution or not. Thus, a formal approach of evaluating a

proposed technique should measure both its accuracy ratio and performance ratio. Such

an approach has been adopted in CADIA's evaluation as described in Section 5.

2.5 Optimization Problem Solving Techniques

Because of the intractability nature [Papadimitriou and Steiglitz, 1998; Sipser,

19921 of the CA winner determination problem, much research has focused on sub-cases

of the problem that are tractable [Rothkopf et al., 1998; Lehmann et al., 1999;

Tennenholtz, 2000; Ronen, 20011. For example, both the number of auctioned items and

bids can be restricted to be stnall enough to be handled by an optimal revenue search

technique within the constraints of today's computation power. Unfortunately, these sub-

cases are very restrictive and therefore are not applicable to inany CA domains. In fact,

there is no substitute for a CA if an auctioneer aims to allocate resources efficiently.

Thus, many researchers have begun to propose heuristic techniques for winner

determination in CAs.

All proposed heuristic techniques can be classified into exact methods and

approximate methods [de Vries and Vohra, 20001. An exact method for solving the CA

problem is one that is guaranteed to produce an optimal solution if run to completion.

With approximate methods, one seeks a feasible solution fast and hopes that it is near

optimal. This raises the obvious question of how close to optimal the solution is.

2.5.1 Brute-Force Technique

If problem solving is seen as a search in the state space [Russell and Norvig,

20031, the brute-force technique would be described as an exhaustive search for all

possible states in the problem space with an aim to optimize some objective function. The

implementation of a winner determination based on the brute-force technique is quite

straightforward (Algorithm 1). First, all bid combinations based on the available bids are

generated. Second, a bid combination will be removed if it has conflicts among its bids.

A conflict is found when an item is wanted by more than one bid. Last, the bid

combination which has the highest total price becomes the set of winners.

Algorithm: CA winner determination based on the
brute-force technique

Input : all bids B, bi EB and bid tuples (Sitpi),
where Siis a subset of wanted items and pi is
the bid price, and ie { O , 1, ... n} .

Output : a set of winners, BWinners
Begin

Generate all bid combinations B, from B

Bcandidate
for each bid combination B, E Be

for each bid bi E B,
for each bid bj E B, and j # i

if (S, n Sj # 0)
Bcandidate t Bcandidate - Ba

BWi,,,, t highestsrice-bid-comb (Beandidate)
End

Function highestsrice-bid-comb (Beandidate)
Begin

ph t 0, Bh t 0
for each bid combination Bi E Brandidate

Pi = totalsrice (Bi)
if (Pi > ph){

~h t Pi
Bh t Bi

1
return Bh

End

Function totalsrice (B)
Begin

Pt = 0
for each bid bi E B

Pt = Pt + Pi
return pt

End

Algorithm 1 CA winner determination based on the brute-force technique.

As an illustration, suppose we have two auctioned items, M = (0, 1), three bids, B

= {bo, b l , b2) and the bid data as shown in Figure 3. The number of all possible item

combinations is (22 - 1) or 3. That is, a bidder who hl ly expresses its preferences may

bid on all three combinations.

{bid) {a set of items) {bidding price)

Figure 3 An example of hid data.

The number of all possible bid combinations is (23 - 1) or 7. The brute-force

technique will search for all bid combinations with an aim to maximize the revenue.

According to Algorithm 1, all combinations of bids are generated. They are {bo), {bl),

{b2), {bo, bl 1, (bo, b:!), {bl, b:!) and {bo, b l , b2). A conflict exists when an item is wanted

by more than one bid. Since ba conflicts with b l , bl conflicts with b:!, and bl . b2. bs are in

conflict with each other, the bid combinations (bo, bl), {bl, b2) and {bo, b ~ , b2) are

discarded. At last, the bid combination that generates the highest revenue among all

remaining combinations becomes the set of winners. Since the remaining combinations

are {bo), {bl), {b2), {bo, b2), the winner goes to (bo, b2) because it generates the highest

revenue of $20.

For the CA winner determination problem solving, the brute-force technique leads

to an algorithm that is extremely inefficient because it has a running time complexity of

an exponential order of magnitude of (2IB1) when generating all bid combinations. When

IBl= 100, for example, the order of magnitude becomes 2'" or I .?x10~". As a result, if

the brute-force technique is applied, the winner determination problem can be solved in

polynomial time only if there are an infinite number of processors and if conflicts among

all bids can be identified at once.

2.5.2 Greedy Search Technique

Greedy search makes use of a heuristic function to order the searched nodes

within the search space [Lawler, 1985; Lawler et al., 19921. Thus, the search technique

will choose the searched node that appears to be the best based on the function, regardless

of its position in the state space. When the technique is applied to the CA winner

determination problem, all bids can be treated as nodes within the search space. Since the

goal is to maximize the revenue, a greedy search will start expanding the node that is

estimated to be closest to the goal state, that is, a bid with the highest bidding price.

Algorithm 2 describes the technique when applied to the CA winner determination

problem.

When the algorithm is applied to the same data as described in Figure 3, bl will

become the first winner because it offers the highest bidding price. It is also the only

winner because bo and b2 have conflicts with b l . As a result, the revenue generated (i.e.

$18) is not optimal. Although the greedy technique can always find a solution quickly, its

revenue may not be optimal and sometimes far from approximate.

Algorithm: CA winner determination based on the

greedy search technique

Input : all bids bi EB and bid tuples (Si,p,) ,
where Siis a subset of wanted items and pi is
the bid price, and ic {O, 1, ... n} .

Output : a set of winners, BwinneXs
Begin

Bwinners + (01
Loop until each bid bi E B has been identified as a
winner or loser {

bh t highestgrice-bid (B)

Bwinners + Bwinners + bh
B t B - b h
B t B - all-con•’ licted-bids (bh)

1
End

 unction highest-price-bid (B)

Begin

~ h t 0
for each bid bi E B

if (pi > ph) {

ph t Pi
bh t bi

1
return bh

End

Function all-conflicted-bids (bh)

Begin

Blosers t I 0 1
for each bid bi E B

if (Sh n Si # 0)

Blosers t Blosers + bi
return BloSers

End

Algorithm 2 CA winner determination based on the greedy search technique

However, the greedy technique can be used to determine the lower bound revenue

during a CA winner determination algorithm and may be considered part of a CA system

design. Some recently proposed CA winner determination systems that use the greedy

technique with random starts have shown that the revenue can be improved significantly

[Holte, 20011.

2.5.3 Integer Programming

Integer programming (IP) [Nemhauser and Wolsey, 1999; Miller, 20001 has been

used to solve optimization problems. It is a technique that aims to maximize an objective

function subject to the constraint that the solution values of the variables be integers.

IP problem can be illustrated graphically with the following simple example.

Suppose we would like to maximize the objective function based on values of two

variables xl and x2. A common approach for solving integer programming problems is to

start by relaxing IP problems to linear programming (LP) problems. A LP problem is a

problem of optimizing a linear function of several variables subject to constraints in the

fonn of linear equations and linear inequalities. The LP problem can then be solved by

the simplex method, which was developed by George B. Danzig in 1947 [Cooper and

Steinberg, 1974; Haeussler et al.. 20021.

With a LP, we may have the graph depicted in Figure 4. Since only integer values

for the variables are allowed, we may have a solution (shown as x) bounded by the

feasible region. Intuitively, we may be tempted to round up or down the values of X I and

xz as final solutions, but such an approach may end up with an infeasible solution. By

using the cutting-plane method, we can derive the region that connects the "outermost"

feasible lattice points. As a result, the integer optimum will be interior to the region

bounded by the dotted lines, and the lines when xl=O, and x3=0 (Figure 5).

Figure 4 An IP problem is relaxed as a LP problem.

Figure 5 The optimal integer solution can be derived with cutting-plane method.

Thus, the allocation problem in CA winner determination can be formalized as an

integer programming (IP) [Andersson et al., 20001 problem since its aim is to maximize

the revenue as the goal subject to the constraint that the solution values of the variables

2 0

(i.e. bids) be whole numbers (i.e. 0 or 1) . As an illustration, the auction example

described in 2.5.1 can be formalized as the following IP problem:

Maximize z = lobo + 18bl + lobz

subject to bo + b, I 1

bl + b2 2 1

with bo, b,, b2 = 0 or 1

The IP program is then relaxed as a LP problem.

Maximize revenue = lobo + 18b, + lob2

subject to bo + b, + b 3 = 1

bl + b2 + b4 = 1

with bo. bl, b2, b3, b4 2 0 and I 1

Since the problem involves more than two variables, the simplex method is

recommended because the graphical method is usually too inefficient. The optimal

solution is found when bo and b2 = 1, and b l , b3 and b4 = 0. The maximum revenue is $20.

Theoretically, integer programming is guaranteed to find an optimal solution

[Rothkopf et a]., 1998; Pekei: et al., 20001. However, one of the leading commercial

implementations based on IP called CPLEX states in its user's guide that some common

difficulties are encountered when solving IP program [ILOG, 20051. These difficulties

include "running out of memory" and "failure to prove optimality".

2.5.4 Branch and Bound

Nisan [2000] suggests a branch-and-bound technique based on integer

programming (IP) relaxation. The technique is able to return the optimal revenue. In

essence, the technique [Hoffman and Padberg, 1993; Gonen and Lehmann, 20001

generates a treelike structure to identify and solve a set of increasingly constrained sub-

problems, derived from the original integer linear program. In branch and bound, the

technique first explores the most promising directions as is done by the greedy search

technique. This will hopefully provide very good lower bounds quickly. It is expected

that the upper bounds obtained using the IP relaxation will usually be close enough to the

optimal. Combined with good lower bounds, further search can be reduced. As an

illustration (Figure 6), instead of testing for each possible candidate solution (shown as

*), the technique picks a candidate (e.g. when X I = c) as a temporary solution and then

tests for the possibility of branching out to improve the solution further. The idea is to

divide the feasible solution space for this problem into two sub-spaces during each

branch until no further improvement is possible.

X2

I

C

Figure 6 The solution space is divided during the branching process.

22

The branch-and-bound technique is sensitive to the upper and lower bound values

obtained during the process. CPLEX, which also uses branch-and bound technique, is

known to "run out of memory" when the branch and bound tree is large [ILOG, 20051.

That is, the search tree can grow so large that there are too many sub-spaces to be

investigated. Besides, in a problem with a hundred variables such as the CA, it becomes

arguable why a particular variable is chosen for initial branching. In addition, it is

difficult to know from the beginning which branches are better than others.

2.5.5 Constraint Programming

Constraint programming (CP) is an alternative approach for solving combinatorial

optimization problems [Smith et al., 1997; Lustig and Puget, 20011 because the problems

can be formulated as constraint satisfaction problems (CSPs). A CSP consists of a set of

variables, each with a finite set of possible values (its domain), and a set of constraints

which the values assigned to the variables must satisfy. In a CSP that is also an

optimization problem, there is an additional variable representing the objective; each time

a solution to the CSP is found, a new constraint is added to ensure that any future solution

must have an improved value of the objective, and this continues until the problem

becomes infeasible, when the last solution found is known to be optimal.

As an illustration, the problem in Section 2.5.1 can be formulated as a CSP and

can be solved with CP. The problem is to detennine the winners in an auction of two

auctioned items, M = 10, 1) and three bids, B = {bo, b l , bZ) and the bid data as shown in

Figure 3. First, we define the variable to be the bids: bo, b l , and b2. Each variable's

23

domain is the set { {O), { 1), (0, 1) 1 and its value is detennined based on the bid content.

The constraint requires that each item can be allocated to at most one bid.

Since the number of variables in our example is small, the CSP can be visualized

as a constraint graph [Russell and Norvig, 20031, as shown in Figure 7. The nodes of the

graph correspond to variables of the problem and the arcs correspond to constraints.

Figure 7 The auction problem represented as a constraint graph.

The most common CP algorithm for solving CSP is backtracking. Backtracking

[Levitin, 20031 can be seen as a more intelligent variation of the brute-force technique.

The idea is to construct a depth-first search tree one node at a time and evaluate if a

partially constructed tree is a feasible solution. Its root represents an initial state before

the search for a solution begins. The nodes of the first level in the tree represent the

choices made for the first component of a solution; the nodes of the second level

represent the choices for the second component, and so on. Leaves represent either dead

ends (shown as x) or feasible solutions (shown as 4). The search tree for the auction

problem is shown in Figure 8, where we have assigned variables in the order bo, b l , and

b2.

Figure 8 The search tree for the auction problem

Whenever a partially constructed tree violates a constraint (shown as x),

backtracking is able to eliminate a subspace during the search. For example, once we

assign item-0 to bo, we can infer that now only item-1 is available and any bids that

request item-0 will violate the constraint. Thus, the construction of the tree bo+ bl is not

feasible. As a result, the constraints can help us reduce the problem search space.

Besides, the bid ordering in an auction is commutative because the order of the nodes has

no effect on the outcome. That is, the solutions given by the trees b2+ bo and bo+ b2 are

the same. Once the former has been explored, the latter becomes redundant. As a result,

the inclusion of the commutativity property can further eliminate the search space.

CP can further be improved through constraint propagation. The most popular

technique is forward checking [Russell and Norvig, 20031. In forward checking,

whenever a current variable X is assigned, it looks at each future variable Y that is

connected to X and removes temporarily from Y's domain any value that conflicts with

this assignment. The technique is able to conclude a partial solution is not feasible if the

domain of Y is empty. As a result, the technique allows branches of the search tree that

will lead to failure to be pruned earlier than with simple backtracking. When forward

checking is used in the auction winner determination problem, it simply checks if future

variables conflict with the current variable since the values of all variables have been

assigned.

Although backtracking is better than the brute-force technique, its running

complexity for most nontrivial problems is still exponential. A paper by Smith et al.

[I9971 concludes that CP is useful only if the assignment of a value to a variable can

trigger the pruning of a significant amount of problem search space. He also added that

CP is less useful when the problem involves large numbers of variables.

2.5.6 Other Techniques and Commercial Implementations

Sandholm [2001b, 20021 described an algorithm called CABOB (Combinatorial

Auction Branch On Bids), and had run tests on randomly generated instances, the largest

of which involved 400 items and 2000 of bids. CABOB is in fact a depth-first, branch-

and-bound tree search technique. In addition, the algorithm addresses several special

cases during the search, and uses LP for upper bounding and a relatively simple greedy

algorithm for lower bounding. The algorithm performs a short dynamic analysis of the

underlying LP problem, and then uses the most suitable bid ordering heuristic. Empirical

results indicate that CABOB solves CA problems within seconds for auction size of

hundred of items and thousands of bids, but also show that it cannot guarantee a

polynomial running time for every input.

Fujishjima et al. [I9991 proposed a set of approximate methods called CASS

(Combinatorial Auction Structured Search). CASS uses "binning" where the bids are

grouped into mutually exclusive bins or subsets. The maximal revenue comes either from

a single bid or from the sum of the maximal revenues of two disjoint exhaustive subsets.

The time saving comes from the fact that the number of bids to be dealt with is much

smaller in the subsets as compared to a set containing all bids. It is obvious that the

technique does not scale well because it requires an exhaustive search for all mutually

exclusive bids. To overcome this issue, CASS applies pruning to reduce the search space.

Hoos and Boutilier [2000] described a stochastic local search approach to solve

the CA problem, and characterized its performance with a focus on time-limited

situations. Since it is a local search approach, it uses a goal test to estimate the distance to

the goal state. The test involves ranking bids according to expected revenue. One obvious

problem is that a local search algorithm can get caught in local maxima. Once at the top

of the locally best solution, moving to any other node would lead to a node with less

optimal results. Another possibility is that a plateau or flat spot exists in the problem

space. Once the search algorithm gets up to this area all moves would have the same

result and so progress would be halted. However, the stochastic nature of the search will

randomly choose moves to avoid the problem.

CA winner determination algorithms have been implemented commercially [de

Vries, S. and Vohra, R., 20001. Logistics.com's OptiBid software has been used in

situations where the number of items averages 500. OptiBid does not limit the number of

distinct subsets that bidders bid on or the number of items allowed within a bid. OptiBid

is based on the integer programming technique with a series of proprietary formulations

and heuristic algorithms. SAITECH-INC's SBlD is also based on the integer

programming and proprietary techniques. SAITECH-INC reports that SBlD is able to

handle problems of a similar size as OptiBid. CombineNet's Rev technology is based on

the tree searching algorithm, combining with branch and bound, cutting planes, and a

series of proprietary algorithms.

CHAPTER THREE:
ITEM ASSOCIATIONS

3.1 Concepts

CADIA's core algorithm is based on the item association [Han and Kamber,

2001 ; Dunham, 20031 technique which has been widely adopted in many real-world data

mining applications. For instance, a sales manager may wonder, "Which sets of items are

customers likely to purchase together?" A more specific question may be "How likely is

item xl to be purchased after item x2 is purchased?" The answers to these questions,

which become the domain knowledge, can help decision makers to strategically

encourage the overall sale. CADIA uses the technique to discover knowledge fiom the

auction data which has been overlooked in any published techniques. Such knowledge is

used in an informed search to identify winners. The concept of item association, which

depends on identifying all frequent itemsets [Pasquier et al, 1999; Pei et al., 20001 in

transactions, can be defined by the following characteristics as:

Let I = f 1 ,2 ,..., m) be a set of items and T = {tl, tz ,..., t,,) be a

database of transactions where ti c I, and Supportmi, be an expert-

defined minimum support count.

1. A set of items is called an itemset. An itemset that contains k items is a k-

itemsets.

2. A candidate k-itemset's frequency count is the number of transactions

that contains k-itemset.

3. A candidate k-itemset Ck becomes a frequent k-itemset Fk if its frequency

count is greater than or equal to Supportmi,.

4. The set of candidate 1-itemsets CI is I. The set of candidate -itemsets Ck

,where k = 2'3, ... m, is generated by joining Fk-, with itself as

Fk-l D d Fk+

The following algorithm, which is based on the Apriori property [Agrawal et al.,

19931, is used to identify all frequent itemsets.

Algorithm: Identifying all Frequent Itemsets
Input : transaction database T= { tl, tz, ..., t,) ,

a list of Items I={l, ..., m), and Supportmin
Output : all frequent itemsets F1, F2, ..., F,
Begin

candidate 1-itemsets C L t I

for each itemset cj E C1

if (frequency (c,) 2 Support,,,)
Fl t Fl u C,

for i E {2. .m) {

Generate candidate i-itemsets Ci by Fi.l D a F,_;

for each itemset cj E Ci

if (frequency (c,) 2 Supportmin)
F; t Fi U C,

1
End

Function frequency (c)
Begin

return (number of transactions that contain c)
End

Algorithm 3 Identify all frequent itemsets.

As an illustration, given a transaction T= {tl, t2, t), t4, t5 } containing five

transactions, a list of items I={] ,2,3,4,5), and an expert-assigned Support,,,,,=2, the sets

of candidate itemsets CI, C2, Cj and the sets of frequent iteinsets F I , F2 are generated

(Figure 9).

Transaction T

Figure 9 Generation of candidate itemsets and frequent itemsets from transaction.

As a result, the frequent itemsets that have been identified are (1), (21, (31, (41,

{1, 21, and {2,4}.

3.2 Association Rule Mining

Item association has been used for years in market basket analysis [Brin et al.,

1997al. If every item in a store is treated as a Boolean variable, each shopping basket can

then be represented by a Boolean vector of values assigned to these variables [Hans and

Kamber, 20011. Knowledge of buying patterns can then be obtained through analyzing

these Boolean vectors in the form of association rules. In fact, item association is a

technique inspired by the association rule data mining model [Agrawal et a]., 1993;

Mannila et al., 1994; Agrawal et al., 19961. Very often, association rules are used to

uncover the relationships between data items in a database with huge amounts of data.

Combining the item association property, the concept of association rule mining can be

represented mathematically as:

Let I = (1, 2 ,..., m) be a set of items and T = Itl, tz ,..., t,,) be a

database of transactions where ti I, and Supportmill be an expert-

defined minimum support count. An association rule is an implication

of the form A s B where A, B are itemsets and A n B = 0. The

support(s) for an association rule A s B is the percentage of

transactions in the database that contains A v B. The confidence for

an association rule A s B is the ratio of the number of transactions

that contain A v B to the number of transactions that contain A.

