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ABSTRACT

In combinatorial auctions (CAs), bidders are allowed to bid on any combination
of items. Although CAs are economically efficient mechanisms for resources allocation,
most auctioneers are hesitant to adopt them due to the fact that the CA winner
determination process is a non-deterministic polynomial hard (NP-hard) problem. If an
exhaustive search technique is used to solve the problem realistically, the number of
auctioned items and bids must be small enough to be handled by the technique due to the
constraints of today’s computation power. Arising from the demand for CAs, this thesis
presents a novel but also practical combinatorial auction winner determination approach.
Such an approach has been designed and implemented into a system called CADIA.
CADIA is able to generate results with high accuracy and good performance in CAs of
hundreds of items and thousands of bids. CADIA’s knowledge for winner determination
1s discovered from a process of mining the auction data using item association. Such
knowledge is then used to identify particular bids as winners. Both potential winners and
possible losers identified during the auctions are used as additional knowledge to further
improve the results. Empirical evaluation shows that CADIA is more efficient than brute-
force technique based systems in terms of running time when searching for the optimal
revenue. In situations where obtaining the optimal revenue becomes unrealistic to be
handled by the brute-force technique, as in auctions of hundreds of items and thousands

of bids, CADIA finds better approximate revenue than greedy search based systems.
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CHAPTER ONE:
INTRODUCTION

In combinatorial auctions (CAs), bidders are allowed to bid on any combination
of items with the constraint that each item can be allocated to no more than one bidder.
CAs are important in situations where the value of an item to a bidder strongly depends
on other items he wins. Economists believe that combinatorial auctions (CAs) allow
resources to be allocated in a more efficient way due to the exhibition of complementarity
and substitutability when buyers valuate a set of items [Huberman et al., 1997; Boutilier
et al., 1999; Huberman et al., 2000; Krishna, 2002]. From the auctioneer’s point of view,
the ultimate goal of a CA is to maximize the revenue from selecting some winning bids.
Since the winner determination process in CAs is a very complex optimization problem,
the number of auctioned items and bids must be small' enough if an exhaustive search
technique is used to obtain the optimal revenue. Airport slots allocation, resources
allocation by NASA space station, Sears transportation acquisition auction, supply chain
formulation, and spectrum auctions by the US Federal Communications Commission
(FCCQ) are examples of real-world CA [Rothkopf, et al., 2000; Rassenti et al., 1982]. Due
to the increasing demand for CAs, the winner determination problem has recently

received considerable attention in the fields of economics and computer science.

' An exhaustive search algorithm belongs to the complexity class of 2". It takes 1 hour and 1 decade to
solve problems of size n=51 and n=68 respectively on a supercomputers performing a single floating-point
operation in 10" seconds [Johnsonbaugh and Schaefer, 2004]. The term “small” is used throughout the
thesis to refer to problem size n <= 50, i.e., 50 items in the case of CAs.

1



Unfortunately, CA winner determination belongs to the class of non-deterministic
polynomial hard (NP-hard) problem [Rothkopt, 1998; Fujishima et al., 1999; Bjorndal
and Jomsten, 2000]. The number of items and bids directly impact the time of finding the
winners. For M items, there are (2™ — 1) combinations of items; and for B bids, there are
(2% — 1) combinations of candidate winners. The CA winner determination problem
becomes computationally intractable when the number of items and number of bids are
large”. For instance, a system based on the brute-force, exhaustive search technique
running on a Pentium personal computer is able to find the optimal revenue for an
auction of 9 items and 10 bids in 3 minutes, but will take about 4 minutes and 30 minutes
when the number of items is increased by 1 and 2 respectively. Systems based on the
exhaustive search technique are impractical in real world auctions when there are

hundreds of items and thousands of bids.

In recent years, some techniques were proposed to find the optimal or
approximate solution for CA winner determination. Integer programming (IP) technique
[Andersson et al., 2000], which is able to obtain the optimal revenue, can practically
handle CA winner determination in auctions of hundreds ot items and thousands of bids.
However, one of the leading commercial implementations based on IP called CPLEX
states in its user’s guide that some common difficulties are encountered when solving IP
problems [ILOG, 2005]. These difficulties are “running out of memory”, “failure to
prove optimality”. A few heuristics techniques [Sandholm, 1999; de Vries and Vohra,
2000; Hoos and Boutilier, 2000; Nisan, 2000; Sandholm et al., 2000; Sandholm, 2002]

were proposed and proved to be able to solve the problems with hundreds of items and

* The term “large” is used throughout the thesis to refer to problem size n > 100. In recent publications,
sample auctions of hundred items and thousands of bids are used when evaluating proposed techniques.
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thousands of bids. However, these techniques include one of or a combination of greedy
search, depth-first search, and branch-and-bound tree search strategies. The drawbacks of
these techniques are that the results may or may not be optimal if the algorithms

implementing the techniques are terminated prematurely.

CADIA, which is a CA winner determination system developed upon the proven
knowledge discovery technique in data mining called item association, provides a novel
and practical approach to solve the problem. Since auction is a real world business
process, it is worthwhile to use the item association pattern as knowledge in problem
solving. CADIA applies such knowledge discovered from the auction data in winner
determination which has been overlooked in any published techniques. In addition,

CADIA uses a tactical-bid-elimination technique to further improve its result.

[n an evaluation where the goal is to obtain the optimal revenue, CADIA is
compared to a brute-force (exhaustive search) technique based system and is concluded
empirically to be a practical system and runs at least 20 times faster than a brute-force
technique. When there are hundreds of items and thousands of bids, a comparison of the
brute-force technique and CADIA becomes unrealistic due to the large size of problem
instance. Thus, in another evaluation, CADIA is compared to an approximation system
that is based on the greedy and depth-first search technique. Empirical results show that
CADIA always tind better revenue. The current implementation of CADIA uses in-
memory storage and search techniques that can practically handle up to five hundred
items and two thousands bids running on a Pentium based personal computer. Such a
limitation can be overcome when external memory storage and search techniques are

employed in the trade off of speed.



In Chapter 2, I review the major characteristics and benefits of CAs followed by
the definition of the CA format. I also present the CA winner determination problem and
survey the state of knowledge about techniques that are able to find optimal or
approximate solutions. Chapter 3 describes item association, which is the core technique
adopted by CADIA, and its importance in association rule mining applications. Chapter 4
presents CADIA’s hypothesis, core structure, and algorithms. An auction example of 10
items and 10 bids will be used to illustrate the core concepts of CADIA. Chapter 5
describes how CADIA is evaluated in terms of data collection, setup, and experimental
results. Chapter 6 and 7 presented an improved version of CADIA and its evaluation
respectively. Chapter 8 discusses CADIA’s practicality and the shortcomings of CADIA
and other evaluated techniques. Chapter 9 presents the conclusion and possible future

research directions.



CHAPTER TWO:
COMBINATORIAL AUCTIONS

2.1 Social Benefits

In CAs, the bidders’ valuations in most cases are not additive [Bichler, 1999]
because the value of a combination of items may not be equal to the sum of the values of
the same items unbundled. A bidder considers a set of items as a complement bundle of
items when he values the bundle higher than the sum of the single item values.
Contrarily, a bidder considers a set of items as a substitute bundle of items when he
values the bundle lower than the sum of the single item values [Krishna, 2002]. Because
combinations of items in bids generally overlap, the CA winner determination becomes

an optimization problem.

Even though the CA winner determination is a NP-hard problem [Rothkopf, 1998;
Fujishima et al., 1999], CA is believed to be an efficient way to allocate resources to
buying agents whose preferences exhibit complex structure with respect to
complementarity and substitutability [Rassenti et al., 1982; Rothkopf et al., 1998;
Wellman et al., 2001]. If complementarities and substitutability exist among auctioned
items, evidence suggests that it is more appropriate to permit bidders to bid for
combinations, rather than on individual item because bidders do not get stuck with partial

bundles of low value [Banks et al., 1989]. If an exhaustive search technique is used to



solve the problem realistically, the number of auctioned items and bids must be small
enough to be handled by the technique due to the constraints of today’s computation

power.

Combinatorial auctions were first proposed by Jackson [1976] for radio spectrum
rights. Later, Rassenti et al. [1982] proposed such auctions to allocate airport time slots.
Strevell and Chong [1985] described the use of an auction to allocate vacation time slots.
Banks et al. [1989] proposed a combinatorial auction for selecting projects on the space
shuttle, but the prototype was tested experimentally and was never implemented due to
political reasons. Olson et al. [2000] described the design and use of a combinatorial
auction that was employed by Sears in 1993 to select carriers. In this auction, delivery
routes were bid upon. Since bidders were allowed to bid on combinations of routes, they
had the opportunity to construct routes that utilized their trucks as efticiently as possible.
Graves et al. [1993] described the auction of seats in a course that was executed regularly
at the University of Chicago’s Business School. Srinivasan et al. [1998] proposed a
mechanism for trading financial securities that allowed buyers and sellers to offer bundles
of financial instruments. In 1994, Federal Communications Commission (FCC) planned
to use a CA auction to allocate spectrum rights [Cramton, 1997; Cramton and Schwartx,

2000] because bidders were interested in different collections of spectrum licenses.

In recent years, a number of logistics consulting firms offered CA software [Case,
2001]. For example, SAITECH-INC offers a software product called SBIDS that allows
trucking companies to bid on bundles of lanes. In 1998, OptiMark Technologies offered
an automated trading system that allowed bidders to submit price-quantity-stock triples

along with a priority list. The Securities and Exchange Commission (SEC) approved



Pacific Stock Exchange’s proposal to implement this electronic trading system. In 1998,
the NASDAQ announced plans to introduce this technology to its dealers and investors.
Logistics.com claims that by January 2000 more than $5 billion in transportation
contracts had been bid on using a CA system called OptiBid by Ford Motor Company,
Wal-Mart, and Kmart [de Vries, S. and Vohra, R., 2000]. CombineNet claims that its Rev
technology runs much faster than the state-of-art general purpose mixed integer
programming solver. Its customer includes some of the Fortune 100 and Global 1000

companies.

2.2 Auction Format

The three major issues one must deal with in designing a CA are bidding protocol,
allocation, and payment [Nisan, 2000]. Each bidder must be able to express bids on
combinations of items. Each bid may be interpreted as the maximum amount of money
that the bidder is willing to pay for. The bidding protocol determines how this bidding
communication is done. The items in the auction must be allocated among the different
bidders. The allocation will attempt to optimize some objective function, usually the
auctioneer's revenue. Each winner of a set of items will pay according to the payment
rules. A well-designed auction will ensure that the intended goals of the auction are met

when all bidders act according to their chosen strategies.

CA design becomes an interdisciplinary study and has received considerable
attention in the fields of economics and computer science. Bidding protocol, allocation,

and payment have been treated as independent research topics by economists and
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computer scientists in recent years. Resembling many other CA related computer science
research [Gonen and Lehmann, 2000; Sandholm, 2002], my research focuses only on the
allocation problem. Bidders are assumed to act non-strategically and bids are sealed and
assumed to be simply the bidders’ valuations. As stated, the allocation attempts to
optimize the auctioneer’s revenue according to the declared bids. Although the
auctioneer’s ultimate goal is to attain maximum revenue, he will find it computationally
intractable when the numbers of items and bids are large due to the NP-hard nature of the
winner determination problem. For M items, there are (2™ - 1) combinations of items for
a bidder who fully expresses its preferences must bid on all these combinations. This is
definitely undesirable because it is computationally intractable to determine one’s

valuation for any given combination [Parkes, 1999].



2.3 Winner Determination Problem

The CA winner determination problem can be represented mathematically by the
following notation [Sandholm et al., 2001a]. Let M={0, 1, 2, ...m} be the set of
auctioned items, and B={bg, by, b, ...b,} be the set ot bids, and each bid is a tuple b; =
(S, pj), where S;c M is a subset of M and p; >0 forallj & {0,1,2,...,n} isaprice

offered by b;.

n
max ijx.i Subject to ij < 19 i=1,2,.m

J=0 JlieS;
- - 1
.Xj (S {0,1;

X; 18 called a decision variable and its value is | when b; is a winner, 0 otherwise.
The CA winner determination is to identify the bids as winners or losers with the aim to
maximize auctioneers’ revenue under the constraint that each item can be allocated to at
most one bid. For example, when M = {0, 1,2, ..., 9} and B = {by, bj, ba, ...., bo}, we

may have the following bidding pattern.

{bid} {a set of items} {bidding price}
{bo} {0, 4, 6, 7} {206.28}
{b,} {0, 1, 3, 4} {207.28}
{by} {0, 6} {205.00}
{bs} {0, 4, 5, 9} {208.28}
{by} {2, 4, 5, 8} {108.28}
{bs} {1, 2, 7} {55.74}
{be} {1, 2, 3, 6} {55.74}
{b;} {2, 9} {152.00}
{bg} {0, 4, 8} {154.74}
{bsg} {o, 4, 6, 7, 8} {205.50}

Figure 1 A file containing the bidding pattern of 10 items and 10 bids.



A typical CA winner determination system, as described in Figure 1, accepts a
number of items and a number of bids as inputs and identifies a subset ot all bids as

outputs. The output bids become the winners.

CA Winner
Determination System

Inputs:
Bids, Items

Outputs:
Bids (Winners)

Figure 2 A combinatorial auction winner determination system.

The constraint for the system is that each item can be allocated to at most one bid.
Since the CA winner determination is a NP-hard problem, a more realistic system should
possess the following characteristics:
1. the system should generate approximate revenue that is close to the
optimal revenue, and

2. the system should be capable to handle a large number of items and bids

in a single auction.

The CA winner determination can be translated to another NP-hard problem such
as the weighted set-packing problem [Rothkopf, et al., 1998; Karp, 1972]. A problem is
assigned to the NP-hard class if it can be solved by a NP algorithm. A NP algorithm is a
two-phase procedure. During the “nondeterministic” phase, a candidate solution is
generated. In the “verification” phrase, the candidate solution is verified using a

deterministic algorithm. For example, if a problem is known to be NP, and a solution to
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the problem is somehow known, then demonstrating the correctness of the solution can
always be reduced to polynomial (P) time verification. The proof of a problem is a NP
problem can be summarized in the following three steps [Sipser, 1997]. The CA winner
determination problem is used here to illustrate these steps.
1. A subset of bids B can be selected from all bids non-
deterministically.

2. B can be verified using a deterministic algorithm. That is, B must

contain no conflicted bids to claim itself as a solution.

3. If the verification test passes, the solution is accepted; otherwise, it

is rejected.

If an instance of the NP-hard problem in question i1s small, we might be able to
solve it by the brute-force search algorithm described in Section 2.5.1. Even though this
approach works in principle, its practicality is very limited because the number of
instance parameters is usually very large in real-world problems [Levitin, 2003,

Johnsonbaugh and Schaefer, 2004].

2.4 Feasible, Approximate or Optimal Solution

The CA winner determination problem is in fact an optimization problem because
it aims to maximize auctioneers’ revenue as the objective function subject to the
constraint that each item can be allocated to at most one bid. The terms feasible,
approximate, and optimal solutions have been used very often in the research of

optimization problems, and thus a formal definition for each 1s needed here. In computer
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science terminology [Levitin, 2003], a feasible solution to an optimization problem is a
point in the problem’s search space that satisfies all the problem’s constraints, while the
optimal solution is a feasible solution with the best value of the objective function. An
approximate solution is also a feasible solution with good but not necessarily the best
value. When obtaining the optimal solution is unrealistic, an approximate solution is
preferred to a feasible solution. The three different kinds of solutions to the CA winner
determination problem can be represented mathematically [Papadimitriou and Steiglitz,

1998] by the following notation.

An instance of the CA optimization problem is a pair (F, r), where F is

the set that contains all feasible solutions; r is the revenue function.

When searching for a feasible solution, we need to find solution s; € F

for which r(sp) > 0.

When searching for the optimal solution, we need to find solution sep
€ F for which s, must be a feasible solution and r(sep) = 0 and r(sep()

> r(s¢) for all se F.

When searching for an approximate solution, we need to find solution
sa € F for which s; must be a feasible solution and r(sa) < r(sep). In
addition, the bid set B, used to obtain s, must not be a subset of bid set

By of any other feasible solution s; € F.

The brute-force based techniques are able to obtain the optimal solution, but these
techniques are impractical and are used only when the size of the problem instance in
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question is small. When the instance size is large, the approach of finding an approximate
solution becomes more attractive. The generic greedy search based techniques are
guaranteed to obtain a feasible solution. However, there is no guarantee whether such a
solution is a good approximate solution or not. Thus, a formal approach of evaluating a
proposed technique should measure both its accuracy ratio and performance ratio. Such

an approach has been adopted in CADIA’s evaluation as described in Section 5.

2.5 Optimization Problem Solving Techniques

Because of the intractability nature [Papadimitriou and Steiglitz, 1998; Sipser,
1992] of the CA winner determination problem, much research has focused on sub-cases
of the problem that are tractable [Rothkopf et al., 1998; Lehmann et al., 1999;
Tennenholtz, 2000; Ronen, 2001]. For example, both the number of auctioned items and
bids can be restricted to be small enough to be handled by an optimal revenue search
technique within the constraints of today’s computation power. Unfortunately, these sub-
cases are very restrictive and therefore are not applicable to many CA domains. In fact,
there is no substitute for a CA if an auctioneer aims to allocate resources efficiently.
Thus, many researchers have begun to propose heuristic techniques for winner

determination in CAs.

All proposed heuristic techniques can be classified into exact methods and
approximate methods [de Vries and Vohra, 2000]. An exact method for solving the CA

problem is one that is guaranteed to produce an optimal solution if run to completion.
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With approximate methods, one seeks a feasible solution fast and hopes that it is near

optimal. This raises the obvious question of how close to optimal the solution is.

2.5.1 Brute-Force Technique

1f problem solving is seen as a search in the state space [Russell and Norvig,
2003], the brute-force technique would be described as an exhaustive search for all
possible states in the problem space with an aim to optimize some objective function. The
implementation of a winner determination based on the brute-force technique is quite
straightforward (Algorithm 1). First, all bid combinations based on the available bids are
generated. Second, a bid combination will be removed if it has conflicts among its bids.
A conflict is found when an item is wanted by more than one bid. Last, the bid

combination which has the highest total price becomes the set of winners.



Algorithm: CA winner determination based on the
brute-force technique
Input: all bids B, b; €B and bid tuples (S;,p;).,
where S; is a subset of wanted items and p; is
the bid price, and i€{0,1,.n}.
Output: a set of winners,
Begin
Generate all bid combinations B. from B
Beanaidate €< B
for each bid combination B, € B
for each bid by € B,
for each bid b; € B, and j # 1
if (8i n 85 = )
Bcandidate <_ Bcandidate - Ba
Buinners € highest_price_bid_comb (Bcingigate)

Bwinners

End

Function highest_price_bid comb (B.ingidate)
Begin
pn€ 0, B, € &
for each bid combination B; € Biingidate
P, = total_price (By)
if (P; > pu){
bn € P;
B, € B;
}
return By
End

Function total_price (B)

Begin
pe = 0
for each bid b; € B
Pt = P + By
return p.
End

Algorithm 1 CA winner determination based on the brute-force technique.

As an illustration, suppose we have two auctioned items, M = {0, 1}, three bids, B
= {by, by, ba} and the bid data as shown in Figure 3. The number of all possible item

combinations is (2 — 1) or 3. That is, a bidder who fully expresses its preferences may

bid on all three combinations.
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{bid} {a set of items} ({bidding price}

{be} {0} {10.00)
{b;} (0, 13 {18.00)
{b;} (1) {10.00)

Figure 3 An example of bid data.

The number of all possible bid combinations is (2>~ 1) or 7. The brute-force
technique will search for all bid combinations with an aim to maximize the revenue.
According to Algorithm 1, all combinations of bids are generated. They are {bo}, {b},
{ba}, {bg, b1}, {bop, b2}, {by, b2} and {by, by, ba}. A conflict exists when an item is wanted
by more than one bid. Since by conflicts with by, b, conflicts with b, and b b, bsare in
conflict with each other, the bid combinations {by, b;}. {b;, b2} and {by, by, by} are
discarded. At last, the bid combination that generates the highest revenue among all
remaining combinations becomes the set of winners. Since the remaining combinations

are {bo}, {b}, {ba}, {bo, b2}, the winner goes to {bo, b2} because it generates the highest

revenue of $20.

For the CA winner determination problem solving, the brute-force technique leads
to an algorithm that is extremely inefficient because it has a running time complexity of
an exponential order of magnitude of (2IB |) when generating all bid combinations. When
IB| = 100, for example, the order of magnitude becomes 2'® or 1.3x10°. As a result, if
the brute-force technique is applied, the winner determination problem can be solved in
polynomial time only if there are an infinite number of processors and if conflicts among

all bids can be identified at once.
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2.5.2 Greedy Search Technique

Greedy search makes use of a heuristic function to order the searched nodes
within the search space [Lawler, 1985; Lawler et al., 1992]. Thus, the search technique
will choose the searched node that appears to be the best based on the function, regardless
of its position in the state space. When the technique is applied to the CA winner
determination problem, all bids can be treated as nodes within the search space. Since the
goal is to maximize the revenue, a greedy search will start expanding the node that is
estimated to be closest to the goal state, that is, a bid with the highest bidding price.
Algorithm 2 describes the technique when applied to the CA winner determination

problem.

When the algorithm is applied to the same data as described in Figure 3, b; will
become the first winner because it offers the highest bidding price. It is also the only
winner because by and b, have conflicts with b|. As a result, the revenue generated (i.e.
$18) is not optimal. Although the greedy technique can always find a solution quickly, its

revenue may not be optimal and sometimes far from approximate.



Algorithm: CA winner determination based on the
greedy search technique
Input: all bids b; €B and bid tuples (S;,p;).
where S; 1s a subset of wanted items and p; is
the bid price, and ie{0,1,.n}.
Output: a set of winners, Buinners
Begin
Buinners ¢ {J}
Loop until each bid b; € B has been identified as a
winner or loser {
b, € highest_price_bid (B)
Buinners €= Buinners + Dn
B € B - b,
B € B - all _conflicted_bids (by)

End

Function highest_price_bid (B)

Begin
pn € 0O
for each bid b; € B
if (ps > pn)
pn € D
by, € b;
}
return by
End

Function all_conflicted_bids (by)

Begin
Biosers € (I}
for each bid b; € B
if (Sp » S = )
Biosers € Biosers * Di
return Bjggers
End

Algorithm 2 CA winner determination based on the greedy search technique
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However, the greedy technique can be used to determine the lower bound revenue
during a CA winner determination algorithm and may be considered part of a CA system
design. Some recently proposed CA winner determination systems that use the greedy

technique with random starts have shown that the revenue can be improved significantly

[Holte, 2001].

2.5.3 Integer Programming

Integer programming (IP) [Nemhauser and Wolsey, 1999; Miller, 2000] has been
used to solve optimization problems. It is a technique that aims to maximize an objective

function subject to the constraint that the solution values of the variables be integers.

IP problem can be illustrated graphically with the following simple example.
Suppose we would like to maximize the objective function based on values of two
variables x; and x;. A common approach for solving integer programming problems is to
start by relaxing IP problems to linear programming (LP) problems. A LP problem is a
problem of optimizing a linear function of several variables subject to constraints in the
form of linear equations and linear inequalities. The LP problem can then be solved by
the simplex method, which was developed by George B. Danzig in 1947 [Cooper and

Steinberg, 1974; Haeussler et al., 2002].

With a LP, we may have the graph depicted in Figure 4. Since only integer values
for the variables are allowed, we may have a solution (shown as x) bounded by the

feasible region. Intuitively, we may be tempted to round up or down the values of x, and
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X, as final solutions, but such an approach may end up with an infeasible solution. By
using the cutting-plane method, we can derive the region that connects the “outermost”
feasible lattice points. As a result, the integer optimum will be interior to the region

bounded by the dotted lines, and the lines when x,=0, and x>=0 (Figure 5).

X2

X1

Figure 4 An IP problem is relaxed as a LP problem.

X2

X1

N
X X \(
|

Figure 5 The optimal integer solution can be derived with cutting-plane method.

Thus, the allocation problem in CA winner determination can be formalized as an
integer programming (IP) [Andersson et al., 2000] problem since its aim is to maximize

the revenue as the goal subject to the constraint that the solution values of the variables
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(i.e. bids) be whole numbers (i.e. 0 or 1). As an illustration, the auction example

described in 2.5.1 can be formalized as the following IP problem:

Maximize z = 10by, + 18b; + 10b,
subject to by + b; £ 1

b, + b £1
with by, by, b= 0 or 1

The IP program is then relaxed as a LP problem.

Maximize
subject to by + b; + b;
b1+b2+b4

with

revenue = 10b, + 18b, + 10b,

1

1

bg, bl, bz, b3, b42 0 and < 1

Since the problem involves more than two variables, the simplex method is

recommended because the graphical method is usually too inefficient. The optimal

solution is found when by and b, = 1, and by, b; and bs = 0. The maximum revenue is $20.

Theoretically, integer programming is guaranteed to find an optimal solution
[Rothkopf et al., 1998; Pekec et al., 2000]. However, one of the leading commercial
implementations based on IP called CPLEX states in its user’s guide that some common

difficulties are encountered when solving IP program [ILOG, 2005]. These difficulties

include “running out of memory” and “failure to prove optimality”.



2.5.4 Branch and Bound

Nisan [2000] suggests a branch-and-bound technique based on integer
programming (IP) relaxation. The technique is able to return the optimal revenue. In
essence, the technique [Hoffman and Padberg, 1993: Gonen and Lehmann, 2000]
generates a treelike structure to identify and solve a set of increasingly constrained sub-
problems, derived from the original integer linear program. In branch and bound, the
technique first explores the most promising directions as is done by the greedy search
technique. This will hopefully provide very good lower bounds quickly. It is expected
that the upper bounds obtained using the IP relaxation will usually be close enough to the
optimal. Combined with good lower bounds, further search can be reduced. As an
illustration (Figure 6), instead of testing for each possible candidate solution (shown as
»), the technique picks a candidate (e.g. when x; = ¢) as a temporary solution and then
tests for the possibility of branching out to improve the solution further. The idea is to
divide the feasible solution space for this problem into two sub-spaces during each

branch until no further improvement is possible.
X2

X1

Figure 6 The solution space is divided during the branching process.
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The branch-and-bound technique is sensitive to the upper and lower bound values
obtained during the process. CPLEX, which also uses branch-and bound technique, is
known to “run out of memory” when the branch and bound tree is large [ILOG, 2005].
That is, the search tree can grow so large that there are too many sub-spaces to be
investigated. Besides, in a problem with a hundred variables such as the CA, it becomes
arguable why a particular variable is chosen for initial branching. In addition, it is

difficult to know from the beginning which branches are better than others.

2.5.5 Constraint Programming

Constraint programming (CP) is an alternative approach for solving combinatorial
optimization problems [Smith et al., 1997; Lustig and Puget, 2001] because the problems
can be formulated as constraint satisfaction problems (CSPs). A CSP consists of a set of
variables, each with a finite set of possible values (its domain), and a set of constraints
which the values assigned to the variables must satisfy. In a CSP that is also an
optimization problem, there is an additional variable representing the objective; each time
a solution to the CSP is found, a new constraint is added to ensure that any future solution
must have an improved value of the objective, and this continues until the problem

becomes infeasible, when the last solution found is known to be optimal.

As an illustration, the probtem in Section 2.5.1 can be formulated as a CSP and
can be solved with CP. The problem is to determine the winners in an auction of two
auctioned items, M = {0, 1} and three bids, B = {by, b;, b,} and the bid data as shown in
Figure 3. First, we define the variable to be the bids: by, b;, and b,. Each variable’s
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domain is the set {{0}, {1}, {0, 1}} and its value is determined based on the bid content.

The constraint requires that each item can be allocated to at most one bid.

Since the number of variables in our example 1s small, the CSP can be visualized
as a constraint graph [Russell and Norvig, 2003], as shown in Figure 7. The nodes of the

graph correspond to variables of the problem and the arcs correspond to constraints.

Figure 7 The auction problem represented as a constraint graph.

The most common CP algorithm for solving CSP is backtracking. Backtracking
[Levitin, 2003] can be seen as a more intelligent variation of the brute-force technique.
The idea is to construct a depth-first search tree one node at a time and evaluate if a
partially constructed tree is a feasible solution. Its root represents an initial state before
the search for a solution begins. The nodes of the first level in the tree represent the
choices made for the first component of a solution; the nodes of the second level
represent the choices for the second component, and so on. Leaves represent either dead
ends (shown as x) or feasible solutions (shown as V). The search tree for the auction

problem is shown in Figure 8, where we have assigned variables in the order by, b, and

b,.
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Figure 8 The search tree for the auction problem

Whenever a partially constructed tree violates a constraint (shown as x),
backtracking is able to eliminate a subspace during the search. For example, once we
assign item-0 to by, we can infer that now only item-1 is available and any bids that
request item-0 will violate the constraint. Thus, the construction of the tree by—=> b is not
feasible. As a result, the constraints can help us reduce the problem search space.
Besides, the bid ordering in an auction is commutative because the order of the nodes has
no effect on the outcome. That is, the solutions given by the trees b, by and by=> b, are
the same. Once the former has been explored, the latter becomes redundant. As a result,

the inclusion of the commutativity property can further eliminate the search space.

CP can further be improved through constraint propagation. The most popular
technique is forward checking [Russell and Norvig, 2003]. In forward checking,
whenever a current variable X is assigned, it looks at each future variable Y that is

connected to X and removes temporarily from Y’s domain any value that conflicts with
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this assignment. The technique is able to conclude a partial solution is not feasible if the
domain of Y is empty. As a result, the technique allows branches of the search tree that
will lead to failure to be pruned earlier than with simple backtracking. When forward
checking is used in the auction winner determination problem, it simply checks if future
variables conflict with the current variable since the values of all variables have been

assigned.

Although backtracking is better than the brute-force technique, its running
complexity for most nontrivial problems is still exponential. A paper by Smith et al.
[1997] concludes that CP is useful only if the assignment of a value to a variable can
trigger the pruning of a significant amount of problem search space. He also added that

CP is less useful when the problem involves large numbers of variables.

2.5.6 Other Techniques and Commercial Implementations

Sandholm [2001b, 2002] described an algorithm called CABOB (Combinatorial
Auction Branch On Bids), and had run tests on randomly generated instances, the largest
of which involved 400 items and 2000 of bids. CABOB is in fact a depth-first, branch-
and-bound tree search technique. In addition, the algorithm addresses several special
cases during the search, and uses LP for upper bounding and a relatively simple greedy
algorithm for lower bounding. The algorithm performs a short dynamic analysis of the

underlying LP problem, and then uses the most suitable bid ordering heuristic. Empirical
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results indicate that CABOB solves CA problems within seconds for auction size of
hundred of items and thousands of bids, but also show that it cannot guarantee a

polynomial running time for every input.