The confidence for an association rule is simply a measure of the rule

interestingness and reflects the certainty of discovered rules [Agrawal and Srikant, 1995;

Agrawal et a1.,1997]. The item association algorithm can then be enhanced to include the

formation of association rules (Algorithm 4) as follows:

Algorithm: Association Rules Mining
Input : transaction database T= { t,, t,, ..., t,) ,

a list of Items I={l, ..., m), and Supportmin
Output : a set association rules with confidence R
Begin

All frequent itemsets IF1, ..., Fm) =

Algori thm-3 (T, I, Supportmin)

for each frequent i-itemset Fi E IF1, ..., F,} {

/ / A g I a n d B ~ I

/ / e.g. if Fi={1,2,3},

//A = IIl),Il,2),{1,3),I1,2,3); same as B

if (A g Fi and B g Fiand A n B = 0){

R t R u R(A 3 B)

support (A 3 B) t P (A u B)
confidence(A 3 B) t P(B]A)

1
1
//P(A u B) is the percentage of transactions in

//T that contain (A u B) .

//P(B(A) is the percentage of transactions in

//T containing A that also contain B.

End

Algorithm 4 Association rule mining.

The example in the previous section can be used here to illustrate association rule

mining. A frequent itemset that contains only a single item cannot be used to form an

association rule. Since (1 }, (21, (3) are single-itemset, we can translate only {1,2} and

33

{2,4) into the rules. The resulting association rules are as shown below, each listed with

its confidence:

First rule : 1 3 2 , confidence = 213 = 66.67%

Second rule: 2 3 1 , confidence = 214 = 50%

Third rule: 2 3 4 , confidence = 214 = 50%

Fourth rule: 4 3 2 , confidence = 212 = 100%

If we are interested only in rules that have confidence greater than 50%

(minimum confidence threshold), the knowledge discovered from the transaction data can

be interpreted as: (first rule) when a customer purchases item 1, the chance of him

purchasing also item 2 is 66.67%; (last rule) when a customer purchases item 4, the

chance of him purchasing also item 2 is 100%.

3.3 Implementation Problems

It can be seen that the association rule mining algorithm suffers from two major

costs: space and time [Agrawal and Srikant, 1994; Han and Fu, 1995; Park et al., 1995;

Savasere et al., 1995; Toivonen, 1996; Brin et al., 1997b; Silverstein et al., 1998;

Aggarwal and Yu, 1999; Agrawal et al., 2000; Han et al., 2000; Park et al., 20001. The

algorithm will generate a huge number of candidate sets before it can identify the

frequent itemsets and then the association rules. Besides, the algorithm will scan all

transactions repeatedly to perform the frequency counts. There are no trivial solutions

because the algorithm has a running time complexity of an exponential order of growth

(2") where n is the number of available items. If there are three items a, b, and c, the total

number of itemsets will be 2'-1. The 1-itemsets, 2-itemsets, and 3-itemsets are

"{a}, {b). , {c) "; " {a,b) , {a,c} , {b,c} "; and " {a,b,c)" respectively. If there are 20 items, the

total number of itemsets will be 220- 1.

Although CADIA depends on the item association technique to form its

knowledge base, it will not suffer from the exponential growth problem. It is because

CADIA identifies only the smallest and least frequent iteinsets instead of all frequent

itemsets as described in Section 4.1. CADIA's structure and core algorithms are

presented in detail in the next chapter.

CHAPTER FOUR:
COMBINATORIAL AUCTION WINNER

DETERMINATION USING ITEM ASSOCIATION (CADIA)

4.1 Hypothesis

In many cases, auctions are used to sell items when the auctioneer is unsure about

the value of the item being sold. Such an uncertainty regarding values facing both

auctioneers and bidders is an inherent feature of auctions [Kelly and Steinberg, 2000;

Klemperer, 2000; Lavi and Nisan, 2000; Leyton-Brown et al., 2000bI. The word

"auction" itself is derived from the Latin "augere", which means "augment" [Krishna,

20021. In an open-bid, single-item, first-price auction, the sale is conducted by an

auctioneer who begins by calling out a low price and raises it. It continues as long as

there are at least two interested bidders and stops when there is only one. In a sealed-bid,

single-item, first-price auction, bidders submit bids in sealed envelopes. The person who

submits the highest valuation as the bid price for the item will win the item and pays what

he bid. When there is a large enough number bidders, we can safely assume that the most

wanted item that attracts the largest number of bidders will be sold at the highest

valuation among all its valuations. CAs, on the other hand, sell items in bundles instead

of one item at a time. Such a form of auction has been believed to be an efficient way for

resource allocation. However, the larger numbers of auctioned items and bidders have led

to a very complex decision problem. CADIA, which is a CA winner determination

system, is proposed to solve such a problem. The motivation to adopt the item association

technique in CADIA is based on the following fact:

CA winner determination is a real-world, complex decision problem

that involves a large amount of auction data. Item association is good

at discovering interesting patterns from large amounts of data.

Domain knowledge discovered from auction data in the form of item

association can help to solve the problem.

The following hypothesis is proposed and has been adopted by CADIA when

identifying winners. In a single-item auction, if item x is wanted by most bidders, x will

be included in most bids. On the contrary, x will bc included in very few or no bids if it is

not wanted by most bidders. Thus, the number of bids containing the least frequently

wanted item (or least frequent item in short) must be less than that containing the most

frequently wanted item (or most frequent item in short). Intuitively, an auctioneer may

want to sell the least frequent item as early as possible because an unsold item will induce

further cost (e.g. storage and handling). Since a higher valuation of an item always

implies higher revenue, it is then expected that an auctioneer may sell the most frequent

item as late as possible because such an item can always attract the highest possible

valuation. Such a belief is relaxed and applied when designing CADIA. In a

combinatorial auction, items are valuated as sets. If itemset S is wanted by most bidders,

S will be included in most bids. On the contrary, S will be included in very few or no bids

if it is not wanted by most bidders. Thus, the number of bids containing the least frequent

itemset must be less than that containing the most frequent itemset. An auctioneer may be

tempted to sell the least frequent itemset as early as possible and the most frequent

itemset as late as possible. The least frequent itemset is defined as follows:

A set of items is called an itemset. An itemset that contains k items is a

k-itemset (Section 3.2). The least frequent k-itemset is an itemset

whose number of occurrences is the smallest among all frequent k-

itemsets.

In a single-item auction, a tie happens when the item is wanted by more than one

bid. The resolution strategy is simply to assign the bid with a highest bidding price as the

winner for that item. When itemsets are considered in the design of CADIA, an

assumption that a bid containing the least frequent itemset is having less conflict than one

containing the most frequent itemset is made. It is understood that such an assumption

may not be justified theoretically and may cause error in winner determination. However,

adjustments have been made to minimize such errors and are described in Chapter 6.

Another issue that must be considered when designing CADIA is the

identification of the least frequent itemsets. If frequency count is the only measure used,

it is possible to have more than one itemset whose frequency counts are the same. In such

a situation, additional measures such as the degree of confidence and the degree of

conflict, which are defined below, will be applied.

Suppose item x and y are in the same itemset; the degree of confidence

is either the ratio of the number of bids that contain x and y to the

number of bids that contain x, or the ratio of the number of bids that

contain x and y to the number of bids that contain y, whichever is

higher.

Bid bi conflicts with any other bids if there is an item wanted by bi

that is also wanted by other bids. Suppose Si is the set of items wanted

by bid bi and C is the itemset of maximum confidence where C c Si.

The degree of conflict of C is the total number of bids that conflicts

with bi.

The least frequent itemsets are used in winner determination. It is possible to have

tied bids (candidate winners) if the least frequent itemset is wanted by more than one bid.

The tie resolution strategy adopted by CADIA is to award the candidate winner that

offers the highest bidding price as the final winner. If there is a further tie on the bidding

price, the candidate winner that is submitted at the earliest time becomes the final winner.

Bids are assigned with a number based on their submission time in CADIA. The lower

the number, the earlier the time the bid was submitted. Thus, bo is submitted at an earlier

time than bl . The hypothesis can be summarized as:

To maximize revenue in a CA, the bids containing the least frequent

itemset should be processed first and are declared as candidate

winners during each iteration of the winner determination process.

When identifying the least frequent itemsets, the measures of

frequency count, degree of confidence, and degree of conflict are

compared. The bid among all candidate winners that offers the

highest bidding price becomes the winner. In the case of a tie on the

bidding price, the bid that was submitted at the earliest time becomes

the winner.

4.2 Structure

Figure 10 depicts the structure of CADIA, which is composed of two major

components. They are:

1. Item Association Generation Unit (IAG)

2. Winner Determination Unit (WIN)

Input:
Bids, Items '

CAD lA h
Item Assoc~at~on

Generat~on Un~t (IAG)

\ \
Least Frequent
ltemsets

2

Winner Determlnatlon Un~t
(WIN)

Output:
Bids (Winners)

Figure 10 Structure of CADIA.

40

4.2.1 Item Association Generation Unit (IAG)

The Item Association Generation Unit (IAG) is used to form the knowledge in the

form of item association on which the winner determination strategy is based. Instead of

looking for all frequent itemsets that satisfy the minimum support count as in most

association rule mining applications, IAG attempts to identify only the least frequent

itemsets according to the hypothesis stated in section 4.1 . Consequently, IAG does not

have the inherent problem of time and space complexities as discussed in Section 3.3.

That is, even if there are many itemsets whose counts are greater than the minimum

support count, IAG looks for only those that have frequency count equal to the minimum

support count. In addition, IAG identifies only the smallest frequent itemsets instead of

all frequent itemsets. That is, even if there are hundreds of items, IAG always start

counting frequent 1 -itemsets, followed by 2-itemsets, 3-itemsets, and so on. IAG's

default value for the minimum support is assigned to 1, which is the smallest non-zero

integer. Our empirical results show that IAG always returns the least frequent itemsets

before it generates the 3-itemsets. Whenever there is a tie, the degrees of confidence and

conflict of all least frequent itemsets are compared. In other words, CADIA will identify

the smallest and least frequent itemset with the highest degree of confidence and the

lowest degree of conflict at IAG. Algorithm 5 and 6 are the core algorithms adopted by

IAG.

Algorithm: Identifying the smallest and least frequent
itemsets during each iteration

Input : all available items M={1,2, ..., m) ,
all available bids B= {bo, bl, ..., b,,} ,
minimum support count (Supportmin)

Output : the smallest and least frequent itemsets F,,
Begin

End

found t FALSE

candidate 1-itemsets C1 t M

for each itemset cj E C1

if (frequency (cj) = Supportmin) {
Csl t Csl u Cj
C,I = highestconf idence~temset (c,,)
Fsl = lowestconf lict~temset (cS1)
found t TRUE

1
if (found = TRUE) //if LFI is found in 1-itemset

return F,,

/ / 2 - or higher level itemsets must be generated
//before frequency counting
for i E {2. .m) {

Generate candidate i-itemsets C, by Fi-l x Fi-l

for each itemset c, E Ci {

if (frequency (c,) = Supportmi,) {

Csl t Csl U Cj

C,, = highestconfidence~temset (CSl)
F,1 = lowestconf lictItemset (Csl)
found t TRUE

1
if (found = TRUE)

return FS1
1

1

Function frequency (c)
Begin

return (number of transactions that contain c)
End

Algorithm 5 Identify the smallest and least frequent itemset

42

Function highestConfidenceItemset (C)
Begin

highestconfidence t 0
highestConfdItemset t 0
for each itemset C, E C

/ / A c 1 a n d B c 1

if (A c ci and B c ciand A n B = 0)t

confidence(A,B) t P(BIA)
if (highestconfidence <= confidence(A,B)) {

highestconf idence t con•’ idence (A, B)
highestConfdItemset t highestConfdItemset U ci

1

J

return highestConfdItemset

End

E'unction leastConflictItemset (C)

Begin
leastconflict t very large constant
leastConflictItemset t 0
for each itemset cj. E C {

conflictCount t 0
find bi E B where ci c Si
for each bid bj E B where j#i {

if (S j n S, # 0)
conflictCount = conflictCount + 1

1
if (leastconflict >= conflictCount) (

leastconflict t conflictCount
leastcon•’ 1ictItemset t c;

1
1
return 1eastConflictItemset

End

Algorithm 6 Functions highestConfidenceItemset and IeastConflictItemset

4 3

4.2.2 Winner Determination Unit (WIN)

CADIA can be treated as an informed search system because its Winner

Determination Unit (WIN) uses problem-specific knowledge in the foi-m of item

association to look for solutions. Since it is possible to have multiple winners during a

CA, WIN uses the least frequent itemset output from IAG in its candidate winner

determination process. Given the least frequent itemset, WIN identifies those bids

containing the itemset as candidate winners. A conflict exists when there is more than

one bid containing the least frequent itemset. Conflicts among bids are resolved by WIN

using the following measures:

1. The bid which offers the highest bidding price becomes a winner.

2. If there is a tie on bidding price, the bid which is submitted at the earliest

time becomes a winner.

Algorithm 7 iterates over all bids to identify the candidate winners. Algorithm 8

identifies the winner from all candidate winners based on the bidding price and bid

submission time.

Algorithm: Identify all candidate winners

Input : the least frequent itemset, S, ,
all bids bi EB and bid tuples (Si,pi), i~(O,l, ... n).

Output : a list of all candidate winners, L.

Begin

for each bid bieB (

if Si 2 S,

L t L u b ,

1
return L;

End

Algorithm 7 Identify all candidate winners.

Algorithm: Identify a winner

Input : all candidate winners, Bc

all bids bi EB and bid tuples (Si, pi), ie {0, 1, ... n)
Output : a winner, winneri

Begin

highestprice t 0
for each bid bi€Bc (

if (~~>highest~rice) {

winneri t bi
highestprice t pi

1

Algorithm 8 Identify a winner

4.3 Example

A simple example is presented here to illustrate the CADIA's core concept and

algorithms. The sample data contains 10 auctioned items and 10 bids as presented in

Figure 11. At the beginning, CADIA will read the bid data as inputs and organize them

into a matrix in the memory as described in Figure 12.

I
{bid) {a set of items) {bidding price)

Figure 11 Bid data.

Figure 12 Auction data is represented internally as a matrix in CADIA.

During the first step, IAG of CADIA sets the minimum support count to one (a

non-zero least support count), starts generating frequent I -itemsets (Figure 13), and

checks if there are itemsets whose frequency counts are equal to but not greater than the

minimum support count. That is, IAG identifies the smallest but also least frequent

itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1-

itemsets have frequency counts greater than the minimum support count. Thus, IAG is

required to generate frequent 2-itemsets (Figure 14). Now, twenty-one out of forty-five

itemsets have frequency counts equal to the minimum support count. Additional

measures such as the degree of confidence and the degree of conflict will then be applied

according to algorithm 5 and 6 to reduce the total number of itemsets. It is shown in

Figure 15 and 16 that the highest degree of confidence and the lowest degree of conflict

are found to be 50% and 5 respectively. As a result, the itemset {2,9) is determined as the

least frequent itemset, which will be used by WIN to determine candidate winners.

Figure 13 Frequent 1-itemsets during the first iteration.

Figure 14 Frequent 2-itemsets during the first iteration

Figure 15 Degrees of confidence for itemsets with the least support count

Figure 16 Degrees of conflict for itemsets with highest confidence.

In the next step, WIN of CADIA will identify all candidate winners. WIN starts

looking for those bids that include the least frequent itemset (2,9). In this example, only

b7 contains itemset {2,9). Consequently, b7 is detennined as a winner (Figure 17). After

the winner is declared, those bids that conflict with it are labelled as losers (Figure 18).

Since we can have multiple winners in an auction, we can only say that b7 is one of the

winners and b3, b4, bs and b6 are losers during the first iteration.

Figure 17 Bid b7 becomes a wiiwer after the first iteration.

Figure 18 Bid b3, b4, b5, b6 become losers after the first iteration.

In the second iteration, the available qualified bids are bo, b l , bz, b8 and bs. IAG

will update the item association pattern based these bids. IAG again sets the minimum

support count to one, generates frequent 1 -itemsets (Figure 19), and checks if there are

itemsets whose frequency counts are equal to the minimum support count. In addition,

the degree of confidence and the degree of conflict are checked for each itemset. It is

shown in Figure 20 that the highest degree of confidence and the lowest degree of

conflict are found to be 100% and 5 respectively. Since both itemsets { 1] and {3) have

satisfied the condition of being the least frequent itemsets, they are used for candidate

winners determination.

Figure 19 Frequent 1-itemsets during the second iteration.

Figure 20 Degrees of conflict for itemsets with maximum confidence during the second iteration.

In candidate winners determination, WIN looks for those bids that include the

least frequent itemset (1) or {3). As a result, bl is determined to be a winner during the

second iteration (Figure 2 1). After the winner has been declared. all bids that conflict

with it are determined as losers (Figure 22). After the second iteration, WIN stops

because all bids have been processed. As a result, b l and b7 are the winners which

generate the total revenue of $359.28. In fact, such revenue is the optimal revenue for this

sample problem.

l X l X l I) x 1 208.28 1 loser (
I b4 I I 1 x 1 1 x 1 ~ 1 1 1 x 1 1 108.28 1 loser I

b5 I

Figure 21 Bid b, becomes a winner after the second iteration.

b7
b8

b9

X 55.74 loser

x 152.00 winner
X 154.74 loser (6

X X X 205 50 loser

X 1 x 1

Figure 22 Bids bo, b2, b8, b9 become losers after the second iteration.

x
x

I x
1 55.74 1 loser b6 I I X l X l X l

1 55.74 1 loser

1 x 1
X

x
x x x

x
x

x 152.00
154.74

205.50

winner

-

CHAPTER FIVE:
EVALUATION (I)

The following plan is used for CADlA evaluation:

Understand the evaluation purpose.

Set up the experiments.

Select a sample of inputs.

Implement a prototype CADIA.

Run CADIA on the sample's input and record the results.

Summarize and analyze the results.

5.1 Purpose

The purpose of the evaluation is to evaluate CADIA's accuracy and performance.

The evaluation of CADIA's accuracy is straightforward. To conclude that CADIA is a

technique capable of finding the optimal solution, the revenue generated by CADIA

during an auction must be equal to that generated by an optimal revenue search system

such as the brute-force technique based system. In CADIA's performance evaluation, we

may be tempted to use mathematical analysis. Though mathematical analysis can be

applied to many simple algorithms, the power of mathematics is still far from limitless.

Most heuristic techniques that solve the class NP problems are believed to be very

difficult to analyze with mathematical precision and certainty [Goodrich and Tamassia,

2002; Johnsonbaugh and Schaefer, 20041. Thus, empirical analysis [Levitin, 20031 is

adopted in CADIA's evaluation.

The two major approaches of analyzing an algorithm empirically are:

1. Count the number of times the algorithm's basic operation is executed by

inserting a counter in the algorithm.

2. Time the algorithm.

CADIA's core algorithm requires an update of its item association knowledge in

each of the iterations of the winner determination process. The process is so dynamic that

the first approach of counting the number of operations becomes inappropriate. In

addition, CADIA's implementation is in fact a combination of many algorithms. Thus,

the second approach of timing the prototype of CADIA is used. Since CADIA is

implemented in the C programming language, the built-in system function "clock()3" has

been used to return the start time Tstafl and the finish tiine Tfi,,isl,. The running tiine

required, which has been converted into seconds, is equal to the difference between Tstalt

and Ttinish.

3
clock() returns wall-clock time used by the calling process.

[http://n~sdn.n~icrosoft.comllibrary/default.asp?url=/library/en-us/vclib/html/~crt~clock.asp]

5.2 Com binatorial Auction Testing Suite

Many researchers have recently begun to propose algorithms for determining the

winners of CAs, with encouraging results. This wave of research has given rise to a new

problem, however. In the absence of real world CA data, the only option is to generate

auction data artificially. However, it is necessary to use a standard test suite with

simulated data to test and improve the proposed algorithms. A test suite called

Combinatorial Auction Test Suite (CATS) for testing combinatorial auction algorithms

has been proposed and developed by Leyton-Brown et al. [2000a]. CATS includes the

ability to generate bids according to all previous published test distributions and has been

used in a number of recent papers [Sandholm et al., 2001b; Sandholm, 20021. In

CADIA's evaluation, CADIA is tested on CATS'S arbitrary distribution. All sample

auctions are generated using CATS instance generators with default parameters.

5.3 Experimental Setup

The test implementation of CADIA in the C programming language running on a

1GHz Pentium PC with 512MB RAM was evaluated on auction data generated by CATS.

Five hundreds sample auctions were generated using CATS. Two different tests were

performed in the evaluation. The objective of the first test was to justify the conclusion

that CADIA is capable of finding the optimal revenue. Thus, CADIA was compared with

the brute-force technique (BFT) based system in terms of revenue generation and running

time. The objective of the second test is to justify the conclusion that CADIA is a good

54

approximation system that always guarantees a better than or cqual to the lower bound

revenue. Thus, CADIA was compared with an implementation that is based on the greedy

search technique (GST). Thc bidding price is adopted as the objective function for the

GST.

The software implementation of CADIA takes four parameters during its

execulion. They are:

1. a file containing tlrc list of auctioned items,

2. a file containing the hid data,

3. an integer corresponding to the number of items in the auction,

4. an integer corrcsponding to the nr~mbcr of bids in thc auction

CADIA can be executed from the cornmand linc as shown in Figure 23. The

co~ninand says that CADIA will determine the winners in a CA of 500 items and 1000

bids.

Figure 23 Kxecote CADIA with 4 arguments from cornnland line.

5.3.1 Comparison of CADIA and BFT

The objective of the first test is to justify the conclusion that CADIA is capable of

finding the optimal revenue. Due to the fact that the CA winner determination problcm is

5 5

a NP-hard problem, the test becomes realistic only if the sample auctions contain a

reasonably small number of bids items. Thus, CADIA was compared with BFT in terms

of revenue generation and running time on two hundred sample auctions with ten items

and ten bids each. BFT is also implemented in the C programming language based on the

algorithm described in Algorithm 1.

5.3.2 Comparison of CADIA and GST

The objective of the second test was to justify the conclusion that CADIA is a

good approximation system that always guarantees a better than or equal to the lower

bound revenue. Since GST is based on greedy search technique, it can handle more items

and bids that cannot be handled by BFT and always returns feasible results in reasonable

time. Thus, CADIA was compared with GST in terms of revenue generation on two

hundred sample auctions with twenty items and one thousand bids each. GST is also

implemented in the C programming language based on the algorithm described in

Algorithm 2.

5.4 Empirical Results and Analysis

In this section, the results of the tests described in Section 5.3.1 and 5.3.2 are

documented in Section 5.4.1 and 5.4.2 respectively. The results will be used to justify the

hypothesis in designing CADIA.

5.4.1 Comparison of CADIA and BFT

Even BFT works in principle, however it is practically limited by the number of

items and bids it can process. CADlA may or may not find the optimal revenue. Thus, it

is interesting to know how accurate CADIA is. The accuracy of CADIA can be

quantified by the size of the accuracy ratio R,,,,,,,, [Levitin, 20031 of CADlA where

SGlo,,, and SHFT represent the solutions of CADlA and BFT respectively to the objective

function ,f of the winner determination problem (i.e. the revenue). The closer Rflcc,,,,,, is

to 1, the better the proposed technique is.

Table 1 reports the results for all two hundred sample auctions. The accuracy ratio

of BFT in all sample auctions is always one because BFT always finds the optimal

revenue and thus is used as the standard for comparison. CADIA has an average accuracy

ratio of 0.979 and is not able to find the optimal revenue in 36 out of 200 auctions. The

results are sorted and plotted as a line chart (Figure 24). In addition, the average running

time of BFT and CADIA are 21 1.722 seconds and 0.199 seconds respectively.

A
cc

u
ra

cy
 R

at
io

 C
o

m
p

ar
is

o
n

 o
f

B
F

T
 a

n
d

 C
A

D
lA

(2

00
 s

am
pl

e
au

ct
io

ns
,

ea
ch

 a
uc

tio
n

co
nt

ai
ns

 1
0

ite
m

s
an

d
10

 b
id

s)

A
u

ct
io

n
 N

u
m

b
er

 (s
o

rt
ed

 b
y

ac
cu

ra
cy

 r
at

io
)

F
ig

ur
e

24
 A

cc
ur

ac
y

ra
ti

o
co

m
pa

ri
so

n
of

 B
F

T
 a

nd
 C

A
D

IA
.

Table 1 Accuracy ratio comparison of BFT aud CADlA (sample 1-200).

5.4.2 Comparison of CADIA and GST

When there are too many items and bids, it becomes impractical to compare BFT

and CADIA. BFT takes more than 200 seconds to process an auction of ten items and ten

bids, but requires about 1800 seconds to process an auction with one additional item.

Since it is worthwhile to measure CADIA's performance when there are hundreds of

items and thousands of bids, CADIA is compared with GST in terms of revenue

generation. The performance of CADIA in revenue generation can be quantified by the

size of the performance ratio Rpel,ol,rrnlrcP of CADIA where S, ,,,, and S,,, represent the

solutions of CADIA and GST respectively to the objective function f of the winner

determination problem (i.e. the revenue). The higher the value of Rp~l,ol l ,rn,rrP, the better the

performance of the proposed technique.

In this test, each sample auction contains twenty items and one thousand bids. The

number of items has been selected in such a way that it cannot be handled realistically by

BFT, but it is still small enough as compared to the number of bids. The purpose of such

a setup is to simulate realistic CAs in which there are always conflicts among bids. Table

2 summarizes the performance ratios of GST and CADIA for two hundred sample

auctions. The accuracy ratio of GST in all sample auctions is always one because it is

used as the standard for comparison.

1 50 1 1.118 1 100 1 1.239 (150 1 1.131 1 200 11.111

Table 2 Performance ratio comparison of GST and CADIA (sample 1-200).

The data in the table is then used to form a line chart (Figure 25). Results show

that CADlA has an average performance ratio of 1.186 and outperforms GST in 191 out

of 200 auctions. In other words, CADlA on average outperforms GST by 18.6% in our

evaluation.

CHAPTER SIX:
IMPROVING CADIA

6.1 Motivation

It has been shown in Section 5.4.1 that CADIA has an average accuracy ratio of

0.979 for the two hundred sample auctions. That is, CADIA may or may not find the

optimal revenue. Such a defect is due to the fact that the comparison of the valuation of

an itemset wanted by bids is relaxed to a comparison of the valuation of all the items

wanted by bids. Suppose the bid tuples of bids bi and bj are (Si, pi) and (Si, pj) respectively

and Si M, S, M and pi > pj. If there is a least frequent itemset F where F c Si and F c

S;, bi will conflict with bj. Based on the hypothesis in Section 4.1, bi will become the

winner because it offers a higher valuation on Si. The comparison is actually based on the

prices for Si and Si but not on F offered by bi and bi. The ideal situation would be for each

bidder to submit a valuation for each subset of auctioned items in order to attain true

valuation comparison as suggested by the Vickrey-Clarke-Grooves (VCG mechanism)

[Klemperer, 2000; Krishna, 20021. However, the VCG mechanism is impractical and

rarely used because no bidder is willing to valuate all subsets of auctioned items [PekeC

and Rothkopf, 20001. Even if there are only 20 auctioned items, it is not likely every

bidder is willing to work out 2?'-1 or 1048574 valuations. In spite of the relaxation on

valuation, CADIA is able to minimize or even correct the error via an adjustment. Instead

of immediately declaring a bid b; as a winner based on the item association technique,

CADIA first declares bi as a potential winner. It then measures the revenue generated

when bi is not a winner. Comparing the revenue generated with and without bi, it is

possible to improve the revenue via the selection of a new set of winners. Such an

adjustment procedure is performed at the Tactical Bids Elimination (TBE) component of

CADIA, which is described in detail in Section 6.2.2. TBE becomes an additional

component to make CADIA a system capable of finding the optimal revenue.

When improving CADIA, the performance affected by having redundant bids has

been taken into consideration. For instance, a bid that bids on the same combination of

items as others but offers a lower bidding price should be removed. The additional

component Pre-Processing Unit (PRE), which is described in detail in Section 6.2.1, is

thus added to CADIA to remove redundant bids.

6.2 New Structure

With the additional components, CADIA can be described as an "aggressive"

system because it improves its results on successive iterations during the winner

determination process.

Figure 26 depicts the new structure of CADIA, which is composed of four major

components. They are:

1. Pre-Processing Unit (PRE)

2. Item Association Generation Unit (IAG)

3. Winner Determination Unit (WIN)

4. Tactical Bids Elimination Unit (TBE)

The four components form the four consecutive phases of the winner

determination process. Outputs from one component may flow back to a previous

component during the process. For example, outputs from TBE will flow back to PRE to

further improve the results.

Input: ,
Bids, kerns

CADIA
\

Pre-Processmg Un~t (PRE)

kern Association
Generation Unit (IAG)

Least Frequent
lternsets

Winner Deterrninat~on Unit
w"JvN)

m

Potential Wlnners,
Poss~ble Losers .

Figure 26 Structure of CADIA.

6.2.1 Pre-Processing Unit (PRE)

The Pre-Processing Unit (PRE) is used to remove redundant bids. A bid is

considered as redundant and removed if

1. it bids on the same combination of items as others and offers a

lower bidding price. Mathematically, let the bid tuples of b, and by

be (S,, p,) and (S,, p,) respectively. bi is removed if S,=S,, but

Px<Py.

2. it bids on the same combination of items as others and offers the

same bidding price, but it is submitted at a later time.

Mathematically, let t, and t, be the time of bids submitted by b,

and b, respectively. b, is removed if S,=S, and p,=p,, but t,>t,.

3. its bidding set of items is a superset of another bid's, but it offers a

lower bidding price. Mathematically, b, is removed if S, 2 S, and

Px<PY.

4. its bidding price is less than a lower bound price which is

determined by Algorithm 9. (This criterion was not used when

evaluating CADIA against other techniques. The inclusion of it is to

improve CADIA's practicality which will be discussed in Chapter 8).

5. its bidding set of items is a superset of that of the union of two or

more mutually exclusive bids, but it offers a lower bidding than

the total price of these bids. Mathematically, b, is removed if S, 2

SyI u S y2 u ... u S yn and Si n Sj=O where i, j E {yl, y2 ,..., yn) and

i#j and P,<(P,I + P ,2 +.. + P ,,I.

The implementation of criteria 1, 2 and 3 is straightforward. Criterion 4 will filter

out those bids whose bidding prices are lower than a reference value called the lower

bound price. Such a lower bound price is determined based on a greedy search algorithm.

Thus, the higher the lower bound price, the less the number of bids will be qualified for

the next processing phase. Algorithm 9 describes how the lower bound price is

calculated. A scale factor Csf , whose value between 0 and 1 is selected by the auctioneer,

can be used to scale down the lower bound price to allow more bids to be qualified for

the next phase. CSf has been set to 0.5 by default. Chapter 8 will discuss the impact of the

lower bound price on the running time of the results.

Algorithm: Calculate the lower bound price for each bid

Input : all bids bi E B and bid tuples {Si, pi),

iE{O, 1, ... n),
all items M = {I, 2 ,..., m),
scale factor Csf = {O..l),

Output : the lower bound price bi.lbPrice for all bids b i € B

Begin

//use Algorithm 2, a set of winning bids Bgreedy is obtained

Bgreedy t Greedy-Search-Winner-Determinat ion (B)

greedyRevenue t 0
for each bid bi E BgreedY

greedyRevenue t greedyRevenue + pi

1bPricePerItem t greedyRevenue / 1 ~ 1

for each bid bi E B

bi. lbprice t 1bPricePerItem x 1 si 1 x Csf

End

Algorithm 9 Determine the lower bound price for each bid.

Criterion 5 can be met if an exhaustive search technique is adopted because it

requires a search for all bidding sets of items to determine if it is a superset of the union

of any other bidding sets. CADIA has delayed the implementation of the criterion until

WIN. That is, CADIA checks if a bid is a redundant bid just before it is about to be

declared as a candidate winner. The objective of such a delay is to perform the task only

when it is needed in order to reduce the overall running time. Nevertheless, the larger the

number of items and bids in an auction, the more time is required to perform the search.

To further reduce the running time, WIN has been customized to perfonn a partial search

instead. That is, it searches for all bidding sets of items to determine if it is a superset of

70

the union of any two or three sets only. The partial search is recommended especially for

auctions of more than 500 items and 1000 bids. Algorithm 10 depicts the algorithm for

determining if a bid's set of items is a superset of the union of any other three bids', but

offers a lower bidding price than the sum of that of the three.

Test if bid b,'s bidding set of items S, is a

superset of the union of any other 3 mutually exclusive bids,

but offers a lower bidding price than the total price of the 3

bids.

Input : all bids bi E B and bid tuples {S,, pi}, i~ (0 , 1, ... n} .
Output : TRUE if S, is a superset with lower price,

FALSE otherwise.

Begin

for each bid bieB {

for each bid bj€B {

for each bid bkcB {

if (i # j # k) {

if (isSupersetOf3 (x, i, j , k) =TRUE) {

if P,< (~ i + ~ j + ~ k)
return TRUE;

else

return FALSE;

1
1

1
I

1
return FALSE;

End

Function isSupersetOf3 (x,i,j,k)

//test if S, is a superset of the union of Si ,Sj and Sk

Begin

if (S, 2 (Si u Sj u Sk)
return TRUE;

else
return FALSE;

End

Algorithm 10 Determine if a bid is a superset of others.

7 1

6.2.2 Tactical Bids Elimination Unit (TBE)

It has been discussed in the Section 4.1 that the biggest concern in CADIA's

design is the completeness of search for the optimal solution based on the least frequent

itemset. A bid which attempts to be granted the winner status may tactically bid on the

least wanted itemset. In fact, such a worry is unnecessary because the least wanted

itemset is not obvious in auctions of hundreds or even thousands of bids.

Nevertheless, the TBE of CADIA has eased the above concern because it

provides further analysis on all potential winners and possible losers that are output from

WIN. Suppose bi is a potential winner, TBE will first assume bi to be a tactical bid and

test the revenue generated if bi is removed for the auction. An improvement on the

revenue may or may not conclude if bi is a tactical bid, but it will definitely suggest that

bi should not be a winner and be removed fiom the auction. In CADIA's design, TBE

will improve the revenue during the winner determination process using either one of the

two different strategies.

In the first strategy, TBE tests the expected revenue when N potential winners and

possible losers, which are identified from the previous round of winner determination, are

removed fiom the auction. The integer N, which is specified as an argument when

executing CADIA, is referred to as the number of analysis bids. Suppose 2 analysis bids

are specified in auction, CADIA will iterate 3 times to search for better revenue. The first

iteration does not remove any bids. The second iteration removes the first winner and last

loser determined during the first iteration, and the third iteration removes the first two

winners and last two losers determined during the second iteration.

TBE in the second strategy also uses both the potential winners and possible

losers to improve the revenue but requires a slight complex implementation and thus a

detailed description is given next. Suppose N analysis bids are specified in an auction,

TBE tests the expected revenue when N/2 potential winners and N/2 possible losers are

removed from the auction. CADIA will iterate 2N times to search for better revenue. The

algorithm for testing if a combination of potential winners and losers should be removed

is described in Algorithm 11.

The lists of potential winners and possible losers can be seen as additional

knowledge discovered during the process. The incorporation of TBE and such knowledge

has made CADIA able to search for better or even the optimal revenue. TBE with the

second strategy applied a more extensive search than that with the first one, and thus able

to obtain better results. Thus, TBE with the second strategy is used when evaluating

CADIA with an optimal revenue search technique such as the BFT. The drawback of the

second strategy is that it requires more time to complete the search process. In an auction

of 20 items, 1000 bids and 6 analysis bids, the second strategy requires 130 seconds but

the first strategy requires only 27 seconds for the whole process. For faster result in

auction size of hundred items and thousands of bids, TBE with the first strategy may be

used. Thus, TBE with the first strategy is used when evaluating CADIA with other

approximation techniques.

Loop until c >= Ca (//c=O, 1,2 ...
Lanalysis t Lanalysis + Lwinners [C I
Lanalysis t Lanalysis + Llosers [cI
c t c + 2

highestRevenue t CADIA (B)
for each combination of bids Bi c LanalYsis (

revenue = CADIA (B-Bi)
if (highestRevenue < revenue) (

highestRevenue t revenue
CmbOfBidsToBeRemoved = Bj

1
1

End

Function CADIA (B)

Algorithm: Identify the combination of potential winners
bi~LWinners and possible losers bjcLlosers to be removed
to further improve the revenue

Input : all bids bi E B, and bid tuples (Si,pi) , i~ (O,l, ... n) .
lists of potential Lwinners and possible L,,,,,s ,
Number of analysis bids Ca.

Output : the combination of potential winners and possible
losers to be removed from the auction
CmbOfBidToBeRemoved.

Begin
//make up a list of analysis bids from winners and losers

//return the revenue generated for an auction containing the
//set of bids B
Begin

//use Algorithm 8 - find a winner
For each winner b, E B

revenue t revenue + p,
return revenue

End

--

Algorithm 11 Remove potential winners and losers for result improvement.

6.3 Example

The improved CADIA is demonstrated with the same data (Figure 27) used in the

Section 4.3. At the beginning, CADIA will read the bid data as inputs and organize them

into a matrix in the memory as described in Figure 28.

{bid) {a set of items) {bidding price)

Figure 27 Bid data.

Figure 28 Auction data is represented internally as a matrix in CADIA.

b8
b9

During the first step at PRE, any redundant bids will be removed. Since the bid

tuples of b9 and bo are (S9,p9)= { {O,4,6,7,8), 205.50) and (So,po)= { {0,4,6,7),

x
x

206.28}respectively, b9 will be removed because it is a superset of bo but it offers a lower

75

L

x
X X X X

1

x 154.74

205.50

bidding price (i.e., S9 2 So but pg < po) according to the criterion 4 stated in Section

6.2.1. The qualified bids after the filtering process at PRE are b ~ , bl , b2, b3, b4, b5, b6, b7,

and bg (Figure 29).

b7 X x 152.00

b8 X X X 154.74

b9 x x x x x 205 50 loser de
Figure 29 Bid b9 becomes a loser after PRE.

During the second step, IAG of CADIA sets the minimum support count to one (a

non-zero least support count), starts generating frequent 1-itemsets (Figure 30) and

checks if there are itemsets whose frequency counts are equal to but not greater than the

minimum support count. That is, IAG identifies the smallest but also least frequent

itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1 -

itemsets have frequency counts greater than the minimum support count. Thus, IAG is

required to generate frequent 2-itemsets (Figure 3 1). Now, twenty-four out of forty-five

itemsets have frequency counts equal to the minimum support count. Additional

measures such as the degree of confidence and the degree of conflict will then be applied

according to Algorithms 5 and 6 to reduce the total number of itemsets. Figure 32 and

Figure 33 show that the highest degree of confidence and the lowest degree of conflict

76

are found to be 50% and 5 respectively. As a result, the itemset {2,9} is determined as the

least frequent itemset, which will be used by WIN to determine candidate winners.

Figure 30 Frequent 1-itemsets during the first iteration.

Figure 31 Frequent 2-itemsets during the first iteration

Figure 32 Degrees of confidence for itemsets with the least support count

77

Figure 33 Degrees of conflict for itemsets with maximum confidence.

In the next step, WIN of CADIA will identify all candidate winners. WIN starts

looking for those bids that include the least frequent itemset {2,9). In this example, only

b7 contains itemset {2,9). Consequently, b7 is determined as a potential winner (Figure

34). After the potential winner is declared, all bids that conflict with it are determined as

possible losers (Figure 35). Since winner determination is a multi-round process

involving both WIN and IAG, we can only say that b7 is one potential winner and b3, b4,

b5 and b6 are some possible losers during the first iteration.

Figure 34 Bid b7 becomes a winner after the first iteration.

78

b7

b8
b9

x
x

x
x
x x x

x
x

x 152.00

154.74
205.50

winner

loser

4e

Figure 35 Bid bs, b4, bj, b6 become losers after the first iteration.