Fujishjima et al. [1999] proposed a set of approximate methods called CASS
(Combinatorial Auction Structured Search). CASS uses “binning” where the bids are
grouped into mutually exclusive bins or subsets. The maximal revenue comes either from
a single bid or from the sum of the maximal revenues of two disjoint exhaustive subsets.
The time saving comes from the fact that the number of bids to be dealt with is much
smaller in the subsets as compared to a set containing all bids. It is obvious that the
technique does not scale well because it requires an exhaustive search for all mutually

exclusive bids. To overcome this issue, CASS applies pruning to reduce the search space.

Hoos and Boutilier [2000] described a stochastic local search approach to solve
the CA problem, and characterized its performance with a focus on time-limited
situations. Since it is a local search approach, it uses a goal test to estimate the distance to
the goal state. The test involves ranking bids according to expected revenue. One obvious
problem is that a local search algorithm can get caught in local maxima. Once at the top
of the locally best solution, moving to any other node would lead to a node with less
optimal results. Another possibility is that a plateau or flat spot exists in the problem
space. Once the search algorithm gets up to this area all moves would have the same
result and so progress would be halted. However, the stochastic nature of the search will

randomly choose moves to avoid the problem.

CA winner determination algorithms have been implemented commercially [de

Vries, S. and Vohra, R., 2000]. Logistics.com’s OptiBid software has been used in
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situations where the number of items averages 500. OptiBid does not limit the number of
distinct subsets that bidders bid on or the number of items allowed within a bid. OptiBid
is based on the integer programming technique with a series of proprietary formulations
and heuristic algorithms. SAITECH-INC’s SBID is also based on the integer
programming and proprietary techniques. SAITECH-INC reports that SBID is able to
handle problems of a similar size as OptiBid. CombineNet’s Rev technology is based on
the tree searching algorithm, combining with branch and bound, cutting planes, and a

series of proprietary algorithms.



CHAPTER THREE:
ITEM ASSOCIATIONS

3.1 Concepts

CADIA’s core algorithm is based on the item association [Han and Kamber,
2001; Dunham, 2003] technique which has been widely adopted in many real-world data
mining applications. For instance, a sales manager may wonder, “Which sets of items are
customers likely to purchase together?” A more specific question may be “How likely is
item X, to be purchased after item x; is purchased?” The answers to these questions,
which become the domain knowledge, can help decision makers to strategically
encourage the overall sale. CADIA uses the technique to discover knowledge from the
auction data which has been overlooked in any published techniques. Such knowledge is
used in an informed search to identify winners. The concept of item association, which
depends on identifying all frequent itemsets [Pasquier et al, 1999; Pei et al., 2000] in

transactions, can be defined by the following characteristics as:

LetI= {1, 2,..., m} be a set of items and T = {t, t;,..., t,} be a
database of transactions where t; C I, and Support,,;, be an expert-

defined minimum support count.

1. A set of items is called an itemset. An itemset that contains k items is a k-

itemsets.
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2. A candidate k-itemset’s frequency count is the number of transactions

that contains k-itemset.

3. A candidate k-itemset C, becomes a frequent k-itemset Fy if its frequency

count is greater than or equal to Support;,.

4. The set of candidate 1-itemsets C is 1. The set of candidate -itemsets C,

,where k =2, 3, ...m, is generated by joining Fy_; with itself as

Frai o< Frare

The following algorithm, which is based on the Apriori property [Agrawal et al.,

1993], is used to identify all frequent itemsets.

Algorithm: TIdentifying all Frequent Itemsets

Input: transaction database T={t;, €,,.., t.},

a list of Items I={1,..,m}, and Supportgin
Output: all frequent itemsets Fy, F3, .., Fn
Begin

candidate l-itemsets C, € I
for each itemset c; € C;

if (frequency(c;) = Supportpin)
F, € F, U ¢y
for i € {2..m} {

Generate candidate i-itemsets C; by Fi;., b F;;
for each itemset c; e C;
if (frequency(c;) 2 SUppPOrtpin)
FieFiUCj

End

Function frequency (c)
Begin

return (number of transactions that contain c)
End

Algorithm 3 Identify all frequent itemsets.
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As an illustration, given a transaction T={ty, to, t3, t4, ts} containing five
transactions, a list of items 1={1,2,3,4,5}, and an expert-assigned Support,,i,=2, the sets

of candidate itemsets Cy, C,, C; and the sets of frequent itemsets F, F, are generated

(Figure 9).
Transaction T
. o
t1 12,5
t2 2,4
t3 2,3
t4 1,24
t5 1,3

scan T
C1 F1

o eque HC R QNN itemset  frequency
{1}

3 > {1} 3
{2} 4 {2} 4
{3} 2 {3} 2
{4 2 {4} 2
1

{5} I
FADF1
[ scan T
Cc2 F2

itemset  frequency Freq 2 support . IR IE
{1,2} 2 >

{1,2} 2
{1.3} 1 2,4} 2
{1,4} 1
{2,3} 1
{2,4} 2
{3,4} 0
F2 F2
l scan T
C3
itemset  frequency Freq > support ;.
{1,2,4} 1 ] ﬁ) No frequent itemset

Figure 9 Generation of candidate itemsets and frequent itemsets from transaction.

As a result, the frequent itemsets that have been identified are {1}, {2}, {3}, {4},

{1,2}, and {2, 4}.
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3.2 Association Rule Mining

[tem association has been used for years in market basket analysis [Brin et al.,
1997a). If every item in a store is treated as a Boolean variable, each shopping basket can
then be represented by a Boolean vector of values assigned to these variables [Hans and
Kamber, 2001]. Knowledge of buying patterns can then be obtained through analyzing
these Boolean vectors in the form of association rules. In fact, item association is a
technique inspired by the association rule data mining model [Agrawal et al., 1993;
Mannila et al., 1994; Agrawal et al., 1996]. Very often, association rules are used to
uncover the relationships between data items in a database with huge amounts of data.
Combining the item association property, the concept of association rule mining can be

represented mathematically as:

Let1={1,2,..., m} be a set of items and T = {t, t3,..., t,} be a
database of transactions where t; c I, and Support,,, be an expert-
defined minimum support count. An association rule is an implication
of the form A = B where A, B are itemsets and A N B = &J. The
support(s) for an association rule A = B is the percentage of
transactions in the database that contains A U B. The confidence for
an association rule A = B is the ratio of the number of transactions

that contain A U B to the number of transactions that contain A.



The confidence for an association rule is simply a measure of the rule
interestingness and reflects the certainty of discovered rules [Agrawal and Srikant, 1995;
Agrawal et al.,1997]. The item association algorithm can then be enhanced to include the

formation of association rules (Algorithm 4) as follows:

Algorithm: Association Rules Mining
Input: transaction database T={t;, ta,.., tn},
a list of Items I={1,..,m}, and Supportui,

Output: a set assoclation rules with confidence R
Begin
All freqguent itemsets {Fi,..,Fg} =
Algorithm-3 (T, I, SuppoTrtpin)
for each frequent i-itemset F; € {Fi,.., Fg}{
// A cIand Bg I
// e.g. 1f F; =(1,2,3},
//A = {{1},{(1,2},{1,3},{(1,2,3}; same as B
if (A cF, and B¢ F;and A n B = J){
R € R UR(A = B)
support (A = B) € P(A U B)
confidence(A = B) € P(B|a)

}
//P(A U B) 1s the percentage of transactions in
//T that contain (A U B).

//P(B|A) 1s the percentage of transactions in
//T containing A that also contain B.
End

Algorithm 4 Association rule mining.

The example in the previous section can be used here to illustrate association rule
mining. A frequent itemset that contains only a single item cannot be used to form an

association rule. Since {1}, {2}, {3} are single-itemset, we can translate only {1, 2} and
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{2, 4} into the rules. The resulting association rules are as shown below, each listed with

its confidence:

Firstrule: 12, confidence = 2/3 = 66.67%
Second rule: 2 =1, confidence = 2/4 = 50%
Third rule: 2 =4, confidence = 2/4 = 50%
Fourth rule: 4 =2, confidence = 2/2 = 100%

If we are interested only in rules that have confidence greater than 50%
(minimum confidence threshold), the knowledge discovered from the transaction data can
be interpreted as: (first rule) when a customer purchases item 1, the chance of him
purchasing also item 2 is 66.67%; (last rule) when a customer purchases item 4, the

chance of him purchasing also item 2 is 100%.

3.3 Implementation Problems

It can be seen that the association rule mining algorithm suffers from two major
costs: space and time [Agrawal and Srikant, 1994; Han and Fu, 1995; Park et al., 1995;
Savasere et al., 1995; Toivonen, 1996; Brin et al., 1997b; Silverstein et al., 1998;
Aggarwal and Yu, 1999; Agrawal et al., 2000; Han et al., 2000; Park et al., 2000]. The
algorithm will generate a huge number of candidate sets before it can identify the
frequent itemsets and then the association rules. Besides, the algorithm will scan all

transactions repeatedly to perform the frequency counts. There are no trivial solutions
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because the algorithm has a running time complexity of an exponential order of growth

(2") where n is the number of available items. If there are three items a, b, and ¢, the total
number of itemsets will be 2°-1. The 1-itemsets, 2-itemsets, and 3-itemsets are
“{a},{b},{c}”; “{a,b},{a,c},{b,c}”; and “{a,b,c}” respectively. If there are 20 items, the

total number of itemsets will be 2°°-1.

Although CADIA depends on the item association technique to form its
knowledge base, it will not suffer from the exponential growth problem. It is because
CADIA identifies only the smallest and least frequent itemsets instead of all frequent
itemsets as described in Section 4.1. CADIA’s structure and core algorithms are

presented in detail in the next chapter.
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CHAPTER FOUR:
COMBINATORIAL AUCTION WINNER
DETERMINATION USING ITEM ASSOCIATION (CADIA)

4.1 Hypothesis

In many cases, auctions are used to sell items when the auctioneer is unsure about
the value of the item being sold. Such an uncertainty regarding values facing both
auctioneers and bidders is an inherent feature of auctions [Kelly and Steinberg, 2000;
Klemperer, 2000; Lavi and Nisan, 2000; Leyton-Brown et al., 2000b]. The word
“auction’ itself is derived from the Latin “‘augere”, which means “augment” [Krishna,
2002]. In an open-bid, single-item, first-price auction, the sale is conducted by an
auctioneer who begins by calling out a low price and raises it. It continues as long as
there are at least two interested bidders and stops when there is only one. In a sealed-bid,
single-item, first-price auction, bidders submit bids in sealed envelopes. The person who
submits the highest valuation as the bid price for the item will win the item and pays what
he bid. When there is a large enough number bidders, we can safely assume that the most
wanted item that attracts the largest number of bidders will be sold at the highest
valuation among all its valuations. CAs, on the other hand, sell items in bundles instead
of one item at a time. Such a form of auction has been believed to be an efficient way for
resource allocation. However, the larger numbers of auctioned items and bidders have led

to a very complex decision problem. CADIA, which is a CA winner determination
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system, is proposed to solve such a problem. The motivation to adopt the item association

technique in CADIA is based on the following fact:

CA winner determination is a real-world, complex decision problem
that involves a large amount of auction data. Item association is good
at discovering interesting patterns from large amounts of data.
Domain knowledge discovered from auction data in the form of item

association can help to solve the problem.

The following hypothesis is proposed and has been adopted by CADIA when
identifying winners. In a single-item auction, if item x is wanted by most bidders, x will
be included in most bids. On the contrary, x will bc included in very few or no bids ifit is
not wanted by most bidders. Thus, the number ot bids containing the least frequently
wanted item (or least frequent item in short) must be less than that containing the most
frequently wanted item (or most frequent item in short). Intuitively, an auctioneer may
want to sell the least frequent item as early as possible because an unsold item will induce
further cost (e.g. storage and handling). Since a higher valuation of an item always
implies higher revenue, it is then expected that an auctioneer may sell the most frequent
item as late as possible because such an item can always attract the highest possible
valuation. Such a belief is relaxed and applied when designing CADIA. In a
combinatorial auction, items are valuated as sets. If itemset S is wanted by most bidders,
S will be included in most bids. On the contrary, S will be included in very few or no bids
if it is not wanted by most bidders. Thus, the number of bids containing the least frequent

itemset must be less than that containing the most frequent itemset. An auctioneer may be
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tempted to sell the least frequent itemset as early as possible and the most frequent

itemset as late as possible. The least frequent itemset is defined as follows:

A set of items is called an itemset. An itemset that contains k items is a
k-itemset (Section 3.2). The least frequent k-itemset is an itemset
whose number of occurrences is the smallest among all frequent k-

itemsets.

In a single-item auction, a tic happens when the item is wanted by more than one
bid. The resolution strategy is simply to assign the bid with a highest bidding price as the
winner for that item. When itemsets are considered in the design of CADIA, an
assumption that a bid containing the least frequent itemset is having less conflict than one
containing the most frequent itemset is made. It is understood that such an assumption
may not be justified theoretically and may cause error in winner determination. However,

adjustments have been made to minimize such errors and are described in Chapter 6.

Another issue that must be considered when designing CADIA is the
identification of the least frequent itemsets. If frequency count is the only measure used,
it is possible to have more than one itemset whose frequency counts are the same. In such
a situation, additional measures such as the degree of confidence and the degree of

conflict, which are defined below, will be applied.
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Suppose item x and y are in the same itemset; the degree of confidence
is either the ratio of the number of bids that contain x and y to the
number of bids that contain x, or the ratio of the number of bids that
contain x and y to the number of bids that contain y, whichever is

higher.

Bid b; conflicts with any other bids if there is an item wanted by b;
that is also wanted by other bids. Suppose S; is the set of items wanted
by bid b; and C is the itemset of maximum confidence where C C S..
The degree of conflict of C is the total number of bids that conflicts
with b;.

The least frequent itemsets are used in winner determination. It is possible to have
tied bids (candidate winners) if the least frequent itemset is wanted by more than one bid.
The tie resolution strategy adopted by CADIA is to award the candidate winner that
offers the highest bidding price as the final winner. If there is a further tie on the bidding
price, the candidate winner that is submitted at the earliest time becomes the final winner.
Bids are assigned with a number based on their submission time in CADIA. The lower
the number, the earlier the time the bid was submitted. Thus, bq is submitted at an earlier

time than b,. The hypothesis can be summarized as:

To maximize revenue in a CA, the bids containing the least frequent
itemset should be processed first and are declared as candidate
winners during each iteration of the winner determination process.
When identifying the least frequent itemsets, the measures of

frequency count, degree of confidence, and degree of conflict are
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compared. The bid among all candidate winners that offers the
highest bidding price becomes the winner. In the case of a tie on the
bidding price, the bid that was submitted at the earliest time becomes

the winner.

4.2 Structure

Figure 10 depicts the structure of CADIA, which is composed of two major

components. They are:
1. ltem Association Generation Unit (IAG)

2. Winner Determination Unit (WIN)

CADIA

Input:
Bids, ltems ltem Association

Generation Unit (IAG)

Least Frequent
ltemsets

Winner Determination Unit H Output:
(WIN) Bids (Winners)

.

Figure 10 Structure of CADIA.
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4.2.1 Item Association Generation Unit (IAG)

The Item Association Generation Unit (IAG) is used to form the knowledge in the
form of item association on which the winner determination strategy is based. Instead of
looking for all frequent itemsets that satisfy the minimum support count as in most
association rule mining applications, IAG attempts to identify only the least frequent
itemsets according to the hypothesis stated in section 4.1. Consequently, IAG does not
have the inherent problem of time and space complexities as discussed in Section 3.3.
That is, even if there are many itemsets whose counts are greater than the minimum
support count, IAG looks for only those that have frequency count equal to the minimum
support count. In addition, IAG identifies only the smallest frequent itemsets instead of
all frequent itemsets. That is, even if there are hundreds of items, IAG always start
counting frequent 1-itemsets, followed by 2-itemsets, 3-itemsets, and so on. [AG’s
default value for the minimum support is assigned to 1, which is the smallest non-zero
integer. Our empirical results show that IAG always returns the least frequent itemsets
before it generates the 3-itemsets. Whenever there is a tie, the degrees of confidence and
conflict of all least frequent itemsets are compared. In other words, CADIA will identify
the smallest and least frequent itemset with the highest degree of confidence and the

lowest degree of conflict at IAG. Algorithm S and 6 are the core algorithms adopted by

IAG.
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Algorithm: Identifying the smallest and least frequent
itemsets during each iteration
Input: all available items M={1,2,..,m},
all available bids B={bg,b;,..,b.},
minimum support count (SUpPPOTrtyi,)
Output: the smallest and least frequent itemsets F,;
Begin

found € FALSE
candidate l-itemsets C, € M
for each itemset ¢y e C;

if (frequency(c;) = Supporty) {
Ce1 € Cop U
Ce1 = highestConfidenceltemset (Cqy)
Fe1 = lowestConflictItemset (Cq,)
found € TRUE

}

if (found = TRUE) //if LFI is found in l-itemset
return Fg;

//2- or higher level itemsets must be generated
/ /before frequency counting
for i € {2..m} {

Generate candidate i-itemsets C; by F;; x F;
for each itemset c; e C; {

if (frequency(cy) = Supportni,) {
Ce1 € Co1 U Cy
Cq1 = highestConfidencelItemset (Cg,)
F.1 = lowestConflictItemset (Cq;)
found & TRUE

}

if (found = TRUE)
return Fg

End

Function frequency (c)
Begin

return (number of transactions that contain c¢)
End

Algorithm 5 Identify the smallest and least frequent itemset
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Function highestConfidenceltemset (C)
Begin
highestConfidence €« 0
highestConfdItemset € &
for each itemset c; € C
// A c I and B c I
if (Agcc; and B g ciand A N B = ) {
confidence(a,B) €& P(B|2a)
if (highestConfidence <= confidence(ad,B)){
highestConfidence € confidence(A,B)

highestConfdItemset € highestConfdItemset U c;

}

return highestConfdItemset
End

Function leastConflictItemset (C)

Begin
leastConflict € very large constant
leastConflictItemset € <
for each itemset c; € C {
conflictCount €« 0
find b; € B where c; ¢ S;
for each bid b; € B where j#i ({
if (S5 m Sy = D)
conflictCount = conflictCount + 1
}
if (leastConflict >= conflictCount) {
leastConflict €& conflictCount
leastConflictItemset € c;
}
}
return leastConflictItemset
End

Algorithm 6 Functions highestConfidenceltemset and leastConflictItemset
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4.2.2 Winner Determination Unit (WIN)

CADIA can be treated as an informed search system because its Winner
Determination Unit (WIN) uses problem-specific knowledge in the form of item
association to look for solutions. Since it is possible to have multiple winners during a
CA, WIN uses the least frequent itemset output from IAG in its candidate winner
determination process. Given the least frequent itemset, WIN identifies those bids
containing the itemset as candidate winners. A conflict exists when there is more than
one bid containing the least frequent itemset. Conflicts among bids are resolved by WIN

using the tollowing measures:

1. The bid which offers the highest bidding price becomes a winner.

2. If there is a tie on bidding price, the bid which is submitted at the earliest

time becomes a winner.

Algorithm 7 iterates over all bids to identify the candidate winners. Algorithm 8
identifies the winner from all candidate winners based on the bidding price and bid

submission time.
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Algorithm: Identify all candidate winners

Input: the least frequent itemset, S; ,
all bids b; €B and bid tuples {S;,p;}, 1i€{0,1,.n}.
Output: a list of all candidate winners, L.
Begin
for each bid b;eB {
if S; D Sg
L €L VU b;
}
return L;

End

Algorithm 7 ldentify all candidate winners.

Algorithm: Identify a winner

Input : all candidate winners, B¢

all bids b; €B and bid tuples {S;,pi}, 1€{0,1,.n}
Output: a winner, winner;
Begin

highestPrice € 0
for each bid b;eB. {
if (p;>highestPrice) {
winner; € b;

highestPrice € p;

}
return winner;
End

Algorithm 8 Identify a winner

45




4.3 Example

A simple example is presented here to illustrate the CADIA’s core concept and
algorithms. The sample data contains 10 auctioned items and 10 bids as presented in
Figure 11. At the beginning, CADIA will read the bid data as inputs and organize them

into a matrix in the memory as described in Figure 12.

{bid} {a set of items} {bidding price}
{bg} {0, 4, 6, 7} {206.28}
{by} {o, 1, 3, 4} {207.28}
{b;} {0, 6} {205.00}
{b;} {0, 4, 5, 9} {208.28}
{by} {2, 4, 5, 8} {108.28}
{bs} {1, 2, 7} {55.74)
{bg} {1, 2, 3, 6} {55.74)}
{b;} {2, 9} {152.00}
{bg} {0, 4, 8} {154.74}
{bg} {0, 4, 6, 7, 8} {205.50}

Figure 11 Bid data,

O
AN
O
o0
O
W
Q
0
D

N e

b0 X X X X 206.28
b1 X X X X 207.28
b2 X X 205.00
b3 X X X X | 20828
b4 X X X X 108.28
b5 X X X 5574

b6 X X X X 55.74

b7 X X | 15200
b8 X X X 154.74
b9 X X X X X 205.50

Figure 12 Auction data is represented internally as a matrix in CADIA.
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During the first step, IAG of CADIA sets the minimum support count to one (a
non-zero least support count), starts generating frequent 1-itemsets (Figure 13), and
checks if there are itemsets whose frequency counts are equal to but not greater than the
minimum support count. That is, IAG identifies the smallest but also least frequent
itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1-
itemsets have frequency counts greater than the minimum support count. Thus, IAG is
required to generate frequent 2-itemsets (Figure 14). Now, twenty-one out of forty-five
itemsets have frequency counts equal to the minimum support count. Additional
measures such as the degree of confidence and the degree of conflict will then be applied
according to algorithm 5 and 6 to reduce the total number of itemsets. It is shown in
Figure 15 and 16 that the highest degree of confidence and the lowest degree of conflict
are found to be 50% and S respectively. As a result, the itemset {2,9} 1s determined as the

least frequent itemset, which will be used by WIN to determine candidate winners.

D
D
D
@
D

{0}
{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9

N W W] BN AW

Figure 13 Frequent 1-itemsets during the first iteration.
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D
Q
D
D
O
)
Y

{0,1} {1,8}

1 0 {4,5} 2
{0,2} 0 {1,9} 0 {4,6} 2
{0,3} 1 {2,3} 1 {4,7} 2
{0,4} 5 {2,4} 1 {4,8} 3
{0,5} 1 {2,5} 1 4,9} 1
{0,6} 3 {2,6] 1 {5,6} 0
{0,7} 2 {2,7} 1 {5,7} 0
{0,8} 2 {2,8} 1 {5,8} 1
{0,9} 1 {2,9} 1 {5,9} 1
{1,2} 2 {3,4} 1 {6,7} 2
{1,3} 2 {3,5} 0 {6,8} 1
{1,4} 1 {3,6} 1 {6,9} 0
{1,5} 0 {3,7} 0 {7,8} 1
{1,6} 1 {3,8} 0 {7,9} 0
{1,7} 1 {3,9} 0 {8,9} 0
Figure 14 Frequent 2-itemsets during the first iteration
e e O ae (% > e 0 de e(% e > O ae e
{0,1} 33.33 {2,3} 50.00 {3,4} 50.00
{0,3} 50.00 {2,4} 25.00 {3,6} 50.00
{0,5} 50.00 {2,5} 50.00 {4.9} 50.00
{0,9} 50.00 {2,6} 25.00 {5,8} 50.00
{1,4} 33.33 {2,7} 33.33 {5,9} 50.00
{1,6} 33.33 {2,8} 33.33 {6,8} 33.33
{1,7} 33.33 {2,9} 50.00 {7,8} 33.33
Figure 15 Degrees of confidence for itemsets with the least support count
itemset confidence(%) conflict itemset confidence(%) conflict
{0,3} 50.00 9 {3,4} 50.00 9
{0,5} 50.00 8 {3,6} 50.00 8
{0,9} 50.00 8 {4,9} 50.00 8
{2,3} 50.00 8 {5,8} 50.00 9
{2,5} 50.00 9 {5,9} 50.00 8
{2,9} 50.00 5

Figure 16 Degrees of conflict for itemsets with highest confidence.
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In the next step, WIN of CADIA will identify all candidate winners. WIN starts

looking for those bids that include the least frequent itemset {2,9}. In this example, only

b7 contains itemset {2,9}. Consequently, by is determined as a winner (Figure 17). After

the winner is declared, those bids that conflict with it are labelled as losers (Figure 18).

Since we can have multiple winners in an auction, we can only say that b;is one of the

winners and bs, bs, bs and be are losers during the first iteration.

bo | x X X X 206.28
b1 | x % % X 207.28
b2 | X X 205.00
b3 | x X X X | 208.28
b4 X X X X 108.28
b5 X X X 55.74
b6 X % X X 5574
b7 X x | 152.00 | winner ffmm
b8 | x X X 154.74
b9 | x X X | x X 205.50

E
>< a
b O

Figure 17 Bid b; becomes a winner after the first iteration.

X 206.28

b1 | x | x x | x 207.28

b2 | x X 205.00

b3 | x X | Xx X | 20828 | loser fmmm
b4 X x | x X 108.28 | loser {ffmmm
b5 X X X 55.74 Ioser?-
b6 x | x | x X 55.74 | loser
b7 X X | 152.00 | winner

b8 | x X X 154.74

b9 X X X X X 205.50

Figure 18 Bid bs, by, bs, bg become losers after the first iteration.
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In the second iteration, the available qualified bids are by, by, b2, bg and be. IAG
will update the item association pattern based these bids. [AG again sets the minimum
support count to one, generates frequent 1-itemsets (Figure 19), and checks if there are
itemsets whose frequency counts are equal to the minimum support count. In addition,
the degree of confidence and the degree of conflict are checked for each itemset. It is
shown in Figure 20 that the highest degree of confidence and the lowest degree of
conflict are found to be 100% and 5 respectively. Since both itemsets {1} and {3} have

satisfied the condition of being the least frequent itemsets, they are used for candidate

winners determination.

itemset  frequency
0} 5

{

{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9

Figure 19 Frequent 1-itemsets during the second iteration.

OIN|D|WO A O] —

e e onfidence(% O
(1} 100.00 5
3) 100.00 5

Figure 20 Degrees of conflict for itemsets with maximum confidence during the second iteration.
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In candidate winners determination, WIN looks for those bids that include the
least frequent itemset {1} or {3}. As a result, b; is determined to be a winner during the
second iteration (Figure 21). After the winner has been declared, all bids that conflict
with it are determined as losers (Figure 22). After the second iteration, WIN stops
because all bids have been processed. As a result, b, and b, are the winners which
generate the total revenue of $359.28. In fact, such revenue is the optimal revenue for this

sample problem.

w 0 winner
Bid / loser
b0 X
b1 X X X X 207.28 | winner
b2 X X 205.00
b3 X X X X 208.28 loser
b4 X X X X 108.28 | loser
b5 X X X 55.74 loser
b6 X X X X 55.74 loser
b7 X X 152.00 | winner
b8 X X X 154 74
b9 X X X X X 205.50

Figure 21 Bid b; becomes a winner after the second iteration.

Bid 0se
b0 X X X X 206.28 | loser
b1 X X X X 207.28 | winner
b2 X X 205.00 | loser
b3 X X X X 208.28 | loser
b4 X X X X 108.28 | loser
b5 X X X 5574 loser
b6 X X X X 55.74 loser
b7 X X | 152.00 | winner
b8 | x X X 154.74 | loser {fmm
b | x X X X X 20550 | loser %—

Figure 22 Bids by, b,, bg, by become losers after the second iteration.
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CHAPTER FIVE:
EVALUATION ()

The following plan is used for CADIA evaluation:

1. Understand the evaluation purpose.

2. Set up the experiments.

3. Select a sample of inputs.

4. Implement a prototype CADIA.

5. Run CADIA on the sample’s input and record the results.

6. Summarize and analyze the results.

5.1 Purpose

The purpose of the evaluation is to evaluate CADIA’s accuracy and performance.
The evaluation of CADIA’s accuracy is straightforward. To conclude that CADIA is a
technique capable of finding the optimal solution, the revenue generated by CADIA
during an auction must be equal to that generated by an optimal revenue search system
such as the brute-force technique based system. In CADIA’s performance evaluation, we
may be tempted to use mathematical analysis. Though mathematical analysis can be
applied to many simple algorithms, the power of mathematics is still far from limitless.

Most heuristic techniques that solve the class NP problems are believed to be very
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difficult to analyze with mathematical precision and certainty [Goodrich and Tamassia,
2002; Johnsonbaugh and Schaefer, 2004]. Thus, empirical analysis [Levitin, 2003] is

adopted in CADIA’s evaluation.

The two major approaches of analyzing an algorithm empirically are:

1. Count the number of times the algorithm’s basic operation is executed by

inserting a counter in the algorithm.

2. Time the algorithm.

CADIA’s core algorithm requires an update of its item association knowledge in
each of the iterations of the winner determination process. The process is so dynamic that
the first approach of counting the number of operations becomes inappropriate. In
addition, CADIA’s implementation is in fact a combination of many algorithms. Thus,
the second approach of timing the prototype of CADIA is used. Since CADIA is

kRl

implemented in the C programming language, the built-in system function “clock( )”” has
been used to return the start time Ty, and the finish time Tppisn. The running time

required, which has been converted into seconds, is equal to the difterence between Ty

and Tinish.

3 clock() returns wall-clock time used by the calling process.
{http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/_crt_clock.asp]
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5.2 Combinatorial Auction Testing Suite

Many researchers have recently begun to propose algorithms for determining the
winners of CAs, with encouraging results. This wave of research has given rise to a new
problem, however. In the absence of real world CA data, the only option is to generate
auction data artificially. However, it is necessary to use a standard test suite with
simulated data to test and improve the proposed algorithms. A test suite called
Combinatorial Auction Test Suite (CATS) for testing combinatorial auction algorithms
has been proposed and developed by Leyton-Brown et al. [2000a]. CATS includes the
ability to generate bids according to all previous published test distributions and has been
used in a number of recent papers [Sandholm et al., 2001b; Sandholm, 2002]. In
CADIA’s evaluation, CADIA is tested on CATS’s arbitrary distribution. All sample

auctions are generated using CATS instance generators with default parameters.

5.3 Experimental Setup

The test implementation of CADIA in the C programming language running on a
1GHz Pentium PC with 512MB RAM was evaluated on auction data generated by CATS.
Five hundreds sample auctions were generated using CATS. Two different tests were
performed in the evaluation. The objective of the first test was to justify the conclusion
that CADIA 1s capable of finding the optimal revenue. Thus, CADIA was compared with
the brute-force technique (BFT) based system in terms of revenue generation and running

time. The objective of the second test is to justify the conclusion that CADIA is a good
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approximation system that always guarantees a better than or equal to the lower bound
revenue. Thus, CADIA was compared with an implementation that is based on the greedy
search technique (GST). The bidding price is adopted as the objective function for the

GST.

The software implementation of CADIA takes four parameters during its

execution. They are:

1. a file containing the list of auctioned items,

2. a file containing the bid data,

3. an integer corresponding to the number of items in the auction,
4. an integer corresponding to the number of bids in the auction

CADIA can be executed from the command line as shown in Figure 23. The
command says that CADIA will determine the winners in a CA of 500 items and 1000

bids.

:\>cadia itemFile bidFile 568@ 1008_

Figure 23 Execute CADIA with 4 arguments from command line.

5.3.1 Comparison of CADIA and BFT

The objective of the first test is to justify the conclusion that CADIA is capable of
finding the optimal revenue. Due to the fact that the CA winner determination problem is
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a NP-hard problem, the test becomes realistic only if the sample auctions contain a
reasonably small number of bids items. Thus, CADIA was compared with BFT in terms
of revenue generation and running time on two hundred sample auctions with ten items
and ten bids each. BFT is also implemented in the C programming language based on the

algorithm described in Algorithm 1.

5.3.2 Comparison of CADIA and GST

The objective of the second test was to justify the conclusion that CADIA is a
good approximation system that always guarantees a better than or equal to the lower
bound revenue. Since GST is based on greedy search technique, it can handle more items
and bids that cannot be handled by BFT and always returns feasible results in reasonable
time. Thus, CADIA was compared with GST in terms of revenue generation on two
hundred sample auctions with twenty items and one thousand bids each. GST is also
implemented in the C programming language based on the algorithm described in

Algorithm 2.

5.4 Empirical Results and Analysis

In this section, the results of the tests described in Section 5.3.1 and 5.3.2 are

documented in Section 5.4.1 and 5.4.2 respectively. The results will be used to justify the

hypothesis in designing CADIA.
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5.4.1 Comparison of CADIA and BFT

Even BFT works in principle, however it is practically limited by the number of
items and bids it can process. CADIA may or may not find the optimal revenue. Thus, it
is interesting to know how accurate CADIA is. The accuracy of CADIA can be
quantified by the size of the accuracy ratio Ruccuracy [Levitin, 2003] of CADIA where

Sco and S, represent the solutions of CADIA and BFT respectively to the objective

function f of the winner determination problem (i.e. the revenue). The closer R is

accuracy

to 1, the better the proposed technique is.

R = f(SCADlA)
accuracy f(SBFT)

Table 1 reports the results for all two hundred sample auctions. The accuracy ratio
of BFT in all sample auctions is always one because BFT always finds the optimal
revenue and thus is used as the standard for comparison. CADIA has an average accuracy
ratio of 0.979 and is not able to find the optimal revenue in 36 out of 200 auctions. The
results are sorted and plotted as a line chart (Figure 24). In addition, the average running

time of BFT and CADIA are 211.722 seconds and 0.199 seconds respectively.

57



‘VIAVD pue LAd Jo uosiaeduwrod ones Adeanddy 4z aindiy

(onpes Aoeanooe Aq pauos) JoquinN uol3ony
661 L8l €91 G¥lL L2l 60l L6 €L 9SS LE 6l |

19— | o
(ov) iavo — - .

(spiq Q1 pue swall 0} Suleuod uoljone yoea ‘suoljone ajdwes 00z)

VidvD pue 149d jo uosuedwon oney Aoeinooy

890
€90
890
€L0
8.0

- €80

880
€60

- 860
- €0')

oney Aoeinaoy

58



» ADIA O ADI A 0 ADIA O ADIA
1 1.000 51 1.000 101 1.000 151 0.840
2] 1.000 52 | 1.000 102 | 1.000 152 | 1.000
3| 0719 53 | 1.000 103 | 1.000 153 | 0.859
4 1.000 54 { 1.000 104 | 1.000 154 { 1.000
5| 1.000 55 | 0.996 105 | 0.928 155 | 1.000
6 [ 1.000 56 | 1.000 106 | 1.000 156 | 1.000
71 1.000 57 1.000 107 1.000 157 1.000
8| 0.715 58 | 1.000 108 | 1.000 158 | 1.000
9| 1.000 59 | 1.000 109 | 1.000 159 | 0.899

10 | 0.877 60 | 1.000 110 | 0.986 160 | 1.000

11 1.000 61 1.000 111 1.000 161 1.000

12 | 1.000 62 | 1.000 112 { 0.908 162 | 1.000

13 | 0819 63 | 1.000 113 | 0.934 163 | 1.000

14| 1.000 64 | 1.000 114 | 1.000 164 | 0.614

15 1.000 65| 1.000 115 | 0.933 165 | 1.000

16 | 1.000 66 | 1.000 116 | 1.000 166 | 1.000

17 | 1.000 67 | 1.000 117 | 1.000 167 1,000

18| 1.000 68 | 1.000 118 | 0.901 168 { 1.000

19| 1.000 69 | 1.000 119 | 1.000 169 | 1.000

20 ( 0.817 70 | 1.000 120 { 1.000 170 [ 1.000

21 1.000 71 1.000 121 1.000 171 1.000

22 | 1.000 72 | 1.000 122 | 1.000 172 | 1.000

23 { 1.000 73| 0.777 123 | 0.991 173 | 1.000

24 | 1.000 74 | 0.990 124 | 1.000 174 | 1.000

25 1.000 75| 0.910 125 | 1.000 175 | 1.000

26 | 1.000 76 | 1.000 126 | 0.897 176 | 1.000

27 | 0.890 77 | 1.000 127 | 0.889 177 | 0.898

28 | 1.000 78 | 0.900 128 | 1.000 178 | 1.000

29 | 1.000 79 | 1.000 129 | 0.885 179 | 0.994

30| 1.000 80 | 1.000 130 | 1.000 180 | 1.000

31| 0.870 81 1.000 131 1.000 181 1.000

32 | 1.000 82 | 1.000 132 | 1.000 182 | 1.000

33| 1.000 83 | 1.000 133 | 0.892 183 | 1.000

34 | 1.000 84 | 1.000 134 | 1.000 184 | 0.992

35| 0824 85| 1.000 135 1.000 185 1.000

36 | 1.000 86 | 0.908 136 | 1.000 186 | 1.000

37 | 1.000 87 1 1.000 137 { 1.000 187 | 1.000

38 | 1.000 88 | 1.000 138 | 1.000 188 | 1.000

39 | 1.000 89 | 0.995 139 | 1.000 189 | 1.000

40 | 1.000 90 | 1.000 140 | 0.859 190 | 0.992

41 1.000 91 1.000 141 1.000 191 1.000

42 | 1.000 92 | 1.000 142 | 0.896 192 | 1.000

43 | 0974 93 | 1.000 143 | 1.000 193 [ 0.996

44 [ 1.000 94 | 1.000 144 | 1.000 194 | 1.000

45 | 1.000 95 | 1.000 145 | 1.000 195 | 1.000

46 | 0.851 96 [ 1.000 146 | 1.000 196 | 1.000

47 | 1.000 97 | 1.000 147 | 1.000 197 | 1.000

48 | 1.000 98 | 1.000 148 | 1.000 198 | 1.000

49 | 1.000 99 | 1.000 149 | 1.000 199 | 1.000

50 | 1.000 100 | 1.000 150 | 1.000 200 | 1.000

Table 1 Accuracy ratio comparison of BFT and CADIA (sample 1-200).
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5.4.2 Comparison of CADIA and GST

When there are too many items and bids, it becomes impractical to compare BFT
and CADIA. BFT takes more than 200 seconds to process an auction of ten items and ten
bids, but requires about 1800 seconds to process an auction with one additional item.
Since it is worthwhile to measure CADIA’s performance when there are hundreds of
items and thousands of bids, CADIA is compared with GST in terms of revenue
generation. The performance of CADIA in revenue generation can be quantified by the

size of the performance ratio R of CADIA where S, ,,,, and S, represent the

performance

solutions of CADIA and GST respectively to the objective function f* of the winner

determination problem (i.e. the revenue). The higher the value of R the better the

performance *

performance of the proposed technique.

R . :f(SCAD[A)
performance f ( SGST )

In this test, each sample auction contains twenty items and one thousand bids. The
number of items has been selected in such a way that it cannot be handled realistically by
BFT, but it is still small enough as compared to the number of bids. The purpose of such
a setup is to simulate realistic CAs in which there are always conflicts among bids. Table
2 summarizes the performance ratios of GST and CADIA for two hundred sample
auctions. The accuracy ratio of GST in all sample auctions is always one because it is

used as the standard for comparison.
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() ADIA i\ () ADIA i\ () ADIA AA () ADIA

1]1.238 51 | 1.481 101 | 1.117 151 { 1.057

2 [1.053 52 | 1.658 102 | 1.108 152 | 1.204

3 | 1.000 53 | 1.339 103 | 1.060 153 | 1.152

4(1.126 54 | 1.171 104 | 1.322 154 | 1.000

5 [ 1.000 55 | 1.236 105 | 1.202 155 | 1.145

6 | 1.167 56 | 1.273 106 | 1.448 156 | 1.191

7111186 57 | 1.000 107 | 1.053 157 { 1.110

8 ]1.043 58 | 1.359 108 | 1.167 158 | 1.272

9 [ 1.000 59 | 1.202 109 | 1.218 159 | 1.255
10 ) 1.041 60 | 1.118 110 | 1.057 160 | 1.000
11 [ 1.095 61 | 1.269 111 | 1.051 161 | 1.057
12 | 1.323 62 | 1.110 112 | 1.283 162 | 1.105
13 11130 63 | 1.168 113 | 1.300 163 | 1.158
14 1 1.044 64 | 1.225 114 | 1.057 164 | 1.239
151 1.168 65 | 1.102 115 | 1.284 165 | 1.046
16 | 1.113 66 | 1.121 116 | 1.410 166 | 1.160
17 11179 67 | 1.102 117 ] 1.105 167 | 1.152
18 | 1.113 68 | 1.214 118 | 1.225 168 | 1.159
19 1 1.200 69 | 1.207 119 { 1.168 169 | 1.218
20 | 1.048 70 | 1.306 120 | 1.061 170 | 1.179
21| 1.106 71 ] 1.221 121 | 1172 171 | 1.759
22 | 1.128 72 | 1.255 122 | 1.228 172 | 1.304
23 | 1.120 73 | 1.388 123 | 1.105 173 | 1.000
24 | 1.301 74 | 1.114 124 | 1.342 174 | 1.256
25 | 1.157 75 | 1.319 125 { 1.061 175 | 1137
26 | 1.000 76 | 1.671 126 | 1.342 176 | 1.274
27 | 1.276 77 |1 1.298 127 | 1.048 177 | 1.108
28 | 1.053 78 | 1.182 128 | 1.317 178 | 1.192
29 | 1.121 79 | 1191 129 | 1.238 179 | 1.268
30 | 1.048 80 | 1.221 130 | 1.193 180 | 1.255
31 | 1.056 81 (1.190 131 | 1.299 181 | 1.118
32 | 1.178 82 | 1.256 132 | 1.360 182 | 1.048
33 | 1.255 83| 1495 133 1 1.105 183 | 1.401
34 | 1.129 84 | 1.048 134 | 1.111 184 | 1.159
35 | 1.040 85| 1.113 135 | 1.195 185 | 1.131
36 | 1.099 86 | 1.240 136 | 1.056 186 [ 1.118
37 | 1.321 87 | 1.048 137 | 1.556 187 | 1.179
38 | 1.189 88 | 1.154 138 | 1.228 188 | 1.480
39 | 1.229 89 | 1.169 139 | 1.189 189 [ 1.134
40 | 1.168 90 | 1.100 140 | 1.226 190 | 1.202
41 | 1179 91 | 1.256 141 | 1.323 191 | 1.274
42 | 1.000 92 | 1.272 142 | 1.217 192 | 1.092
43 | 1.086 93 | 1.265 143 | 1.040 193 | 1.293
44 | 1.229 94 | 1.359 144 | 1.659 194 | 1.051
45 | 1.094 95 | 1.051 145 | 1.181 195 | 1.095
46 | 1.044 96 | 1.111 146 | 1.171 196 | 1.191
47 | 1.054 97 | 1.169 147 | 1.051 197 | 1.226
48 | 1.105 98 | 1171 148 | 1.146 198 | 1.180
49 | 1.301 99 | 1.242 149 | 1.147 199 | 1.273
50 | 1.118 100 | 1.239 150 | 1.131 200 | 1.111

Table 2 Performance ratio comparison of GST and CADIA (sample 1-200).
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The data in the table is then used to form a line chart (Figure 25). Results show

that CADIA has an average performance ratio of 1.186 and outperforms GST in 191 out
of 200 auctions. In other words, CADIA on average outperforms GST by 18.6% in our

evaluation.
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CHAPTER SIX:
IMPROVING CADIA

6.1 Motivation

It has been shown in Section 5.4.1 that CADIA has an average accuracy ratio of
0.979 for the two hundred sample auctions. That is, CADIA may or may not find the
optimal revenue. Such a defect is due to the fact that the comparison of the valuation of
an itemset wanted by bids is relaxed to a comparison of the valuation of all the items
wanted by bids. Suppose the bid tuples of bids b; and b; are (S;, pi) and (S;, p;) respectively
and S; c M, S; = M and p; > p;. If there is a least frequent itemset F where F — S;and F ¢
S;, bi will conflict with b;. Based on the hypothesis in Section 4.1, b; will become the
winner because it offers a higher valuation on S;. The comparison is actually based on the
prices for S; and S; but not on F offered by b; and b;. The ideal situation would be for each
bidder to submit a valuation for each subset of auctioned items in order to attain true
valuation comparison as suggested by the Vickrey-Clarke-Grooves (VCG mechanism)
[Klemperer, 2000; Krishna, 2002]. However, the VCG mechanism is impractical and
rarely used because no bidder is willing to valuate all subsets of auctioned items [Peke¢
and Rothkopf, 2000]. Even if there are only 20 auctioned items, it is not likely every
bidder is willing to work out 2*°-1 or 1048574 valuations. In spite of the relaxation on
valuation, CADIA is able to minimize or even correct the error via an adjustment. Instead

of immediately declaring a bid b; as a winner based on the item association technique,

64



CADIA first declares b; as a potential winner. It then measures the revenue generated
when b; is not a winner. Comparing the revenue generated with and without by, it 1s
possible to improve the revenue via the selection of a new set of winners. Such an
adjustment procedure is performed at the Tactical Bids Elimination (TBE) component of
CADIA, which is described in detail in Section 6.2.2. TBE becomes an additional

component to make CADIA a system capable of finding the optimal revenue.

When improving CADIA, the performance affected by having redundant bids has
been taken into consideration. For instance, a bid that bids on the same combination of
items as others but offers a lower bidding price should be removed. The additional
component Pre-Processing Unit (PRE), which is described in detail in Section 6.2.1, is

thus added to CADIA to remove redundant bids.

6.2 New Structure

With the additional components, CADIA can be described as an “aggressive”

system because it improves its results on successive iterations during the winner

determination process.
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Figure 26 depicts the new structure of CADIA, which is composed of four major

components. They are:

1. Pre-Processing Unit (PRE)
2. Item Association Generation Unit (IAG)
3. Winner Determination Unit (WIN)

4. Tactical Bids Elimination Unit (TBE)

The four components form the four consecutive phases of the winner
determination process. Outputs from one component may flow back to a previous
component during the process. For example, outputs from TBE will flow back to PRE to

further improve the results.
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Figure 26 Structure of CADIA.
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6.2.1 Pre-Processing Unit (PRE)

The Pre-Processing Unit (PRE) is used to remove redundant bids. A bid is

considered as redundant and removed if

1. it bids on the same combination of items as others and offers a
lower bidding price. Mathematically, let the bid tuples of b, and b,
be (S, px) and (S,, py) respectively. b; is removed if S,=S,, but
Px<Py-

2. it bids on the same combination of items as others and offers the
same bidding price, but it is submitted at a later time.
Mathematically, let t, and t, be the time of bids submitted by b,
and b, respectively. b, is removed if S,=S, and p,=p,, but t,>t,.

3. its bidding set of items is a superset of another bid’s, but it offers a
lower bidding price. Mathematically, b, is removed if S, © S, and
Px<Py-

4. its bidding price is less than a lower bound price which is
determined by Algorithm 9. (This criterion was not used when
evaluating CADIA against other techniques. The inclusion of it is to

improve CADIA’s practicality which will be discussed in Chapter 8).
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5. its bidding set of items is a superset of that of the union of two or

more mutually exclusive bids, but it offers a lower bidding than
the total price of these bids. Mathematically, b, is removed if S, D
Sy1ivSy V... USyand SN Si=J wherei, j € {yl, y2,...,yn} and

i#j and px<(py1 * py2 t.. + Pyn).

The implementation of criteria 1, 2 and 3 is straightforward. Criterion 4 will filter
out those bids whose bidding prices are lower than a reference value called the lower
bound price. Such a lower bound price is determined based on a greedy search algorithm.
Thus, the higher the lower bound price, the less the number of bids will be qualified for
the next processing phase. Algorithm 9 describes how the lower bound price is
calculated. A scale factor Cyr, whose value between 0 and 1 is selected by the auctioneer,
can be used to scale down the lower bound price to allow more bids to be qualified for
the next phase. Cgs has been set to 0.5 by default. Chapter 8 will discuss the impact of the

lower bound price on the running time of the results.
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Algorithm:
Input:

Output:

Begin

Calculate the lower bound price for each bid
all bids b; € B and bid tuples {S;,p:}.
ie{0,1,.n},

all items M = {1, 2,.., m},

scale factor Cgi = {0..1},

the lower bound price b;.lbPrice for all bids b; €B

//use Algorithm 2, a set of winning bids Bgreesy 15 obtained

Byreeay € Greedy_Search_Winner_ Determination(B)

greedyRevenue € 0

for each bid b; € Bgreeay

greedyRevenue € greedyRevenue + p;

1bPricePerItem € greedyRevenue / |M|

for each bid b; € B
b;.1lbPrice € 1bPricePerItem x |S;| x Cg

End

Algorithm 9 Determine the lower bound price for each bid.

Criterion 5 can be met if an exhaustive search technique is adopted because it

requires a search for all bidding sets of items to determine if it is a superset of the union
of' any other bidding sets. CADIA has delayed the implementation of the criterion until
WIN. That is, CADIA checks if a bid is a redundant bid just before it is about to be
declared as a candidate winner. The objective of such a delay is to perform the task only
when it is needed in order to reduce the overall running time. Nevertheless, the larger the
number of items and bids in an auction, the more time is required to perform the search.
To further reduce the running time, WIN has been customized to perform a partial search

instead. That is, it searches for all bidding sets of items to determine if it is a superset of
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the union of any two or three sets only. The partial search is recommended especially for
auctions of more than 500 items and 1000 bids. Algorithm 10 depicts the algorithm for
determining if a bid‘s set of items is a superset of the union of any other three bids’, but

offers a lower bidding price than the sum of that of the three.

Algorithm: Test if bid b,’s bidding set of items S, is a
superset of the union of any other 3 mutually exclusive bids,
but offers a lower bidding price than the total price of the 3

bids.
Input: all bids b; € B and bid tuples {S;,p;}, 1€{0,1,.n}.
Output: TRUE if S, is a superset with lower price,
FALSE otherwise.
Begin
for each bid b;eB {
for each bid bjeB {
for each bid byeB {
if (1 # 3 # k) (
if (isSupersetOf3(x,1i,J,k)=TRUE) {
if pu< (Pi+P;+Dx)
return TRUE;
else
return FALSE;
}
}
}
}
}
return FALSE;
End

Function isSupersetOf3 (x,i,J,k)
//test if S, is a superset of the union of S; ,S; and S,

Begin
if (S, D (S; VU S; U Sy)
return TRUE;
else
return FALSE;
End

Algorithm 10 Determine if a bid is a superset of others.
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6.2.2 Tactical Bids Elimination Unit (TBE)

It has been discussed in the Section 4.1 that the biggest concern in CADIA’s
design is the completeness of search for the optimal solution based on the least frequent
itemset. A bid which attempts to be granted the winner status may tactically bid on the
least wanted itemset. In fact, such a worry is unnecessary because the least wanted

itemset is not obvious in auctions of hundreds or even thousands of bids.

Nevertheless, the TBE of CADIA has eased the above concemn because it
provides further analysis on all potential winners and possible losers that are output from
WIN. Suppose b; is a potential winner, TBE will first assume b; to be a tactical bid and
test the revenue generated if b; is removed for the auction. An improvement on the
revenue may or may not conclude if b; is a tactical bid, but it will definitely suggest that
b; should not be a winner and be removed from the auction. In CADIA’s design, TBE
will improve the revenue during the winner determination process using either one of the

two different strategies.

In the first strategy, TBE tests the expected revenue when N potential winners and
possible losers, which are identified from the previous round of winner determination, are
removed from the auction. The integer N, which is specified as an argument when
executing CADIA, is referred to as the number of analysis bids. Suppose 2 analysis bids
are specified in auction, CADIA will iterate 3 times to search for better revenue. The first
iteration does not remove any bids. The second iteration removes the first winner and last
loser determined during the first iteration, and the third iteration removes the first two

winners and last two losers determined during the second iteration.
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TBE in the second strategy also uses both the potential winners and possible
losers to improve the revenue but requires a slight complex implementation and thus a
detailed description is given next. Suppose N analysis bids are specified in an auction,
TBE tests the expected revenue when N/, potential winners and "/, possible losers are
removed from the auction. CADIA will iterate 2" times to search for better revenue. The
algorithm for testing if a combination of potential winners and losers should be removed

is described in Algorithm 11.

The lists of potential winners and possible losers can be seen as additional
knowledge discovered during the process. The incorporation of TBE and such knowledge
has made CADIA able to search for better or even the optimal revenue. TBE with the
second strategy applied a more extensive search than that with the first one, and thus able
to obtain better results. Thus, TBE with the second strategy is used when evaluating
CADIA with an optimal revenue search technique such as the BFT. The drawback of the
second strategy is that it requires more time to complete the search process. In an auction
of 20 items, 1000 bids and 6 analysis bids, the second strategy requires 130 seconds but
the first strategy requires only 27 seconds for the whole process. For faster result in
auction size of hundred items and thousands of bids, TBE with the first strategy may be
used. Thus, TBE with the first strategy is used when evaluating CADIA with other

approximation techniques.
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Algorithm: Identify the combination of potential winners
b;€Lyinners and possible losers bj€licers £O be removed
to further improve the revenue

Input: all bids b; € B, and bid tuples {S;,p;}, i€{0,1,.n}.
lists of potential Lyjmmers and possible Ligsers &
Number of analysis bids C,.

Output: the combination of potential winners and possible
losers to be removed from the auction
CmbOfBidToBeRemoved.

Begin

//make up a list of analysis bids from winners and losers
Loop until ¢ >= C, { //c=0,1,2..
Lanalysis e Lanalysis + Lwinners [C]

Lanalysis e Lanalysis + Llosers [C]
c € c + 2

highestRevenue € CADIA (B)
for each combination of bids B; € Lgpaiysis { //1=0,1,..,C.-1
revenue = CADIA (B-B;)
if (highestRevenue < revenue) {
highestRevenue € revenue
CmbOfBidsToBeRemoved = B;

End

Function CADIA (B)
//return the revenue generated for an auction containing the
//set of bids B

Begin
//use Algorithm 8 - find a winner
For each winner b, € B
revenue € revenue + p,
return revenue
End

Algorithm 11 Remove potential winners and losers for result improvement,
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6.3 Example

The improved CADIA is demonstrated with the same data (Figure 27) used in the
Section 4.3. At the beginning, CADIA will read the bid data as inputs and organize them

into a matrix in the memory as described in Figure 28.

{bid} {a set of items} {bidding price}
{bg} {0 4 6 7} {206.28)})
{by} {01 3 4} {207.28}
{by} {0 6} {205.00}
{bs} {0 4 5 9} {208.28}
{by} {2 4 5 8} {108.28}
{bs} {1 2 7} {55.74)
{be} {1 2 3 6} {55.74}
{bs} {2 9} {152.00}
{bsg} {0 4 8} {154.74)
{bg} {0 4 6 7 8} {205.50}

Figure 27 Bid data.

0 Bid Price ‘/’Vl'g;‘;r
b0 X X X X 206.28
b1 X X X X 207.28
b2 X X 205.00
b3 X X X X | 208.28
b4 X X X X 108.28
b5 X X X 5574
b6 X X X X 5574
b7 X X 152.00
b8 X X X 154.74
b9 X X X X X 205.50

Figure 28 Auction data is represented internally as a matrix in CADIA.

During the first step at PRE, any redundant bids will be removed. Since the bid
tuples of bg and by are (S9,p9)={{0,4,6,7,8}, 205.50} and (S¢,po)={{0,4,6,7},

206.28 }respectively, by will be removed because it is a superset of by but it offers a lower
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bidding price (i.e., S¢ 2 Sy but py < py) according to the criterion 4 stated in Section

6.2.1. The qualified bids after the filtering process at PRE are by, by, by, b3, b, bs, b, by,

and bg (Figure 29).

b0 X X X X 206.28

b1 X X X 207.28

b2 X X 205.00

b3 X X X 208.28

b4 X X X X 108.28

b5 X X 55.74

b6 X X X 55.74

b7 X 152.00

b8 X X X 164.74

b9 X X X X X 205.50 | loser

Figure 29 Bid by becomes a loser after PRE.

During the second step, IAG of CADIA sets the minimum support count to one (a

non-zero least support count), starts generating frequent 1-itemsets (Figure 30) and

checks if there are itemsets whose frequency counts are equal to but not greater than the

minimum support count. That is, IAG identifies the smallest but also least frequent

itemset from all bids as described in Section 4.2.2. In this example, all ten frequent 1-

itemsets have frequency counts greater than the minimum support count. Thus, IAG is

required to generate frequent 2-itemsets (Figure 3 1). Now, twenty-four out of forty-five

itemsets have frequency counts equal to the minimum support count. Additional

measures such as the degree of confidence and the degree of conflict will then be applied

according to Algorithms 5 and 6 to reduce the total number of itemsets. Figure 32 and

Figure 33 show that the highest degree of confidence and the lowest degree of conflict
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are found to be 50% and 5 respectively. As a result, the itemset {2,9} is determined as the

least frequent itemset, which will be used by WIN to determine candidate winners.

{0} 5

{1}
{2}
{3}
{4}
{5}
{6}
{7}
{8}
{9}

RIRINWIN O N MW

Figure 30 Frequent 1-itemsets during the first iteration.

itemset frequency itemset frequency itemset frequency
{0,1} 1 {1,8} 0 {4,5} 2
{0,2} 0 {1,9} 0 {4,6} 1
{0,3} 1 {2,3} 1 {47} 1
{0,4} 4 {2.,4} 1 {4,8} 2
{0,5} 1 {2,5} 1 {4,9} 1
{0,6} 2 {2,6} 1 {5,6} 0
{0,7} 1 {2,7} 1 {5,7} 0
{0.8} 1 {2,8} 1 {5,8} 1
{0,9} 1 {2,9} 1 {5,9} 1
{1,2} 2 {3,4} 1 {6,7} 1
{1,3} 2 {3,5} 0 {6,8} 0
{1.4} 1 {3,6} 1 {6,9} 0
{1.5} 0 {3,7} 0 {7,8} 0
{1,6} 1 {3,8} 0 {7.9} 0
{1,7} 1 {3,9} 0 {8,9} 0
Figure 31 Frequent 2-itemsets during the first iteration
{0,1} 33.33 {1,7} 50.00 {3,4} 50.00
{0,3} 50.00 {2,3} 50.00 {3.6} 50.00
{0,5} 50.00 {2,4} 25.00 {4,6} 33.33
{0,7} 50.00 {2,5} 50.00 {4,7} 50.00
{0,8} 50.00 {2,6} 33.33 {4,9} 50.00
{0,9} 50.00 {2,7} 50.00 {5.8} 50.00
{1.4} 33.33 {2,8} 50.00 {5,9} 50.00
{1,6} 33.33 {2,9} 50.00 {6,7} 50.00

Figure 32 Degrees of confidence for itenisets with the least support count
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itemset confidence(%) conflict itemset confidence(%) conflict

{0,3} 50.00 8 (2,8} 50.00 8
{0,5) 50.00 7 2.9} 50.00 5
0,7} 50.00 8 (3.4 50.00 8
{0.8) 50.00 6 (3.6) 50.00 7
(0,9} 50.00 7 (4.7} 50.00 8
.7y 50.00 6 {49} 50.00 7
(2,3} 50.00 7 (5,8} 50.00 8
{2,5) 50.00 8 (5,9} 50.00 7
2.7 50.00 6 (6,7} 50.00 8

Figure 33 Degrees of conflict for itemsets with maximum confidence.

In the next step, WIN of CADIA will identify all candidate winners. WIN starts
looking for those bids that include the least frequent itemset {2.9}. In this example, only
b7 contains itemset {2,9}. Consequently, bs is determined as a potential winner (Figure
34). After the potential winner is declared, all bids that conflict with it are determined as
possible losers (Figure 35). Since winner determination is a multi-round process
involving both WIN and IAG, we can only say that b7 is one potential winner and bs, by,

bs and b are some possible losers during the first iteration.

t‘@ 0 winner
/ loser
b0 X
b1 X X X X 207 .28
b2 X X 205.00
b3 X X X X | 208.28
b4 X X X X 108.28
b5 X X X 5574
b6 X X X X 5574
b7 X X 152.00 | winner
b8 X X X 154.74
b9 X X X X X 205.50 loser

Figure 34 Bid b, becomes a winner after the first iteration.
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bo | x X x | x 206.28

b1 [ x [ x x | x 207.28

b2 | X X 205.00

b3 | x X | X X | 208.28 | loser ffmm
b4 X X X X 108.28 | loser

b5 x | x X 5574 | loser

b6 x | x | x X 55.74 | loser fmm
b7 X X | 152.00 | winner

b8 | x X X 154.74

b9 X X X X X 20550 | loser

Figure 35 Bid bs, by, bs, bg become losers after the first iteration.

In the second iteration, the qualified bids are by, by, b, and bs. IAG will update the

item association pattern based on the current available qualitied bids. IAG again sets the

minimum support count to one, generates frequent 1-itemsets (Figure 36), and checks if

there are itemsets whose frequency counts are equal to the minimum support count. In

addition, the degree of confidence and the degree of conflict are checked for each itemset.

It is shown in Figure 37 that the highest degree of confidence and the lowest degree of

conflict are found to be 100% and 4 respectively. Since itemsets {1}, {3}, {7} and {8} all

have satisfied the condition of being the least frequent itemsets, they are used for

candidate winners determination.