In the second iteration, the qualified bids are boy bl , b2 and bs. IAG will update the

item association pattern based on the current available qualified bids. IAG again sets the

minimum support count to one, generates frequent 1 -itemsets (Figure 361, and checks if

there are itemsets whose frequency counts are equal to the minimum support count. In

addition, the degree of confidence and the degree of conflict are checked for each itemset.

It is shown in Figure 37 that the highest degree of confidence and the lowest degree of

conflict are found to be 100% and 4 respectively. Since itemsets {1), {3), (7) and (8) all

have satisfied the condition of being the least frequent itemsets, they are used for

candidate winners determination.

Figure 36 Fr eequent 1-itemsets during the se lcond iteration.

Figure 37 Degrees of conflict for iteinsets with maximum confidence during the second iteration.

In candidate winners determination, WIN looks for those bids that include the

least frequent itemset (1), (31, (71 or (8). Bids bo, b l , and b8 become candidate winners

because bo contains itemset {7), b~ contains itemset {I } and (31, and b8 contains itemset

(8). According to the criterion 1 in Section 4.2.2, bo, b l , and bs are conflicted bids and

the bidding price comparison strategy must be applied to select only one potential winner.

As a result, bl is determined to be the potential winner during the second iteration (Figure

39). After the potential winner has been declared, all bids that conflict with it are

determined as possible losers (Figure 40). After the second iteration, WW stops because

all bids have been processed. As a result, b 1 and b7 are the potential winners which

generate the total revenue of $359.28.

Figure 38 Bids bo, b,, b2, b8 become candidate winners.

8 0

b7
b8

b9
x
x

x
X

x x x
X

x

x 152.00
154.74
205.50

winner
candidate+

loser

I I I x I l x l x l I 1 206.28 1 I

I b6 I l X l X l X l 1. 1 x 1 I I 1 55.74 1 loser I

b l

b2

b3

b4

b5

I b7 I 1 1 x 1 I I I I I I x 1 152.00 1 winner I

x
x
x

Figure 39 Bid bl becomes the potential winner.

b8

b9

x

x

1 b4 I 1 x 1 l x l x l I 1 x 1 1 108.28 1 loser 1

x
x

b l

b2

b3

x
x

x
x

x
x --
x

b5

b6

b7

During the fourth step at TBE of CADIA, all potential winners and possible losers

will be analysed to hrther improve the revenue. The second strategy of TBE described in

Section 6.2.2 is used in this illustration. In WIN'S implementation, all potential winners

and possible losers are recorded in two separate lists. The time during which a winner or

a loser is identified will determine its order in the lists. According to Algorithm 1 1, the

x

b8
b9

x

X

I

x
x

x

x
x

Figure 40 Bids bo, b2, bs become possible losers.

x
x

x

X

x
x
X

x
x

x
x

x
x

X

x

x

x

x

154.74

205.50

x

x

x

loser

x

x

x

x

x
x

x

x

154.74
205.50

x

55.74

55.74

152.00

207.28

205.00

208.28

108.28
55.74

loser

loser
winner
loser
loser

207.28

205.00

208.28

4e

winner

loser
loser
loser

,+

winner

loser
loser

44

order of elements in LWinnew (list of winners) and L1,,,,, (list of losers) become {b7, bl f and

(b3, b4, b5, b6, bo, b2, b8) respectively. TBE will then form the analysis bid list Lanalysis

based on Lwinnem and LlOse,., . Suppose the number of analysis bids specified by the user of

CADIA is 3, the content of L,n,l,sis, which is made up by picking the first winner,

followed by the last loser, and then the second winner, becomes (b7, bR, bl f . Since

IBanalySis1 = 3, CADIA will run in the first round without removing any bids, and then

additional seven times to search for better revenue because there are seven different ways

of combining these analysis bids. TBE will remove each of these combinations and

record the revenue generated in each run. The results, which have been summarized in

table 3.

Table 3 CADIA runs eight times for bid and revenue analysis.

In this example, the best result remains the one initially detem~ined by WIN. That

is, the winners and revenue remain b l , b7, and $359.28 respectively. In this example,

$359.28 is in fact the optimal revenue.

CHAPTER SEVEN:
EVALUATION (TI)

7.1 Purpose

The purpose of the evaluation is to evaluate the new implementation of CADIA's

accuracy and efficiency. The same evaluation plan as described in Chapter 5 is adopted.

7.2 Experimental Setup

Three different tests were perfomled in the evaluation. The objective of the first

test was to justify the conclusion that CADIA is capable of finding the optimal revenue

for the generated sample auctions. Thus, CADIA was compared with an optimal revenue

search technique in terms of revenue generation and running time. The objective of the

second test was to justify the conclusion that CADIA is a good approximation system

Thus, CADIA was compared with some approximation techniques. The objective of the

third test was to justify the conclusion that CADIA is still an efficient system even

though its running time grows exponentially. Thus, CADIA's running time was measured

against different numbers of auctioned items and bids.

The software implementation of the extended version of CADIA takes five

parameters during its execution. They are:

1. a file containing the list of auctioned items,

2. a file containing the bid data,

3. an integer corresponding to the number of i t e m in the auction,

4. an integer corresponding to the number of bids in thc auction, and

5. an integer corrcsponding to the number of analysis bids, which are

composed from the lists of winners and losers, for further rcvenue

inlprovcment.

CADIA can be executed from the command line as shown in Figure 41. The

coiii~nand says that CADIA will deterniine the winners in a CA of 500 items and I000

bids; in addition the number of analysis bids is 10 .

liigr~re 41 Execute CADI/\ with 5 argrments from c o n i ~ n a ~ ~ d line.

7.2.1 Conlparison of CADIA and BFT

Tlie objective of the first tcst is LO justify the coliclusion that CADIA is capable of

generate the optimal revenue. Thus. CADIA was compared with BFT in tei-tns of revenue

generation and running time on two hundred sample auctions with ten items and ten bids

each. According to the results described in Section 5.4.1, CADIA may not be able to

obtain the optimal revenue after its first iteration of the winner determination process.

With the adjustments made at the TBE (Section 6.2.2) based on the information of

analysis bids, CADIA is able to obtain better revenue at successive iterations. In this

evaluation, TBE with the second strategy as described in Second 6.2.2 is adopted. Thus,

the revenue generated when the number of analysis bids equals two, four, and six are

recorded accordingly. Additionally, the total time required by CADIA to reach the

optimal revenue is recorded in each auction. The results are documented and analyzed in

Section 7.3.1.

7.2.2 Comparison of CADIA and GST, Four Hill Climbers and ESG

The objective of the second test is to justify the conclusion that CADIA is a good

approximation system that always guarantees a better than or equal to the lower bound

revenue. Since GST is based on greedy search technique, it can handle more items and

bids that cannot be handled by BFT and always returns feasible results in reasonable

time. Thus, CADIA was compared with the GST. Besides, CADIA was compared with

some approximation systems including the four hill climbers (PRICE, N2NORM, KO,

DEMAND) [Holte, 20011 and the Exponential Subgradient (ESG) [Schuurmans et al.,

2001lin terms of revenue generation in two hundred sample auctions with twenty items

and one thousand bids each.

Each of the hill climbers uses a different objective function. PRICE'S function,

which is based on the bid prices, selects the search path which results in the greatest

85

increase in the value of the included bids. N2NORM's function is based on the 2-norm. It

divides the bid's price by its "size", where the size of bid j is the square root of the sum of

squares of the fi*i, the fraction of the re~naining quantity of item i that bid j requires. KO's

function is based on the division of the bid's price by its "knockout cost", where a bid's

knockout cost is the sum of the prices of the available bids that are eliminated if this bid

is chosen. DEMAND'S function is based on a given "price" that is derived from the sum

of the values of all bids referencing that item. A bid is weighted based on how much it is

willing to pay versus the amount of money willing to be paid by other bids for the

requested items. ESG, which is based on the gradient search method, attempts to find a

directional derivative so that the search can proceed in the direction of the steepest ascent

in the search space. In ESG, constraints are used to penalize movements that do not

approach the optimum or, to reward those that approach the optimum. The idea is to find

the right step size to guarantee the best rate of improvement over several iterations.

Since CADIA is able to generate higher revenue at successive iterations, the

results with different number of analysis bids are recorded. All results are documented

analyzed in Section 7.3.2.

7.2.3 Running Time Measurement of CADIA

The objective of the third test is to justify the conclusion that CAD IIA is still an

efficient system even though its running time grows exponentially. The running time

comparisons of CADIA with the approximation techniques have been ignored in the

evaluation because CADIA in general runs slower than other approximation techniques.

8 6

Such a slower response time is due to the obvious fact that CADIA's core knowledge

requires some time to generate.

CADIA's running time is measured against different number of auctioned items

and bids. The sample sizes of the auctioned items and bids are selected in the range of

100 to 500 and 200 to 2000 respectively. The results are then plotted as two separate

graphs. The first measures the running time when the number of bids is fixed and the

number of items varies. The second measures the running time when the number of items

is fixed and the number of bids varies. The test plan is outlined in Table 4. The results are

documented and analyzed in Section 7.3.3.

Table 4 Test plan for measuring CADIA's running time

7.3 Empirical Results and Aizalysis

In this section, the results of the tests described in Section 7.2.1, 7.2.2, and 7.2.3

are documented in Section 7.3.1, 7.3.2, and 7.3.3 respectively. The results will be used to

justify the hypothesis in designing CADIA.

7.3.1 Comparison of CADIA and BFT

Even though BFT works in principle, it is practically limited by the number of

items and bids it can process. CADIA may find the optimal revenue with or without the

adjustments made by TBE. Thus, it is interesting to know how accurate CADIA is before

and after TBE adjustments.

Tables 5, 6, 7, and 8 report the results for all two hundred sample auctions. The

abbreviations AO, A2, A4, and A6 after the word CADIA mean that zero, two, four, and

six analysis bids are used by CADIA. The accuracy ratio of BFT in all sample auctions is

always one because BFT always generates the optimal revenue and thus is used as the

standard for comparison. CADIA has an average accuracy ratio of 0.979 (Table 9) and is

not able to find the optimal revenue in 36 out of 200 auctions when no analysis is used.

The results of these 200 auctions are sorted by accuracy ratio for CADIA (AO) and

plotted as a line chart (Figure 42 and Figure 43). The Figure 43, which is an enlarged

view of the 36 auctions, shows how the result is improved when more and more analysis

bids are included. It is found in the 200 sample auctions that CADIA attains the accuracy

ratio of 1.0 and returns the optimal revenue for all sample auctions when six analysis bids

are used.

A
cc

u
ra

cy
 R

at
io

 C
o

m
p

ar
is

o
n

 o
f B

F
T

 a
n

d
 C

A
D

lA

(2
00

 s
am

pl
e

au
ct

io
ns

,
ea

ch
 a

uc
tio

n
co

nt
ai

ns
 1

0
ite

m
s

an
d

10
 b

id
s,

-
 CA

D
 lA

 (A
4)

I

I

C
A

D
 lA

 (A
6)

-
 BFT

-

A
uc

tio
n

N
um

be
r (

so
rt

ed
 b

y
ac

cu
ra

cy
 r

at
io

)

F
ig

ur
e

42
 A

cc
ur

ac
y

ra
ti

o
co

m
pa

ri
so

n
of

 B
F

T
 a

nd
 C

A
D

lA
 (a

ll
20

0
au

ct
io

ns
).

A
cc

u
ra

cy
 R

at
io

 C
o

m
p

ar
is

o
n

 o
f B

F
T

 a
n

d
 C

A
D

lA

I

(2
00

 s
am

pl
e

au
ct

io
ns

,
ea

ch
 a

uc
tio

n
co

nt
ai

ns
 1

0
ite

m
s

an
d

10
 b

id
s,

I , I

1.
03

on

ly
 t

he
 fi

rs
t

50
 s

or
te

d
-
-
-
 (o

n
AO

)
-

au

ct
io

n
-

re
su

lts
 a

re
 s

ho
w

n)

-
-

--
-

0.
63

1

0.
58

1

5
9

13

17

21

25

29

33

37

41

45

49

A
uc

tio
n

N
u

m
b

er
 (s

o
rt

ed
 b

y
ac

cu
ra

cy
 ra

ti
o

)

-
-
-

-

-

-

-

C
A

D
lA

 (A
O

)
--

--
..

. C
A

D
 lA

 (A
2)

C
A

D
lA

 (A
4)

I

I

C
A

D
lA

 (A
6)

-
 BFT

F
ig

ur
e

43
 A

cc
ur

ac
y

ra
ti

o
co

m
pa

ri
so

n
of

 B
F

T
 a

nd
 C

A
D

IA
 (

en
la

rg
ed

 v
ie

w
 o

f
F

ig
ur

e
42

).

Table 5 Accuracy ratio comparison of BFT and CADIA (sample

Table 6 Accuracy ratio comparison of BFT and CADIA (sample 5

Table 7 Accuracy ratio coniparison of BFT and CADIA (sample 1

Table 8 Accuracy conlparison of RFT and CADlA (sample 151-200).

I Average 1 1.000 1 0.979 1 0.993 1 0.998 1 1.000 1
Table 9 Accuracy ratio comparison of BFT and CADIA.

Table 10 summarizes the results of the running time comparison of BFT and

CADIA with various numbers of analysis bids. Results show that BFT has an average

running time of 21 1.722 seconds. CADIA's average running time is in the range 0.199 -

10.138 seconds when up to six analysis bids are considered. As expected, the larger the

number of analysis bids involved, the longer running time CADIA takes.

I Average 1 21 1.722 1 0.199 1 0.754 1 2.749 1 10.138 1

Table 10 Running time comparison of BFT and CADIA.

Since each sample auction contains a total number of ten bids, the maximum

number of analysis bids becomes ten. When the maximum number of analysis bids is

used, CADIA is guaranteed to find the optimal revenue. The more the analysis bids are

considered, the better the revenue will be generated. In most cases, CADIA may not use

the maximum number of analysis bids before the optimal revenue is found. CADIA was

able to return the optimal revenue in all our test cases when six analysis bids were

considered. When six analysis bids are considered, CADIA will take only 10.138

seconds, which is about 4.8% of the time required by BFT, to identify the optimal

revenue. From the empirical results and analysis, CADIA can be concluded as a system

that is capable of generating the optimal revenue and that runs much faster than BFT

based systems.

7.3.2 Comparison of CADIA and GST, Four Hill Climbers and ESG

7.3.2.1 Comparison of CADIA and GST

When the there are too many items and bids, it becomes impractical to compare

BFT and CADIA. CADIA is compared with GST in terms of a revenue generation. In

this test, each sample auction contains twenty items and one thousand bids. The number

of items has been selected in such a way that it cannot be handled realistically by BFT,

but it is still small enough as compared to the number of bids. In this evaluation, the ratio

of the number of items to the number of bids is 50. The purpose of such a setup is to

simulate realistic CAs in which there are always conflicts among bids. Tables 11 to 14

summarize the performance ratios of GST and CADIA with various numbers of analysis

bids for two hundred sample auctions. The first strategy of TBE as described in Section

6.2.2 is adopted here to organize the analysis bids. The results are sorted by performance

ratio for CADIA (AO) and plotted as a line chart (Figure 44).

Table 11 Performance ratio comparison of GST and CADIA (sample 1-50).

Table Perforniance ratio comparison of GST and CADIA (samp

Table 13 I Performance ratio comparison of GST and CADIA (sampl

Table 14 Performance ratio comparison of GST and CADIA (sample

Table 15 Performance ratio comparison of CST and CADIA.

Table 15 summarizes the average performance ratios. The larger the number of

analysis bids used, the better CADIA's perfoi-n~ance will be. For instance, in Auction No.

126, CADIA has a performance ratio of 1.342 when no analysis bid is used; it has

successfully improved the ratio to 1.344 and 1.345 when two and four analysis bids are

used respectively at successive iterations during the winner detennination process.

Results show that CADIA has an average performance ratio of 1.186, 1.186, 1.187 and

1.1 87 when zero, two, four and six analysis bids are used respectively. In other words,

CADIA outperforms GST by l8.6'/0, 18.6%. 1 8.7?4 and 18.7% when zero, two, four and

six analysis bids are used in 200 sample auctions.

P
er

fo
rm

an
ce

 R
at

io
 C

o
m

p
ar

is
o

n
 o

f
C

A
D

IA
 a

n
d

 G
S

T

(2
00

 s
am

p
le

 a
u

ct
io

n
s,

 e
ac

h
 c

o
n

ta
in

s
20

 i
te

m
s

an
d

 1
00

0
b

id
s)

A
(0

).
 A

(2
),

 A
(4

),
 A

(6
)

ar
e

cl
os

e
to

 e
ac

h
ot

he
r

-
r

G
S

T

1
16

31

4

6

61

76

91

1
0

6
1

2
1

1
3

6
1

5
1

1
6

6
1

8
1

1
9

6

A
u

ct
io

n
 N

u
m

b
er

 (
so

rt
ed

 b
y

p
er

fo
rm

an
ce

 r
at

io
)

-
 C

A
D

IA
(0

)
--

--

C
A

D
IA

(2
)

--
--

--
. C

A
D

IA
(4

)
-
 -

- C
A

D
IA

(6
)
-
 GS

T

F
ig

ur
e

44
 P

er
fo

rm
an

ce
 r

at
io

 c
om

pa
ri

so
n

of
 G

ST
 a

nd
 C

A
D

IA
.

7.3.2.2 Comparison of CADIA and Four Hill Climbers

Tables 16, 17, 18, and 19 report the results of comparing CADIA with the four

climbers, which have also been plotted as line charts (Fig. 45,46,47, and 48) for all two

hundred sample auctions. The abbreviations AO, A2, A4, and A6 after the word CADIA

mean that zero, two, four, and six analysis bids are used. The first strategy of TBE as

described in Section 6.2.2 is adopted here to organize the analysis bids. The performance

ratio of PRICE is used as a reference for the comparison and is thus set to one.

Table 16 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 1-50).

- I I00 I 1.000 1 1.242 1 1.242 r 1.239 1 2 3 9 1 1.239 1 11242 1 1:242]

Table 17 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 51-100).

Table 18 Performance ratio comparison of 4 Hill Climbers and CADlA (sample 101-150).

Table 19 Performance ratio comparison of 4 Hill Climbers and CADlA (sample 151-200).

P
er

fo
rm

an
ce

 R
at

io
 C

o
m

p
ar

is
o

n
 o

f
P

R
IC

E
 a

n
d

 C
A

D
IA

(2

00
 s

am
p

le
 a

u
ct

io
n

s,
 e

ac
h

 c
o

n
ta

in
s

20
 it

em
s

a
n

d
 1

00
0

b
id

s)

U

P
R

IC
E

1
15

29

4

3

57

71

85

99

11
3

12
7

14
1

15
5

16
9

18
3

19
7

A
u

ct
io

n
 N

u
m

b
er

 (s
o

rt
ed

 b
y

p
er

fo
rm

an
ce

 r
at

io
)

-
-

-

-
 P

R
IC

E
 -
-
 C

A
D

IA
 (A

O
)
-
 C

A
D

 lA
 (A

2)

C
A

D
IA

 (A
4)

 -
 C

A
D

IA
 (A

6)

-

F
ig

ur
e

45
 P

er
fo

rm
an

ce
 r

at
io

 c
om

pa
ri

so
n

of
 P

R
IC

E
 a

nd
 C

A
D

IA
.

P
er

fo
rm

an
ce

 R
at

io
 C

o
m

p
ar

is
o

n
 o

f
N

ZN
O

R
M

 a
nd

 C
A

D
IA

(2

00
 s

am
p

le
 a

u
ct

io
n

s,
 e

ac
h

 c
o

n
ta

in
s

20
 i

te
m

s
an

d
 1

00
0

b
id

s)

1

15

29

43

57

71

85

99

11
3

1
2

7
1

4
1

 1
5

5
1

6
9

1
8

3
1

9
7

A
u

ct
io

n
 N

u
m

b
er

 (s
o

rt
ed

 b
y

p
er

fo
rm

an
ce

 r
at

io
)

-
 N

2N
O

R
M

 -
 C

A
D

IA
 (A

O
)
-
 C

A
D

IA
 (

A
2)

C

A
D

IA
 (

A
4)

 -
 C

A
D

IA
 (

A
6)

F
ig

ur
e

46
 P

er
fo

rm
an

ce
 r

at
io

 c
om

pa
ri

so
n

of
 N

Z
N

O
R

M
 a

nd
 C

A
D

IA
.