{0}
)
2
3)
@)
(5}
(6}
)
)
©

Figure 36 Frequent 1-itemsets during the second iteration.

O 2|2 N|O|W 2Ol N
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itemset confidence(%) conflict

{1} 100.00 4
3} 100.00 Z
{7) "~ 100.00 7
(8] 700.00 Z

Figure 37 Degrees of conflict for itemsets with maximum confidence during the second iteration.

In candidate winners determination, WIN looks for those bids that include the
least frequent itemset {1}, {3}, {7} or {8}. Bids by, b;, and bg become candidate winners
because by contains itemset {7}, b, contains itemset {1} and {3}, and bg contains itemset
{8}. According to the criterion 1 in Section 4.2.2, b, b, and bg are conflicted bids and
the bidding price comparison strategy must be applied to select only one potential winner.
As aresult, b; is determined to be the potential winner during the second iteration (Figure
39). After the potential winner has been declared, all bids that conflict with it are
determined as possible losers (Figure 40). After the second iteration, WIN stops because
all bids have been processed. As a result, b; and by are the potential winners which

generate the total revenue of $359.28.

E@ 0 Bid Price| V"""
/ loser
b0 X candidate
b1 X X X X 207.28 |candidat
b2 X X 205.00 candidatt
b3 X X X X 208.28 loser
b4 X X X X 108.28 loser
b5 X X X 55.74 loser
b6 X X X X 55.74 loser
b7 X X | 152.00 | winner
b8 | x X X 154.74 |candidatoffemm
b9 | x X | x | x | x 205.50 | loser |

Figure 38 Bids by, b,, b;, by become candidate winners.
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e

winner
Eﬂq 0 ! loser
b0 X .
b1 X X X X 207.28 | winner
b2 X X 205.00
b3 X X X X 208.28 loser
b4 X X X X 108.28 loser
b5 X X X 55.74 loser
b6 X X X X 5574 loser
b7 X X 152.00 | winner
b8 X X X 154.74
b9 X X X X X 205.50 loser
Figure 39 Bid b, becomes the potential winner.
Eﬂ& 0 4 5 8 9 [BidP ©
ose
b0 X X X X 206.28 loser
b1 X X X X 207.28 | winner
b2 X X 205.00 loser
b3 X X X X 208.28 loser
b4 X X X X 108.28 loser
b5 X X X 55.74 loser
b6 X X X X 55.74 loser
b7 X X 152.00 | winner
b8 X X X 154.74 loser
b9 X X X X X 205.50 loser

Figure 40 Bids by, b;, bg become possible losers.

During the fourth step at TBE of CADIA, all potential winners and possible losers

will be analysed to further improve the revenue. The second strategy of TBE described in

Section 6.2.2 is used in this illustration. In WIN’s implementation, all potential winners

and possible losers are recorded in two separate lists. The time during which a winner or

a loser is identified will determine its order in the lists. According to Algorithm 11, the
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order of elements in Lyines (list of winners) and Ljoses (list of losers) become {b7, b;} and

{bs, by, bs, be, by, by, bg} respectively. TBE will then form the analysis bid list Lanalysis

based on Lyinners and Ljgsers - Suppose the number of analysis bids specified by the user of

CADIA is 3, the content of Lanaiysis » Which is made up by picking the first winner,

followed by the last loser, and then the second winner, becomes {b7, bg, b, }. Since

IBanatysis) = 3, CADIA will run in the first round without removing any bids, and then

additional seven times to search for better revenue because there are seven different ways

of combining these analysis bids. TBE will remove each of these combinations and

record the revenue generated in each run. The results, which have been summarized in

table 3.

Round The set of Bids Winners

Running time Revenue

(time order) (second) ($)
1 B b, by 0.11 359.28
2 B - {b7,bg,b1} ba, Ds 0.12 264.02
3 B — {b7.bg) b, Ds 0.12 264.02
4 B — {b;,by} b3, bs 0.11 264.02
5 B - {b;} ba, bs 0.12 264.02
6 B — {bg,b+} b, bs 0.11 313.28
7 B — {bg} by, b, 0.11 313.28
8 B - {b,} b3, bs 0.12 264.02

Table 3 CADIA runs eight times for bid and revenue analysis.

In this example, the best result remains the one initially determined by WIN. That

is, the winners and revenue remain by, b, and $359.28 respectively. In this example,

$359.28 is in fact the optimal revenue.



CHAPTER SEVEN:
EVALUATION (II)

7.1 Purpose

The purpose of the evaluation is to evaluate the new implementation of CADIA’s

accuracy and efficiency. The same evaluation plan as described in Chapter 5 is adopted.

7.2 Experimental Setup

Three different tests were performed in the evaluation. The objective of the first
test was to justity the conclusion that CADIA is capable of finding the optimal revenue
for the generated sample auctions. Thus, CADIA was compared with an optimal revenue
search technique in terms of revenue generation and running time. The objective of the
second test was to justify the conclusion that CADIA is a good approximation system
Thus, CADIA was compared with some approximation techniques. The objective of the
third test was to justify the conclusion that CADIA is still an efficient system even
though its running time grows exponentially. Thus, CADIA’s running time was measured

against different numbers of auctioned items and bids.

The software implementation of the extended version of CADIA takes five

parameters during its execution. They are:
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1. a file containing the list of auctioned items,

2. afile containing the bid data,

3. an integer corresponding to the number of items in the auction,

4. an integer corresponding to the number of bids in the auction, and

5. an integer corresponding to the number of analysis bids, which are
composed from the lists of winners and losers, for further revenue

improvement.

CADIA can be executed from the command line as shown in Figure 41. The
command says that CADIA will determine the winners in a CA of 500 items and 1000

bids; in addition the number of analysis bids is 10.

o
:\>cadia itemFile.txt bhidFile.txt 5608 1000 18_

Figure 41 Execute CADIA with 5 arguments from command line.

7.2.1 Comparison of CADIA and BIFT

The objective of the first test is to justify the conclusion that CADIA is capable of
generate the optimal revenue. Thus, CADIA was compared with BFT in terms of revenue

generation and running time on two hundred sample auctions with ten items and ten bids
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each. According to the results described in Section 5.4.1, CADIA may not be able to
obtain the optimal revenue after its first iteration of the winner determination process.
With the adjustments made at the TBE (Section 6.2.2) based on the information of
analysis bids, CADIA is able to obtain better revenue at successive iterations. In this
evaluation, TBE with the second strategy as described in Second 6.2.2 is adopted. Thus,
the revenue generated when the number of analysis bids equals two, four, and six are
recorded accordingly. Additionally, the total time required by CADIA to reach the
optimal revenue is recorded in each auction. The results are documented and analyzed in

Section 7.3.1.

7.2.2 Comparison of CADIA and GST, Four Hill Climbers and ESG

The objective of the second test is to justify the conclusion that CADIA is a good
approximation system that always guarantees a better than or equal to the lower bound
revenue. Since GST is based on greedy search technique, it can handie more items and
bids that cannot be handled by BFT and always returns feasible results in reasonable
time. Thus, CADIA was compared with the GST. Besides, CADIA was compared with
some approximation systems includivng the four hill climbers (PRICE, N2NORM, KO,
DEMAND) [Holte, 2001] and the Exponential Subgradient (ESG) [Schuurmans et al.,
2001]in terms of revenue generation in two hundred sample auctions with twenty items

and one thousand bids each.

Each of the hill climbers uses a different objective function. PRICE’s function,
which is based on the bid prices, selects the search path which results in the greatest
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increase in the value of the included bids. N2NORM’s function is based on the 2-norm. It
divides the bid's price by its "size", where the size of bid j is the square root of the sum of
squares of the f;;, the fraction of the remaining quantity of item i that bid j requires. KO’s
function is based on the division of the bid's price by its "knockout cost", where a bid's
knockout cost is the sum of the prices of the available bids that are eliminated if this bid
is chosen. DEMAND’s function is based on a given "price" that is derived from the sum
of the values of all bids referencing that item. A bid is weighted based on how much it is
willing to pay versus the amount of money willing to be paid by other bids for the
requested items. ESG, which is based on the gradient search method, attempts to find a
directional derivative so that the search can proceed in the direction of the steepest ascent
in the search space. In ESG, constraints are used to penalize movements that do not
approach the optimum or, to reward those that approach the optimum. The idea is to find

the right step size to guarantee the best rate of improvement over several iterations.

Since CADIA is able to generate higher revenue at successive iterations, the
results with different number of analysis bids are recorded. All results are documented

analyzed in Section 7.3.2.

7.2.3 Running Time Measurement of CADIA

The objective of the third test is to justify the conclusion that CADIA is still an
efficient system even though its running time grows exponentially. The running time
comparisons of CADIA with the approximation techniques have been ignored in the

evaluation because CADIA in general runs slower than other approximaﬁon techniques.
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Such a slower response time is due to the obvious fact that CADIA’s core knowledge

requires some time to generate.

CADIA’s running time is measured against different number of auctioned items
and bids. The sample sizes of the auctioned items and bids are selected in the range of
100 to 500 and 200 to 2000 respectively. The results are then plotted as two separate
graphs. The first measures the running time when the number of bids is fixed and the
number of items varies. The second measures the running time when the number of items
is fixed and the number of bids varies. The test plan is outlined in Table 4. The results are

documented and analyzed in Section 7.3.3.

Number of Bids Number of items
200 100, 200, 300, 400, 500
400 100, 200, 300, 400, 500
600 100, 200, 300, 400, 500
800 100, 200, 300, 400, 500
1000 1 100, 200, 300, 400, 500
1200 100, 200, 300, 400, 500
1400 100, 200, 300, 400, 500
1600 100, 200, 300, 400, 500
1800 100, 200, 300, 400, 500
2000 100, 200, 300, 400, 500

Table 4 Test plan for measuring CADIA’s running time

7.3 Empirical Results and Analysis

In this section, the results of the tests described in Section 7.2.1, 7.2.2, and 7.2.3

are documented in Section 7.3.1, 7.3.2, and 7.3.3 respectively. The results will be used to

justify the hypothesis in designing CADIA.
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7.3.1 Comparison of CADIA and BFT

Even though BFT works in principle, it is practically limited by the number of
items and bids it can process. CADIA may find the optimal revenue with or without the
adjustments made by TBE. Thus, it is interesting to know how accurate CADIA is before

and after TBE adjustments.

Tables 5, 6, 7, and 8 report the results for all two hundred sample auctions. The
abbreviations A0, A2, A4, and A6 after the word CADIA mean that zero, two, four, and
six analysis bids are used by CADIA. The accuracy ratio of BFT in all sample auctions is
always one because BFT always generates the optimal revenue and thus is used as the
standard for comparison. CADIA has an average accuracy ratio of 0.979 (Table 9) and is
not able to find the optimal revenue in 36 out of 200 auctions when no analysis is used.
The results of these 200 auctions are sorted by accuracy ratio for CADIA (A0) and
plotted as a line chart (Figure 42 and Figure 43). The Figure 43, which is an enlarged
view of the 36 auctions, shows how the result is improved when more and more analysis
bids are included. It is found in the 200 sample auctions that CADIA attains the accuracy
ratio of 1.0 and returns the optimal revenue for all sample auctions when six analysis bids

are used.
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AUCTION BFT CADIA CADIA CADIA CADIA
NUMBER (A0) (A2) (A4) (A6)
1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.000 | 0.719 | 0.719 | 1.000 | 1.000
1.000 | 1.000{ 1.000 | 1.000{ 1.000
1.000 { 1.000 | 1.000 ] 1.000 | 1.000
1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.000 | 1.000| 1.000 | 1.000 | 1.000
1.000 | 0.715| 1.000 | 1.000 ; 1.000
1.000 | 1.000 | 1.000 ] 1.000 | 1.000
10| 1.000 | 0877 | 1.000| 1.000 | 1.000
111 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000
13| 1.000 | 0819 ] 1.000 | 1.000 | 1.000
14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
15| 1.000 | 1.000 | 1.000 | 1.000 | 1.000
16 | 1.000 { 1.000 | 1.000 | 1.000 [ 1.000
17 { 1.000 | 1.000 | 1.000 [ 1.000 | 1.000
181 1.000 { 1.000 | 1.000 | 1.000 | 1.000
19| 1.000 | 1.000 | 1.000 | 1.000 | 1.000
20| 1.000 | 0817 | 1.000 | 1.000 ] 1.000
2111000 1.000| 1.000| 1.000 | 1.000
22 | 1.000 | 1.000| 1.000 | 1.000| 1.000
23| 1000 | 1.000| 1.000 | 1.000} 1.000
241 1.000| 1.000| 1.000 | 1.000 1.000
2511000 | 1.000] 1.000: 1.000 | 1.000
26 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000
27 | 1.000| 0890 | 1.000| 1.000 | 1.000
28 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000
29 | 1.000 | 1.000} 1.000 | 1.000 | 1.000
301 1.000| 1.000 | 1.000}| 1.000 | 1.000
31 ] 1.000 | 0.870| 1.000 | 1.000 | 1.000
321 1.000| 1.000{ 1.000 | 1.000| 1.000
33 [ 1.000 | 1.000| 1.000 | 1.000 | 1.000
34| 1000 1000, 1.000 | 1.000 ]| 1.000
35([ 1.000 | 0824 | 1.000 | 1.000 | 1.000
36| 1.000 | 1.000 | 1.000 | 1.000 | 1.000
371 1000 1.000 | 1.000 | 1.000 | 1.000
38 ] 1.000| 1.000{ 1.000| 1.000| 1.000
39 1.000| 1.000] 1.000] 1.000| 1.000
40 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
411000 | 1.000 | 1.000 | 1.000 | 1.000
42 1 1.000 | 1.000 [ 1.000 | 1.000 | 1.000
43 1.000| 0974 1.000| 1.000| 1.000
44 ( 1.000 | 1.000| 1.000| 1.000| 1.000
451 1.000 | 1.000| 1.000 | 1.000| 1.000
46 | 1.000 | 0.851 0.851 1.000 | 1.000
47 11000 | 1.000| 1.000 | 1.000 | 1.000
48 | 1.000 | 1.000 [ 1.000| 1.000 | 1.000
491 1000 | 1.000 | 1.000 | 1.000] 1.000
50 | 1.000 { 1.000 | 1.000 | 1.000| 1.000

O |NoO|A|WIN | —

Table S Accuracy ratio comparison of BFT and CADIA (sample 1-50).

91



A O B ADIA ADIA CADIA CADIA
= A . A A4 A O
51 { 1.000 1.000 1.000 1.000 1.000
52 | 1.000 1.000 1.000 1.000 1.000
53 | 1.000 1.000 1.000 1.000 1.000
54 | 1.000 |  1.000 1.000 1.000 1.000
55 | 1.000 0.996 0.996 0.996 1.000
56 | 1.000 1.000 1.000 1.000 1.000
57 | 1.000 1.000 1.000 1.000 1.000
58 | 1.000 1.000 1.000 1.000 1.000
59 | 1.000 1.000 1.000 1.000 1.000
60 | 1.000 1.000 1.000 1.000 1.000
61 | 1.000 1.000 1.000 1.000 1.000
62 | 1.000 1.000 1.000 1.000 1.000
63 | 1.000 1.000 1.000 1.000 1.000
64 | 1.000 1.000 1.000 1.000 1.000
65| 1.000 | 1.000 ] 1.000 | 1.000] 1.000
66 | 1.000 1.000 1.000 1.000 1.000
67 | 1.000 1.000 1.000 1.000 1.000
68 | 1.000 1.000 1.000 1.000 1.000
69 | 1.000 1.000 1.000 1.000 1.000
70 | 1.000 1.000 1.000 1.000 1.000
711 1.000 1.000 1.000 1.000 1.000
72 |1 1.000 1.000 1.000 1.000 1.000
73 | 1.000 0.777 0.777 1.000 1.000
74 | 1.000 0.990 0.990 1.000 1.000
75 | 1.000 0.910 1.000 1.000 1.000
76 { 1.000 1.000 1.000 1.000 1.000°
77 1 1.000 ] 1.000 | 1.000 | 1.000 | 1.000
78 | 1.000 0.900 1.000 1.002 1.000
79 | 1.000 1.000 1.000 1.000 1.000
80 | 1.000 1.000 1.000 1.000 1.000
81 { 1.000 1.000 1.000 1.000 1.000
82 | 1.000 1.000 1.000 1.000 1.000
83 | 1.000 1.000 1.000 1.000 1.000
84 | 1.000 1.000 1.000 1.000 1.000
85! 1.000 | .1.000 1.000 1.000 1.000
86 | 1.000 0.908 0.908 1.000 1.000
87 | 1.000 1.000 1.000 1.000 1.000
88 | 1.000 1.000 1.000 1.000 1.000
89 | 1.000 0.995 0.995 1.000 1.000
90 | 1.000 1.000 1.000 1.000 1.000
91 | 1.000 1.000 1.000 1.000 1.000
921 1.000 | 1.000 | 1.000 | 1.000 [ 1.000
93 | 1.000 1.000 1.000 1.000 1.000
94 | 1.000 1.000 1.000 1.000 1.000
95 | 1.000 1.000 1.000 1.000 1.000
96 | 1.000 1.000 1.000 1.000 1.000
97 | 1.000 1.000 1.000 1.000 1.000
98 | 1.000 ; 1.000 | 1.000 | 1.000 | 1.000
99| 1.000 | 1.000 | 1.000 | 1.000| 1.000
100 | 1.000 { 1.000 | 1.000 1.000 | 1.000

Table 6 Accuracy ratio comparison of BFT and CADIA (sample 51-100).
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A O B ADIA ADIA ADIA ADIA
RBFER AQ A A4 AG

101 | 1.000 1.000 1.000 1.000 1.000

102 | 1.000 1.000 1.000 1.000 1.000
103 | 1.000 1.000 1.000 1.000 | 1.000
104 | 1.000 | 1.000 1.000 1.000 | 1.000
105 | 1.000 | 0.928 | 0.928 | 0.928 | 1.000
106 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000
107 | 1.000 1.000 1.000 1.000 | 1.000
108 | 1.000 | 1.000 1.000 1.000 | 1.000
109 | 1.000 | 1.000 1.000 1.000 | 1.000
110 | 1.000 | 0.986 | 0.986 1.000 | 1.000
111 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000
112 | 1.000 | 0908 | 1.000 | 1.000 | 1.000
113 | 1.000 | 0.934 1.000 | 1.000 | 1.000
114 | 1.000 | 1.000 1.000 1.000 | 1.000
115 | 1.000 | 0.933 ] 0.933 | 1.000 | 1.000
116 | 1.000 1.000 1.000 { 1.000 1.000
117 | 1.000 | 1.000 1.000 1.000 | 1.000
118 | 1.000 | 0.901 0.907 | 0.907 | 1.000
119 | 1.000 | 1.000 1.000 1.000 [ 1.000
120 | 1.000 | 1.000 { 1.000 | 1.000 ] 1.000
121 ] 1.000 | 1.000 { 1.000| 1.000 | 1.000
122 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000
123 | 1.000 | 0.991 0.991 0.991 1.000
124 | 1.000 { 1.000 1.000 1.000 | 1.000
125 | 1.000 1.000 1.000 1.000 | 1.000

126 | 1.000{ 0.897 | 1.000{ 1.000 | 1.000
127 1 1.000 | 0.889 | 0.889 | 1.000: 1.000
128 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
129 | 1.000 | 0.885 | 1.000 | 1.000 [ 1.000
130 | 1.000 |} 1.000 | 1.000 | 1.000 | 1.000
131 | 1.000{ 1.000 ] 1.000 | 1.000 | 1.000
132 | 1.000 | 1.000 | 1.000{ 1.000 | 1.000
133 1 1.000 | 0.892 | 1.000 | 1.000 | 1.000
134 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
135 ] 1.000 | 1.000 | 1.000 | 1.000 | 1.000
136 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
137 1 1.000 1 1.000{ 1.000| 1.000 | 1.000
138 | 1.000 { 1.000 | 1.000 ] 1.000 | 1.000
139 | 1.000 | 1.000 | 1.000| 1.000} 1.000
140 | 1.000 | 0.859 | 0.859 | 1.000 | 1.000
1411 1.000 | 1.000 | 1.000 | 1.000 | 1.000
142 | 1.000 | 0.896 { 1.000 | 1.000 { 1.000
143 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
144 |1 1.000 ;] 1.000 | 1.000 | 1.000 | 1.000
145 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
146 | 1.000 | 1.000{ 1.000 | 1.000 | 1.000
147 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000
148 | 1.000 | 1.000 | 1.000} 1.000 [ 1.000
149 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
150 ] 1.000 | 1.000 | 1.000 } 1.000 | 1.000

Table 7 Accuracy ratio comparison of BFT and CADIA (sample 101-150).
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A O B ADIA AD|A ADIA ADIA

BER AO A Ad A6
151 | 1.000 | 0.840 1.000 1.000 | 1.000
152 | 1.000 1.000 1.000 1.000 1.000
153 | 1.000 0.859 1.000 1.000 1.000
154 | 1.000 1.000 1.000 | 1.000 | 1.000
155 | 1.000 | 1.000 1.000 1.000 1.000
156 | 1.000 1.000 1.000 1.000 1.000
157 | 1.000 | 1.000 1.000 1.000 | 1.000
158 | 1.000 | 1.000 1.000 1.000 | 1.000
159 | 1.000 | 0.899 | 0.899 | 0.899 1.000
160 | 1.000 1.000 1.000 1.000 | 1.000
161 | 1.000 | 1.000 1.000 1.000 | 1.000
162 | 1.000 1.000 1.000 { 1.000 | 1.000
163 | 1.000 1.000 | 1.000 1.000 | 1.000
164 | 1.000 0.614 1.000 1.000 1.000
165 | 1.000 | 1.000 | 1.000 ] 1.000| 1.000
166 | 1.000 1.000 | 1.000 1.000 | 1.000
167 | 1.000 1.000 1.000 1.000 1.000
168 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
169 | 1.000 1.000 1.000 1.000 1.000
170 | 1.000 | 1.000 1.000 1.000 | 1.000
171 | 1.000 1.000 1.000 1.000 | 1.000
172 | 1.000 | 1.000 1.000 1.000 | 1.000
173 | 1.000 1.000 1.000 1.000 | 1.000
174 | 1.000 1.000 1.000 1.000 | 1.000
175 | 1.000 | 1.000 1.000 1.000 1.000
176 | 1.000 1.000 1.000 1.000 1.000
177 | 1.000 | 0.898 | 0.898 | 0.898 1.000
178 | 1.000 | 1.000 | 1.000 1.000 1.000
179 | 1.000 0.994 1.000 1.000 1.000
180 | 1.000 1.000 1.000 1.000 | 1.000
181 | 1.000 | 1.000 1.000 1.000 | 1.000
182 | 1.000 ) 1.000| 1.000 | 1.000 | 1.000
183 | 1.000 1.000 1.000 1.000 | 1.000
184 | 1.000 0.992 1.000 1.000 1.000
185 | 1.000 1.000 1.000 | 1.000 ] 1.000
186 | 1.000 1.000 1.000 1.000 1.000
187 | 1.000 1.000 1.000 1.000 | 1.000
188 | 1.000 1.000 1.000 1.000 | 1.000
189 | 1.000 1.000 1.000 1.000 1.000
190 | 1.000 | 0.992 1.000 1.000 1.000
191 | 1.000 1.000 1.000 1.000 { 1.000
192 | 1.000 | 1.000 1.000 1.000 | 1.000
193 | 1.000{ 0.996 | 0.996 1.000 | 1.000
194 | 1.000 1.000 1.000 1.000 | 1.000
195 | 1.000 1.000 1.000 1.000 1.000
196 | 1.000 | 1.000 1.000 1.000 1.000
197 | 1.000 1.000 1.000 1.000 1.000
198 | 1.000 1.000 | 1.000 1.000 | 1.000
199 | 1.000 1.000 | 1.000| 1.000 | 1.000

200 | 1.000 | 1.000 | 1.000 | 1.000 ; 1.000

Table 8 Accuracy comparfson of BFT and CADIA (sample 151-200).
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BFT CADIA CADIA CADIA  CADIA

(AD) (A2) (A4) (A6)

Average

Table 9 Accuracy ratio comparison of BFT and CADIA.

Table 10 summarizes the results of the running time comparison of BFT and
CADIA with various numbers of analysis bids. Results show that BFT has an average
running time of 211.722 seconds. CADIA’s average running time is in the range 0.199 —
10.138 seconds when up to six analysis bids are considered. As expected, the larger the

number of analysis bids involved, the longer running time CADIA takes.

BFT CADIA CADIA CADIA CADIA

(A0) (A2) (A4) (AB)

Average | 211.722

Table 10 Running time comparison of BFT and CADIA.

Since each sample auction contains a total number of ten bids, the maximum
number of analysis bids becomes ten. When the maximum number of analysis bids is
used, CADIA is guaranteed to find the optimal revenue. The more the analysis bids are
considered, the better the revenue will be generated. In most cases, CADIA may not use
the maximum number of analysis bids before the optimal revenue is found. CADIA was
able to return the optimal revenue in all our test cases when six analysis bids were
considered. When six analysis bids are considered. CADIA will take only 10.138

seconds, which is about 4.8% of the time required by BFT, to identify the optimal
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revenue. From the empirical results and analysis, CADIA can be concluded as a system
that is capable of generating the optimal revenue and that runs much faster than BFT

based systems.

7.3.2 Comparison of CADIA and GST, Four Hill Climbers and ESG

7.3.2.1 Comparison of CADIA and GST

When the there are too many items and bids, it becomes impractical to compare
BFT and CADIA. CADIA is compared with GST in terms of a revenue generation. In
this test, each sample auction contains twenty items and one thousand bids. The number
of items has been selected in such a way that it cannot be handled realistically by BFT,
but it is still small enough as compared to the number of bids. In this evaluation, the ratio
of the number of items to the number of bids is 50. The purpose of such a setup is to
simulate realistic CAs in which there are always conflicts among bids. Tables 11 to 14
summarize the performance ratios of GST and CADIA with various numbers of analysis
bids for two hundred sample auctions. The first strategy of TBE as described in Section
6.2.2 is adopted here to organize the analysis bids. The results are sorted by performance

ratio for CADIA (AO) and plotted as a line chart (Figure 44).
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A O ADIA ADIA ADIA ADIA
AQ A A AG
1.000 | 1.238 1.238 1.238 [ 1.238
1.000 | 1.053 | 1.054 | 1.054 | 1.054
1.000 | 1.000 {1.000 | 1.000 | 1.000
1.000 | 1126 [ 1.126 [ 1.126 | 1.126
1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.000 | 1.167 1.167 | 1.167 | 1.167
1.000 | 1.116 | 1120 [1.120 | 1.120
1.000 | 1.043 1.043 1.043 1.043
1.000 | 1.000 1.000 1.000 1.000
10 | 1.000 | 1.041 1.044 | 1.044 | 1.044
11 | 1.000 | 1.095 1.095 1.095 1.095
12 1 1.000 | 1.323 | 1.323 | 1.323 | 1.323
13 11.000 1130 11130 | 1.130 |1.130
14 ] 1.000 | 1.044 | 1.044 | 1.044 {1.044
15 |1 1.000 | 1.168 1.168 1.168 1.168
16 | 1.000 { 1.113 {1113 | 1.113 | 1.113
17 [ 1.000 | 1.179 1.179 1.179 | 1179
18 | 1.000 | 1.113 1.113 1.113 1.113
19 [ 1.000 | 1.200 | 1.200 | 1.200 | 1.200
20 | 1.000 | 1.048 [1.050 [1.050 | 1.050
21 11.000 | 1.106 | 1.106 | 1.108 | 1.108
22 | 1.000 | 1.128 1.128 1.128 1.128
23 11.000 j 1.120 | 1120 1.120 |1 1.120
24 [ 1.000 | 1.301 1.301 1.301 1.301
251 1.000 | 1157 1.157 1.157 1.157
26 | 1.000 { 1.000 1.000 1.000 1.000
27 11000 | 1276 1276 (1276 | 1.276
28 | 1.000 | 1.053 1.053 1.053 1.053
29 [1.000 | 1.121 1.121 1.121 1.121
30 | 1.000 | 1.048 1.050 | 1.050 | 1.050
31 11.000 | 1.056 | 1.056 | 1.056 | 1.056
32 {1.000 | 1.178 1.178 1.178 1.178
33 | 1.000 | 1.255 1.255 1.255 1.257
3411000 | 11290 | 1129 | 1.129 {1.129
35 | 1.000 | 1.040 1.040 1.040 1.040
36 | 1.000 | 1.099 |1.099 | 1.099 | 1.099
37 1 1.000 | 1.321 1.321 1.323 | 1.323
38 | 1.000 { 1.189 1.192 1.193 1.193
39 | 1.000 | 1.229 1.229 | 1.229 | 1.229
40 | 1.000 | 1.168 1.168 1.168 | 1.170
41 ) 1.000 | 1.179 1.179 1.181 1.181
42 | 1.000 | 1.000 1.000 1.000 1.000
43 11.000 | 1.086 | 1.086 | 1.086 | 1.086
44 | 1.000 | 1.229 1.229 1.229 1.229
45 | 1.000 | 1.094 1.094 1.094 1.096
46 | 1.000 | 1.044 1.044 1.044 1.046
47 11.000 | 1.054 | 1.054 | 1.054 | 1.054
48 | 1.000 | 1.105 1.105 1.105 1.107
49 [ 1.000 | 1.301 1.301 1.303 | 1.303
50 | 1.000 | 1.118 1.118 1.118 1.118

OloiN|O|O|A~WIN]—

Table 11 Performance ratio comparison of GST and CADIA (sample 1-50).
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AUCTION  GST CADIA CADIA CADIA CADIA

NUMBER (A0)  (A2)  (Ad4)  (A8)

51 1 1.000 1.481 1.481 1.481 1.481
52 | 1.000 1.658 | 1.658 1.658 | 1.658
53 | 1.000 1.339 | 1.339 | 1.339 ] 1.339
54 | 1.000 1.171 1.171 1.171 1.171
55 | 1.000 1.236 | 1.236 1.236 | 1.236
56 | 1.000 1.273 | 1273 | 1273 | 1.273
57 | 1.000 1.000 | 1.000 | 1.000 | 1.000
58 | 1.000 1.359 1.359 | 1.359 | 1.362
59 | 1.000 1.202 1.204 | 1.205 | 1.205
60 11.000 | 1.118 | 1.121 1.121 1.121
61 [ 1.000 1.269 1.269 | 1269 | 1.269
62 | 1.000 1.110 | 1.113 | 1.113| 1.113
63 | 1.000 1.168 | 1.168 | 1.168 | 1.168
64 | 1.000 1225 | 1225 | 1225 | 1.225
65 | 1.000 1102 | 1.102 1.102 | 1.102
66 | 1.000 1.121 1.121 1.122 1.122
67 | 1.000 1.102 1.102 1.102 1.102
68 | 1.000 1.214 | 1247 | 1217 | 1.217
69 | 1.000 1.207 | 1.207 | 1.207 | 1.207
70 { 1.000 1.306 | 1.306 | 1.306 | 1.306
71 | 1.000 1.221 1.221 1222 1 1.222
72 | 1.000 1.2556 | 1.255 1.258 | 1.258
73 | 1.000 1.388 | 1.388 | 1.388 | 1.388
74 | 1.000 1114 | 1114 | 1114 1.114
75 | 1.000 1.319 ) 1.319| 1.319] 1.319
76 | 1.000 1.671 1.671 1.671 1.671
77 { 1.000 1.298 1 1298 1.298 | 1.301
78 | 1.000 1.182 1.182 | 1.182 1.182
79 { 1.000 1.191 1.191 1.191 1.191
80 [ 1.000 1.221 1.221 1.221 1.221
81 11.000 1190 | 1.192 1192 1 1.192
82 | 1.000 1.256 | 1256 | 1.256 | 1.256
83 [ 1.000 1.495 | 1.495 | 1495 | 1.495
84 [ 1.000 1.048 | 1.050 | 1.051 1.051
85 | 1.000 1.113 1 1113} 1113 | 1.113
86 | 1.000 1.240 1.243 1.243 | 1.243
87 | 1.000 1.048 | 1.048 | 1.048 | 1.048
88 | 1.000 1.154 | 1154 | 1.154 | 1.154
89 | 1.000 1.169 1.169 | 11721 1.172
90 | 1.000 1100 | 1102 | 1.102 | 1.102
91 | 1.000 1256 | 1.256 ] 1.256 | 1.256
92 | 1.000 1272 | 1275 | 1275 ] 1.275
93 | 1.000 1.256 1 1.265 | 1255 | 1.255
94 | 1.000 1.359 1.359 | 1.359 | 1.359
95 | 1.000 1.051 1.0563 | 1.053 | 1.053
96 [ 1.000 1111 1.111 1.111 1.111
97 | 1.000 1169 | 1.169 | 1.169 1.169
98 | 1.000 1.171 1.171 1.171 1.171
99 | 1.000 1.242 1.243 1.243 | 1.243
100 | 1.000 1.239 1.239 1.242 | 1.242

Table 12 Performance ratio comparison of GST and CADIA (sample 51-100).
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A O ADIA ADIA ADIA ADIA

BER AQ A A4 AO

101 | 1.000 1117 1.117 1.117 1.117
102 | 1.000 1,108 1.108 1.108 | 1.108
103 | 1.000 1.060 1.060 1.060 1.060
104 | 1.000 1.322 1.322 1.322 1.324
105 | 1.000 1.202 1.205 1.205 | 1.205
106 | 1.000 1.448 1.448 1.451 1.451
107 | 1.000 1.053 1.053 ] 1.053 | 1.053
108 | 1.000 1.167 1.167 1.167 1.169
109 | 1.000 1.218 | 1.218 1.218 1.221
110 | 1.000 1.057 1.059 1.059 | 1.059
111 { 1.000 1.051 1.051 1.051 1.054
112 | 1.000 1.283 1.283 1.283 | 1.286
113 | 1.000 1.300 1.300 | 1.300 | 1.300
114 | 1.000 1.057 1.060 1.060 1.060
115 | 1.000 1.284 1284 | 1286 1.286
116 | 1.000 1.410 1.410 1410 | 1.410
117 | 1.000 1.105 1.105 1.105 1.105
118 | 1.000 1.225 1.225 1.225 1.225
119 | 1.000 1.168 | 1.168 | 1.170 1.170
120 | 1.000 1.061 1.061 1.128 1.128
121 | 1.000 1.172 1.172 1172 1.172
122 | 1.000 1.228 1.228 1.229 | 1.229
123 | 1.000 1.105 1.105 1.105 1.105
124 | 1.000 1.342 1.346 1.346 | 1.346
125 | 1.000 1.061 1.061 1.064 | 1.064
126 | 1.000 1.342 1.344 | 1.345| 1.345
127 1 1.000 1.048 1.048 1.048 | 1.048
128 | 1.000 1.317 | 1317 1.317 | 1.317
129 | 1.000 1.238 1.238 | 1.240 1.240
130 | 1.000 1.193 1.193 1.193 1.193
131 | 1.000 1.299 1.299 1.299 1.299
132 ] 1.000 1.360 1.360 1.360 | 1.360
133 | 1.000 1.105 1.105 1.105 | 1.105
134 | 1.000 1.111 1.111 1.111 1.113
135 | 1.000 1.195 1.195 1.195 | 1.195
136 | 1.000 1.056 1.056 1.056 1.056
137 | 1.000 1.556 1.556 1.556 1.556
138 | 1.000 1.228 | 1.228 1.228 | 1.228
139 | 1.000 1.189 1.189 1.189 1.189
140 | 1.000 1.226 1.226 1.226 | 1.226
141 | 1.000 1.323 | 1.323 1.323 1.323
142 | 1.000 1.217 1.217 1.217 1.217
143 | 1.000 1.040 1.040 1.040 1.040
144 | 1.000 1.659 1.659 1.659 | 1.663
145 | 1.000 1.181 1.181 1.181 1.181
146 | 1.000 1.171 1.171 1171 1.171
147 | 1.000 1.051 1.051 1.051 1.051
148 | 1.000 1.146 | 1.146 1.146 1.146
149 | 1.000 1.147 1.147 1.147 1.148
150 | 1.000 1.131 1.131 1.131 1.131

Table 13 Performance ratio comparison of GST and CADIA (sample 101-150).
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AUCTION GST CADIA CADIA CADIA CADIA
NUMBER (A0)  (A2)  (A4)  (A6)
151 | 1.000 | 1.117 | 1.117 | 1.117 ] 1.117
152 | 1.000 | 1.108 | 1.108 | 1.108 | 1.108
153 | 1.000 | 1.060 | 1.060 | 1.060 | 1.060
154 | 1.000 | 1.322 | 1.322 | 1.322 | 1.324
155 | 1.000 | 1.202 | 1.205 | 1.205 | 1.205
156 | 1.000 | 1.448 | 1.448 | 1.451 | 1.451
157 | 1.000 | 1.053 | 1.053 | 1.053 | 1.053
158 | 1.000 | 1.167 | 1.167 | 1.167 | 1.169
159 | 1.000 | 1218 | 1.218 | 1.218 | 1.221
160 | 1.000 | 1.057 | 1.059 | 1.059 | 1.059
161 | 1.000 | 1.051 | 1.051 | 1.051 | 1.054
162 | 1.000 | 1283 | 1.283 | 1.283 | 1.286

1
1
1
1
1
1
7
1
1
1
1
163 | 1.000 1.300 | 1.300 | 1.300 | 1.300
164 | 1.000 1.057 | 1.060 1.060 | 1.060
165 | 1.000 1284 | 1284 | 1.286 | 1.286
166 | 1.000 1.410 1410 | 1.410 1.410
167 { 1.000 1.105 | 1.105 1.105 | 1.105
168 | 1.000 1.225 1.225 1.225 | 1.225
169 | 1.000 1.168 1.168 | 1.170 | 1.170
170 | 1.000 1.061 1.061 1128 | 1.128
171 | 1.000 1172 | 1172 1172 | 1172
172 | 1.000 1.228 1.228 1.229 | 1.229
173 | 1.000 1.105 1.105 1.105 1.105
174 1 1.000 1342 | 1346 | 1.346 | 1.346
175 [ 1.000 1.061 1.061 1.064 | 1.064
176 | 1.000 1.342 | 1344 | 1.345| 1.345
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

177 1 1.000 1.048 .048 | 1.048 | 1.048
317 | 1.317 ) 1.317
238 | 1.240 | 1.240
193] 1.193 | 1.193

178 | 1.000 1.317
179 | 1.000 1.238
180 | 1.000 1.193
181 | 1.000 1.299
182 | 1.000 1.360
183 | 1.000 1.105
184 | 1.000 1.111
185 | 1.000 1.195
186 | 1.000 1.056
187 | 1.000 1.556
188 | 1.000 1.228
189 | 1.000 1.189
190 | 1.000 1.226
191 { 1.000 1.323
192 | 1.000 1.217
193 | 1.000 1.040
194 [ 1.000 1.659
195 | 1.000 1.181
196 | 1.000 1.171
197 | 1.000 1.051
198 | 1.000 1.146
199 | 1.000 1.147
200 | 1.000 1.131

299 [ 1.299 | 1.299
360 | 1.360 | 1.360
105 1105 ] 1.105
111 1.111 1.113
195 | 1.195}1 1.195
056 | 1.056 | 1.056
556 | 1.556 | 1.556
228 | 1.228 | 1.228
189 | 1.189 | 1.189

226 | 1.226 | 1.226
323 | 1.323 | 1.323
217 1.217 | 1.217
.040 | 1.040 | 1.040
659 | 1.659 | 1.663
.181 1.181 1.181

171 1.171 1.171
051 1.051 1.051
146 | 1.146 | 1.146
147 1.147 | 1.148
131 1.131 1.131

Table 14 Performance ratio comparison of GST and CADIA (sample 151-200).
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GST CADIA CADIA CADIA CADIA
(AQ) (A2) (A4) (AB)

Average

Table 15 Performance ratio comparison of GST and CADIA.

Table 15 summarizes the average performance ratios. The larger the number of
analysis bids used, the better CADIA’s performance will be. For instance, in Auction No.
126, CADIA has a performance ratio of 1.342 when no analysis bid is used; it has
successfully improved the ratio to 1.344 and 1.345 when two and four analysis bids are
used respectively at successive iterations during the winner determination process.
Results show that CADIA has an average performance ratio of 1.186, 1.186, 1.187 and
1.187 when zero, two, four and six analysis bids are used respectively. In other words,
CADIA outperforms GST by 18.6%, 18.6%. 18.7% and 18.7% when zero, two, four and

six analysis bids are used in 200 sample auctions.

101



‘VIAVD pue 1S Jo uospieduwod ones duewiojldd $# 3indy]

1S9 — (QVIAVD - - — (P)VIAYD - (2vIavo ---- (OVIavD —

(on3es asuewuopuad Aq pajos) JaquinN uol3dny

961 181 991 LGl 9¢l 121 90L L6 92 19 9y L€ 91 |

1S9 :
'\\l‘nl\'.“l‘\\.nl‘lll\‘l‘l\
\l\l\'\l\\‘.‘\ll‘\lu-l\'\'.l]gwr_uo CONO Ou OWO_O . A©v< .A¢v< .ANv< .AOv<

(sp1q 0001 pue swajl gZ sulejuod yoea ‘suoiyone sjdwes goz)

0G6°0
0GL°|L
0GE'L

- 09G°L

0GL°L

1S9 pue yiavo jo Cow_._mQEOU oljey 9aduew.ioliad

o1}y 9ouUBWLIOMad

102



7.3.2.2 Comparison of CADIA and Four Hill Climbers

Tables 16, 17, 18, and 19 report the results of comparing CADIA with the four
climbers, which have also been plotted as line charts (Fig. 45, 46, 47, and 48) for all two
hundred sample auctions. The abbreviations A0, A2, A4, and A6 after the word CADIA
mean that zero, two, four, and six analysis bids are used. The first strategy of TBE as
described in Section 6.2.2 is adopted here to organize the analysis bids. The performance

ratio of PRICE is used as a reference for the comparison and is thus set to one.
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A O PR OR O DEMA ADIA ADIA CADIA ADIA
BER AQ A A4 AG
1 1.000 1.121 1.121 1.239 1238 | 1.238 | 1.238 | 1.238
2 1.000 1.054 1.054 1.052 1.053 | 1.054 | 1.054 | 1.054
3 1.000 1.000 0.999 0.997 1.000 | 1.000 | 1.000 | 1.000
4 1.000 1.065 1.129 1.127 1.126 1.126 1.126 1.126
5 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000
6 1.000 0.999 1.000 1.167 1167 | 1167 | 1167 | 1.167
7 1.000 1.000 1.000 1.117 1.116 1.120 1.120 1.120
8 1.000 1.047 1.047 1.044 1.043 | 1.043 | 1.043 | 1.043
9 1.000 0.999 1.000 0.997 1.000 | 1.000 | 1.000 | 1.000
10 1.000 1.000 1.000 1.041 1.041 1.044 | 1.044 | 1.044
11 1.000 1.000 1.000 1.095 1.095 1.095 1.095 1.095
12 1.000 1.108 1.162 1.324 1.323 | 1.323 | 1.323 | 1.323
13 1.000 1.000 1.000 1.130 1.130 | 1130 | 1.130 | 1.130
14 1.000 1.044 1.044 1.042 1.044 | 1.044 | 1.044 | 1.044
15 1.000 1.170 1.170 1.168 1.168 1.168 1.168 1.168
16 1.000 0.999 1.000 1.111 1.113 1.113 | 1.113 1.113
17 1.000 1.181 1.122 1.179 1.179 1.179 1.179 1.179
18 1.000 1.113 1.056 1.111 1.113 1.113 1.113 1.113
19 1.000 1.101 1.000 1.201 1.200 1.200 1.200 1.200
20 1.000 0.998 1.051 1.048 1.048 | 1.050 | 1.050 | 1.050
21 1.000 1.107 1.054 1.106 1.106 | 1.106 ;| 1.108 | 1.108
22 1.000 1.127 1.000 1.126 1.128 | 1.128 | 1.128 [ 1.128
23 1.000 1.060 1.059 1.118 1.120 | 1.120 [ 1.120 | 1.120
24 1.000 1.242 1.302 1.301 1.301 1.301 1.301 1.301
25 1.000 1.157 1.158 1.154 1.157 | 1.157 1.157 1.157
26 1.000 0.951 1.000 0.997 1.000 | 1.000 | 1.000 | 1.000
27 1.000 1.276 1.277 1.273 1.276 | 1.276 | 1.276 | 1.276
28 1.000 1.000 1.000 1.051 1.053 1.053 1.053 1.053
29 1.000 1.121 1.121 1.119 1.121 1.121 1.121 1.121
30 1.000 1.051 1.000 1.049 1.048 | 1.051 1.051 1.051
31 1.000 1.057 1.056 1.054 1.056 | 1.056 | 1.056 | 1.056
32 1.000 1.122 1.122 1.179 1.178 | 1.178 1.178 1.178
33 1.000 1.206 1.206 1.255 1.255 1.255 1.255 1.257
34 1.000 1.065 1.064 | - 1.127 1129 | 1129 | 1.129 | 1.129
35 1.000 1.040 1.000 1.039 1.040 1.040 1.040 1.040
36 1.000 1.102 1.051 1.100 1.099 1.099 1.099 1.099
37 1.000 1.258 1.322 1.321 1.320 | 1.320 | 1.323 | 1.323
38 1.000 1.128 1.128 1.190 1.189 1.192 1.193 1.193
39 1.000 1.172 1.171 1.227 1.229 1.229 | 1.229 1.229
40 1.000 1.000 1.000 1.168 1.168 | 1.168 | 1.168 | 1.170
a1 1.000 1.182 1.181 1.179 1.179 1.179 1.181 1.181
42 1.000 1.000 1.000 0.998 1.000 | 1.000 [ 1.000 | 1.000
43 1.000 1.044 0.999 1.086 1.086 | 1.086 | 1.086 | 1.086
44 1.000 1.171 1.228 1.227 1.229 | 1.229 | 1.229 | 1.229
45 1.000 0.951 1.000 1.094 1.094 1.094 1.094 1.096
46 1.000 1.000 1.000 1.044 1.044 | 1.044 | 1.044 | 1.046
47 1.000 0.999 1.057 1.112 1114 | 1114 | 1114 | 1.114
48 1.000 0.999 1.108 1.105 1.105 1.105 | 1.105 1.107
49 1.000 1.242 1.242 1.301 1.301 1.301 1.303 1.303
L 50 1.000 1.060 1.060 1.118 1.118 | 1.118 | 1.118 | 1.118

Table 16 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 1-50).
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A OR O DEMA ADIA ADIA ADIA ADIA
: £\ . A Ad A O
51 1.000 1.483 1.483 1.481 1.481 1.481 1.481 1.481
52 1.000 1.658 1.000 1.655 1.658 1.658 1.658 1.658
53 1.000 1.229 1.171 1.340 1.339 1.339 1.339 1.339
54 1.000 1.171 1.171 1.169 1.171 1.171 1.171 1.171
55 1.000 1.060 1.060 1.237 1.236 1.236 1.236 1.236
56 1.000 1.276 1.069 1.273 1.273 1.273 1.273 1.273
57 1.000 0.951 1.000 0.997 1.000 1.000 1.000 1.000
58 1.000 1.302 1.000 1.359 1.359 | 1.359 1.359 1.362
59 1.000 1.206 1.207 1.203 1.202 1.204 1.205 1.205
60 1.000 1.121 1.120 1.119 1.118 1.121 1.121 1.121
61 1.000 1.163 1.163 1.269 1.269 1.269 1.269 1.269
62 1.000 1.054 1.057 1.110 1.110 1.113 1.113 1.113
63 1.000 1.171 0.999 1.168 1.168 1.168 1.168 1.168
64 1.000 1.228 1.228 1.225 1225 | 1.225 | 1.225 1.225
65 1.000 1.101 1.000 1.100 1.102 1.102 1.102 1.102
66 1.000 1.121 1.000 1.119 1.121 1.121 1.122 1.122
67 1.000 1.000 1.051 1.100 1.102 1.102 1.102 1.102
68 1.000 1.162 1.054 1.214 1.214 1.217 1.217 1.217
69 1.000 1.068 1.206 1.204 1.207 1.207 1.207 1.207
70 1.000 1.206 1.206 1.306 1.306 1.306 1.306 1.306
71 1.000 1.137 1.136 1.135 1.137 1.137 1.138 1.138
72 1.000 1.193 1.257 1.255 1.255 1.255 1.257 1.257
73 1.000 1.388 1.193 1.385 1.388 1.388 1.388 1.388
74 1.000 1.061 1.121 1,180 1.182 1.182 1.182 1.182
75 1.000 1.257 1.064 1.319 1.319 1.319 1.319 1.319
76 1.000 1.596 1.671 1.668 1.671 1.671 1.671 1.671
77 1.000 1.240 1.000 1.298 1.298 | 1.298 1.298 1.301
78 1.000 1.121 1.000 1.179 1.182 1.182 1.182 1.182
79 1.000 1.000 1.064 1.191 1.191 1.191 1.191 1.191
80 1.000 1.221 1.219 1.218 1.221 1.221 1.221 1.221
81 1.000 1.128 1.191 1.190 1.190 1.192 1.192 1.192
82 1.000 1.259 1.257 1.256 1.256 1.256 1.256 1.256
83 1.000 1.464 1.037 1.533 1.495 1.495 1.495 1.495
84 1.000 1.050 1.051 1.048 1.048 1.050 1.051 1.051
85 1.000 1.000 1.056 1.111 1.113 1,113 1,113 1.113
86 1.000 1.243 1.244 1.240 1.240 1.243 1.243 1.243
87 1.000 0.948 1.000 1.048 1.048 1.048 1.048 1.048
88 1.000 1.000 1.051 1.152 1.154 1.154 1.154 1.154
89 1.000 1.114 1.171 1.169 1.169 1.169 1.171 1.171
90 1.000 1.000 1.000 1.100 1.100 1.102 1.102 1.102
91 1.000 1.258 1.194 1.256 1.256 1.256 1.256 1.256
92 1.000 1.205 1.274 1.273 1.272 1.275 1.275 1.275
93 1.000 1.206 1.257 1.255 1.255 1.255 1.255 1.255
94 1.000 1.362 1.301 1.360 1.359 1.359 1.359 1.359
95 1.000 1.054 1.054 1.052 1.051 1.053 1.053 1.053
96 1.000 1.000 1.000 1.111 1,111 1.111 1.111 1.111
97 1.000 1.057 1.171 1.169 1.169 1.169 1.169 1.169
98 1.000 1.172 1.171 1.169 1.171 1.171 1.171 1.171
99 1.000 1.181 1.181 1.240 1.242 1.243 1.243 1.243
100 1.000 1.242 1.242 1.239 1.239 1.239 1.242 1.242

Table 17 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 51-100).
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A O DN .- O ) A D ADIA ADIA ADIA ADIA

BEFR AQ A A4 AD

101 1.000 1.119 1.060 1.118 1117 | 1.117 | 1.117 1.117
102 1.000 1.000 1.107 1.106 1.108 | 1.108 | 1.108 1.108
103 1.000 1.000 0.999 1.061 1.060 | 1.060 1.060 { 1.060
104 1.000 1.217 1.271 1.323 1.322 | 1.322 1.322 | 1.324
105 1.000 1.206 1.206 1.202 1.202 | 1.205 | 1.205 1.205
106 1.000 1.385 1.449 1.448 1.448 | 1.448 | 1.451 1.451
107 1.000 1.053 1.054 1.051 1.053 | 1.053 | 1.053 [ 1.053
108 1.000 1.113 1.114 1.168 1.167 | 1.167 | 1.167 | 1.169
109 1.000 1.221 1.222 1.219 1218 | 1.218 | 1.218 [ 1.221
110 1.000 1.059 1.059 1.057 1.057 | 1.059 | 1.059 [ 1.059
111 1.000 1.000 1.000 1.052 1.051 1.051 1.051 1.054
112 1.000 1.286 1.057 1.284 1283 | 1.283 | 1.283 | 1.286
113 1.000 1.242 1.122 1.301 1.300 | 1.300 1.300 1.300
114 1.000 1.060 1.059 1.057 1.057 | 1.060 1.060 | 1.060
115 1.000 1.229 1.229 1.284 1.284 | 1284 | 1.286 | 1.286
116 1.000 1.412 1.412 1.410 1.410 | 1.410 | 1.410 1.410
117 1.000 0.999 0.999 1.105 1.105 | 1.105 1.105 1.105
118 1.000 1.114 1.114 1.225 1.225 1.225 1.225 | 1.225
119 1.000 1.000 1.169 1.168 1.168 | 1.168 | 1.170 1.170
120 1.000 1.128 1.129 1.126 1.061 1.061 1.128 | 1.128
121 1.000 1.171 1.171 1.169 1172 + 1172 1.172 1 1172
122 1.000 1.228 1.228 1.226 1.228 | 1.228 1.229 1.229
123 1.000 1.053 1.107 1.106 1105 | 1.105 1.105 1.105
124 1.000 1.345 1.276 1.343 1.342 | 1.346 1.346 | 1.346
125 1.000 1.000 0.999 0.998 0997 | 0997 | 1.000 | 1.000
126 1.000 1.345 1.207 1.342 1.342 1.344 | 1.345 1.345
127 1.000 1.048 1.048 1.046 1.048 | 1.048 | 1.048 1.048
128 1.000 1.238 1.000 1.314 1.317 | 1.317 | 1.317 | 1.317
129 1.000 1.181 1.181 1.238 1.238 | 1.238 | 1.240 | 1.240
130 1.000 0.999 1.000 1.054 1.056 | 1.056 | 1.056 | 1.056
131 1.000 1.182 1.001 1.300 1.300 | 1.300 | 1.300 { 1.300
132 1.000 1.302 1.182 1.360 1.360 | 1.360 1.360 | 1.360
133 1.000 1.000 1.054 1.105 1.105 1.105 1.105 1.105
134 1.000 1.113 1.000 1.111 1.111 1.111 1.111 1.113
135 1.000 1.000 1.049 1.193 1.195 | 1.195 1.195 1.195
136 1.000 0.938 1.000 1.057 1.056 | 1.056 | 1.056 1.056
137 1.000 1.559 1.559 1.556 1556 | 1.556 | 1.556 1.556
138 1.000 1.171 1.114 1,226 1.228 | 1.228 | 1.228 | 1.228
139 1.000 1.128 1.127 1.190 1.189 | 1.189 1.189 1.189
140 1.000 1.228 1.227 1.226 1226 | 1.226 | 1.226 1.226
141 1.000 1.259 1.260 1.321 1.323 | 1.323 | 1.323 1.323
142 1.000 1.218 1.218 1.215 1.217 | 1217 | 1.217 | 1.217
143 1.000 0.999 1.042 1.040 1.040 | 1.040 | 1.040 1.040
144 1.000 1.663 1.663 1.661 1.659 | 1659 | 1.659 | 1.663
145 1.000 1.182 1.181 1.179 1.181 1.181 1.181 1.181
146 1.000 1172 1.171 1.169 1.171 1.171 1.171 1171
147 1.000 1.051 1.051 1.048 1.051 1.051 1.051 1.051
148 1.000 1.146 1.147 1.144 1146 | 1146 | 1.146 | 1.146
149 1.000 1.000 1.147 1.145 1147 | 1147 | 1.147 | 1.148
150 1.000 1.088 1.044 1.131 1.131 1.131 1.131 1.131

Table 18 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 101-150).
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AUCTION  PRICE N2NORM KO DEMAND CADIA CADIA CADIA CADIA

NUMBER (AQ) (A2) (A4) (AB)
151 1.000 1.128 1.128 1.126 1.125 1.128 1.128 1.128
152 1.000 1.103 1.205 1.204 1.204 | 1.204 1.204 1.204
153 1.000 1.103 1.154 1.152 1.152 1.152 1.152 1.152
154 1.000 1.000 1.000 0.998 1.000 | 1.000 1.000 1.000
155 1.000 1.049 1.049 1.145 1.145 1.145 1.145 1.145
156 1.000 1.194 1.193 1.191 1.191 1.191 1.191 1.193
157 1.000 1.056 1.056 1.111 1.110 1.110 1.110 1.110
158 1.000 1.000 1.000 1.270 1.272 1.272 1.273 1.273
159 1.000 1.257 1.257 1.255 1.255 1.258 1.258 1.258
160 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000
161 1.000 1.000 1.060 1.057 1.057 1.059 1.060 1.060
162 1.000 1.054 1.054 1.105 1.105 1.105 1.107 1.107
163 1.000 1.106 1.000 1.158 1.158 1.158 1.158 1.158
164 1.000 1.241 1.000 1.239 1.239 1.242 1.242 1.242
165 1.000 0.902 0.999 1.047 1.046 1.046 1.046 1.046
166 1.000 1.109 0.999 1.160 1.160 1.160 1.160 1.160
167 1.000 1.051 1.051 1.152 1.152 1.152 1.152 1.152
168 1.000 1.108 1.108 1.159 1.159 1.159 1.159 1.159
169 1.000 1.000 1.220 1.219 1.218 1.218 1.218 1.222
170 1.000 1.121 1.120 1.180 1.179 | 1.181 1.181 1.182
171 1.000 1.759 1.758 1.756 1.759 1.759 1.759 1.759
172 1.000 1.304 1.184 1.302 1.304 1.304 1.304 1.304
173 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000
174 1.000 1.258 1.259 1.256 1.256 1.258 1.258 1.258
175 1.000 1.069 1.069 1.134 1.137 1.137 1.137 1.137
176 1.000 1.208 1.277 1.274 1.274 1.274 1.277 1.277
177 1.000 1.000 1.000 1.106 1.107 1.107 1.107 1.108
178 1.000 1.000 1.128 1.190 1.192 1.192 1.192 1.192
179 1.000 1.054 1.108 1.269 1.268 1.270 1.270 1.271
180 1.000 1.258 1.257 1.256 1.255 1.255 1.258 1.258
181 1.000 1.121 1.061 1.118 1.118 1.118 1.118 1.118
182 1.000 1.048 1.049 1.046 1.048 1.048 1.048 1.048
183 1.000 1.400 1.401 1.397 1.401 1.401 1.401 1.401
184 1.000 1.053 1.054 1.159 1.159 1.159 1.159 1.159
185 1.000 1.196 1.196 1.242 1.242 1.242 1.242 1.242
186 1.000 1.121 1.120 1.118 1.118 1.118 1.120 1.120
187 1.000 1.182 1.181 1.180 1.179 1.179 1.179 1.179
188 1.000 1.482 1.483 1.480 1.480 1.480 1.482 1.482
189 1.000 1.137 '1.136 1.135 1134 | 1.134 1.137 1.137
190 1.000 1.051 1.051 1.202 1.202 1.202 1.202 1.202
191 1.000 1.206 1.275 1.272 1.274 | 1.276 1.276 1.276
192 1.000 1.046 1.000 1.091 1.092 1.092 1.092 1.092
193 1.000 1.074 1.293 1.293 1.293 | 1.293 1.293 1.293
194 1.000 1.054 1.053 1.051 1.051 1.053 1.053 1.053
195 1.000 1.000 1.000 1.095 1.095 1.095 1.095 1.095
196 1.000 1.194 1.194 1.192 1.191 1.194 1.194 1.194
197 1.000 1.228 1.229 1.226 1.226 | 1.226 1.226 1.226
198 1.000 1.061 1.061 1.178 1.180 1.180 1.180 1.180
199 1.000 1.277 1.137 1.273 1.273 | 1.273 1.276 1.276
200 1.000 1.055 1.113 1.111 1.111 1.111 1.111 1.111

Table 19 Performance ratio comparison of 4 Hill Climbers and CADIA (sample 151-200).

107




/61 €8l 691 GGl Lyl LCL €LL 66 S8 L. LS €F 62 Gl |

"VIAVD Pue D14 d Jo uostieduwod ones 3dueuiiojiag Sp 2ansiy

(9v) VIavD — () ViavD  (2v) Viavd — (V) VIavo — 30Rid —

(ones asueunopad Aq papos) JaquinN uonony

0060

- aled )xﬂ?]\l«\\ 1 0oL’
g

o B 00¢’L

o S -+ 00971

0061

(spid 0001 pue swa) gz sulejuod Yyoes ‘suonone ajdwes 00z)

VIAvD pue 3J1dd Jo uosiiedwion onjey asuewiousd

oljey aduewouad

108



“VIAVD Put WHONZN Jo uostiedwod onjed 3dugwao)idd 9p 31ndiyg

(ov) Viavo — (bVY) VIavD —

(ones souewopad Aq pauos) JaquinN uolony

/6l €81 691 GGL Lyl ZL €LL 66 S8 L. LS €7 6Z S L
\L
_ o ol ML) Al (AN

g AU

\ﬂl}n\<q< << ¥

(ov ¥V 7V ‘0v) VIAQVD

/

|

(sp1q 000 pue swajl gZ sulejuod Yyoea ‘suonone ajdwes 0oz)

viavd pue WNHONCZCN jo Cow_._mn_EOU oljey sduewioliod

(2v) VIavD — (0%) VIavD — INHONZN —

0060

00lL’L

00¢’}

00G°1L

004°}

006°}

oljey aduew.opad

109



(9%) VIaYO — (6¥) VIavo

"VIAVD pue O) Jo uostieduiod orjed dUeWLIONdJ Ly 24n31g

(2v) ViavD — 8<v vIavo —

(onjes asuewsopad Aq papos) JaquinN uonony

Ov_l.