P
ef

o
rr

n
an

ce
 R

at
io

n
 C

o
m

p
ar

is
o

n
 o

f
K

O
 a

n
d

 C
A

D
IA

(2

00
 s

am
p

le
 a

u
ct

io
n

s,
 e

ac
h

 c
o

n
ta

in
 2

0
 it

em
s

a
n

d
 1

0
0

0
 b

id
s)

A
u

ct
io

n
 N

u
m

b
er

 (s
o

rt
ed

 b
y

p
er

fo
rm

an
ce

 ra
ti

o
)

-
 K

O

C
A

D
IA

 (A
O

)
-
 C

A
D

IA
 (
A2
)

C
A

D
IA

 (A
4)

 -
 C

A
D

IA
 (

A
6)

F
ig

ur
e

47
 P

er
fo

rm
an

ce
 r

at
io

 c
om

pa
ri

so
n

of
 K

O
 a

nd
 C

A
D

IA
.

P
er

fo
rm

an
ce

 R
at

io
 C

o
m

p
ar

is
o

n
 o

f
D

E
M

A
N

D
 a

n
d

 C
A

D
IA

(2

00
 s

am
p

le
 a

u
ct

io
n

s,
 e

ac
h

 c
o

n
ta

in
s

20
 i

te
m

s
a

n
d

 1
00

0
b

id
s)

C
A

D
IA

 a
nd

 D
E

M
A

N
D

 h
av

e
ve

ry
 c

om
pe

ti
ti

ve
 p

er
fo

rm
an

ce

i

1
19

37

55

73

91

10

9
12

7
14

5
16

3
18

1
19

9

A
u

ct
io

n
 N

u
m

b
er

 (s
o

rt
ed

 b
y

p
er

fo
rm

an
ce

 r
at

io
)

-
 D

E
M

A
N

D
 -
 C

A
D

IA
 (A

O
)
-
 C

A
D

IA
 (

A
2)

C

A
D

IA
 (A

4)
 -
 C

A
D

IA
 (

A
6)

F
ig

ur
e

48
 P

er
fo

rm
an

ce
 r

at
io

 c
om

pa
ri

so
n

of
 D

E
M

A
N

D
 a

nd
 C

A
D

IA
.

Table 20 Performance ratio comparison of hill climbers and CADIA.

Table 20 summarizes the average performance ratios. On average, DEMAND.

which had a performance ratio of 1.186, performed best among all hill climbers. On the

other hand, results show that CADIA had an average performance ratio of 1.1 85, 1.1 86,

1.187 and 1.187 when zero, two, four and six analysis bids were used respectively. We

also recorded that in all 200 auctions, the number of auctions that CADIA achieved better

revenue than PRICE, N2NORM, KO and DEMAND were 191, 148, 148 and 133

respectively (Table 2 1).

Table 21 Number of Auction that CADIA outperforms the hill clin~bers.

7.3.2.3 Comparison of CADIA and ESG

Tables 22 and 23 report the results of comparing CADIA with ESG, which have

also been plotted as line chart (Figure. 49) for all two hundred sample auctions. The

abbreviation A6 aAer the word CADIA means that six analysis bids are used. The first

strategy of TBE as described in Section 6.2.2 is adopted here to organize the analysis

bids. Since ESG is able to obtain better results at successive iterations of execution, for a

fair comparison, we ran ESG in 460 iterations to match the execution time of CADIA.

The performance ratio of CADlA (Ah) is used as a reference for the comparison and is

thus set to one.

Table 22 Performance ratio comparison of ESG and CADlA (sample 1-100).

Table 23 Performance ratio comparison of ESC; and CADIA (sample 101-20

Results show that CADIA and ESG are very competitive because their average

perfonnance ratios are 1.0000 and 1.0002 respectively. We also recorded that in all 200

auctions, the number of auctions where CADIA outperfonned ESG was 130 but the

difference of the achieved revenue is within 0.3% in most cases. There was only 1 out of

200 auctions where ESG outperformed C'ADIA. Both achieved the same revenue in 69

out of 200 cases.

Since the 200 sample auctions do not cover all possible bid patterns, we may not

conclude that CADIA is better than other approximation systems in all cases. However,

from the empirical results, we found that CADIA can achieve better revenue than the hill

climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has

its contribution to the CA determination problem.

7.3.3 Running Time Measurement of CADIA

In Section 7.2.3, a test plan for measuring the efficiency of CADIA by time

clocking is presented. The sample sizes of the auctioned items and bids are selected in the

ranges of 100 to 500 and 200 to 2000 respectively. There are a total of five hundred

sainple auctions grouped into fifty categories of size. Each category has the same number

of items and bids. Table 24 summarizes the results of the average i-unning time of

CADIA for each category. Figure 50 depicts the running time for different numbers of

items when the number of bids are fixed.

Table 24 CADIA's Average running time in 50 different sizes of auction.

Running Time of CADIA against Number of Items

2000 bids

1800 bids

1600 bids

1400 bids
1200 bids
1000 bids

800 bids
600 bids
400 bids

200 bids

200 300 400

Number of Items

Figure 50 Running time of CADIA for different number of items.

118

As expected, the running time increases when the number of items or bids

increases.

Running Time of CADIA against Number of Bids

500 items

items

items

items

items

Figure 51 Running time of CADIA for different number of bids.

Similarly, Figure 5 1 depicts the running time for different numbers of bids when

the number of items are fixed. The running time of CADIA grows more rapidly than a

linear function.

Running Time (log,) of CADIA against Number of ltems

2000 bids
1800 bids

1600 bids
1400 bids
1200 bids
1000 bids
800 bids
600 bids

400 bids

200 bids

300

Number of ltems

Figure 52 Logarithm of runuing time of CADIA for different number of items

Running Time (log2) of CADIA against Number of Bids

I
12000 500 items

I BFT (10 items) 400 items
I

11 000 , 300 items
I
I

10000 ,
I 200 items
I

9000 ,
I
I

8 000 1

1:
//

1 1 0 0 items

5 000

4.000

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids

Figure 53 Logarithm of the running time of CADIA for different number of bids.

Figure 52 and 53 shows the results for Figure 50 and 51 in logarithmic scale

respectively. The shapes of the graphs in Figure 52 and 53, which appear to be concave

and straight lines respectively. suggest that CADIA's efficiency in auctions of no more

than 500 items and 2000 bids are bounded by the complexity class of O(2"). Although

both CADIA and BFT belong to the complexity class of 0(2"), CADIA's running time

grows much slower than that of the BFT (Figure 53). When BFT is used, in an auction of

10 items and 10 bids the winner determination time takes about 2 12 seconds but 1800

seconds with one additional item. If these values are converted into logarithm of base 2,

we will obtain 7.72 and 10.8 1 respectively. The graph of BFT has a much steeper slope

and Y-intercept value as drafted in dashed line in Figure 53.

CHAPTER EIGHT:
DISSCUSSION

8.1 Discussion on CADIA 's Performance

Although the 200 sample auctions do not cover all possible bid patterns, it allows

us to identify some bid patterns that CADIA performs better or worse than others. We

will analyse 2 cases that demonstrate the advantages and shortcomings of CADIA and

other evaluated techniques. The results of such an analysis will be considered in

CADIA7s future enhancement.

In sample Auction-78, the revenue generated using CADIA, PRICE, N2NORM,

KO, DEMAND, and ESG were $1935.830, $1 637.610, $1 835.670, $1636.870,

$193 1.300, and $183 1.000 respectively. When the bid patterns are examined, it was

found that both PRICE and KO included the highest price bid (bid-1 1) as one of its

winners. It is due to the fact that the objective hnctions of both depend directly on bid

prices. As a result, both PRICE and KO were trapped in local optima during the search.

N2NORM uses both the bid price and bid size as the parameters in its objective function.

That is, the higher the bid price per item the bid offers, the higher the chance it becomes a

winner. Thus, bid-140 became one of its winners since it offered over $100 per item as

compared to only $50 offered by other bids. However, such an objective function inay

also lead to a local optimum result. DEMAND weights a bid based on its bid price per

item versus the prices offered by others for that item. Since DEMAND took its

neighbour's evaluation into consideration, it generated a better result in Auction-78 than

other climbers. Rather than depending directly on the bid price in its objective function as

found in some of the climbers, ESG starts with a candidate solution and generates a new

solution using an update rule based on gradient. Since ESG relies on gradient

information, the result could get stuck at a local optimum. Although CADIA, DEMAND

and ESG were very competitive in Auction-78, CADIA, which does not rely on any local

search techniques, was able to obtain the best result among all techniques. It was due to

the fact that the search space in Auction-78 contained many local optima and all other

methods are stuck at some local optima during the search.

A different result was observcd in sample Auction-83. The revenue generated

using CADIA, PRICE, N2NORM, KO, DEMAND, and ESG were $2077.000,

$1389.1 60, $2033.530, $1441.160, $2129.900 and $2843.000 respectively. Both PRICE

and KO were trapped in local optima during the search, which ended up much lower

revenue, due to the same reason as described above (bid -222 offered the highest bid

price among all). Since N2NORM considered also the bid size, it did not consider bid-

222 a winner. Both DEMAND and ESG outperformed CADIA in this auction. When the

winner pattern of the best performer ESG was examined, it was found that the winners

were those who wanted one or two items. Since CADIA's objective function is based on

the relaxation of the concept of itemsets, CADIA was misled by some bids that included

the least frequent itemsets but offered lower bid prices.

In summary, the hill-climbers exploit the best avaiIable solution for possible

improvement but neglect exploring a large portion of the search space. Gradient-based

search methods are well-known for situations when the search space has a bowl shape.

When it is not the case, they could get stuck at local optima since the pritnary

consideration relies on gradient information. In many cases, the success or failure of

many hill-climbers and some gradient-based methods is determined by the initial start

point. For problems with many local optima, particularly those where these optima have

large basins of attraction, it's often very difficult to locate a globally optimal solution.

CADIA attempts to explore the search space thoroughly but foregoes exploiting

promising regions of the space. In addition, the cost required for CADIA to generate its

knowledge makes CADIA runs much slower than all evaluated approximate techniques.

For instance, the current implementation of CADIA takes two minutes to solve a problem

of size of 100 items and 2000 bids. but almost an hour when the number of items is

increased to 500. On the other hand, all evaluated approximate techniques takes less than

a minutes to solve problems of size of hundred of items and thousands of bids.

8.2. Discussion on CADIA 's Practicality

All sample auctions described in the thesis contain no more than five hundred

items and two thousands bids. Such an upper limit of sample size for testing a proposed

system has been adopted in most current research because it becomes uncommon to have

a CA selling more than five hundred non-identical items. However, it may be common to

have more than two thousand bids in a CA, especially if it is held on the Internet. The

best CA winner determination system is one that always generates the optimal revenue

(best accuracy) with the shortest running time (best perfomlance) among all proposed

systems. Some techniques such as BFT focus primarily on the accuracy, while others

such as GST focus solely on the performance.

CADIA has been evaluated in terms of its accuracy in Chapter 7. With the

adjustments made at the TBE, CADIA is capable of finding the optimal revenue. The

idea is to use analysis bids for revenue improvement at successive iterations during the

winner determination process. In an auction of thousands of bids, it becomes impractical

to analyze all bids if the winners have to be announced within minutes after the expiry of

bids submission. Thus, CADIA has been designed to accept the number of analysis bids

as an argument from the user during its execution. If more time is allowed, a more

accurate result can be obtained by including more analysis bids.

If performance in terms of running time is the only concern, a greedy search

based system is perhaps the most practical system because its objective function is based

on the search for the highest bidding price. Such a system performs very well only in

auctions of too many items but too few bids in which the chance of having bid conflicts is

very low. In auctions of two hundred items and five thousand bids, for example, a greedy

search based system may be trapped in a local maximum due to a high degree of conflicts

among bids. Other domain-based heuristic systems may include a pre-processing step

before they apply the core winner determination algorithms. For example, a system that

has removed ninety percent of the bids during its pre-processing phase can definitely

determine the winners in seconds even in auction of hundreds of items and thousands of

bids. As a result. it becomes misleading to evaluate a CA technique or system based only

on its performance but not accuracy.

CADIA has been evaluated in terms of its performance in Chapter 7. The graphs

of CADIA's running time on sample auctions of up to 500 items and 2000 bids suggest

that CADIA is bounded by the efficiency class O(2"). The inclusion of the scale factor

variable CSr (Section 6.2.1) is to address the practicality issue when the winner

determination time is a major concern. By adjusting the value of Cqr, CADIA is able to

determine winners in minutes or even in seconds. Csf has been set to 0.5 by default and it

is believed that bids with an unacceptably low bidding price will be rejected. That is, a

bid whose bidding price is lower than half of the lower bound price is rejected. C,f's

value domain is between 0 and 1. When it is set to 1, more bids are rejected because the

full lower bound price is used instead. When it is set to 0, all bidding prices will not be

checked. Figure 48 shows the relationships between running time and number of bids for

different Csrin auctions of 500 items.

Each auction contains 500 items

200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids

Figure 54 Running time of CADIA for different values of Csf.

In Figure 48, the graphs show that the running time grows much slower when CSf

is set to 1 than it is set to 0.5 or 0.0. Thus, an auctioneer will have an option to trade off

accuracy for efficiency. However, in some cases, a non-zero Csf may accidentally reject a

valuable bid and cause a non-optimal result. Thus, the value of Csf must be selected with

caution. The strategy is to compare the revenue generated for different values of Csf . For

example, Csf can be started with I , and is then decremented by 0.25 in each subsequent

test. The decrement continues only when the revenue is improved, and more importantly,

when the time is allowed.

CHAPTER NINE:
CONCLUSION AND FUTURE WORK

The subjects of this thesis are the proposal and d e s i g of a novel and practical

combinatorial auction winner determination approach using item association. The

approach was developed and implemented into the system called CADIA. The thesis has

reviewed the characteristics and benefits of CAs and surveyed the state of knowledge and

techniques for solving the winner determination problem, followed by the hypothesis and

core algorithms of the new approach, and its design and implementation. CADIA consists

of four major components. In the first component PRE, redundant bids are removed. In

the second component IAG, qualified bids output from PRE are used as seeds to generate

candidate itemsets. IAG attempts to identify the smallest and least wanted itemsets fi-om

the candidate itemsets. In the third component WIN, the output fi-om IAG is used in the

identification of candidate and potential winners. In the fourth component TBE, both

potential winners and possible losers are used for further analysis and improvement.

The empirical results show that CADIA is a practical technique that is able to

handle CA auctions of hundreds of items and thousands of bids. The study of its accuracy

and performance in terms of revenue generation and running time shows that it has met

the criteria and goals of the design in achieving good approximate results. Although both

CADIA and BFT belong to the class of 0(2"), CADIA's running time grows much

slower than that of the BFT. CADIA was found to be a good approximation system

because its accuracy can be improved when analysis bids are used.

130

Since the 200 sample auctions do not cover all possible bid patterns, we may not

conclude that CADIA is better than other approximation systems in all cases. However,

from the empirical results, we found that CADIA can achieve better revenue than the hill

climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has

its contribution to the CA determination problem. The current limitation of CADIA is

that it runs slower than all the evaluated approximation techniques. Such a slower

response time is due to the obvious fact that CADIA's core knowledge requires some

time to generate.

There are a number of possible extensions and enhancements for the work

presented here. CADIA's optimal strategy in the winner determination process can be

seen as a number of iterations running the same set of algorithms on auction data from

where tactical bids are removed. The number of iterations depends directly on the number

of analysis bids selected. From the empirical results and observations, TBE with the

second strategy as described in Section 6.2.2 has been very successful in searching for

better revenue using the potential winners and possible losers as the knowledge. Since all

potential winners and possible losers are the output from WIN during the first iteration of

the process, it is possible to distribute all subsequent iterations of search on a number of

processors. For example, if 4 analysis bids are used, there are (24 -1) or fifteen ways of

removing the tactical bids from the original bid file which translates into additional

fifteen iterations of search. Instead of running CADIA fifteen times sequentially on a

single processor, it may be desirable to run CADIA on a multi-processor system, a multi-

threading system, or even on multiple machines to further improve its performance.

CADIA's optimal strategy is based on the knowledge discovered from the auction

data. Historical data from previous auctions will definitely help to enhance such

knowledge. That is, when auctioned items are distributed in a similar pattern from

auction to auction, it is possible to have the knowledge accumulated and used in future

auction winner detennination. Besides the item association technique, other data mining

techniques such as clustering and decision trees can also be applied to structure the

knowledge in a different way to aid in the revenue search.

Since each search space is different for each auction in CA problems, there seems

no way to choose a single search method that can serve well in every case. Nevertheless

each technique offers its own merit. Better solutions to CA problems can often be

obtained by hybridizing different approaches. Effective search techniques should provide

a mechanism for balancing the conflicting objectives: exploiting the optimal solutions

and at the same time exploring the search space.

APPENDIX A

Sample Bid Input File

This appendix provides a sample bid input file containing one thousand bids and

one hundred items, and the output files summarizing the results.

Input File: 1000 bids and 100 items

(812) (35 42 50) 1155.74)

48131 (60 83 321 (55.74)

(814) (Oj (151.001

{El51 (98 38 28) (155.74)

1816) (38 84 18) 1155.741

(817) {98 68 27) 1155.74)

(818) (28 51 72) (154.74)

(819) 128) 151.001

(8201 (98 261 (103.30)

(8211 (98 1) (103.30)

18221 (26 641 (3.30)

(823) 1951 151.00?

(824) (21) (51.001

(825) 159 43 25) (55.741

(8261 125 57 851 (54.741

(827) (28) (51.00)

1828) (63 741 (103.301

(8291 (74 201 (103.30)

(830) (36 731 (103.30)

(83:) 1161 152.001

(832) (56 39 95) (354.74)

(833) (39 51 88) 1254.74)

(834) (56 28 66) 1154.74)

(835) (95 98 30) (55.74)

(836) 113 66) 1104.30)

(8371 (13 50) (103.30)

(838) (13 95) (3.30)

18391 145 741 1202.30)

(8401 174 5) (103.30)

(841) (45 77) (3.301

(8421 (841 151.001

(843: (9 34 76) 1255.74)

(844) (34 93 39) 1354.741

(845) (2) (51.001

1846) (82) (151.00)

(84'7) (48) 152.00)

1848) (58) 151.001

(849) 10 21) (202.30)

(850) 121 19) (103.301

(851) 10 7'7) (103.30)

(852) 171 1151.00)

(853) (0 ; (15L.00)

(854) (291 152.00)

(8551 (71 801 14.301

(856) 180 21 (3.30)

(857) (4) 1151.00)

(8581 1561 {51.001

(8591 (431 (52.00)

(8601 (89 53 96 62 44 57 561 (364.33)

1861) 156 63 28 50 82 59 6) 1463.33)

(8621 (44 27 95 72 69 61 391 (463.331

(8631 157 88 22 19 48 79 62) 1365.331

1864) (6? 74 9 88 54 55 49) (265.33)

{86Si iS3 I1 H 95 66 15 87) (264.33)

Output File(1): winners, total revenue, total running time when analysis bids=O

C:\CAIJIA>caclia items.txt bids.txt 100 1000 0

BidderID Bid Price

Total Revenue = 7521.52

0.010000 seconds

Total Revenue = 7678.24

42.572000 seconds

maxRourid is 0 and maxRevenue is 7678.24

Total time required: 42.572000 seconds

Output F i l e (2) : winners, total revenue, total running time when analysis bids=2

C:\CADIA>cadia items.txt bids.txt 100 1000 2

BidderID Rid Price

T o t a l Revenue = 7521.52

0.010000 secorids

ItemList

3 2

8 7

2 9

27 96

8 49 82 84

18 43

6 5

55 75

97

5 11 17 50 63 68 73

7 35 46 67 90

51

0 37 70 88 94

64

7 8

22 28 45 56 60 85

14 20 92

16 81

57

4 7

19 21 31 36 52 69 77 91

4 1

7 1

24 26 93

5 8

39 98

12 34 8 3

6

38 54 99

23 42

6 2

15 61

80

1 2 4 10 33 72 74 86

13 66

4 8

25 40 44 79 95

9

3

Total Revenue = 7678.24

44.044000 seconds

Use Winners & Losers Information to improve result
----- -----Round #I .