/L6l €81 691 GGl bl LCl €LL 66 98 LL LS €v 62 GlL |
| Sii?
\Al%%; ﬁ 2< L
%ﬁ%\% RN (U
\ (9V ¥V TV ‘0V) VIAVO

|

/

(sp1q 0001 pue swa}l gZ Ulejuod yoes ‘suonone ajdwes 9oz)

VIiavo pue OY Jo uosuedwos uoney asueulojad

000°}
0oL’}
00¢’}
00¢’L
0[0) "
00G°}
009°}
004°}
008°}

oljey aouewlopad

110



"VIAVD Pue NVIAA( Jo uostiedurod onjel 3dueurio)jidg g 31ndiy

(9v) VIavD — (b¥) VIavD — (2v) VIavD — (0V) VIavO — ANVINIA —

(on3ea asuewniopad AQ papos) JaquinN uolony

66l L8l €91 Gvl LZL 60L L6 €L GS9 L€ 6L |

A

E—

\|\(|\||\|\.\|\t\

\I\l\\\!«\l\!4

\n\l\4 soueuuojrad sannaduwos A1oa saey QN VINAQ PUR VIAVD

/

[

/

|

(sp1q 0001 pue swaji gz suiejuod yoea ‘suonone ajdwes 9oz)

000°1
00l -
0021 m
00€'} 3
00t B
005’ @
- 009'L &
- 00L°L ©
008°1

viavo pue gNVYIN3QJ Jo COw_._mQEOU oljey aduewoliad

111



PRICE N2NORM KO DEMAND CADIA CADIA CADIA CADIA

(AQ) (A2) (A4) (AB)

Aorage

Table 20 Performance ratio comparison of hill climbers and CADIA.

Table 20 summarizes the average performance ratios. On average, DEMAND,

which had a performance ratio of' 1.186, performed best among all hill climbers. On the
other hand, results show that CADIA had an average performance ratio of 1.185, 1.186,
1.187 and 1.187 when zero, two, four and six analysis bids were used respectively. We
also recorded that in all 200 auctions, the number of auctions that CADIA achieved better
revenue than PRICE, N2NORM, KO and DEMAND were 191, 148, 148 and 133

respectively (Table 21).

CADIA CADIA  CADIA  CADIA
Vs V8 vs VS

PRICE  N2NORM KO DEMAND

Total=200

Table 21 Number of Auction that CADIA outperforms the hill climbers.

7.3.2.3 Comparison of CADIA and ESG

Tables 22 and 23 report the results of comparing CADIA with ESG, which have

also been plotted as line chart (Figure. 49) for all two hundred sample auctions. The
abbreviation A6 after the word CADIA means that six analysis bids are used. The first
strategy of TBE as described in Section 6.2.2 is adopted here to organize the analysis
bids. Since ESG is able to obtain better results at successive iterations of execution, for a

fair comparison, we ran ESG in 460 iterations to match the execution time of CADIA.



The performance ratio of CADIA (AO0) is used as a reference for the comparison and is

thus set to one.



A O ADIA(ADG A O ADIA(AB

1 1.000 1.000 51 1.000 1.000
2 1.000 0.998 52 1.000 0.999
3 1.000 0.997 53 1.000 1.000
4 1.000 1.000 54 1.000 0.999
5 1.000 0.998 55 1.000 1.000
6 1.000 1.000 56 1.000 1.000
7 1.000 0.998 57 1.000 0.998
8 1.000 1.000 58 1.000 1.000
9 1.000 0.998 59 1.000 0.998
10 1.000 0.998 60 1.000 0.998
11 1.000 1.000 61 1.000 1.000
12 1.000 1.000 62 1.000 0.998
13 1.000 1.000 63 1.000 1.000
14 1.000 0.999 64 1.000 1.000
15 1.000 1.000 65 1.000 0.999
16 1.000 0.999 66 1.000 0.998
17 1.000 1.000 67 1.000 0.998
18 1.000 0.998 68 1.000 0.998
19 1.000 1.000 69 1.000 0.998
20 1.000 0.999 70 1.000 1.000
21 1.000 0.997 71 1.000 0.999
22 1.000 0.998 72 1.000 0.999
23 1.000 0.998 73 1.000 0.999
24 1.000 1.000 74 1.000 0.998
25 1.000 0.998 75 1.000 1.000
26 1.000 0.998 76 1.000 0.998
27 1.000 0.999 77 1.000 0.998
28 1.000 0.998 78 1.000 0.946
29 1.000 0.998 79 1.000 1.000
30 1.000 0.999 80 1.000 0.998
31 1.000 0.998 81 1.000 0.999
32 1.000 1.000 82 1.000 1.000
33 1.000 0.998 83 1.000 1.369
34 1.000 0.998 84 1.000 0.998
35 1.000 0.998 85 1.000 0.999
36 1.000 1.000 86 1.000 0.999
37 1.000 0.999 87 1.000 1.000
38 1.000 0.998 88 1.000 0.999
39 1.000 0.998 89 1.000 0.999
40 1.000 1.000 90 1.000 0.999
4 1.000 0.999 9 1.000 1.000
42 1.000 0.998 92 1.000 0.999
43 1.000 1.000 93 1.000 1.000
44 1.000 0.998 94 1.000 1.000
45 1.000 0.998 95 1.000 0.999
46 1.000 0.999 96 1.000 1.000
47 1.000 0.998 97 1.000 1.000
48 1.000 1.000 98 1.000 0.999
49 1.000 0.999 99 1.000 0.999
50 1.000 1.000 100 1.000 0.998

Table 22 Performance ratio comparison of ESG and CADIA (sample 1-100).
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AUCTION CADIA(AB) AUCTION  CADIA(AB)

NUMBER NUMBER
101 1.000 1.000 151 1.000 0.998
102 1.000 0.999 152 1.000 1.000
103 1.000 1.000 153 1.000 1.000
104 1.000 0.999 154 1.000 0.998
105 1.000 0.998 155 1.000 1.000
106 1.000 0.998 156 1.000 0.999
107 1.000 0.998 157 1.000 1.000
108 1.000 1.000 158 1.000 0.998
109 1.000 0.998 159 1.000 0.999
110 1.000 0.998 160 1.000 0.997
111 1.000 0.998 161 1.000 0.998
112 1.000 0.999 162 1.000 0.999
113 1.000 1.000 163 1.000 1.000
114 1.000 0.998 164 1.000 0.998
115 1.000 0.999 165 1.000 1.000
116 1.000 1.000 166 1.000 1.000
117 1.000 1.000 167 1.000 1.000
118 1.000 1.000 168 1.000 1.000
119 1.000 0.999 169 1.000 0.998
120 1.000 0.941 170 1.000 0.999
121 1.000 0.998 171 1.000 0.999
122 1.000 0.998 172 1.000 0.999
123 1.000 1.000 173 1.000 0.997
124 1.000 0.997 174 1.000 0.998
125 1.000 0.998 175 1.000 0.999
126 1.000 0.998 176 1.000 0.998
127 1.000 0.998 177 1.000 0.999
128 1.000 0.998 178 1.000 0.999
129 1.000 0.999 179 1.000 0.999
130 1.000 0.997 180 1.000 0.998
131 1.000 1.000 181 1.000 1.000
132 1.000 1.000 182 1.000 0.998
133 1.000 1.000 183 1.000 0.997
134 1.000 0.998 184 1.000 1.000
135 1.000 0.999 185 1.000 1.000
136 1.000 1.000 186 1.000 0.999
137 1.000 1.000 187 1.000 1.000
138 1.000 0.999 188 1.000 0.999
139 1.000 1.000 189 1.000 0.998
140 1.000 1.000 190 1.000 1.000
141 1.000 0.998 191 1.000 0.998
142 1.000 0.999 192 1.000 0.998
143 1.000 1.000 193 1.000 1.000
144 1.000 0.999 194 1.000 0.999
145 1.000 0.998 195 1.000 1.000
146 1.000 0.999 196 1.000 0.998
147 1.000 0.998 197 1.000 1.000
148 1.000 0.999 198 1.000 0.998
149 1.000 0.997 199 1.000 0.998
150 1.000 1.000 200 1.000 1.000

Table 23 Performance ratio comparison of ESG and CADIA (sample 101-200).
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Results show that CADIA and ESG are very competitive because their average
performance ratios are 1.0000 and 1.0002 respectively. We also recorded that in all 200
auctions, the number of auctions where CADIA outperformed ESG was 130 but the
difference of the achieved revenue is within 0.3% in most cases. There was only 1 out of
200 auctions where ESG outperformed CADIA. Both achieved the same revenue in 69

out of 200 cases.

Since the 200 sample auctions do not cover all possible bid patterns, we may not
conclude that CADIA is better than other approximation systems in all cases. However,
from the empirical results, we found that CADIA can achieve better revenue than the hill
climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has

its contribution to the CA determination problem.

7.3.3 Running Time Measurement of CADIA

In Section 7.2.3, a test plan for measuring the efficiency of CADIA by time
clocking is presented. The sample sizes of the auctioned items and bids are selected in the
ranges of 100 to 500 and 200 to 2000 respectively. There are a total ot five hundred
sample auctions grouped into fifty categories of size. Each category has the same number
of items and bids. Table 24 summarizes the results of the average running time of
CADIA for each category. Figure 50 depicts the running time for different numbers of

items when the number of bids are fixed.
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73495 | 143.576 | 240.626 | 337.615
33.438 | 130.027 | 229.860 | 361.680 | 573.054
42.701 | 138.589 | 324.076 | 415.667 | 762.446
46.416 | 177.956 | 356.472 | 681.169 | 883.560
56.711 | 201.199 | 406.675 | 710.311 | 1239.763
67.887 | 244.702 | 527.198 | 905.021 | 1385.392
70.826 | 353.298 | 680.048 | 1142.580 | 1470.334
76.039 | 393.926 | 1089.306 | 1335.971 | 1790.274
85.763 | 493.580 | 1156.873 | 1631.647 | 2363.959

113.994 | 569.248 | 1559.152 | 2406.329 | 3142.839

Table 24 CADIA’s Average running time in 50 different sizes of auction.

Time (seconds)

3500

3000

2500

2000

1500

1000

500

Running Time of CADIA against Number of Items

2000 bids

1800 bids

1600 bids

1400 bids
1200 bids
1000 bids

800 bids
600 bids
400 bids

/ 200 bids

100 200 300 400 500

Number of items

Figure 50 Running time of CADIA for different number of items.
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As expected, the running time increases when the number of items or bids

increases.

Running Time of CADIA against Number of Bids

3500
500 items
3000
400 items
2500 -
%\ '
c 2000
o
3
% 300 items
§ 1500
'_ H
1000 .
200 items
500 '
| 100 items
0 .
Q Q Q Q O O O O O O
o © S N \QQ '3’0 ,\09 \@0 \%0 {190

Number of Bids

Figure 51 Running time of CADIA for different number of bids.

Similarly, Figure 51 depicts the running time for different numbers of bids when

the number of items are fixed. The running time of CADIA grows more rapidly than a

linear function.

119



Jogz Time

Running Time (log,) of CADIA against Number of ltems
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Figure 52 Logarithm of running time of CADIA for different number of items
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Running Time (log;) of CADIA against Number of Bids

1
12000 . 500 items
:BFT (10 items) 400 items
1000 : 300 items
!
10.000
: 200 items
9.000
@ i
£ i
= 8000
&
©°
7.000
100 items
6.000
5.000
4.000
200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Bids

Figure 53 Logarithm of the running time of CADIA for different number of bids.

Figure 52 and 53 shows the results for Figure 50 and 51 in logarithmic scale
respectively. The shapes of the graphs in Figure 52 and 53, which appear to be concave
and straight lines respectively. suggest that CADIA’s efficiency in auctions of no more
than 500 items and 2000 bids are bounded by the complexity class of O(2"). Although
both CADIA and BFT belong to the complexity class of O(2"), CADIA’s running time
grows much slower than that of the BFT (Figure 53). When BFT is used, in an auction of
10 items and 10 bids the winner determination time takes about 212 seconds but 1800

seconds with one additional item. If these values are converted into logarithm of base 2,
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we will obtain 7.72 and 10.81 respectively. The graph of BFT has a much steeper slope

and Y-intercept value as drafted in dashed line in Figure 53.



CHAPTER EIGHT:
DISSCUSSION

8.1 Discussion on CADIA’s Performance

Although the 200 sample auctions do not cover all possible bid patterns, it allows
us to identify some bid patterns that CADIA performs better or worse than others. We
will analyse 2 cases that demonstrate the advantages and shortcomings of CADIA and

other evaluated techniques. The results of such an analysis will be considered in

CADIA’s future enhancement.

In sample Auction-78, the revenue generated using CADIA, PRICE, N2NORM,
KO, DEMAND, and ESG were $1935.830, $1637.610, $1835.670, $1636.870,
$1931.300, and $1831.000 respectively. When the bid patterns are examined, it was
found that both PRICE and KO included the highest price bid (bid-11) as one of its
winners. It is due to the fact that the objective functions of both depend directly on bid
prices. As a result, both PRICE and KO were trapped in local optima during the search.
N2NORM uses both the bid price and bid size as the parameters in its objective function.
That is, the higher the bid price per item the bid offers, the higher the chance it becomes a
winner. Thus, bid-140 became one of its winners since it offered over $100 per item as
compared to only $50 offered by other bids. However, such an objective function may
also lead to a local optimum result. DEMAND weights a bid based on its bid price per

item versus the prices offered by others for that item. Since DEMAND took its
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neighbour’s evaluation into consideration, it generated a better result in Auction-78 than
other climbers. Rather than depending directly on the bid price in its objective function as
found in some of the climbers, ESG starts with a candidate solution and generates a new
solution using an update rule based on gradient. Since ESG relies on gradient
information, the result could get stuck at a local optimum. Although CADIA, DEMAND
and ESG were very competitive in Auction-78, CADIA, which does not rely on any local
search techniques, was able to obtain the best result among all techniques. It was due to
the fact that the search space in Auction-78 contained many local optima and all other

methods are stuck at some local optima during the search.

A different result was observed in sample Auction-83. The revenue generated
using CADIA, PRICE, N2NORM, KO, DEMAND, and ESG were $2077.000,
$1389.160, $2033.530, $1441.160. $2129.900 and $2843.000 respectively. Both PRICE
and KO were trapped in local optima during the search, which ended up much lower
revenue, due to the same reason as described above (bid -222 offered the highest bid
price among all). Since N2NORM considered also the bid size, it did not consider bid-
222 a winner. Both DEMAND and ESG outperformed CADIA in this auction. When the
winner pattern of the best performer ESG was examined, it was found that the winners
were those who wanted one or two items. Since CADIA’s objective function is based on
the relaxation of the concept of itemsets, CADIA was mvisled by some bids that included

the least frequent itemsets but offered lower bid prices.

In summary, the hill-climbers exploit the best available solution for possible
improvement but neglect exploring a large portion of the search space. Gradient-based

search methods are well-known for situations when the search space has a bowl shape.

124



When it is not the case, they could get stuck at local optima since the primary
consideration relies on gradient information. In many cases, the success or failure of
many hill-climbers and some gradient-based methods is determined by the initial start
point. For problems with many local optima, particularly those where these optima have
large basins of attraction, it’s often very difficult to locate a globally optimal solution.
CADIA attempts to explore the search space thoroughly but foregoes exploiting
promising regions of the space. In addition, the cost required for CADIA to generate its
knowledge makes CADIA runs much slower than all evaluated approximate techniques.
For instance, the current implementation of CADIA takes two minutes to solve a problem
of size of 100 items and 2000 bids. but almost an hour when the number of items is
increased to 500. On the other hand, all evaluated approximate techniques takes less than

a minutes to solve problems of size of hundred of items and thousands of bids.

8.2. Discussion on CADIA’s Practicality

All sample auctions described in the thesis contain no more than five hundred
items and two thousands bids. Such an upper limit of sample size for testing a proposed
system has been adopted in most current research because it becomes uncommon to have
a CA selling more than five hundred non-identical items. However, it may be common to
have more than two thousand bids in a CA, especially if it is held on the Internet. The
best CA winner determination system is one that always generates the optimal revenue

(best accuracy) with the shortest running time (best performance) among all proposed



systems. Some techniques such as BFT focus primarily on the accuracy, while others

such as GST focus solely on the performance.

CADIA has been evaluated in terms of its accuracy in Chapter 7. With the
adjustments made at the TBE, CADIA is capable of finding the optimal revenue. The
idea is to use analysis bids for revenue improvement at successive iterations during the
winner determination process. In an auction of thousands of bids, it becomes impractical
to analyze all bids if the winners have to be announced within minutes after the expiry of
bids submission. Thus, CADIA has been designed to accept the number of analysis bids
as an argument from the user during its execution. If more time is allowed, a more

accurate result can be obtained by including more analysis bids.

If performance in terms of running time is the only concern, a greedy search
based system is perhaps the most practical system because its objective function is based
on the search-for the highest bidding price. Such a system performs very well only in
auctions of too many items but too few bids in which the chance of having bid conflicts is
very low. In auctions of two hundred items and five thousand bids, for example, a greedy
search based system may be trapped in a local maximum due to a high degree of conflicts
among bids. Other domain-based heuristic systems may include a pre-processing step
before they apply the core winner determination algorithms. For example, a system that
has removed ninety percent of the bids during its pre-processing phase can definitely
determine the winners in seconds even in auction of hundreds of items and thousands of
bids. As a result, it becomes misleading to evaluate a CA technique or system based only

on its performance but not accuracy.



CADIA has been evaluated in terms of its performance in Chapter 7. The graphs
of CADIA’s running time on sample auctions of up to 500 items and 2000 bids suggest
that CADIA is bounded by the efficiency class O(2"). The inclusion of the scale factor
variable Cy; (Section 6.2.1) is to address the practicality issue when the winner
determination time is a major concern. By adjusting the value of Cy, CADIA is able to
determine winners in minutes or even in seconds. Cg¢ has been set to 0.5 by default and it
is believed that bids with an unacceptably low bidding price will be rejected. That is, a
bid whose bidding price is lower than half of the lower bound price is rejected. Cy¢'s
value domain is between 0 and 1. When it is set to 1, more bids are rejected because the
full lower bound price is used instead. When it is set to 0, all bidding prices will not be
checked. Figure 48 shows the relationships between running time and number of bids for

different C,rin auctions of 500 items.
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Figure 54 Running time of CADIA for different values of C.

In Figure 48, the graphs show that the running time grows much slower when Cg¢
1s set to 1 than it is set to 0.5 or 0.0. Thus. an auctioneer will have an option to trade off
accuracy for efficiency. However, in some cases, a non-zero Cyy may accidentally reject a
valuable bid and cause a non-optimal result. Thus, the value of Cy must be selected with
caution. The strategy is to compare the revenue generated for different values of Cy¢ . For

example, Cs can be started with 1, and is then decremented by 0.25 in each subsequent
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test. The decrement continues only when the revenue is improved, and more importantly,

when the time is allowed.



CHAPTER NINE:
CONCLUSION AND FUTURE WORK

The subjects of this thesis are the proposal and design of a novel and practical
combinatorial auction winner determination approach using item association. The
approach was developed and implemented into the system called CADIA. The thesis has
reviewed thé characteristics and benefits of CAs and surveyed the state of knowledge and
techniques for solving the winner determination problem, followed by the hypothesis and
core algorithms of the new approach, and its design and implementation. CADIA consists
of four major components. In the first component PRE, redundant bids are removed. In
the second component IAG, qualified bids output from PRE are used as seeds to generate
candidate itemsets. IAG attempts to identify the smallest and least wanted itemsets from
the candidate itemsets. In the third component WIN, the output from IAG is used in the
identification of candidate and potential winners. In the fourth component TBE, both

potential winners and possible losers are used for further analysis and improvement.

The empirical results show that CADIA is a practical technique that is able to
handle CA auctions of hundreds of items and thousands of bids. The study of its accuracy
and performance in terms of revenue generation and running time shows that it has met
the criteria and goals of the design in achieving good approximate results. Although both
CADIA and BFT belong to the class of O(2"), CADIA’s running time grows much
slower than that of the BFT. CADIA was found to be a good approximation system

because tts accuracy can be improved when analysis bids are used.
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Since the 200 sample auctions do not cover all possible bid patterns, we may not
conclude that CADIA is better than other approximation systems in all cases. However,
from the empirical results, we found that CADIA can achieve better revenue than the hill
climbers and the ESG in many cases. As a result, the evaluation shows that CADIA has
its contribution to the CA determination problem. The current limitation of CADIA is
that it runs slower than all the evaluated approximation techniques. Such a slower
response time is due to the obvious fact that CADIA’s core knowledge requires some

time to generate.

There are a number of possible extensions and enhancements for the work
presented here. CADIA’s optimal strategy in the winner determination process can be
seen as a number of iterations running the same set of algorithms on auction data from
where tactical bids are removed. The number of iterations depends directly on the number
of analysis bids selected. From the empirical results and observations, TBE with the
second strategy as described in Section 6.2.2 has been very successful in searching for
better revenue using the potential winners and possible losers as the knowledge. Since all
potential winners and possible losers are the output from WIN during the first iteration of
the process, it is possible to distribute all subsequent iterations of search on a number of
processors. For example, if 4 analysis bids are used, there are (2* -1) or fifteen ways of
removing the tactical bids from the original bid file which translates into additional
fifteen iterations of search. Instead of running CADIA fifteen times sequentially on a
single processor, it may be desirable to run CADIA on a multi-processor system, a multi-

threading system, or even on multiple machines to further improve its performance.
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CADIA’s optimal strategy is based on the knowledge discovered from the auction
data. Historical data from previous auctions will definitely help to enhance such
knowledge. That is, when auctioned items are distributed in a similar pattern from
auction to auction, it is possible to have the knowledge accumulated and used in future
auction winner determination. Besides the item association technique, other data mining
techniques such as clustering and decision trees can also be applied to structure the

knowledge in a different way to aid in the revenue search.

Since each search space is ditferent for each auction in CA problems, there seems
no way to choose a single search method that can serve well in every case. Nevertheless
each technique offers its own merit. Better solutions to CA problems can often be
obtained by hybridizing different approaches. Effective search techniques should provide
a mechanism for balancing the conflicting objectives: exploiting the optimal solutions

and at the same time exploring the search space.



APPENDIX A

Sample Bid Input File

This appendix provides a sample bid input file containing one thousand bids and

one hundred items, and the output files summarizing the results.

Input File: 1000 bids and 100 items

(0} (88 90} (102.30} {28} (33 96} (302.30}

{1} {90 65} (102.30} {29} {96 27} (202.30}

{2} {88 47} (102.30} (30} {33 79} {103.30)

{3} (32} {52.00} (31} {42 95} (103.30}

{4) {55} {52.00} {32} {83 96 70} {55.74}

{5} (67 90} ({203.30) {33} {70 7 89} (55.74}

{6) {90 24} {103.30} {34) (83 45 59} {55.74)

(7} {84 49) {103.30) {35} {94 86 26 41 53) (258.90}
(8} {49 45} {103.30} (36} {53 94 87 73 51} {358.90}
(9) {87} (52.00} {37y {94 73 8 42 80} (158.90)
{10} {0} (51.003 (38} {62 0} {203.30}

{11}y {27) (151.00) {39} {0 66} (203.30}

{12} {20 63 70 76} {9.28} . {40} (74} {151.00%

{13} {76 73 80 62} {8.28} {41} (56 26} {102.30}

(14} {56 36 33 25} (306.28} {42) (91} {51.00}

{15} {36 44 84 88} {406.28) {43} {83 21 97 2 60} {358.90)
(16} {25 2 90 43} {406.28} {44} {2 48 47 59 81} {259.90}
{17} {33 86 98 81} (207.28} {45% {21 75 37 5 90} (258.90}
{18} {2} {51.00} {46} {60 0 63 17 19} {158.90)
{193 {93 95 51 5} {306.28} (47} {83 25 60 27 30} (158.90}
{20} {93 9 33 10} {307.28} (48} {23 82 40 91 6 25} (510.59}
{21} {51 32 88 85} {206.28) {49} {91 74 73 84 31 34} (608.59}
(22} {95 71 39 4} {107.28} {50} {82 12 94 70 60 81} {510.59}
{23} (11 59) (103.30) {51} (6 69 34 2 37 41} {210.59}
{24} (90 52} {103.30} {52) {25} {151.00}

(25) {90 64} {103.30} {53} {86 18} {3.30)

{263 {29} {52.00} {54} {22 4} (202.30}

{27}y {92 59 86} (55.74}) {55} (22 12} {202.30}



{56)
{57}
{58}
{59}
{60}
{61}
{62}
{63}
{64)
{65}
{66}
{67)
{68}
{69}
(70}
{71}
{72}
{73}
{74}
{75}
{76}
(77}
{78}
{79}
(80}
{81}
{82}
{83}
{84)
{85}
(86}
(87}
(88}
(89}
{90}
{913
{923
{93}
(94}
{95}
{96}
{97}
{98}
{99)
{100)
{101)
{102}
{103}
{104}
{105)
{106)
{107}
{108}
{109}

{4 98) {103.30)
{23} (52.00)

{33 79} {203.30}
{33 62} {203.30}
{943} {(51.00}
(24} {52.00}
(87} {52.00}
{11) {151.00)
{29} (52.00}

{73 17} (202.30}
{17 51} (202.30}
{73 66} {103.30)

{16
{0}
(23
(39
(23

11)

{51.

39}
55}
81}

{103.30}
00}
{4.30)
(4.30}
(4.30}

{13 77} {4.30)

{45 14} (103.30}

{28} {151.00)

{15} {52.00}

{94 83} {103.30}

{94 1} {102.30}

{10} {52.00}

{89 10 3 50 8 81} (411.59)
{50 92 9 73 90 61} {411.59)
{3 58 79 32 5 72} {312.59)
{10 50 32 60 98 72}
{81 4 49 45 26 95)
{8 57 99 32 93 77)
{49} {52.00)

{35} {52.00}

{14} {52.00}

{310.59}
(111.59}

{312.59)

{52) {52.