Delete: 734 Delete: 930

BidderID Bid Price ItemList

6 3 151.00 11

7 5 1.51.00 2 8

T o t a l Revenue = 7975.34

48.930000 seconds

Total R e v e n u e = 7 9 7 5 . 3 4

4 9 . i 8 0 0 0 0 seconds

Tota, Revenue - 8420.84
48.08'?000 seconds

maxRound is 3 and maxRevenue is 8420.84

T o t a l t i m e r e q u i r e d : 1 9 0 . 2 5 3 0 0 0 s e c o n d s

- - .- -. -

APPENDIX B

Source Code for Brute Force Technique

This appendix provides the source code of the brute force technique (BFT)

program used in the evaluation. The program can handle up to 10 bids and 10 items.

Author: Andy Law

Date: 2003

Description:

The program uses brute force technique (BFT) to identify winners in a

combinatorial auctlon.

Program Execution Format:

bft.exe items-file.txt bids-file.txt

-

#define MAXLEN

#detine MAXITEM

#define MAXBIDDER

#define TRUE

#defineFALSE

#define DELETED

#define NO-ITEM

typedef struct itemMatrix //item information ADT

(

double itemprice;

1 ITEMMATRIX;

typedef struct biclMatrix //bid information ADT

(

int bidderID;

lnt itemList[MAXITEM];

double bidprice;

int sold; //1 if sold, -1 if deleted

1 RIDMATRIX;

BIDMATRTX bMatrixiMAXBIDDER1; //bid information

ITEMMATRIX iMatrixLMAXITEM1; //iterr information

n t hidderListIdx=O; //total number of bids

int processedBidder=O; //number of jids

int winner[MAXBIDDERI;

double tempRev=O.O;

void readInput(char *argv[l);

void processItemInput(char *buf, int *itemNo, double *item'Jalue);

void processBidInput(char *buf);

void initialize () ;

void processAuction () :

int auctionCompete(int max);

voj cl displayResult (l ;

int conflict2(int a1,int a2):

inL conflict3iint a1,int a2, int a3);

int conf;ict4(int a1,int a2, int a3, int a4) ;

int conflict5iint a1,int a2, int a3, int. d4, int a5);

int conflict6 (int al, int a2, int a3, int a4, int a5, int a6);

int conflict7(int a1,int a2, ir.t a3, int a4, int a5,int a6,int a7);

int coriflict8~ilit a1,int a2, ir-t a3, int a4, int a5,int a6,int a7,int aR) ;

int contIict9(int a1,int a2, int a3, int a4, int a5,int a6,int a7,int a8,int a9);

int conflictlO(int d1,int a2, int a3, int a4, int a5,int a6,int a7,int a8,int a9,int
a10) :

//main () module.

int main (in? argc, char* argv[l) (

clock-t start, finish;

double duration;

it (argc !=3)

i

printf("Usage: BFT <items-file> <bids-file>\nW);

exit (1);

1

st.art = clock () ;

printf(.......................... \n") ;

printf(" Best Search - Beginning\nM);
printf (" ~ ---------------- \nn ;

initialize();

readIcput(argv);

process~uction () ;

displayResult0;

finish = clock();

printf("-------------------------- - .. - - - - - - - - - - - - - - - - - -~ - - - - - - \n") :

printf(" Best Search - Ending\nU);
printf("-------------------------- \ l l t t) ;

d1urat.ion = (double) (finish - start) / CLOCKS-PER-SEC;

printfi "8.61f seconds\nM, duration 1 ;

retl~rn 0;

1
/ / -

iiInitializes the matrix for storing the bids information

for (i=O;i<MAXBIDDER;i++)

winner[il=-1;

for (i=O;i<MAXBIDDER;i++) (

bMatrix[i].bidderID=-1;

bMatrix[i] .bidprice=-1.0;

bMatrix[i] .sold=FALSE;

for (j=O; j<MAXITEM;j++)

bMatrix[il.itemList[jl=-2;

//Displays the auction result to the cornsand screen

printf("Bidder1D Bid Price ItemList\n") ;

for (i=O;i<bidderListIdx;i++) {

if (winner[il== TRUE) {

printf("85i " , bMatrix [i I . bidderID) ;
print•’("%-15.2f",b~atrix[i].bidPrice);

rev=rev+bMatrix[i] .bidprice;

tor (j=O;j<MAXITEM;j+t) (

if ibMatrix[i] .itemList [j]==l)

print•’ ('Bi " , J) ;

)

printf("\nV);

1

1

printf("\nTotal Revenue = 8.2f\nU,rev);

1
/ / -

//Reset the winner list

void resec ()

i

//Auction is processed here using brute force technique.

void processAuctlon0 {

int al,a2.a3,a4,a5,ab,a7,a8,a9;

jnt a10;

int n=O;

int ret=FALSE;

double maxRev=O .0 :

for (al=O;al<bidderListIdx;al++){

l f (maxRev<bMatrix[all .bidprice) {

maxRev=bMatrix[al] .bldPrice;

reset () ;

winner[all=TRUE;

1

for (a2=O;a2cbidderListIdx;a2++) [

if (a1 ! = a2) {

ret=conflict2(al.a2);

if (ret==FALSE) {

rnaxRev=bMatrix[al].bid~rice+h~atrjx[a21.bidPrice;

reset () ;

winner[al]=TRUE;

winner[a2]=TRUE;

1

I

I
for (a3=O;a3<bidderListIdx;a3++)!

if (al!=a2 && dl!= a3 && a2!=a3)!

ret=conflict3 (dl, a2, a3) ;

if (ret==FALSE) {

maxRev=bMat.rix[al].bidPrice+bMatrix[a2].bidPrice+bMatrix[a3].bidPrice;

reset () ;

winner [a1 I =TRUE;
winner [a2 I =TRUE;

winner[a3l=TRUE;

I
1

I
for (a4=O;a4<bidderListIdx;a4++) {

if (al!=a2 && dl!= a3 && al!=a4 &&

maxRev=bMatrix[al].bidPrice+b~latrix[a2].bidPrice+bMatrix[a3].bidPrice+bMatrix[a4].
bidprice;

reset () ;

wlnner[all=TRUE;

winnerla2]=~RUE;

winner[a3l=TRUE;

winner[aB]=TRUE;

)

for (aS=O;a5<bidderListIdx;a5++){

if (al!=a2 && al!= a3 & & al!=a4 && al!=a5 &&

a2!=a3 && a2!=a4 && a2!=a5 &&

a3!=a4 & & a3!=a5 &&

a4!=aS) {

ret=conflict.5 (ai, a2, a3,a4, a5) ;

if (ret==FALSE) {

reset () ;

winner[al]

winner [a2 1

winner [a3]

winner[a41

winner[a51

1

for (a6=0;a6<bidderiistIdx;a6++i(

if (al!=a2 && al!= a3 && al!=a4 && al!=aS && al.!=a6 &&

a2!=a3 && a2!=a4 & & a2!=a5 && a2!=a6 &&

a3!=a4 && a3!=a5 & & a3!=a6 &&

a4!=a5 && a4!=a6 &&

aS!=a6) {

ret=conflict6(al,a2,a3,a4,a5,a6);

if (ret==FAiSE) (

if
(maxRev~bMatrix[all.bidPrice+bMatrix[a2l.bidPrice+bMatrix~a3l.bidPrice+bMatrix[a41.bidPri
ce+bMatrix[a5].bidPrice+

bMatrix[a6].bidPrice) {

bMatrlx[a6].bidPrice;

reset (i ;

winnerlall=TRUE;

winner[a2l=TRUE;

wlnner [a3 I :TRUE;

winner[a41=TRUE;

winner :a5 I =TRUE;
winner[a6l=TRUE;

I

1

I

for (a7=O;a7<bidderListIdx;a7++) (

if (al!=a2 && al!= a3 && al!=a4 && al!=a5 && al!=a6 && al!=a7 &&

a2!=a3 && a2!=a4 & & a2!=aS && a2!=a6 && a2!=a7 &&

a3!=a4 && a3!=a5 && a3!=a6 && a3!=a7 &&

a4!=aS &h a4!=a6 && a4!=a7 &&

a5!=a6 && a5!=a7 & &

a6!=a7) {

ret=conflict7(ai,a2,a3,a4,a5,a6,a7);

if (ret==FALSE) i

+bMatrix[a6].bidPrice+bMatrixla7! .bidprice;

reset (1 ;

winner [a1 I =TRUE ;
winner[a2l=TRUE;

winner[a3]=TRUE;

winner[a4]=TRUE;

winner[aSl=TRUE;

winner[a6]=TRUE;

winner!a7!=TRUE;

I

I

for (a8=O;a8<bidderListIdx;a8++) {

if (al!=a2 && al!= a3 && al!=a4 && al!=a5 && al!:a6 && al!=a7 &&

+bMatrix[a61 .bidPrice+bMatrixla71.bid?rice+bMatrix[a8] .bidprice;

reset () ;

winner[all=TRUE;

winner [a21 =TRUE;

winner[a3]=TRUE;

winner[a4]=TRUE;

winner[aS]=TRUE;

winner[ah]=TRUE;

winner[a7l=TRUE;

winner[aEJ=TRUE;

)

1

for (a9=O;a9ibidderList1dx; a9++) {

+bMatrix[a6].bidPrice+bMatrix[a7] .bidPrice+bMatrix[a81 .bidPrice+bMatrix[a9].bidPri
ce;

reset () ;

winner[all=TRUE;

winner [a2 I =TRUE;

winner [a3 I =TRUE;
winner [a4 I =TRUE;

winner [a6] =TRUE;

winner[a7l=TRUE;

winner[a8]=TRUE;

winner [a9 1 =TRUE;

I

for (a10=0 ;a10~b idc le r~ i s t I (ix i a1O++){

+bMatrix[a6].bid~rice+bMatrix[a7].bid~rice+bMatrix[a8].bidPrice+bMatrix[a9].bidPri
ce+bMatrix[alOl .bidprice;

winner[all=TRUE;

winner [a2 1 =TRUE;

winner [a3 I =TRUE ;

winner[a5]=TRUE;

winner [a6 I =TRUE ;
winnerla7i=TRUE;

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al].itemList[i]+bMatrix[a2].itemList[il)==2)

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[all.itemList[iI+bMatrix[a21 .itemList[il)==2

return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;i++){

if ((bMatrix[all .itemList[i]+bMatrix[a3].itemList[il)==2

return TRUE; //there is a conflict

1
for (i=O;i<MAXITEM;i++){

if ((bMatrix[a2].itemList[il+bMatrix[a3].itemList[i])==2)

return TRUE; //there is a conflict

i

return FALSE;

1
/ / -

//conflict4 ()

int conflict4(int al, int a2, int a3, int a4) {

int i:

for

1
for

1

i=O;i<MAXITEM;i++)(

lf ((bMatrix[all .itemList[i]+bMatrix[a2] .itemList

return TRUE; iithere is a conflict

i=O;i<MAXITEM;i++)(

if ((bMatrix[al].itemList[il+bMatrix[a3] .itemList

return TRUE; //there is a conflict

for (~=O;~<MAXITEM;~++){

if ((b~atrix[al].itemList[i]+bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict

)

for

1

for

1

i=O; i<MAXITEM; i++) {

if ((bMatrix[a2].itemList!i]+bMatrix[a3].itemList~i1)==2)

return TRUE; /:there is a conflict

i=O;i<MAXITEM;i++)(

if ((bMatrix[a2].itemList.[il+bMatrix[a4].ite1nList[i])==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a3].itemList[i]+bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict

1

return FALSE;

)

/ / -

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al1.itemList[il+bMatrix[a2l.iternList[il)==2)

return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;i++i {

if ((bMatrix[al].itemList[i]+bMatrix[a3].iten~List[i~)==2)

return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al1.itemList!i1+bMatrix(a41.itemList[il)=:2)

return TRUE; /;there is a conflict

1

for (i=O;icMAXI'l?EM;i++){

if ((bMatrix[al].itenList[i]+bMatrix[a5].itemList[i])==2)

return TRUE; //there is a conflict

1

for (i=O;i<YTITEM;i++){

if ((bMatrix[a2].itemList[il+bMatrix[a3].itemList[i])==2)

return TRUE; lithere is a conflict

I

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a2l.itemList[ili-bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict.

I
for

1
for

i=O;i<MAXITEM;i++) (

if ((b~atrix[a2].itemList[il+bMatrix[a5].item~ist[i])==2)

return TRUE; //there is a conflict

if ((bMatrix[a3~.itemSistli]+bMat.rix[a4l.itemList[il)==21

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a3].itemList[il+bMatrix~a5l.it.emList[il)==7)

return TRUE; lithere is a conflict

1

for (i=O;iiMAXITEM;i++) i
if ((bMatrix[a4].itemList:i l+bMatrix[a5].itemList[il)==21

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[all .itemList[i]+b~atrix[a2].iternList[i1)==2)

return TRUE; //there is a cor,llict

1

for

1
for

1

for

for

1
for

for

i

(i=O; i<MAXITEM; i++) {

if ((bMa:rix[all.itemListiil~bMatrix[a31.itemList[il)==21

return TRUE; /ithere is a contlict

(i=O;i<MAXITEM;i++l{

if ((bMatrix[alj.itemList[i]+hMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict

(i=O;i<MAXITEM;i+t) (

if ((bMatrix[all.itemList[il+bMatrix[a51.itemList[il)==2)

return TRUE; /ithere is a conflict

if l(bMatrix[all.itemList[il+bMatrixia6l.itemList[il)==2)

return TRUE; //there is a conflict

i=O; i<MAXITEM;i++l {

if (~bMatrix[a2].itemList[il+b~atrix[a3].itemList[i])==2)

return TRUE; //there is a conflict

i=O;i<MAXITEM;i++) {

if ((bMatrix[a2].itemList[i]+bMatrix[a4j.itemList[i])==2)

return TRUE; lithere is a corlflict

for (i=O;i<MAXITEM;i++){

if ((o~atrix[a2].itemList[i]+bMatrix[a51.itemList[il)==2)

ret-urn TRUE; //there is a conflict

J

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a2].itemList[i]+hMat.rix[a6].iternLi~t[i])==2)

return TRUE; here is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a3].itemList[i]+bMatrix[a4].itemList[i])==2)

return TRllE; i/t.here is a conflict

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a3].itemList[i]+bMatrix[a5].itemList[il)==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a3].iternList[i]+bMatrix[a6].iternList[

return TRUE; lithere is a conflict

for (i=O;i<MAXITEM;i++){

If ((bMatrix[a41.itemList[il+bMatrix[a51.itemList[

return TRUE; lithere is a conflict

1
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a4l.itemList[il+bMatrix[a6l.itemList[il)=-2)

return TRUE; lithere is a conflict

I

for (i=O;i<MAXITEM;ia+) {

if ((bMatrix[a5].itemList[il+bMatrix[a6].itemList[i])==2)

return TRUE; /it.here is a conflict

return FALSE;

i

for (i=O;i<MAXITEM;i++){

if ((bMatrix[al].iternList[il+bMatrix[a2].iternList[i!)==2)

return TRUE; //t.here is a conflict

1

for (i=O;i<MAXITEM:i++) {

if ((bMatrix[al].itemList[il+bMatrix[a3].itemList[il)==2)

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[al].itemList[iI+bMatrixia41 .itemList[11)==2)

return TRUE; //there is a conflict

1
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al].itemList[i]+bMatrix[a5].itemList[il)==2)

return TRUE; //there is a conflict

}

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al].itemList[il+bMatrix[a61.itemList[il)==2)

return TRUE; //there is a conflict

I
for (i=O;i<MAXITEM; i++) {

if ((bMatrix[al].itemList[i]+bMatrix[a7].itemList[i])==2

return TRUE; /:there is a conflict

I

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemList[l])==2

return TRUE; //there is a conflict

I
for (i=O;i<MAXITEM; i++) {

if ((bMatrix[a2].itemList[i]+bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict

I
for

I
for

I
for

1

for

I
for

(i=O;i<MAXITEM;i++){

if ((bMatrix[a2].itemList[i]+bMatrix[a5] .itemList[il)==2)

return TRUE; //there is a conflict

(i=O;i<MAXITEM;i++) {

if ((bMatrix[a2].itemList[i]+bMatrix[a6] .itemList[il)==2)

ret.urn TRUE; //there is a conflict

(i=O;i<MAXITEM;i++){

if ((bMatrix[a2] .it.emList. [i] +bMatrix[a7] .itemList [i]) ==2)

return TRUE: //there is a conflict

(i=O;i<MAXITEM;i++) {

if ((bMatrixLa31 .itemLlst[il+bMatrix[a4].itemList[l])==2)

return TRUP: lithere is a conflict

return TRUE; //there is a conflict

}

for (i=O;i<MAXITEM;i++){

if ((bMatrixla31 .itemList[iI+bMatrix[a61 .itemList[i1)==2)

return TRUE; //there is a conflict

}

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a3].itemList[i]+bMatrix[a7l.itemList[i])==2)

return TRUE; lithere is a conflict

I
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a4].itemList[i]+bMatrix[a5].itemList[i])==2)

return TRUE; lithere is a conflict

i
for

I

for

1

i=O; icMAX1TEM;i++) (

if ((bMatrix[a41.icemList[i]+bMatri~[a6].itemList[i]) = = 2)

return TRUE; lithere is a conflict

i=O;icMAXITEM;i++){

if ((bMatrix[a4] .itemL~st[i] +bYatrix[a7] .itemList[i])==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++)(

if I (bMatrix[a5] .itemList[i]+bMatrix[a6l.itemList[i])==2)

return TRUE; /;there is a conflict

1

for

)

for

1

i=O;i<MAXITEM;i++){

if ((bMatrix[a5].itemList[i!+bMaLrix[a7].itemLi~t[i])==2)

return TRUE; lithere is a conflict

i=O;i<MAXITEM:i++){

if (lbMatrix[a6] .itemList[il+bMatrix[a?l .itemTJist[il)-=2)

return TRUE; //there is a conflict

int conflict8(int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8){

int 1;

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[al].itemList[il+bMa~rix[a2].itemList[i])==2)

return TRUE; /ithere is a conflict

I

for (i:O;i<MAXITEM;i++) {

if ((bMatrix[all .itemLisr[il +bMatrix[a31 .itemTJist [il) ==2)

return TR3E; //there is a conflict

1

for (i=O;i<MAXITEM; i++) {

return TRUE; //there is a conflict

1
for (i=O;i<MAXITEM;i++) {

return TRUE: ;/there is a conflict

1

for (i=O;i<MAXITEM;i++){

if ((bMatrix[all .itcmSist[iI+bMaLrix[a6].itemList[i])==2)

return TRUE; //there is a conflict
1

for (i=O;icMAXITEM;i++){

i

for

if ((bMatrix[al].itemlJist[i]+bMatrix[a71.itemList[i])==2)

return TRUE: //there is a conflict

return TRUE; lithere is a conflict

1

for (i=O; i<MAXITEM; ii-+) I

if ((bMatrix[a2l.itemLi.st[il+bMatrix[a3l.itemList[il)==2

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a2].itemList[il+bMatrix[a4].itemList[il)==2

ret.urn TRUE; iithere is a conflict

I

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a2].itemList[ij+bMatrix[a5].itemList[i])==2)

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++)i

if ((bMatrix[a2].item~ist[i]+b~atrix[a6].itemList[il)==2)

return TRUE; /ithere is a conflict

for (i=O;i<MAXITEM;i++) (

return TRUE; iithere is a conflict

1
for

I
for

)

i=O;l<MAXITEM;i++) (

if (ihMatrix[a2].itemList[i]+bMatrix[aB] .itemList

return TRUE; //there is a conflict

i=O;i<MAXITEM;i++) {

if ((bMatrix[a3].itemList[il+b~atrix[a4].itemList

return TRUE: /ithere 1s a conflict

for (i=O; M MAX ITEM; i+ +) {

if ((b~atrix[a3].itemList[i]+bMatrix[a5].itemList[i])==2)

return TRTJE; //there is a conflict.

I

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a3] .iternList [; . I +bMatrix[a6] .itemList [il) ==2)

return TRUE; //there is a conflict

1
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a3].itemList[i]+bMatrix[a71.itemList[il)==2)

return TREE; ::'there is a conflict

1

for (i=O;i<MAXITEM;i+l) {

if ((bMatrix[a3].itemList[i]+hMatrix[aBj .iternList[il)==2)

return TRUE; //there is a conflict

j

tor (i=O;i<MAXI7rEM;i++) {

if ((hMatrix[a4l.itemL,ist[i1+bMatrix[a5].itemL.ist[i!)==2)

return TRIJE; //there is a conflict

j

for (i=O;i<MAXITEM;i++)i

if ((bMatrix[a4].iternList[i]+bMatrix[a6l.itemList[il)==2)

return TRUE; //there is a conflict

j

tor (i=O;i<MAXITEM;i++){

if ((bMatrix[a4l.itemList.[il+bMatrix[a7JJite~~List[i])==2)

return TRUE; lithere is a conflict

1

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a4].iternList[ijibMatrix[a8!.iterrrList[i])==2~

return TRUE; //'there is a conflict

1
for (i=O;i<NAXITEM; i++) {

if ((bMatrix[a5j .iternList [ij+bMaLrix[ah] .itemList[i])==2)

return TRUE; !ithere is a conflict

I
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a5].itemList[ij+bMatrix[a7!.itemList[i])==2)

return TRUE: ;/there is a conflict

1

for

1

for

I

i=O;i<MAXITEM;i++){

if ((bMatrix[a5].itemList[i]+bMatrix!a8!.itemList[il)==2)

return TRUE: !ithere is a conflict

i=O;i<MAXITEM;i++) {

if ((bMatrix[a6].itemList[l]+bMaLrixja7].itemList[i])==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a6].itemList[i]+bMatrix[a8j.itemList[il)==2)

return TRUE; !/there is a conflict

1
for (i=O;i<MAXITEM;i++){

if ((bMatrix!a7] .iternList[i]+bMatrix[a8] .itemList[iI)==2)

return TRUE; !/there is a conflict

i

return FALSE;

I

int conflict9(int a1,int a2,int a3,int a4,int a5,int a6,int a7,int a8,int a9) {

int i ;

for (i=O;i<MAXITEM;i++);

if ((bMatrix[al].itemList[i]+bMatrix[a2].itemList[i])==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++) i

if ((hMatrix[al].itemList[i]+bMatrix[a3] .itemList[il)==2)

return TRUE; Ilthere is a conflict

1

for

1

for

I

i=O;i<MAXITEM;i++) (

if ((bMatrix[al].itemList[i]+bMatrix[a4].itemList[il)==2)

return TRUE; //there is a conflict

i=O;i<MAXITEM;i++) (

if ((bMatrix[al].itemList[i]+bMat.rix[a5].itemList[i])==2)

return TRUE; //there is a confllct

for (i=O;i<MAXITEM;i++) (

if ((bMatrjx[al].it.emList[il+bMatrix[a6].itemList[i])==2)

ret-urn TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[all.itemList[il+bMatrix[a7l.itemList~il)==2

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[al].itemList[i]+bMatrix[a8].itemList[i1)==2

return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[all .it:emList [il +bMatrix[a91 .itemL

return TRUE; /ithere is a conflict

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemL

return TRUE; lithere is a conflict

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a2].itemList[i]+bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict

1

for

I
for

1

j=O;i<MAXITEM;i++) (

if ((bMatrix[a2].item~ist[ij+bMatrix[a5].itemList[i])=~2)

return TRUE; //there is a conflict

i=O;i<MAXITEM;i++) (

if ((bMatrix[a2].itemList[i]+bMatrix[a6].itemList[i])==2)

return TRUE; //there is a conflict

for (i=O;i<MAXITEM;i++)(

if ((bMatrixLa21 .itemListiil+bMatrix[a7].itemList[i])==2)

return TRUE: //there is a conflict

I

for (i=O;i<MAXITEM;i++l {

if ((bMatrix[a2].itemList[ij+bMatrix[a8].itemI~ist[il)==2)

return TRUE; /:'there is a conflict.

1

f o r (i=O:i<MAXITEM;i++) (

if ((bMatrix[a2].item~ist[i]+bMatrix[a9] .itemList[i])==2)

return TRUE; /;there is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrjx[a3].itemList.[i]+bMatrix[a4].itemList[il)==2)

return TRUE; /ithere is a conflict

I
for

1

for

1

i=O;i<WITEM;i++){

if ((bMatrix[a3i.itemList[il+bMatrix[a5].itemList[i])==2)

return TRUE; /;there is a conflict

i=O;i<MAXI'I'EM;i++l {

if ((bMatrix[a3].item~ist[i]+bMatrix[a6] .itemList[il)==2)

return TRUE; !;there is a conflict

for (~ = O ; ~ < M A X I T E M ; ~ ~ +) (

if ((b~atrixia31 .itemList.ii]+bMatrix[a7] .itemList[il)==2)

return TRUE; lithere is a conflict

I
for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a3l.itemList[il+bMatrix[a8l.itemList[

return TRUE; !ithere is a conflict

1

for (i=O;i<MAXITEM;i++l(

if ((bMatrix[a3].itern~ist[i]+bMatrix[a9] .itemList[

return TRUE; !/there is a conflict

}

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a41.itemList[i]+bMatrix[a5l.itemList[il)==2)

return TRUE; lithere is a conflict

I

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a4].iternList[i]+bMatrix[a61 .itemList[i])==2)

return TRUE; !/there is a conflict

I

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a4].itemList[i]+bMatrix[a7].itemList[i~)==21

return TRUE; /ithere is a conflict

I

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a4].itemList[i]+bMatrix[a8].itemList[i1)==2)

return TRUE; //t.here is a conflict

1
for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a4] .itemList [i] tbMatrix[a9] .it.emList [i])==2)

return TRUE; lithere is a conflict

}

for (i=O;i<MAXITEM;itt) i

if ((bMatrix[a5J.itemListiilthMattrix[a6l.itemList[il)==2)

return TRUE; lithere is a conflict

}

for (i=O;i<MAXITEM;i-kt) (

if ((bMatrix[a5].itemList[i~+bMatrix[a7].itemList[i1)==2)

ret,arn THUE; /;there is a conflict

i

for (i=O;i<MAXITEM;it+)(

if ((bMatrix[a5].itemList.[i]tbMatrix[a8].itemList[il)==2)

return TRUE; /;there is a conflict

1

for (i=O;i<MAXITEM;itt) (

if ((bMatrix[a5].itemList[i]tbMatrixja9].itemList[il)==2)

return TRUE; /:there is a conflict

1

for (i=O;i<MAXITEM;itt) (

if ((bMatrix[a6].itemList[iltbMatrix[a71.itemList[il)==2)

return TRUE; /ittiere is a conflict.

'i

for (i=O;i<MAXITEM;it+) (

if ((bMat.rix[a6].itemListiil tbMatrix[a8I1itemList[.i])==2)

return TRUE; iithere is a conflict

1
for

1

for

i

return TRUE; /;there is a conflict

(i=O:i<MAXITEM;it+) (

if ((bMatrix[a7].itemList~i]+bMatrix[a8].itemList

return TRUE; lithere is a conflict

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a7].itemListiij+bMatrix[a9].itemList

return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;it+)(

int conflictlO(int a1,int a2,int a3,int a6,int a5,int a6,int a7,int a8,int a9,int a10){

int i;

for (i=O; i<MAXITEM;i++l {

if ((bMarrix[al] .itemL,ist [il+hMatrix[aZ] .itemlist

return TRUE; iithere is a confiict

for (i=O;i<MAXITEM;i++) i

if ((bMatrix[al].item;ist[i]+bMatrix[a3].itemList

return TRUE; /ithere is a conflict.

I
for

i

for

I

for

1
for

1

for

i

for

1

for

i

for

1

for

I

for

?

for

i.=O;i<MAXITEM; i++) {

if ((bMatrix[al] . iternlist [i]+bMatrix[a4]. itemList[i])==2)
return TRTJE: .!/'there is a conflict

i=O;i<MAXITEM;i++){

if ((bMatrix[al].itemList[i]+bMatrix[a51.itemList[i])==2)

return TRUE: //there is a conflict

(i=O;i<MAXITEM;i++) {

if ((bMatrix[alj.itemListli!+bMatrix[a61.itcmList[il)==2l

return TRUE; !/there is a conflict

(i=O;i<MAXITEM;i++l{

if ((bMatrix[al].itemList[i]+hMatrix[a7].itemList[i])==2)

ret-urn TXUE; /ithere is a conflict

(i=O;i<MAXITEM;i++)(

if ((bMatrix[al].itemList:i]+bMatrix[a8].itemList[i])==2)

ret-urn TRUE; /ithere is a conflict

(i-O;i<MAXITEM;i++l {

if ((bMatrix[all.itemList[i~+bMatrix[a9].itemList[il)==2)

return TRUE; /;there Is a conflict

(i=O; i<MAXITEM; i++) {

if !(bMatrix[al].itemList[i]+bMa~rix[alO].itemList[i])==21

return TRUE; //there is a conflict

(i=O; i<MAXITEM;i++) {

if ((bMatrix[a2].itemList[i]+bMatrix[a3].itemiist~i~~==?)

return TRUE; !/there is a conflict

(i-O;i<MAXITEM;i++) (

if ((bMatrix[a21.itemLis~!iI+bMatrixla41 .itemList[i]!==2)

return TRUE; /;there is a conflict

(i=O;i<MAXITEM;i++) {

if ((bMatrix[a2].itemList[ij+bMatrix[a5].itemList[i.l)==2)

return TRUE; /,'there is a conflict

if ((bMatrix[a2].itemt,ist[i]+hMatrix[a6] .itemList[il)==2)

return TRUE; /;there is a conflict

1

for (i=O;i<MAXITEM;ia+) {

if ((bMatrix[a2].itemt,ist[il+bMatrix[a7l .itemList[il)==2)

return TRUE; !ithere is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a2] . iternList [il +bMatrix[aEl .itemList
return TRUE; /ithere is a conflict

1

for (i=O;i<MAXITEM;i++) (

if ((bMatrix[a2] .itemList[i]+bMatrix[a9] .itemList[

return TRUE; iithere is a conflict

1
for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a2].itemList[i]+bMat.rix[a101.itemList[il)==2)

return TRUE; !ithere is a conflict

for (i=O;i<MAXITEM;i++) {

if ((bMatrixra31 .itemList[i!+b~atrix[a4!.itemList[il)==2)

return TRUE; lithere is a conflict

i

for (i=O;i<MAXITEM;i++) i

if ((bMat.rix[a3].itemList[i]+bMatrix[a5].itemList[il)==2)

return TRUE: lithere is a conflict

1

for

1
for

1

return TRUE; /;there is a conflict

(i=O; i<MAXITEM; i++) {

if ((bMatrix[a3l.itemList[il+bMatrix[a7].itemList[i])==2

return TRUE; /;there is a conflict

for (i=O;i<MAXITEM;i++)(

if ((bMatrix[a3].itemList[i]+bMatrix[a8~.itemList[i1)==2

return TRUE; /ithere is a conflict

1

for

1
for

1

i=O;i<MAXITEM;i++) (

if ((bMatrix[a3].itemList[i]+bMatrix[a9].itemList[i])==2)

return TRUE; lithere is a conflict

i=O;i<MAXITEM;i++){

if ((bMatrix[a3].itemList[iI+bMatrix[a101 .itemList[il)==2)

return TRUE; /;there is a conflict

for (i:O; i<MAXITEM; i++) {

if ((b~atrix[a4].itemI~ist[i]+bMatrix[a5].itemList[i])==2)

return TRUE; /;there is a conflict

1

for (i=O;i<MAXITEM;i++){

if ((bMatrix[a4].itemList[ij+bMatrix[a6].itemList[i])==2

return TRUE; //there is a conflict

for (i=O;i<MAXITEM:i++)i

If ((bMatrix[a4] .itemList[i I +bMatrix[a7] .itcmList [il)-=2
return TRUE; lithere is a conflict

}

for (i=O;i<MAXITEM;i++) {

i

for

1

for

}

for

1

for

j

for

1

tor

1

for

if ((bMatrix[a4].itemList[i]+bMatrix[a8l.itemList[il)==2)

return 'TRIJE; iithere is a confiict.

i=O;l<MAXITEM;i++) {

if ((bMatrix[a4l.itemList[i]+bMatrix[a9].itemI2ist[i])==2)

return TRUE; /ithere is a conflict

i=O;i<MAXITEM;i++){

if ((bMatrix[a4J.iten~List[i]+bMatrix[alOl.itemList[i])==2)

return TRUE; 'ithere is a conflict

(i=O; i<MAXITEM; i+t) i

if ((bMatrix[a51.itemList[il+bMatrix[a6].itemList[il)==2)

return TRUE; iithere is a conflict

(i=O;i<MAXITEM;i++) {

if ((bMatrix[a51.itemList[il+bMatrix[a7l.itemList[i])==2)

return TRUE; iithere is a conflict

(i=O; i<MAXITEM;i++l {

if ((bMatrix[a5].itemList[i]+bMatrix[a8].itemList[i])==2)

return TRUE; lithere is a conflict

(i=O;i<MAXITEM;i++l(

if ((bMatrix[a5l.itemList[~1+bMatrixla9l.itemList[il)==2)

return TRUE; iithere is a conflict

(i=O;i<MAXIrI'EM;i++) {

if ((bMatrix[a5].itemList[il+bMatrix[alOl.itemList[il)==2)

return TRUE; lithere is a conflict

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a6!.itemListlil+bMatrix[a7].itemList[i])==2)

return TRUE; /;there is a co17.flicL

for (i=O;i<MAXITEM;i++) {

if ((bMatrix[a6].itemList[i]tb~atrix~a8].ltemList[i])==2)

return TRUE; lithere is a conflict

for (i=O;i<MAXITEM;i++){

17 1

if ((bMatrix[a6] . itemL,ist [i] +bMat.rix[a9]. i te~nList [il)==2)

return TRUE; //there is a conflict

1

for (i=O;i<MAXITEM;i++i (

if ((bMatrix[a6] .itemListIil+~~Matrix[alOl .itemList r1.1) = = 2)

return TRUE; //thers i~s a conflict

1
for (i=O;i<MAY.ITEM;i++) {

if ((bMatrix[a7].iteniList[ij+bM~trix[a8].itemListli])==2~

return TRUE: lithere is a conflict

1
for (i=O;i<MAXITEM;i+i) {

if ((bMatrix[a7] .itemlist [i l +bMatrix[a9j .itemL,ist [i])==2)

return TRUE; /ithere is a conflict

I
for (i=O; i<MAXTTEM;i++) !

if ((bMatrix[a8].itemList[il+bMatrix[a9].itemList[i])==2)

return TRUE; lithere is a conflict

}

for (i=O;i<MAXiTEM;i++){

if ((bMatrix[a81.itemLis:lil+bMatrix[alOl.itemList[ill==2)

return TRUE; /ithere Is a conflict

I

for (i=O;i<MAXITEM;i+i {

if ((bMatrix[a9].itemList[ij+bMatrix~].itemList[i])==2)

return TRUE; .';there is a conflict

1
return FALSE;

1

//Once the bid with highest bidding price or highest profit is found,

//all conflict bids will be deleted.

/ / -

int auctionCompete(int m a ~) {

int m,n;

if (bMatrix[maxl .sold==DELETEI))

return 0;

if (bMatrix[maxl .sold==FALSE) {

bMatrix[maxl.sold=TRUE;

processedBidder++;

I
for (m=O;m<bidderListIdx;m++) (

if (bMatrix[ml.sold==FALSE) { / /

for (n=O;n<MAX!.TEM;n++) (

if ((l>Matrix(maxl. itemList in) +bMatrix[ml .ItemList [n]) = = 2) {

bMatrix [n!J . sold=DELETED;
processedBidder+ t;

break;

1

return 0;

1

//Reads input data into the internal memory strxctures.

void readJnput (char 'argvl I) {

char buf[81];

lnt r;empl=O;

double temp2=0.0;

FILE *fpl, 'fp2;

if ((fpl = fopen(argvll1, "r"))-=NULL){

printf("Cannot open citem file>\nV);

exit (11;

1

if ((fp2 = fopen(argv[2], "r"))==NULL)!

prir~tf ("Cannot open <bid Eile>\nV);

exit ill;

1
while (TRUE){

if (tgets(buf, MAXLEN, fpl)==NULL)

break;

processItemInput(buf, &templ, &temp2);

iMatrixItempl1 .iternPrice=ternp2;

1

while (TRUE) !

if (fgets(buf, MAXLEN, €p2)==N>LLI

break;

processRidInput (buf) ;

1

1
/ / -

//Reads items-file into iMatrix.
/ / -

void processItemInput(char *buf, int *item"~, double *itemvalue) {

int i=O,j=O, process=FALSE;

char temp [MAXLEN 1 ;

whlle (TRUE) {

if (process==TRUE 1 1 1,MAXLEN)
break;

else if (buf [i++I==';'l i

whlle (TRUE) {

l f ibu•’[ll==')'l{

process=TRUE;

break;

temp[j++]=buf[1];

1++;

1

temp[jl='\Ot;

*itemNo=atoi(temp);

1
else

i++;

j=O;

process=FALSE;

while (TRUE) {

if (process==TRUE I / i>MAXLEN)

break;

else if (buf [i++l==' (') {

while (TRUE) {

if (buf[i]==')')(

process=TRUE;

break;

1
temp[j++l=buf[il ;

1++;

1
temp[j1='\Ot;

*itemValue=atof(temp);

I

else

i++;

I

1
/ / -

//Reads bids-file into bMatrix.

void processBidInput(char *buf) i

ink i=O,j=O, process=FALSE;

char temp[MAXLENl;

while (TRUE) {

if (process==TRUE 1 1 i>MAXLEN)
break;

else if (buf [i++] = = ' (') (

while (TRUE) {

if (b

}

temp [

i++;

u f [i I==')') {

process=TRUE;

break;

j++]=buf [i];

else

i++:

j=o;

process=FALSE;

while (TRUE) I

if (process==TRUE (1 i>MAXLEN)
break;

else if (buf[i++]=='{')(

while (TRUZI {

if (buf[i]=-')') {

process=TKUE;

break;

1
temp[j++l=buf[il;

1 + + ;

1

temp[jl='\07;

1

else

1 ++ ;

j = O ;

process=FALSE;

while (TRUE) (

if (process==TRUE (i>MAXLEN)

break;

else if (buf[i++l=='{') (

while (TRUE) {

if [buf[ij==')'){

process=TRUE;

break;

1

ternp[j++l=huf [i l ;

I++;

1
temp[jl='\O';

bMatrix[bidderI.istIdxl .bidPrice=atof(temp);

1
else

APPENDIX C

Source Code for Greedy Search Technique

This appendix provides the source code of the greedy search technique (GST)

program used in the evaluation.

Author: Andy Law

Date: 2003

Description:

The program uses greedy search technique (GST) to identify winners in a

combinatorial auction.