(93
{46
{73
{73

48}
4}
6)
43)

00}
{(3.30}

{(103.30}
{103.30}

{103.30}

{6 8} (3.30}
(80 81} {4.30}

{72} {52.00}

{50} {151.00)}

(32 54 76 25} {(8.28)

{1 593 {203.30}

{1 40} {302.30}

{70} {52.00)

{69 26} {202.30}

{26 98} {203.30)

{62 15} {103.30)

{51) {51.00}

{97 54 60 22 6} {359.90}
{54 0 97 53 5} {360.90}
{22 73 48 16 90} {358.90}
{97 3 4 2 77} {258.90}

134

{110}
(111}
{112}
{113)
{114)
{115)
{116}
{117)
(118}
{119)
{120}
(121}
(122}
{123}
(124)
{125}
{126)
{127}
(128}
{129}
(130}
{131}
{132)
{133}
(134}
{135}
(136}
{137}
(138}
{139}
{140}
(141}
{142)
{143}
{144)
(145}
{146)
{147}
{148)
{149}
{150}
{151}
{152}
{153}
(154}
{155}
(156}
(157}
{158}
{159}
{160}
{161}
{162}
(163}

{6 44 61 17 19} {159.90)

(83
{91
{80
(39
{80

{5 53}
{5 36}

{53
{44
{44
{43}

31} {103.30)
87} {(103.30}
39} {4.30)
13} (4.30}
21y {3.30)
(104.30}
{104.30}
1) {103.30)
59} {103.30}
793 {3.30)
(52.00)

(49 84 8 82} (306.28}
(84 95 28 47} {305.28)
(54 113 {3.30}

{54 84} (3.30}

(32) {52.00}

{84
{12
(84
{30
(44
{30

{3 46 18}

{68
{21}
{21
{21
(41
{53
{54}
{5}
{58

12} {202.30)
42} {103.30}
36} {103.30}
44 3} {(254.74)
93 42} {254.74}
52 91} {155.74}
(55.74)
46) {4.30}
{151.00)
55 41 53 80) {260.90)
40 58 97 73) {357.90)
28 51 38 10) {259.90}
45 98 36 50} (159.90}
{52.00}
{52.00)
70} {3.30}

{0 35 91 83} (207.28)
{91 1 83 52} {307.28}
(83 64 46 2) {208.28)
(0 54 78 46} {8.28)
{35 32 3 31} (7.28)

(98)
{10

{0 52}

{10
{96
(34
(63
{34
{40
{47
{40
{50}
(28
{61
{41
{18

(52.00)
0) {103.30}
{103.30}
2) {3.30}
77 60 49 62} {59.90)
63} {103.30}
1} {103.30}
97} {3.30}
47} (102.30)
543} {103.30}
17} {102.30}
{151.00}
41 61} {55.74}
93 46} {55.74)
82 873 (55.74)
5} (104.30}



(164}
{165}
{166}
{167}
{168}
{169}
{170}
{171}
{172}
{173}
(174}
(175}
(176}
{177}
{178}
{179}
{180}
{181}
{1823
(183}
{184)
{185}
{186)
(187)
{188}
{189}
{190}
{191}
{192}
{193}
{194}
{195}
{196}
{197}
{198}
{199}
{200}
{201}
{202}
{203}
{204}
{205}
{206}
{207}
{208}
(209}
(210}
(211}
(212}
{213}
{214}
{215}
{216}
{217}

{18 43} {104.30}

{5 28} {103.30}

{16 84} {3.30)

(84 98} (3.30}

{35 22 99} (154.74})

{22 73 21} {153.74)

{99 45 62} (54.74)

{37} {151.00}

{32 76 4 25} {207.28}
(76 66 90 34) (207.28}
(4 38 83 60} (107.28)
(25 80 57 95} {107.28}
(99} (151.00}

{61} {52.00}

{89 15} (4.30}

{79}y (52.00}

{58} (51.00}

(74 25 2} (453.74}

(25 37 98} (254.74}

{84} (51.00}

{69 9 79 58} {(107.28}
{61) {52.00}

{58 89 70 34 2} (558.90}
{2 15 97 34 4) {458.90)
{58 2 55 64 83) {359.90}
(34 35 22 31 43} {158.90)
{70 91 0 48 11} {158.90)
{0 49} {103.30}

{49 99} {3.30}

{28 66 50 13 70} {59.90}
{93 0} {202.30}

{0 29} {203.30}

{93 61} {3.30}

{2 69} {302.30}

{69 8} {302.30)

{2 8} {302.30}

{96} {151.00}

{12 80} {3.30)

{25 9} {103.30}

{65} {151.00}

{94} {51.00}

(85 10 82 76 26} {158.90}
{76 22 6 94 30) {159.90}
{82 14 92 2 65} {158.90})
{85 57 33 40 18} {58.90)
{4} (51.00}

{85 88 2 92 15} {458.90}
{2 66 52 47 68} {359.90)
(85 31 10 83 54} (359.90}
{15 41 40 8 25} {258.90}
{88 30 53 51 50} (258.90}
{55 75} (104.30})

{55 78} (104.30}

{75 51} (103.30}

135

{218}
{219}
{220}
{221)
{222}
{223}
{224}
{225}
{226}
{227}
{228}
{229}
{2301}
{231}
{2321}
{233}
(234}
{235}
{236}
{237}
{238}
{239}
{240}
{241}
{242}
{243}
{244}
{245}
(246}
{247}
{248}
{249}
(250}
{251}
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{253}
{254)
{255}
{256}
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{258}
{259}
{260}
{261}
{262}
{263}
{264}
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(266}
{267}
{268}
{269}
{270}
{271}

(97} (52.00}

{28 23} {(103.30}

{45 61 57) (155.74}

{4} {151.00}

{53 1 11} (354.74}

{1 44 74} {453.74})

{11 64 1} {(354.74)

{53 71 93} {55.74}

{94} {51.00}

{17 63 50 68 73 5 11} {463.33}
{63 88 90 69 95 85 36} {662.33}
{50 44 54 26 74 9 67} {363.33}
{11 68 33 5 63 45 57} {264.33)
{17 74 65 43 14 77 67) {164.33}
{68 25 36 66 18 57 50} {65.33}
{2 5} {3.30}

{64 257 {203.30}

{64 69} {203.30}

{25 88} {202.30}

{38} {52.00)

{86} {151.00}

{82 26 93} {253.74}

{26 49 90} {54.74}

{74 18} {103.30}

{74 8} {102.30}

{79 49 26 74} {307.28}

{74 98 22 2} {406.28}

{79 2 7 19} {307.28}

{26 48 59 58} (107.28}

{49 93 26 80} {107.28}

{46 58 34 41 86} (58.90}

{41 21 3 36 49} {59.90)

{46 2 0 43 49} {59.90)

{73 92 70 0 7 94 32} {263.33}
{94 48 77 14 65 53 23} {165.33}
{73 18 67 88 39 96 72} {164.33}
{32 94 91 10 39 20 81} {65.33}
{94 38 74 85} (306.28)

{38 96 8 70} (307.28}

{74 86 30 89} {207.28}

{85 40 46 47} {206.28}

{2} {51.00}

{50 56} {302.30}

{56 21} {302.30}

{50 9} {203.30}

{3} {51.00}

{75 55} {4.30}

{55 14} {4.30)

{75 53} {4.30}

{34} (151.00)

{1 58 56 37} {505.28}

{1 24 50 25} {406.28}

{56 19 31 29} {307.28}

{37 69 19 75} {307.28}



(272} {0} {151.00} {326} {75 70} {104.30}

{273} {69} {151.00} {327} {10 5} {4.30}

(274} {31} {51.00) {328} (5 49} {(4.30}

{275} {22 1 67 45 91 75} {310.59} {329} (46 23 52 51 67} {160.90}
(276) (75 94 68 28 49 34} {(411.59) {330} {23 90 98 22 57} (159.90}
{277} (67 33 76 96 95 57} {411.59} {331} {51 29 48 79 8} {159.90}
(278} (45 55 13 53 51 56} {411.59} {332} {46 29 19 7 95} {159.90}
{279} (91 25 41 50 55 95} {410.59} {333} {52 81 59 37 8} {59.90}
{280} {22 41 43 46 59 91) {212.59} {334} (64} (52.00}

(281} (28 61 80 75} {108.28}) {335} {56 86 88 61} {306.28}

{282} (80 24 45 52} (8.28} {336} {56 45 38 81} {407.28}

(283} {25 56 50 35 74 41} {210.59} {337} {61 73 93 39} {(207.28}

{284} {35 63 26 90 15 67} (312.59} {338} (88 26 92 63) {207.28}

{2853 {56 73 38 39 96 60} (310.59} {339} (7} (51.00}

{286} {82} {(51.00} {340} {23 89 2} {55.74)

{287} (31 72} {203.30} {341} {23 30 34} (55.74)

{288} (72 0} {203.30} {342} {98 62) (4.30)

{289} (31 36} {203.30) {343} (74} {51.00}

{290} (81 90 22 67 56} {358.90} {344) {76 69 51} {154.74}

{291} (22 58 89 65 88} {457.90} {345} {60 4 96 26 70 31} {409.59}
{292} (67 46 7 90 35} {359.90} {346} (60 28 71 11 2 85) {609.59}
{293} {81 44 13 26 60} {(358.90} {347} {96 19 1 31 40 39} {410.59}
{294} {56 16 78 B 64} {259.90} {348} {70 65 69 15 86 26} (410.59)
{295} {90 42 64 86 35} {159.90} {349} {31 29 17 62 88 89} {311.59)
{2961} {15} {52.00} {350} {0} {51.00}

{297} (60 56 94} {353.74} {351} {20 18} {4.30}

{298} (60 88 67} {254.74) {352} (18 19} (4.30)

{299} {94 85 68) {154.74} {353} {44 66 70} {55.74}

{300} {11 99) {(202.30} {354} {70 14 44} {55.74}

{301} {99 64} {203.30} {355} (66 99 46} {55.74)

{302} (11 68} {103.30} {356} {83} {52.00}

{303} (53 15} {4.30} {357} (27 72 9} {255.74)

{304} (53 19} {4.30} {358} (27 29 10} {255.74}

{305} {15 86} {3.30} {359} {9 65 5} {55.74}

{306} {51} {151.00} {360} (72 18 73} (55.74}

{307} (28} {151.00} {361} {78} {(52.00}

(308} (49 53 17 19 88} {359.90} {362} {31 41 49 59 97 11) {212.59}
{309} {88 37 0 70 94} {457.90} {363} (59 89 94 45 26 80} {311.59}
{310} (17 42 88 40 13} {358.90} {364} (31 8 74 66 14 61} {311.59}
{311} (49 81 31 60 16} {259.90} {365} {11 63 76 40 22 75} {111.59}
{312} (53 22 38 63 59} {160.90} (366} {41 6 54 35 90 72} {13.59}
{313} (89 63 25 80} ({8.28} {367} {83} {52.00}

{314} {82 7} {(202.30) {368} {60} {151.00}

{315} (82 6} {103.30} {369} (28 38 96 2 24 8} ({510.59}
{316} {7 4} {102.30} {370} (28 56 45 85 22 60} {708.59)
{317} {4} {151.00} {371} (2 49 74 64 54 82) {411.59)
{318} {73 44 97 51} {206.28} {372} (96 15 49 62 97 12} {312.59}
{319} {44 83 24 82} {307.28} {373} (24 76 25 3 73 83} {311.59}
{320} {51 34 67 13} {307.28) {374} {8 3 23 72 89 18} (212.59)
{321} {52} {52.00} {375} {45 95 77} {354.74}

{322} {87 2} {103.30} {376} {95 66 94} {254.74}

{323} {2 5} {103.30} ) {377} (77 37 3} {254.74}

{324} {3} {(51.00} {378} (45 69 71} {254.74}

{325} (75 24} {104.30) {379} {61} {52.00}
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{380}
(381}
{382}
{383}
(384}
{385}
{386}
(387}
(388}
(389}
(390}
{391}
{392}
{393}
{394}
{395}
{396}
{397}
{398}
{399}
{400}
{401}
{402}
{403}
{404}
{405}
{406}
{407}
{408}
{4093}
{410)
{411}
{412)
{4131}
{414}
(415}
{416}
(417}
{418}
{419}
{420}
(421}
{422}
(423}
{424}
{425}
{426}
(427}
{428}
{429}
(430}
{431}
{432}
{433}

{92 20 14} {156.74}
{92 79 11} {55.74}
{12} {(151.00}

{83 95} {203.30}
{95 45) (302.30)
{97 9} {4.30}
{9 67} {4.30)
(69 39 57 72}
{72 32 25 84)
(69 92 55 84}
{57 35 48 0}
{39 62 60
{15 84 90} (254.74)
{90 11 55} (154.74)
{84 55 47} {54.74}
{81 16} {104.30}
{81 79) {104.30)
{1} {151.00}

{52 83 80} {56.74}
{83 92 39} (56.74)
{52 19 45) {55.74}
{4} {51.00}

(73 79 71} {155.74)
{71 38 85} (155.74)
{4} {151.00}

{96} {151.00)

{28 50} {202.30}
{28 9} (203.30}

{50 78) {103.30)
{57} (52.00)}
{453 {51.00}
{17) (151.00}
174} {(51.00}
{70 60 39 20
(39 49 40 87
{20 51 72 17
{60 81 58 40
{25 16 68 72 31} {59.90}
{8 37 78} {354.74}

{37 58 89) (254.74)

{78 7 71} {155.74)

{8 10 49} {55.74}

{80 83} (4.30}

{(208.28}
{307.28}
(307.28}
(108.28}
27} {107.28}

25}
12}
75}

{259.90}
{359.90}
(259.90}
32} {258.90}

{83 95} (3.30}

{1} {151.00}

{47} {151.00}

(82 65 11 2 90 69 5 79} {414.13}
{69 31 77 52 36 19 21 91} {616.13}
{11 9 33 82 29 88 40 28} {614.13}
{90 79 0 18 93 29 43 89} {417.13}
{65 47 25 98 19 71 62 84} {416.13)
{79 11 19 28 98 8 44 96) {415.13)
{22 4 8} {353.74)

{8 4 95) {353.74)
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{434}
{435}
{436}
{437)
{438}
{439)
(440}
(441}
{442}
{443}
(444}
{445}
{446}
(447}
(448)
{449}
{450}
{451}
{452}
{453}
{454}
{455}
(456}
(457}
{458}
{459}
{460}
{461}
(462}
{463}
{464}
{465}
(466}
(467)
(468)
(469}
{470}
{471}
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{473}
{474}
(475}
{476}
(477}
{478}
{479}
{480}
{481)
{482}
(483}
{484}
{485}
{486}
{487}

{54
(54
{50
{30

85 53} {55.74}

33 38} (55.74}

97} {103.30}

9 28 78 55} {60.90}
{28 53 46 54 49} {60.90)
{74 89} (103.30}

{61 31 82) ({354.74)

{82 3 41} {254.74)

{61 60 88} {254.74)

{31 75 14} {155.74}

{40 82 74} {353.74}

{82 60 66} {254.74}

{40 16 47} {254.74)

(24 26} {103.30%

{21} {151.00)
{41 92 4 15}
{41} {52.00%
(11 74 99 12 17} {256.90}

{74 93 75 13 85} {358.90}

{99 41 84 75 2} {158.90)

{17 1 39 71 11} {158.90}

{11 4 99 71 57} {158.90}

{52 51} {103.30}

{51 32} {(103.30}

(8 27 94} {253.74)

{27 61 85} {254.74)

{8 25 69} (253.74)

{94} {151.00}

{2} {151.00}

{96} {51.00}

{28 46 96} {154.74}

(96 77 7}y {154.74}

(85 56 80} {154.74}

{85 76 67} 155.74})

{30 10 50 79 44 60 56 90} (315.13}
{50 61 74 48 11 6 88 44} {415.13}
{44 54 77 9 29 20 3 1} {317.13}
{56 21 85 63 36 28 15 68} {316.13}
{60 21 39 66 11 64 87 76) {217.13)
{79 69 71 36 62 65 85 53} {217.13)
{51} {51.00}

(4 16 78} {155.74)

{16 77 93} {155.74}

{78 49 84} (55.74}

{4 62 42} (55.74}

{71} {52.00}
{74 59} {3.30)}
{74 98} {3.30}
{99} (51.00;}
{40 57 75 80}
{57 18 78 51}
(40 68 74 16}
{73} {51.00}
{2} {151.00}

{108.28}

(8.28}
{(8.28})
(7.28}



{488} (38 94 12} {(254.74) {542) {93 42} {103.30}

(489) {94 49 14) {155.74} {543} {27 9} {103.30}

{490} {38 44 57} {155.74} {544} {83 98} (104.30)

{491) (i2 21 30} (54.74) {545) {98 39} {104.30}

(492) (95 82} (202.30} (546} {83 15} {4.30}

(493} (82 83} {(103.30} {547} {77} {52.00)

{494} {95 57} (3.30} {548) {91 83) {3.30}

{495} (29 95} (203.30} {549} (10} {52.00}

{496} (95 79} (103.30} {550} (74 89 14) (155.74;}

{497} {8} (151.00} {551} (14 85 27} {154.74}

{498} {97} {52.00)} (552} {51 19 64 10 1 37} {111.59)
{499} {21 42} {3.30) {553} {1 31 42 24 64 59} {112.59)
{500} (42 74} {3.30) {554} (14 85} {203.30}

{501} {90} {51.00} {555} (85 49} {103.30}

{502} {74 40 99} (153.74} {556} {2 69} {202.30}

{503} {99 1 80} (154.74} {557} {2 12} {202.30}

{504} {40 56 65} {153.74} {558} {69 77) {103.30)

{505} (78 69) {103.30} {559} {16 88 42 63 75 961} {212.59)}
{506} {69 9} {3.30} {560) (42 81 82 72 77 50} (212.59}
{507} (8} (51.00} {561} (75 6 98 66 27 54} {113.59}
{508} {96} {51.00} {562} {63 37 72 79 90 81} {112.59}
{509} {37} {51.00} (563} {96 75 14 29 77 4} {112.59}
{510} (19 11} {103.30} {564} {16 32 12 87 9 75} {13.59)
{511} {19 96} {103.30)} {565} (1} (51.00}

{512} {11 58} {102.30} {566} {66} {52.00}

{513} {27} {51.00} (567} {20 36 90 35} {108.28}
{514} (83} {52.00} {568} {13 25} {203.30}

{515} {73 64} {(3.30} {569} (25 79} {203.30}

{516} {73 81} (3.30} {570} {91 22} {302.30}

{517} (71 2 56 87} (107.28} {571} {22 93} {202.30}

{518} {56 30 75 23} {108.28} {572} {91 49} {103.30}

{519} {26} {151.00} {573} {45 53 68 56 50} {158.90}
{520} {37} {(151.00} {574} (31 56 41} {154.74}

(521} {3} {51.00} {575} (41 50 75} {155.74}

{522} {96 36 75 94 15} {259.90} (576} (31 90 10} (154.74}

{523} {15 97 71 35 73} {160.90} {577} {59 23) {4.30}

{524} {36 2 27 7 6) {158.90} {578} {23 83) {4.30)

(525} {96 49 8 22 37} {157.90} {579} {59 19} {4.30)

{526) {90 29} {103.30} (580} {12 8 30} (254.74}

{527} {90 39) {103.30} (581} (12 34 83} {354.74}

{528) {24 26 93} {254.74} {582} {8 47 79} {(254.74}

{529} (93 19 54} {255.74) (583} {30 61 34} (55.74)

{530} (26 90 63} {154.74} {584} {48 95} (103.30}

{531} {24 8 70} {55.74) {585} {95 1} {102.30}

(532} (17 73 97} {54.74} (586} {93} (51.00}

{533} {17 46 15} {(55.74} {587} {5 0} (103.30}

{534} {73 98 27} (54.74} {588} {0 10} {103.30}

{535} (77} {52.00} {589} {88} {51.00}

{536} {70 47} {3.30} {590) {91 85) (302.30}

{537} (70 44) {3.30} {591} (85 87) {203.30)

{538} {58) {151.00} {592} {91 92} {103.30)

{539} {12} {51.00} {593} {41 52} {4.30)

{540} {66 70 85} {(155.74} {594} {52 38} {4.30)

{541} (85 73 83} (154.74} {595} {9 28 62} (255.74}

138



{596)
{597}
{5983
{599}
{600}
{601}
(602}
{603}
{604}
{605}
(606)
(607}
{608}
{609)
{610)
{611}
(612}
{613}
{614}
{615}
{616}
{617}
(618}
{619}
1620}
{621)
{6227
{623}
{624}
{625)
{626}
(627)
(628}
{629)
{630}
(631}
(632)
{633}
{634}
{635)
{636
{637}
{638)
{639}
(640}
{641}
{642)
{643}
(644}
{645)
(646}
(647}
{648)
{649}

{62

36 40} {155.74}

{9 74 97} ({55.74}

{71
{55
(71
{12
(12
{21
{21

87 70 553 {109.28}
83 36 2} {8.28)

11 48 64) {8.28}

2 18} {54.74}

20 34} ({54.74}

7} {302.30}

58} (202.30)

{3 25 88} (453.74}

{25
{88

76 51} {354.74}
44 66} (154.74)

{3 72 69} {154.74}

{65}

{65
(65
(44
{39
{45
{31
{25
{39
{30
{30

(26}

(51.00}
44} (102.30}
24} {103.30}
63} {3.30}
25 31 45) {306.28)
27 17 29} {306.28}
49 95 16} {207.28}
0 70 98} (107.28}
31 4} {154.74})
64 95} (55.74)
3 16} {55.74}
(151.00}

{99} {51.00}

{39
{59
{74
(50
{38

74 59 50} {307.28}
44 30 10} {308.28}
68 32 65} {(307.28}
45 98 40} {206.28}
19 85 64} {108.28}

(3 88 84 9 48 47} {310.59)

{88 79 85 55 28 32} {311.59}
37 71 35 87 25} (311.59}

{3

{9 0 516 60 62} {112.59}

{16
{16
(88

88 4 71} {207.28})
12 22 32} {107.28}
59 83 66} (8.28)}

{36} {52.00}

{31 99} {302.30}

(31 60} {302.30}

{75 62 65 73} {207.28}
{73 96 92 31} {306.28}
{75 84 52 87} {208.28}
{65 9 54 87} {108.28}
{62 95 48 46} {8.28)
{28} {151.00}

{56 43 85 90} {106.28}
{43 40 32 88} {107.28}
{56 51 5 29} {107.28}
{51 99} (202.30)

{99 22) (202.30}

{51 27} {202.30}

{19} {52.00}

(650}
{651}
{652)
{653}
{654}
(655}
{656}
{657)
(658}
{659}
(660}
(661}
{662}
{663}
(664}
(665}
(666}
(667}
{668}
(669)
{670}
{671}
{672}
{673}
(674}
{675)
{676}
{677}
{678}
(679}
(680)
{681}
{682}
(683)
{684}
(685)
{686}
{687}
(688}
{689}
(690}
(691)
(692}
{693}
(694}
{695}
{696)
{697}
{698)
{699}
{700}
(701}
{702}
{703}
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{33 85} {102.30:
(85 11} {102.30}
{14 36 51 56 32 87

99 91} (416.13}

{99 54 7 82 92 84 1 41} {(615.13}
{14 43 2 32 72 95 99 21) {(416.13}
{56 78 73 8 6 38 50 24} {316.13}

(51 69 89 50 16 83
{91 56 79 75 28 30
{59 99 16 50} {207
{50 69 40 42} ({306.
{16 10 19 21} {208.
(99 78 96 35} (207
{59 17 72 73} {207
{54} {52.00}

{40 0} (302.30}
{40 44} {202.30}
{0 89} (103.30)
{26} {151.00}

{6} {52.00}

{5 51 76} {55.74}
{51 76 13} (55.74}
{5 44 58} {54.74}
{14 0 95} {154.74)
{95 56 80} {154.74}
{0 87 28} {54.74)
(73} {151.00}

(12} {151.00;}

{20 69} {103.30}
{96} {151.00}

{31} {51.00}

74 29} (316.13)
6 18} (217.13}

.28}

28}
28)

.28}
.28}

{94 30 48 49} {8.28}
{30 83 65 72} (8.28}

{77 27} {103.30}
{27 63} {3.30}
(45 0} {202.30}
{0 58} {302.30}
{45 663 {3.30}
(27} {151.00}

{88
{88
{2}
(8}
{61
{61
{40
(84}
{50
{26
{50
{99
{99
(54
(38
{22}

27} {102.30)
79} {3.30}
{51.00)
{151.00}
40} {103.30}
58} {103.30}
32) {3.30}
{51.00}
26} {202.30}
74} {302.30}
14} (103.30}
38 54} {255.74}
78 88} {254.74}
1 15} (155.74)
92 17} {55.74}
{51.00}



{704} (33 47 75} {254.74} {758} {85 55 66 3} {207.28}

{705} {33 40 91} {353.74} {759} {88 13 2 29} {(107.28)

{7063 (49} {52.00) {760} (94 61) {3.30}

{707} {21} {51.00} {761) (94 66} (3.30)

{708} (13 14 32} {56.74} (762} {86 43 82} (254.74}

{709} {54} {52.00} {763} {86 20 80} {255.74}

{710} {88 92} (203.30) {764} {82 17 9} (154.743}

{711} {88 29} {203.30} {765) (43 38 99} {(55.74}

{712} (92 28} {(103.30} (766} {79} {52.00)

(713} (44 15} {3.30} {767y {83} {52.00}

{714} {6 98 26} {155.74} {768} {25 20} {103.30}

{715} {6 8 76} {155.74} {769} {25 76} {3.30}

{7163} {98 2 14} ({55.74} {770} {87} (52.00}

(717} {94} {151.00} {771} {83} {52.00}

{718} {74) {51.00} {772} {41} {52.00}

{719} (65} {51.00} {773} {45) {151.00)

{720 {8 43 2 72 78 81} {12.59) {774) {39 9 4 80} {208.28)

{7213 {72 89 17 56 64 63} (12.59 {775} {39 47 9 11} {207.28}

{722} {67 12} {203.30} (776} {80 11 55 14} {108.28}

(723 (12 173} {202.30) {777y {9 65 90 39} {107.28}

{724} (0 66 8 59} {7.28} {778} {1} {51.00}

{725} (59 19 72 17} {8.28} {779} {31} {(151.00}

(726} {46} {52.00} {780} {24 46 19} {56.74}

(727} {47} {51.00} {781} (19 66 60} {55.74)

{728} {97 69} {203.30} {782} (39} {52.00}

{729} (69 563} {302.30) (783} (44 66 74} {154.74}

(730} (78 66 96} (55.74) {784) {66 11 78} {155.74}

{731} {96 14 87} ({55.74} {785} {8} {51.00}

{732} {35} {52.00} {786} (95 97 87 80} {(208.28}

{733} {84} {51.0012 (787} {87 58 33 63} (207.28)

{734} {23 42} {104.30} {788} {95 52 78 74} {207.28}

{735} (42 36} (104.30} {789} (97 7 2 84) (206.28}

{7363} {23 71} {4.30) {790} (51} {51.00}

{737y {3 77} {103.30} {791} (71 73} {203.30}

{738} {3 5} {103.30} {792} {73 763 {203.30)

{739} {62} (52.00} {7933 (17} {151.00}

(740} (12 88 33 97 98} {558.90} {794} {80} {52.00}

{741} {98 28 73 83 15} {359.90;} {7951 {89 29} {4.30}

{742} (33 34 18 16 15} {359.90} {796} {29 82} {3.30)

{743} {12 19 97 5 34} {359.90} {797} {4 45} {202.30}

{744} (15 61} (104.30} (798} (4 26} (302.30)

{745} {15 75} {4.30} {799) (45 87} {(103.30:

{746} {60} {151.00) {800} (80 74 89} 155.74)

(747} (1 72 76) {155.74} {801} (93 33 15} ({354.74)

{748y {72 64 94} {155.74} {802} {33 16 0O} ({354.74)

{749} {76 24 31) {155.74) {803} {15 12 81} {155.74}

{750) (1 43 13} {55.74} {804} (93 5 18} {55.74)

{751} {76 39} {(4.30} {805) (8 7 68 65 2 74 4 71} {(514.13}
{752} {79 34) {203.30) {806} (74 4 86 2 72 1 33 10} (714.13)
{753} {34 81} {103.30} {807} (68 70 56 64 53 74 27 54) (517.13}
{754} {20 78 74} {55.74} (808} (65 99 20 58 8 73 84 31) (513.13}
{755} {78 71 26} {55.74} {809} {8 33 13 25 9 89 63 53} {217.13}
{756} {74 47 32} {54.74) {810} {71 79 72 91 62 96 40 90} {(216.13}
{757} {85 1 23 88) {306.28) {811} (93 60 35} {254.74}
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(812}
(813}
(814}
{815}
(8161}
{817}
{818)
{819}
(8207
{821}
{822}
(823}
(824}
{825}
{826}
(827}
(828
(829}
{830}
{831)
(832)
{833}
{834)
{835}
(836)
(837)
(838)
{839}
{840}
(841}
(842}
(843"
(8441Y
(845}
{846)
(847)
{848)
{849}
{850}
{851}
{852)
(853}
(854}
{855}
(856}
{857)
{858}
{859}
{860}
(861}
{862}
{863}
{8643
{865)

{35 42 50) {155.74)

(60 83 323 (55.74)

(0) {151.00%}

{98 38 28) {155.74)

(38 84 18} (155.74}

(98 68 27) {155.74})

{28 51 72} (154.74)

(28} {51.00}

(98 26} (103.30)

{98 1) {103.30)

{26 64} {3.30)

{95} (51.00}

{21} {51.00}

{59 43 25) {55.74)

{25 57 85} (54.74)

{28} {51.00)

{63 74} (103.30)

{74 20} (103.30)

{36 73} {103.30)

{16) (52.00}

{56 39 95) (354.74}

{39 51 88) {254.74)

{56 28 66) {154.74}

{95 98 30) {55.74)

{13 66} {104.30}

{13 50) {103.30}

{13 95} {3.30)

(45 74} {202.30}

{74 5} {103.30)

{45 773} {3.30)

{841 {51.00)

{9 34 76} {255.74)

(34 93 39) {354.74)

{2} {51.00)

(82} (151.00}

(48) (52.00)

{58} {51.00}

{0 21) (202.30}

{21 19} {103.30)

{0 77} {103.30)

{71 {151.00)

(8} {151.00)

{29} {52.00)

{71 80} {4.30}

{80 2} (3.30)

{4} {151.00}

(56} (51.00)

{43} (52.00)

(89 53 96 62 44 57 56) {364.33)
{56 63 28 50 82 59 6} {463.33)
{44 27 95 72 69 61 39} {463.33}
{57 88 22 19 48 79 62} {365.33}
(62 74 9 88 54 55 49} (265.33})
(53 11 8 95 66 15 83) (264.33)
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{8661}
{8671
{868)
{869)
{870}
{871}
{872)
{873}
{874}
{875}
{876}
{877}
{878}
{879}
{880}
{881}
{882}
{883}
{884}
{885}
(886}
(887}
(888}
(889}
(8907}
(891}
{892}
{893}
{894}
{895}
{896}
{897}
(8981
(899}
{900}
{901}
{902}
{903}
{904}
{905}
{906}
{907}
(908}
{909}
{910}
{911)
{9123
{9133}
{914}
{915)
{916}
{917}
{918}
{919}

{38 13 69 23}
{38 86 11 29)
{69 55 43 19) {108.28)
{13 23 85 46} {108.28}
{33 0 66 97} {107.28}

{31 1) {202.30}

{31 35} {203.30}

{1 39) (103.30}

(34 39 45} {254.74)

{39 34 11} (254.74)

{34 85 73} (253.74)

{45 89 54} (55.74}

{74} {151.001

{25} {151.00)

{97} {52.00}

{12} {51.00}

{27} {51.00}

{99} {151.00)

{68} {52.00}

(25 95 79 44 40} {457.90}
{40 11 68 64 4} {458.90}
{95 20 48 1 49} {359.90}
(25 27 14 55 63} {259.90}
{1}y {51.00}

{92} {52.00}

(17} {151.00}

{20} (52.00}

{93 40} {302.30}

{40 32} {103.30}

{93 97} {103.30)

{50 31 96 43} {306.28)
{50 96 B6 99} {405.28}
{96 73 86 99} {(305.28)
{31 22 62 13) {107.28)
{73 35 47) {154.74}

{47 28 39} (154.74}

(35 47 96} {154.74)

{50 45} {102.30}
{50 63} {103.30)
{45 33} {102.30}
{96 1) {202.30}
{1 383 {203.30}
{96 74} (102.30}
{99 52} {103.30}
{47} {51.00}
{80} {52.003}
{71} {52.00)

{72 29 67 42 68)
{42 33 49 45 23}
{98 3} (103.30)
{4} {151.00}

{2 1}y {202.30})
{1 62y {203.30)
{2 36} {3.30}

{207.28)
{207.28}

{61.90}
{59.90)



{920}
{921}
{922}
{9231}
{924}
{925}
{926}
{927}
{928}
{929}
{930}
{931}
{932)
{933}
{934}
{935}
{936}
{937}
{938}
{939}
{940}
{941}
{942}
{943}
(944)
{945}
{946}
{947}
{948}
{949}
{950}
{951}
{952}
{953)
{954}
{955}
{956}
{957}
{9581}
{959}
{960}
{961}
{962}
{963}
{9641
{965}
{966}
{967}
{968}
{969}
{970}
{971}
{972}
{9731

{36 96} {103.30}
{96 41) {103.30}
(16} {52.00)

{11} {151.00)

{74 21} {102.30)
{74 61} {103.30)
{2 89 96 31} (306
(31 57 67 1} (107
{96 7 29 36) (107
{2 29 49 22} {107
{73 99} {202.30}
{99 23} {103.30}
{73 92} {3.30}
(84 41} (3.30)
{84 29) {3.30)
{77} (52.00)

(35} {52.00)

{13} (52.00)

.28}
.28)
.28}
.28}

(45 10 76} {55.74}

{73} {151.00}
(24} {52.00}
{36 60 78} {55.74

}

{60 26 75} {54.74}

{9} (52.00}

{17}y {151.00}
{563 {151.00}
{1} (151.00)

{5 99 83} {155.74
{63 14} (4.30}
(14 61) (4.30)
{63 35) {4.30}
{74 97} {103.30)
{74 18} {3.30)
{29 15} {104.30}
{21} {51.00}
{40} {151.00}
{51 36} {103.30}

{98 44 37 85 48 25 46} {363.33)
{44 37 73 93 41 59 83) {463.33}
{25 86 3 52 15 30 4} {463.33}

{48 92 56 33 7 51

{98 96 6 75 82 47 31} {463.33}
{85 3 7 18 51 15 46} {363.33)

{32} {52.00}
{66) {(52.00}
{68} {52.00}

{46 31} {103.30}
{64 27} {103.30}
{35 34} (103.30}
{94 78} (3.30}
{45} {151.00}
{34 90} {202.30}
{90 99} {202.30)
{34 83} {103.30}

}

18}

(974}
{975}
{9761}
{977}
{978}
{979}
{980}
{981}
{982}
{983}
{984}
{985}
(986}
{987}
{988}
{989}
{990}
{991)
{992}
{993}
{994}
£995)
{996}
{997}
{998}