Program Execution Format:

bft.exe items--file.txt bids-fj l.e.txt

#def ine MAXLEN 8 0

#define MAXITEM 2 0
#define MAXBIDDER 1000

#define TRUE 1

#detineFALSE 0
#define DELETED - 1
#define NO-ITEM -- 2

typedef struct itemMatrix iiitern information ADT

i
double itemprice;

1 ITEMMATRIX;

typedef struct bidMatrix

(
int bidderID;

int itemList[MAXITSM];

double subrotalvalue;

double bidprice;

!/bid information ADT

int sold; //1 if sold, -1 if deleted
j BIDMATRIX;

BIDMATRIX bMatrix[MAXBIDDER]; //bids information

ITEMMATRIX iMatrixIMAXITEM1; //items information

int bidderListIdx=O; //total number of bids

int processedBidder=O;

int winner [MAXBIDDER] ;

double tempRev=O.O;

void readInput(char *argv[lj;

void processlternInput(char *buf, int *itemNo, double *item\ialue);

void processBidInput(char *buf);
void initialize();

void processAuction () ;

int auctionCornpete(int max);

void displayResult0;

int main (int argc, char* argv[]) (

clock-t start, finish;

double duration;

if (argc ! = 3)

{

printf("Usaye: auction <item_file> <bid-file>\nU);

exit (1);

1
start = clock() ;

printf ("-----------.-----------A- - -. - - - - - - - - - - - - - -. - - - - - - - - - \n") ;
printf(" Greedy Search - Beginning\nn);
printf(.......................... \n") ;

initialize0 ;
readlnput(argv);

processAuction0;

displayResult0;

finish = clock();
printf (" - .. - - - - .. \nu) ;

printf(" Gready Search - Endixg\nV);
printf(-------------------------- ?nu);

duration = (double) (finish - start) / CLOCKS-PER-SEC;

printf("8.61f seconds\nn, duration 1 ;
return 0;

//Initializes the matrix for storing the auction information

void initialize() {

int i, j ;
for (i=O;l<MAXBIDDER;l++)

winner[i]=-1;

for (i=O;i<MAXBIDDER;i++) {

bMatrix[i].bidderID=-1;

bMatrix[i] .bi~dPrice=-1.0;

bMatrix[i].sold=FALSE;
bMatrix[il.subtotalValue=O;

for (j=O;j<MAXlTEM;j++)

bMatrix[i].itemList[j]=-2; //must be even number

1

//Displays the auction resu1.t~ to the command screen

void displayResult0 {

int i, j ;

double rev=0.0;

printf ("BidderLD Bid Price

for (i=O;i<bidderListIdx;i++) (

if (bMatrixli] .sold== TRUE) {

printf !"%5i ",bMatrix[i].bidderID) ;

print•’("%-15.2f",bMatrix[i].bidPrice);

rev=revtbMatrixlil .bidprice:

for (j=O;j<MAXITEM;j+t){

if (bMatrix[il.itemList[jl==l)

printf ("%i " , j) ;

1
printf("\nW);

1
1
printf

printf

printf

(" \ n V) ;
("Total Revenue = %.2fW,rev);

("\nV);

//Auction is processed.

void processAuction0 I
int i=O, highest~idIdx=-1;

double highestPrice=O.O;

while (1) //always true

i
highestBidIdx=-1;

higtiestPrice=O. 0;

if (processedBidder == bidderListIdx)

break;

for (i=O;i<bidder~istIdx;i++)

I
if (bMatrix[i].sold==FALSE)

//Once the bid with highest bidding price or highest profit is found,

//all conflict bids will be deleted.

int auctionCompete(int max) {

int m,n;

if (bMatrix[maxl .sold==DELETED)

return 0;

if (bMatrix[maxl.sold==FALSE)i
bMatr~x[max~.sold=TRUE;

processedBidder ++ ;

I
for (m=O;m<bidderListIdx;m++)l

it ibMatrix[ml .sold==FALSE) { / /

for (n=O;n<MAXITEM;n++) {

i.•’
((bMatrix[maxl .itemList [nj +bMatrix[ml .lternList in]) ==2) {

bMatrix[m].sold-DELETED;

processedBidder++;

break;

I
I
return 0;

I
/ / -

//Reads inputs into the internal memory structures.

void readInput(char *argv[l) {

char buf[81];

int templ=O;

doub

FILE

if (

I

*fpl. *fp2;
(fpl = fopen(argv[lj, "rU))==NULLI{

printf("Cannot open <item Eile>\nU);

exit (1);

if ((fp2 = fopen(argv[2], "rU))==NULL){

prlntf("Cannot open <bid file>\nW);

exlt (1);

I
while (TRUE) {

if (fgets(buf, MAXLEN, Epl)==NULL)

break ;

processItemInpiit(but, &templ, &temp2);

iMat.rix[templ].iternPrice=temp2;

//printf("%i %.2f\nW,temp1, temp2

I
while (TRUE) {

if (Egets(buf, MAXLEN, fp2)==NULL

break;

processBidInput ibuf ;

1

I
/ / -

//Reads items-file.txt into iMatrix.
/ / -

void processItemInput(char *buf, int *itemNo, double *itemvalue) {

int i=O,j=O, process=FALSE;

char temp[MAXLENl ;

while (TRUE) {
if (process==:'Rl.JE 1 j i'.MAXLENi

break;

else i f (bu f ii++l=='{')i
while (TRUE) {

if (t~uL[il==')'){

process=TRUE;
break;

temp[j++l=buflil;

1 + t ;

i
temp[jl='\O';
*itemNo=atoi(temp);

1
else

i t + ;

I

j=O;
grocess=FALSE;

while (TRUE) [
if (process-=TRUE i 1 i>MAXLEN)

break ;

else if (b u f [i i - + I = = ' (') {

while (TRUE) {
if (buf[il==')'){

process=TRUE;

break;

1
temp(j++l:buf [il;

1-+;

.t
else

ill;

1

1
trmp[jl='\O';
bMatrlx [biclderListIdx] . bidderID=atoi i temp) ;

1
else

j =O ;
process=FALSE;

while (TRUE) (
l f (process==TKUE I I L>MAXLEN)

breok ;

else if (buf[:-+I=='{') {

while (TRUE) {

if (buf[il-=')') {

process=TRUE;
break;

>
else

j = O ;

process=FALSE;
while (TRUE) {

if (process==TKtTE 1 1 i>MAXLEN)

break;

else if (buf[i++l==' { ') (

while (TRUE) (
if (buf[il==')') {

process=TRUE;

break;

1
temp[j++]=buf [il;

1++;

1
temp[jl='\Ot;
bMatrix:bidderListIdxl.bidPrice=atof(temp);

1
else

i++;

1
bidderListIdx++;

1

//Stores those items that are wanted by particular bids in bidMatrix

void processBidItem(char itemllst [1) (

char buf[10];

int len = strlen(itemL1st);

int i=O, j=O, itemLlstIdx=-1;

double subtotal=O.O;

while (TRUE) (

if (i>len)

break;

else if (itemList[il==' ' / I itemList[il=='\O') (

buf [j]='\O';
1++;

j=O;

itemListIdx=atoi(buf);

bMatrix[bidderListIdx].itemList[itemListIdx]=TRUE;

subtotal=subtotal+i~atrix[i:emlistIdx] .itemprice;

1
else

buf [j++]=it.emList[i++l;

1
bMatrix[bidderListldx] .subtotalValue=subtotal;

BIBLIOGRAPHY

[Agrawal et al., 19931 R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proceedings of 1993 ACM-SIGMOD
International Conference on Management of Data (SIGMOD'93), pages 207-2 16.

[Agrawal and Srikant, 19941 R. Agrawal and S. Sarawagi. Fast algorithms for mining
association rules in large databases. In Research Report RJ9839, IBM Almaden
Research Center.

[Agrawal and Srikant, 19951 R. Agrawal and S. Sarawagi. Mining sequential patterns. In
Proceedings of International Conference on Data Engineering (ICDE), pages 3-
14.

[Agrawal et al., 19961 R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I.
Verkamo. Fast discovery of association rules. Advances in Knowledge Discovery
and Data Mining, pages 307-328. AAAIIMIT Press.

[Agrawal et a1.,1997] R. Agrawal, A Gupta, and S. Sarawagi. Modeling multidimensional
databases. In Proceeding 1997 lnternational Conference Data Engineering(ICDE),
pages 232-243.

[Agrawal et al., 20001 R. Agrawal, C. Aggarwal, and V.V.V. Prasad. A tree projection
algorithm for generation of frequent itemsets. In Journal of Parallel and
Distributed Computing.

[Aggarwal and Yu, 19991 C.C. Aggarwal and P.S. Yu. A new framework for itemset
generation. In Proceedings 1998 of ACM Symposium on Principles of Database
Systems (PODS), pages 18-24.

[Andersson et a1.,2000] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer
programming for combinatorial auction winner determination. In ICMAS, pages
39-46.

[Banks et al., 19891 J.S. Banks, J.O. Ledyard, and D.P. Porter. Allocating uncertain and
unresponsive resources: an experimental approach, Rand Journal of Economics,
vol. 20, 1, pages 1-25.

[Bichler, 19991 Martin Bichler. A roadmap to auction-based negotiation protocols for
electronic commerce. In Proceedings of the 33rd Hawaii International Conference
on System Sciences.

[Bjomdal and Jornsten, 20001 Mette Bjurndal and Kurt Jemsten. An Analysis of a
combinatorial auction. Department of Finance and Management Science,
Norwegian School of Economics and Business Administration, Norway.

[Boutilier ct al., 19991 C. Boutilier, M. Goldszmidt, and B. Sabata. Sequential auctions
for the allocation of resources with complementarities. In Proceedings of IJCAI.
Pages 527-534.

[Brin et al., 1997al S. Brin, R. Motwani, and C. Silverstein. Beyond market basket:
generalizing association rules to correlations. In Proceedings of 1997 ACM-
SIGMOD International Conference on Management of Data (SIGMOD), pages
265-276.

[Brin et al., 1997bl S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset
counting and implication rules for market basket analysis. In Proceedings of 1997
ACM-SIGMOD International Conference on Management of Data (SIGMOD),
pages 255-264.

[Case, 20011 James Case. Mathematical challenges of combinatorial auction design.
SIAM News, Volume 34, Number 5.

[Cooper and Steinberg, 19741 L. Copper and D. Steinberg. Methods and applications of
linear programming. W.B. Saunders, Philadelphia.

[Cramton, 19971 P. Cramton. The FCC spectrum auctions: an early assessment. Journal
of Economics and Management Strategy 6:3, pages 43 1-495.

[Cramton and Schwartx, 20001 P. Cramton, J.A. Schwartx. Collusive bidding: lessons
from the FCC spectrum auctions. Journal of Regulatory Economics 17(3), pages
229-252.

[de Vries and Vohra, 20001 Sven de Vries and Rakesh Vohra. Combinatorial auctions: A
survey. INFORMS Journal on Computing, Volume 15, No. 3.

[Dunham, 20031 Margaret H. Dunham. Data mining. Pearson Education, Inc. New
Jersey, USA.

[Fujishima et al., 19991 Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham.
Taming the computational complexity of combinatorial auctions: Optimal and
approximate approaches. In IJCAI, pages 548-553.

[Gonen and Lehmann, 20001 R. Gonen, D. Lehmann. Optimal solutions for multi-unit
combinatorial auctions: Branch and bound heuristics. In Proceeding of ACM
Conference on Electronic Commerce (ACM-EC), pages 13-20.

[Goodrich and Tamassia, 20021 M.T. Goodrich and R. Tamassia. Algorithm Design. John
Wiley & Sons.

[Graves et al., 19931 R. Graves, J . Sankaran, and L. Schrage. An auction method for
course registration, Interfaces, 23, 5.

[Han et al., 20001 J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In Proceedings of 2000 ACM-SIGMOD International Conference on
Management of Data (SIGMOD), pages 1-12.

[Han and Fu, 19951 J. Han and Y. Fu. Discovery of multiple-level association rules from
large databases. In Proceedings of 1995 International Conference on Very Large
Data Bases (VLDB), pages 420-43 1.

[Han and Kamber, 20011 Jiawei Han and Micheline Kamber. Data mining: concepts and
techniques. Morgan Kaufmann Publishers, San Diego, CA, USA.

[Haeussler et al., 20021 Ernest F. Haeussler, Richard P. Paul, and Tech Laurel.
Introductory mathematical analysis for business, economics and life and social
sciences, 10th edition. Prentice-Hall, Inc.

[Hoffman and Padberg, 19931 K. Hoffinan, and M.W. Padberg. Solving airline crew
scheduling problems by branch and cut, Management Science, 39,657-682.

[Holte, 20011 Robert C. Holte. Combinatorial auctions, knapsack problems and hill
climbing search. In the Proceedings of AI'2001 (the Canadian conference on
Artificial Intelligence), a volume in Springer's LNAI series.

[Hoos and Boutilier, 20001 Holger Hoos and Craig Boutilier. Solving cotnbinatorial
auctions using stochastic local search. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 22-29.

[Huberman et al., 19971 Bernardo A Huberman, Rajan M. Lukose, and Tad Hogg. An
economics approach to hard computational problems. Science, 275:5 1-54.

[Huberman et al., 20001 Bernado A Huberman, Tad Hogg and Arun Swami. Using
unsuccessful auction bids to identify latent demand, Xeror Palo Alto Research
Center.

[ILOG, 20051 ILOG. ILOG AMPL CPLEX Systemversion 9.0 User's Guide, pages 64-
66.

[Jackson, 19761 C. Jackson. Technology for spectrum markets, Ph. D. Thesis submitted
to the Department of Electrical Engineering, School of Engineering, MIT.

[Johnsonbaugh and Schaefer, 20041 Richard Johnsonbaugh and Marcus Schaefer
Algorithms. Pearson Education, Inc. New Jersey, USA, pages 429-482.

[Karp, 19721 R. M. Karp. Reducibility among combinatorial problems. Complexity of
Con~puter Computations, Plenum Press, NY, pages 85-1 03.

[Kelly and Steinberg, 20001 F. Kelly., R. Steinberg. A combinatorial auction with
multiple winners for universal services. Management Science 46 (4), pages 586-
596.

[Klemperer, 20001 Paul Klemperer. The economic theory of auctions. Edward Elgar
Publishing.

[Krishna, 20021 Vijay Krishna. Auction theory. Academic Press, pages 1 - 10,223 - 232.

[Lavi and Nisan, 20001 Ron Lavi and Noam Nisan. Competitive analysis of online
auctions. In Proceedings of the 7"" ACM Conference on Electronic Commerce.

[Lawler, 19851 E. L. Lawler. The travelling salesman problem: A guided tour of
combinatorial optimization. Wiley. New York.

[Lawler et al., 19921 E. L. Lawler, J. K. Lenstra, A. Kan, and D. B. Shmoys. The
travelling salesman problem. Wiley Interscience.

[Lehmann et al., 19991 D. Lehmann, L. O'Callaghan, and Y. Shoham. Truth revelation in
rapid, approximately efficient cotnbinatorial auctions, manuscript.

[Leyton-Brown et al., 2000al Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham.
Towards a universal test suite for combinatorial auction algorithms. In ACM
Conference on Electronic Commerce, pages 66-76.

[Leyton-Brown et al., 2000bl K. Leyton-Brown, M. Tennenholtz, and Y. Shoham. An
algorithm for multi-unit combinatorial auctions. In Proceedings of AAAI.

[Levitin, 20031 Anany Levitin. The design & analysis of Algorithms. Addison Wesley.

[Lustig and Puget, 20011 Irvin J. Lustig and Jean-Francois Puget. Program Does Not
Equal Program: Constraint Programming and Its Relationship to Mathematical
Programming. In Interfaces 3 1 : 6 pages 29-53.

[Mannila et al., 19941 H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms
for discovering association rules. In Proc. AAA1'94 Workshop Knowledge
Discovery in Databases (KDD'94), pages 18 1-192.

[Miller, 20001 Ronald E. Miller. Optiinization. New York, John Wiley & Sons, Inc.

[Nemhauser and Wolsey, 19991 G.L. Nemhauser and L.A. Wolsey. Integer and
Combinatorial Optimization. John Wiley & Sons.

[Nisan, 20001 Noam Nisan. Bidding and allocation in combinatorial auctions. In ACM
Conference on Electronic Commerce, pages 1 - 12.

[Olson et al., 20001 M. Olson, P.J. Ledyard, J . Swanson, and D. Torma. The first use of a
combined value auction for transportation services, Social Science Working Paper
No. 1093, California Institute of Technology.

[Papadimitriou and Steiglitz, 19981 C.H. Papadimitriou and K. Steiglitz. Combinatorial
optimization: Algorithms and complexity. Dover Publications.

[Park et al., 19951 J.S. Park, M.S. Chen, and P.S. Yu. Efficient parallel mining for
association rules. In Proceedings of 4"' International Conference on Information
and Knowledge Management, pages 3 1 -36.

[Park et al., 20001 S. Park, W.W. Chu, J. Yoon, and C. Hsu. Efficient searches for similar
subsequences of different lengths in sequence databases. In Proceedings of 2000
International Conference on Data Engineering (ICDE), pages 23-32.

[Parkes, 19991 David C Parkes. Optimal auction design for agents with hard valuation
problems. In Agent-Mediated Electronic Commerce Workshop at the
International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
1999.

[Pasquier et al, 1 9991 N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. In Proceedings of 7'" International
Conference on Database Theory (ICDT), pages 398-416.

[Pei et al., 20001 J. Pei, J. Han, and R. Mao, CLOSET: An efficient algorithm for mining
frequent closed itemsets. In Proceedings of 2000 ACM-SIGMOD International
Workshop Data Mining and Knowledge Discovery (DMKD), pages 11 -20.

[Pekei: and Rothkopf, 20001 Aleksandar Pekei: and Michael H. Rothkopf. Combination
auction design. School of Business, Duke University

[Rassenti et al., 19821 S J Rassenti, V L Smith, and R L Bulfin. A combinatorial auction
mechanism for airport time slot allocation. Bell J. of Economics, l3:402-4 17.

[Ronen, 20011 Amir Ronen. On approximating optimal auctions (extended abstract). In
the 31" ACM Conference on Electronic Commerce.

[Rothkopf et al., 19981 Michael H Rothkopf, Aleksandar PekeC, and Ronald M Harstad.
Computationally manageable combinatorial auctions. Management Science,
44(8):1131-1147.

[Rothkopf et al., 20001 Michael H Rothkopf and Aleksandar PekeC. Making the FCC's
first combinatorial auction work well. An official filing with the Federal
Communications Commission.

[Russell and Norvig, 20031 Stuart Russell and Peter Norvig. Artificial intelligence.
Pearson Education, Inc. New Jersey. USA, pages 712 - 762.

[Sandholm, 19991 Tuolnas Sandholm. An algorithm for optimal winner determination in
combinatorial auctions. In IJCAI, pages 542-547.

[Sandholm, 20001 T. Sandholm. Issues in computational Vickrey auctions. In
International Journal of Electronic Commerce 4 (3) (2000) 107-1 29.

[Sandholm et al., 2001al T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner
determination in combinatorial auction generalizations. In AGENTS Workshop
on Agent-Based Approaches to B2B.

[Sandholm et al., 2001 b] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast
optimal algorithm for combinatorial auctions. In IJCAI.

[Sandholm, 20021 T. Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135: 1-54.

[Savasere et al., 19951 A. Savasere, E. Omiecinski, and S. Navathe. An efficient
algorithm for mining association rules in large databases. In Proceedings of 1995
International Conference on Very Large Data Bases (VLDB), pages 432-443.

[Silverstein et al., 19981 C. Silverstein, S. Brin, R. Motwani, and J . Ullman. Scalable
techniques for mining causal structures. In Proceedings of 1998 lnternational
Conference on Very Large Data Bases (VLDB), pages 594-605.

[Sipser, 19921 M. Sipser. The history and status of the P versus NP question. Proceedings
of 24"' ACM Symposium on Theory of Computing, pages 603-61 8.

[Sipser, 19971 M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, Boston. Pages 223-271.

[Smith et al., 19971 B.M. Smith, S.C. Brailsford, P.M. Hubbard, and H.P. Williams. The
Progressive Party Problem: Integer Linear Programming and Constraint
Programming Compared.

[Srinivasan et al., 19981 S. Srinivasan, J . Stallert, and A.B. Whinston. Portfolio trading
and electronic Networks, manuscript.

[Strevell and Chong, 19851 M. Strevell and P. Chong. Gambling on vacation, Interfaces,
vol. 15, 63-67.

[Schuunnans et al., 20011 D. Schuunnans, F. Southey, and R.C. Holte. The
Exponentiated Subgradient Algorithm for Heuristic Boolean Programming. In
Proceedings of the 1 7'" IJCAI.

[Tennenholtz. 20001 M. Tennenholtz. Some tractable combinatorial auctions. In
Proceedings of AAAI.

[Toivonen. 19961 H. Toivonen. Sampling large databases for association rules. In
Proceedings of 1996 International Conference on Very Large Data Bases
(VLDB), pages 1 34- 145.

[Wellman et al., 20011 M.P. Wellman. W.E. Walsh, P.R. Wunnan, and J.K. MacKie-
Mason. Auction protocols for decentralized scheduling, Games and Economic
Behavior. 35(1-2). 27 1-303.