%999}
151.0
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{74} {151.00}
(40 51 43} (154.74}

{43 84 33) {154.74)

{77} (52.00)

{73} {151.00}

{27} (151.00}

{59 7} (203.30}

{7 443} (302.30)

{2 68 33 16 71 40 64} {164.33)
{40 37 76 18 10 71 5} {165.33)}
(80 89 76 69 31} {59.90)

{80 32 58 8 34} (58.90)}

{90} {51.00}

{8} (51.00}

{2 40} {302.30)

{40 41) {203.30)

{2 35) {203.30}

{61 67} {4.30}

{82 51 16} {154.74}

{16 23 96} (155.74)

{82 90 38) {54.74}

{58} {51.00}

{65} (51.00}

{3} (151.00}

{53 30 67) {56.74}

6%0 66 12} (55.741{941) {8}



Output File(l): winners, total revenue, total running time when analysis bids=0

C:\CaDIA>cadia items.txt bids.txt 100 1000 O

—=—===L,ower Bound Result =========——=-====-S=-===—-——-—-oo-=-=====rs————z=====

BidderID Bid Price ItemList

3 52.00 32

9 52.00 87

26 52.00 29

29 202.30 27 96
122 306.28 8 49 82 84
164 104.30 18 43
203 151.00 65
215 104.30 55 75
218 52.00 97
227 463.33 5 11 17 50 63 68 73
292 359.90 7 35 46 67 90
306 153.00 51
309 457.90 0 37 70 88 94
334 52.00 64
361 52.00 78
370 708.59 22 28 45 56 60 85
380 156.74 14 20 92
395 104.30 16 81
409 52.00 57
425 151.00 47
427 616.13 19 21 31 36 52 69 77 91
450 52.00 41
479 52.00 71
528 254.74 24 26 93
538 151.00 58
545 104.30 39 98
581 354.74 12 34 83
668 52.00 6
699 255.74 38 54 99
734 104.30 23 42
739 52.00 62
744 104.30 15 61
794 52.00 80
806 714.13 1 2 4 10 33 72 74 86
836 104.30 13 66
847 52.00 48
885 457.90 25 40 44 79 95
943 52.00 9
997 151.00 3

Total Revenue = 7521.52
0.010000 seconds

BidderID Bid Price ItemList
3 52.00 32
11 151.00 27
40 151.00 74
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75 151.00 28

79 52.00 10
106 359.90 6 22 54 60 97
132 155.74 30 52 91
135 151.00 21
L63 104.30 5 18
171 151.00 37
198 302.30 8 69
216 104.30 55 78
221 151.00 4
222 354.74 1 11 53
237 52.00 38
288 203.30 0 72
292 359.90 7 35 46 67 90
301 203.30 64 99
306 151.00 51
319 307.28 24 44 82 83
326 104.30 70 75
335 306.28 56 61 86 88
363 311.59 26 45 59 80 89 94
380 156.74 14 20 92
382 151.00 12
396 104.30 79 81
409 52.00 57
411 151.00 17
430 416.13 19 25 47 62 65 71 84 98
462 151.00 2
476 155.74 16 77 93
555 103.30 49 85
584 103.30 48 95
634 52.00 36
675 151.00 73
734 104.30 23 42
782 52.00 39
787 207.28 33 58 63 87
836 104.30 13 66
843 255.74 9 34 76
384 52.00 68
896 306.28 31 43 50 96
953 104.30 15 29
989 203.30 40 41
997 151.00 3

Total Revenue = 7678.24
42.572000 seconds

maxRound is 0 and maxRevenue is 7678.24
Total time required: 42.572000 seconds

144



Output File(2): winners, total revenue, total running time when analysis bids=2

C:\CADIA»cadia items.txt bids.txt 100 1000 2

=====Lower Bound Result

BidderID Bid Price
3 52.00
9 52.00
26 52.00
29 202.30
122 306.28
164 104.30
203 151.00
215 104.30
218 52.00
227 463.33
292 359.90
306 151.00
309 457.90
334 52.00
361 52.00
370 708.59
380 156.74
395 104.30
409 52.00
425 151.00
4277 616.13
450 52.00
479 52.00
528 254.74
538 151.00
545 104.30
581 354.74
668 52.00
699 255.74
734 104.30
739 52.00
744 104.30
794 52.00
806 714.13
836 104.30
847 52.00
885 457.90
943 52.00
997 151.00

Total Revenue

0.010000 seconds

BidderID Bid Price

3

[
1L

7521.52

52.00

151

.00

ItemList

32

87

29

27 96

8 49 82 84
18 43

65

55 75

97

5 11 17 50 63 68 73
7 35 46 67 90

51

0 37 70 88 94
64

78

22 28 45 56 60 85
14 20 92

16 81

57

47

19 21 31 36 52 69 77 91
41

71

24 26 93

58

39 98

12 34 83

6

38 54 99

23 42

62

15 61

80

1 2 4 10 33 72 74 86
13 66

48

25 40 44 79 95
9

3

ItemList

32

27
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40 151.00 74

75 151.00 28
79 52.00 10
106 359.90 6 22 54 60 97
132 155.74 30 52 91
135 151.00 21
163 104.30 5 18
171 151.00 37
198 302.30 8 69
216 104.30 55 78
221 151.00 4
222 354.74 1 11 53
237 52.00 38
288 203.30 0 72
292 359.90 7 35 46 67 90
301 203.30 64 99
306 151.00 51
319 307.28 24 44 82 83
326 104.30 70 U5
335 306.28 56 61 86 88
363 311.59 26 45 59 80 89 94
380 156.74 14 20 92
382 151.00 12
396 104.30 79 81
409 52.00 57
411 151.00 17
430 416.13 19 25 47 62 65 71 84 98
462 151.00 2
476 155.74 16 77 93
555 103.30 49 85
584 103.30 48 95
634 52.00 36
675 151.00 73
734 104.30 23 42
782 52.00 39
787 207.28 33 58 63 87
836 104.30 13 66
843 255.74 9 34 76
884 52.00 68
896 306.28 31 43 50 96
953 104.30 15 29
989 203.30 40 41
997 151.00 3

Total Revenue = 7678.24
44 .044000 seconds

Use Winners & Losers Information to improve result

=====Round #1 =========================s==========S=====s===s========
Delete: 734 Delete: 930
BidderID Bid Price ItemList

63 151.00 11

75 151.00 28
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87 52.00 35

88 52.00 14
106 359.90 6 22 54
132 155.74 30 52 91
163 104.30 5 18
176 151.00 99
234 203.30 25 64
237 52.00 38

261 302.30 21 56
262 203.30 9 50
306 151.00 51
308 359.90 17 19 49
325 104.30 24 75
358 255.74 10 27 29
387 208.28 39 57 69
396 104.30 79 81
418 354.74 8 37 78
425 151.00 47
461 151.00 94
476 155.74 16 77 93
544 104.30 83 98

566 52.00 66

584 103.30 48 95

598 109.28 55 70 71
612 3.30 44 63

624 307.28 32 65 68
685 302.30 0 58

722 203.30 12 67
735 104.30 36 42
744 104.30 15 61

763 255.74 20 80 86
773 151.00 45
792 203.30 73 76
798 302.30 4 26

846 151.00 82

869 108.28 13 23 46
890 52.00 92

918 203.30 1 62

926 306.28 2 31 89
971 202.30 3490

976 154.74 33 43 84
980 203.30 7 59

989 203.30 40 41

997 151.00 3

Total Revenue = 7975.34
48.930000 seconds

Delete: 734

BidderID Bid Price ItemList
63 151.00 11
75 151.00 28
87 52.00 35

60

53

72

87

74

85

96

97

88
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88 52.00 14

106 359.90 6 22 54 60 97
132 155.74 30 52 91

163 104.30 5 18

176 151.00 99

234 203.30 25 64

237 52.00 38

261 302.30 21 56

262 203.30 9 50

306 151.00 51

308 359.90 17 19 49 53 88
325 104.30 24 75

358 255.74 10 27 29

387 208.28 39 57 69 72
396 104.30 79 81

418 354.74 8 37 78

425 351.00 47

461 151.00 94

476 155.74 16 77 93

544 104.30 83 98

566 52.00 66

584 103.30 48 95

598 109.28 55 70 71 87
612 3.30 44 63

624 307.28 32 65 68 74
685 302.30 0 58

722 203.30 12 67

735 104.30 36 42

744 104.30 15 61

763 255.74 20 80 86

773 151.00 45

792 203.30 73 76

798 302.30 4 26

846 151.00 82

869 108.28 13 23 46 85
890 52.00 92

918 203.30 1 62

926 306.28 2 31 89 96
971 202.30 34 90

976 154.74 33 43 84

980 203.30 7 59

989 203.30 40 41

997 151.00 3

Total Revenue = 7975.34
49.380000 seconds

=====Round #3 ============c==s=-====z=S=z=sz=SsS==s-o====SsS-zo==sT===Ss===
Delete: 930
BidderID Bid Price ItemList

59 203.30 33 62

63 151.00 11

75 151.00 28
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86 52.00 49

88 52.00 14

96 52.00 72

99 203.30 1 59
101 52.00 70

129 103.30 36 84
132 155.74 30 52 91
164 104.30 18 43
171 151.00 37
216 104.30 55 78
235 203.30 64 69
261 302.30 21 56
262 203.30 9 50
292 359.90 7 35 46
325 104.30 24 75

358 255.74 10 27 29
368 151.00 60
396 104.30 79 81
409 52.00 57
411 151.00 17
425 151.00 47
432 353.74 4 8 22
461 151.00 94
476 155.74 16 77 93
519 151.00 26

544 104.30 83 98

584 103.30 48 95
591 203.30 85 87

606 354.74 25 1 76
612 3.30 44 63

24 307.28 32 65 68
668 52.00 6

685 302.30 0 58

699 255.74 38 54 99
710 203.30 88 92

734 104.30 23 42
743 359.90 5 12 19
744 104.30 15 61
763 255.74 20 80 86
773 151.00 45
782 52.00 39
791 203.30 7173

836 104.30 13 66

816 151.00 82
926 306.28 2 31 89
989 203.30 40 41

997 151.00 3

Total Revenue = 8420.84
48.089000 seconds

maxRound is 3 and maxRevenue is 8420.84

Total time reguired: 190.253000 seconds

67

74

34

96

90

97



APPENDIX B

Source Code for Brute Force Technique

This appendix provides the source code of the brute force technique (BFT)

program used in the evaluation. The program can handle up to 10 bids and 10 items.

/* _________________________________________________________________
Author: Andy Law

Date: 2003

Description:

The program uses brute force technique (BFT) to identify winners in a
combinatorial auction.

Program Execution Format:

bft.exe items_file.txt bids_file.txt

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

27
#define MAXLEN 80

#define MAXITEM 10

#define MAXBIDDER 10

#define TRUE 1

#define FALSE 0

#define DELETED -1

#define NO_ITEM -2

[/ m e o oo
typedef struct itemMatrix //item information ADT

(

double itemPrice;

} ITEMMATRIX;

typedef struct bidMatrix //bid information ADT
(

int bidderID;

int itemList [MAXITEM];
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double bidPrice;
int sold; //1 if sold, -1 if deleted
} BIDMATRIX;

2
BIDMATRIX bMatrix[MAXBIDDER]; //bid information

ITEMMATRIY iMatrix[{MAXITEM]; //itenr information

int bidderListIdx=0; //total number of bids

int processedBidder=0; //number of bids

int winner[MAXBIDDER] ;

double tempRev=0.0;

void readInput{char *argvil);

void processItemInput (char *buf, int *itemNo, double *itemvValue);

void processBidInputi{char *buf);

void initializec({);

void processAuction();

int auctionCompete (int max) ;

void displayResult();

int conflict2(int al,int a2);

inl conflict3(int al,int a2, int al3);

int conflictd{int al,int a2, int a3, int a4);

int conflict5(int al,int a2, int a3, int a4, int ab);

int conflicté(int al,int a2, int a3, int a4, int a5,int aé);

int conflict7{int al,int a2, irt a3, int a4, int ab,int aé,int a7);

int conflict8(int al,int a2, irnt a3, int a4, int a5,int a6,int a7,int aB);
int contlict9(int al,int a2, int a3, int a4, int ab,int a6,int a7,int a§,int a9);

int conflictl0(int al,int a2, int a3, int a4, int ab,int a6,int a7,int a8,int a9,int
alo) ;

//main () module.
int main (in% argc, char* argvi(]) {

clock_t start, finish;

double duration;

it (argc 1=3)

{
printf("Usage: BFT <litems_file> <bids_file>\n");
exit (1);

}

start = clock();

printf( "sz=ss=s===c=so=xzzos====c-=2\N");

printf( Best Search - Beginning\n");

printf({ "=s=ss=s==zs==z=zs=s=========\n");

initialize(};
readIrput (argv) ;
processAuction() ;
displayResult ();

finish = clock(};
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printf( " Best Search - Ending\n");
printf{ "====s=======s===============\n");
duration = (double) (finish - start} / CLOCKS_PER_SEC;

printf( "%.61f seconds\n", duration );

return 0;

void initialize(){

int 1,3

for (i=0;i<MAXBIDDER;i++)
winner[i]=-1;

for (i=0;i<MAXBIDDER;1i++)(
bMatrix[i].bidderiD=-1;
bMatrix{[i] .bidPrice=-1.0;
bMatrix[i].sold=FALSE;
for (Jj=0;j<MAXITEM; j++}

bMatrix{i].itemList[j]=-2;

void displayResult(){
int 1,73;

double rev=0.0;

printf("BidderID Bid Price ItemListi\n"};
for (i=0;i<bidderListIdx;i++){
if (winner[i]== TRUE) {

printf("%51 ", bMatrix[i].bidderID);

printf("%$-15.2f",bMatrix[(i].bidPrice);

rev=rev+bMatrix[i].bidPrice;

for (j=0;j<MAXITEM; j++) {

if (bMatrix[i].itemList[j]l==1)
printf("si ",3);
}
printf("\n");

}

printf("\nTotal Revenue = %.2f\n",rev);

void resec()
{
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int 1i;

for (i=0;i<bidderListIdx;i++)

winner [1]=FALSE;

void processAuction(){
int al,a2,a3,ad4,ab5,a6,a?,a8,a9;
int al0;
int n=0;
int ret=FALSE;

double maxRev=0.0;

for (al=0;al<bidderListIdx;al++){
1f (maxRev<bMatrix[al].bidPrice) {
maxRev=bMatrix[al] .bidPrice;
reset () ;
winner{al]=TRUE;
}
for (a2=0;aZ2<bidderListIdx;a2++){
if (al !'= a2){
ret=conflict2(al,a2);
1f {ret==FALSE) {
if
(maxRev<bMatrix[al].bidPrice+bMatrix(a2] .bidPrice){
maxRev=bMatrix{al].bidPrice+bMatrix[a2l.bidPrice;
reset () ;
winner[al]=TRUE;

winner [a2]=TRUE;

}
for (a3=0;a3<bidderListIdx;al3++)/{
if (al!=a2 && al!= a3 && a2!=a3){
ret=conflict3(al,az,a3);

if (ret==FALSE){
if
(maxRev<bMatrix[al) .bidPrice+bMatrix[a2].bidPrice+bMatrix[a3].bidPrice) {

maxRev=bMatrixfal] .bidPrice+bMatrix({a2].bidPrice+bMatrix(a3].bidPrice;
reset();
winner [al]=TRUE;
winner[a2]=TRUE;

winner[a3]=TRUE;

}
for (ad=0;ad<bidderListIdx;ad++){
if (al!'=a2 && al!= a3 && al'!=ad &&

153



a2t=ald && a2l!=ad &&
a3'=ad) {
ret=conflictd4 (al,a2,ald,a4);

1f (ret==FALSE){

if
(maxRev<bMatrixall.bidPrice+bMatrix[a2].bidPrice+bMatrix[a3].bidPrice+bMatrix[a4] .bidPri
ce){

maxRev=bMatrix[al].bidPrice+bMatrix[a2].bidPrice+bMatrix(a3].bidPrice+bMatrix(a4].
bidPrice;
reset () ;
winner{al]=TRUE;
winner [a2]=TRUE;
winner [a3]=TRUE;
winner [ad4])=TRUE;

}
for (a5=0;ab5<bidderListIdx;aS++){
if fal!=a2 && al!= a3 && al!=ad && al!=ab &&
a2!=al && al'!'=ad && a2t!=ab &&
a3l=ad && al3!=ab &&
adt=ab}{
ret=conflictS(al,a2,a3,a4,a5);
if (ret==FALSE) {
if
(maxRev<bMatrixlal].bidPrice+bMatrixia2].bidPrice+bMatrix(a3].bidPrice+bMatrixia4] .bidPri
ce+bMatrix(a5].bidPrice) {
maxRev=bMatrix([al] .bidPrice+bMatrix[a2].bidPrice+bMatrix[a3].bidPrice+bMatrix(ad].
bidPrice+bMatrix[a5] .bidPrice;
reset () ;
winner [al}=TRUE;
winner[a2]=TRUE;
winner [a3]=TRUE;
winner (a4 ]=TRUE;
winner [a5]=TRUE;

-

}
for (a6=0;ab<bidderListIdx;ab++) (
if (alt=a2 && all= a3 && alt=a4 && al!'=ab5 && al!=a6 &&
az!=a3 && a2!=ad && al2l!=ab && al2!=ab &&
a3l=ad && al3!=a5 && a3l'!=ab &&
adl=ab && ad'!=a6t &&
abl=a6}{
ret=conflicté6(al,a2,a3,ad, a5, ab6);
if (ret==FALSE) {
if
(maxRev<bMatrix{al].bidPrice+bMatrix[a2] .bidPrice+bMatrix{a3}.bidPrice+bMatrix(a4].bidprri
ce+bMatrix(a5].bidPrice+
bMatrix{a6].bidPrice) {

) ~ maxRev=bMatrix(al].bidPrice+bMatrix[a2].bidPrice+bMatrix{a3].bidPrice+bMatrix[ad].
bidPrice+bMatrix[a5] .bidPrice+
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bMatrix(aé6] .bidPrice;
reset();
winner [al]=TRUE;
winner [a2]=TRUE;
winner [a3]=TRUE;
winner {ad]=TRURE;
winner [a5]=TRUE;

winner [a6 ] =TRUE;

}
for (a7=0;a7<bidderListIdx;a7++)

if (al'=a2 && al!= a3 && al!=ad && al!'=a5 && all!=ab && al!=a7 &&
a2!=al && al2!=ad && a2'!'=ab && a2'!=ab && a2!=a7 &&
al!=ad && a3!=a5 && al!=ab && al3!=a7 &&
adl=ab && ad'!=abé && adl!=al &&
abl=a6 && aS5!=a7 &&
a6t=a7) {
ret=conflict7(al,a2,al3,ad,ab,a6,a’);
if {(ret==FALSE)}{

if
(maxRev<bMatrixlal].bidPrice+bMatrix[a2] .bidPrice+bMatrix{al3] .bidPrice+bMatrix[ad}.bidpPri
ce+bMatrix[a5] .bidPrice

+bMatrix{a6] .bidPrice+bMatrix(a7].bidPrice) {

maxRev=bMatrix[all.bidPrice+bMatrix[aZ] .bidPrice+bMatrix[a3].bidPrice+bMatrix([ad].
bidPrice+bMatrix(ab] .bidPrice
+bMatrix(a6].bidPrice+bMatrixla7] . .bidPrice;
reset{);
winner [al]=TRUE;
winner [a2]=TRUE;
winner [a3]1=TRUE;
winner [a4]=TRUE;
winner [a5}=TRUE;
winner [a6]=TRUE;

winner[a7]=TRUE;

}
for (aB8=0;a8<bidderListIdx;a8++){

if (al!=a2 && al!= a3 && all!=ad && al!=ab && al!=ab6 && al!=a7 &&
al!=a8 &&

a2'!'=al3 && al2'=ad && all!=ab && al!=ab && al2!=a’l && al!=a8 &&
all=zad && al'=ab && al!=ab && al2!=a7 && al2!=a8 &&

ad'=a5 && ad'!=-a6 && adl!=al && a4d!=aB &&

aSt=a6 && aS!=a7 && a5!=a8 &&

abl=ab && ab!=a8 &&

a7!=a8) {

ret=conflict8(al,a2,al3,ad,ab,a6,a’,as);

if (ret==FALSE){



if
{maxRev<bMatrixlal].bidPrice+bMatrix(a2].bidPrice+bMatrix(a3].bidPrice+bMatrix[ad].bidPri
ce+bMatrix{a5].bidPrice

+bMatrix{a6).bidPrice+bMatrixfa7] .bidPrice+bMatrix[a8].bidPrice}{

maxRev=pMatrixfal].bidPrice+bMatrix(a2].bidPrice+bMatrix{a3].bidPrice+bMatrixlad].
bidPrice+bMatrix[ab].bidPrice

+bMatrix{a6] .bidPrice+bMatrix[a7] .bidPrice+bMatrix(a8] .bidPrice;
reset () ;
winner[al]=TRUE;
winner [a2]=TRUE;
winner[a3]=TRUE;
winner{ad)=TRUE;
winner [a5]=TRUE;
winner [a6]=TRUE;
winner[a7]=TRUE;

winner [a8)=TRUE;

}
for (a9=0;a9<bidderListIdx;a9++){

if (al!'=a2 && al!= a3 && al!=a4d && al!=ab && al'!=ab && all!=a7l &&
al'!'=a8 && al!=a9 &&

a2!=ald && al2t!=ad && al2!=ab && all=a6 && a2!=a’ && al2!=a8 &&
azl=a9% &&

al!=ad && ald!=ab && al!=ab && a2l!=a7 && a2!=a8 && a2!=a% &&
ad'!l=ab && ad'!=ab && ad'=a’l && ad4!=a8 && ad!=a9 &&
ab5'!=a6 && ab!=a7 && aS5!=a8 && abl!=a9 &&
a6bl=ab && at!=a8 && abl!=a9 &&
alt=a8 && a’!=a9 &&
a8!=a9) {
ret=conflict9(al,a2,a3,a4,ab,a6,a’,a8,a9);
if (ret==FALSE){
if

(maxRev<bMatrix({al].bidPrice+bMatrix[aZ] .bidPrice+bMatrix[a3].bidPrice+bMatrix(ad4] . bidPri
ce+bMatrixlabl.bidPrice

+bMatrix[a6] .bidPrice+bMatrix{a7] .bidPrice+bMatrix[a8] .bidPrice+bMatrix[a9].bidPri
ce) { .

maxRev=bMatrixlal].bidPrice+bMatrixia2].bidPrice+bMatrix{al3].bidPrice+bMatrix(ad].
bidPrice+bMatrix{a5].bidPrice

o +bMatrix(a6].bidPrice+bMatrix[a7] .bidPrice+bMatrix[a8) .bidPrice+bMatrix[a9] .bidPri

reset{);

winner{al]=TRUE;
winner [a2]=TRUE;
winner [a3]=TRUE;
winner [a4]=TRUE;
winner [a5]=TRUE;
winner [a6]=TRUE;
winner[a7]=TRUE;
winner [a8]=TRUE;

winner [a9]=TRUE;
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}
for (al0=0;alO<bidderListIdx;all++){

if (al!'=a2 && al!= a3 && al'!'=ad && al!=a5 && all!=a6 && al!=a7 &&
all=a8 && al!=a9% && al!=all &&

al2!=al3 && a2!=ad4 && a2!=ab5 && a2!=ab && a2!'=a7 && a2!=a8 &&
a2!=a9 && az2!=all0 &&

al!=ad && al3'!=ab && al!=ab6 && a2!=a7 && al!=a8 && a2!=af% &&
a2'!=all &&

ad'!=ab && adl=ab && ad!=a7 && ad!=a8 && a4!=a9 && ad'=all
&&

ab!=ab && ab!=a7 && ab!=a8 && ab!=a% && a5!=all &&
a6!=ab && ab6!=a8 && a6!=a9 && ab6!=alld &&

a7'!'=a8 && a7!=a9% && a7!=all &&

a8'!=a9% && aB!=all &&

ag!=alo) {
ret=conflictl0(al,a2,a3,ad4,a5,a6,a77,a8,a9,all);

if (ret==FALSE) {

if
(maxRev<bMatrix[al].bidPrice+bMatrix[a2]}.bidPrice+bMatrix(a3].bidPrice+bMatrix[ad].bidPri
ce+bMatrix[ab] .bidPrice

+bMatrix(a6).bidPrice+bMatrix(a7].bidPrice+bMatrix(a8] .bidPrice+bMatrix(ad9].bidPri
ce+bMatrix[all].bidPrice){

maxRev=bMatrix(al].bidPrice+bMatrix[a2].bidPrice+bMatrix(al].bidPrice+bMatrixia4].
bidPrice+bMatrix[a5] .bidPrice

+bMatrix{a6] .bidPrice+bMatrix[a7].bidPrice+bMatrix[a8] .bidPrice+bMatrix[a9].bidPri
ce+bMatrix{alO] .bidPrice;
winner [al]=TRUE;
winner [a2]=TRUE;
winner (a3 ]=TRUE;
winner [a4]=TRUE;
winner[a5]=TRUE;
winner (a6]=TRUE;
winner {a7j=TRUE;
winner [a8]=TRUE;
winner[a9]=TRUE;
winner[al0]=TRUE;

e

Y/ /7all
}//7a9
Y//a8
Ys/7a7
Y/ /a6
Ys/ab
Y/ /a4
Y//a3
}Y/r7a2
Yr/al
printf{"}\n");
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int conflict2(int al, int a2){

//conflict2 ()
int i;
for

if

(1=0;1<MAXITEM; i++) {

((bMatrix[al]l.itemList{i]+bMatrix[a2].itemList[i])==2)

return TRUE; //there is a conflict

int conflict3{int al, int a2, int a3){

}

return FALSE;
}
//conflict3 ()

int 1i;

for

}

for

}

for

}

(1=0;1<MAXITEM;i++) (

if

{({bMatrix[al].itemList[i]+bMatrix[aZ].itemList{i])}==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {

if

((bMatrix[al].itemList[i]+bMatrix(a3].itemList[i])==2)

return TRUE:; //there is a conflict

(i=0; i<MAXITEM; i++) {

if

({bMatrix([a2] .itemList[i]+bMatrix[a3].itemList[i])==2)

return TRUE; //there is a conflict

return FALSE;

int conflictd (int al, int a2, int a3, int a4d)({

int i;

for

)

for

)

for

(1=0;1i<MAXITEM;i++) {

if

({(bMatrix([al].itemList{i]+bMatrixla2].itemList[i1])==2)

return TRUE; //there is a conflict

(i=0; i<MAXITEM; i++){

if

((bMatrixf{al].itemList[i]+bMatrixfa3].itemList([i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {

if

((bMatrix{al].itemlList[i])+bMatrix[ad).itemList[i])}==2)

return TRUE; //there is a conflict
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}
for (1=0;1<MAXITEM;i++){
if ({bMatrix(a2].itemList[i]+bMatrix[a3].itemList(i])==2)
return TRUE; //there is a conflict
}
for (i=0;i<MAXITEM;1i++) {
if ((bMatrix([a2).itemList[i)+bMatrix[ad).itemList[i])==2)
return TRUE; //there is a conflict
}
for (i=0;i<MAXITEM;i++) {
if ((bMatrixfa3].itemList([i]+bMatrix[ad].itemList[i])==2)
return TRUE; //there 1is a conflict
}
return FALSE;

int conflict5(int al, int a2, int a3, int a4, int ab5)({

int i;

for (i=0;i<MAXITEM;i++){
if ({(bMatrix[al].itemList[i]l+bMatrix{a2].itemList[i]}==2)

return TRUE; //there is a conflict

for (i=0;1<MAXTITEM;i++){
if ((bMatrix{al).itemList{i)+bMatrix{a3].itemList[i])==2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrix[al].itemList([i]+bMatrix{ad].itemList(i])==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++){
if {((bMatrix([al].itemList{i]+bMatrix[a5].itemList(i])==2)

return TRUE; //there is a conflict

for (i=0;1i<MAXITEM;i++){
if {((bMatrix[a2].itemList[i]+bMatrix[a3].itemList[i])==2)

return TRUE; //there is a conflict
for (1=0;i<MAXITEM;i++){
if ((pbMatrix(a2].itemList[i]+bMatrix{ad].itemList[i])==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++) {
if ((bMatrix{a2].itemList(i]+bMatrix{ab].itemList[i]}==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM; i++) (
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if ((bMatrix(a3).itemList{i]+bMatrix{adl.itembList[i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++){
if ((bMatrix(a3].itemList{il+bMatrix(abl.itemlList[1])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrix(ad].itemList{i]+bMatrix{ab)].itemList[i])==2)

return TRUE; //there is a conflict

return FALSE;

}
for
}
for
}
}
/===

int conflicté(int al, int a2, int a3, int a4, int a5, int a6){

int 1i;

for

for

for

for

for

for

for

(1=0; 1<MAXITEM;1i++) {
if ((bMatrixf{al].itemList[i]+bMatrix[a2].itemList([i])==2)

return TRUE; //there is a conflict

(1i=0;1<MAXITEM; 1++) {
if ((bMatrixlall.itemlList{i)+bMatrix(a3d].itemList{i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {
if ((bMatrixfal].itemList[ij+bMatrix[ad].itemList([i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {
if ({(bMatrixfall.itemList|i]+bMatrix[ab].itemList[i])==2)

return TRUE; //there is a conflict

(1=0;i<MAXITEM;1++) {
if ((bMatrixlal].itemList[i]+bMatrix{a6].itemList{i]}==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++){
if ((bMatrix(a2].itemList{i]+bMatrix{al3].itemlList[1i])==2}

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++) {
if ((bMatrix[a2].itemList(i]+bMatrix[ad].itemList([1i])==2)

return TRUE; //there is a conflict

{1=0;1i<MAXITEM;1++} {
if ((bMatrix[a2].itemList([i]+bMatrix[a5].itemList[i])==2)

return TRUE; //there is a conflict
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for {(i=0;1<MAXITEM;i++){

if ((bMatrix{aZ2].itemList[i}+bMatrix{a6l.itemList(i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;1++){

if ((bMatrix[a3].itemList[i]+bMatrix[ad].itemList[1i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){

if ((bMatrix[a3].itemList[i]+bMatrix(ab].itemList[i])}==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){

if ((bMatrix[a3).itemList[i])+bMatrix[a6].itemList{i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){

if ((bMatrix[a4].itemList[i]+bMatrix[a5].itemList[i]):: )

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){

1if ({bMatrix{adl.itemList{i]+bMatrixla6].itemList(i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){

1

if ({(bMatrix[a5].itemList[i]+bMatrix[a6]).itemList[i])==2)

return TRUE; //there is a conflict

return FALSE;

int conflict7(int al,int a2,int a3,int a4,int ab,int a6,int a7){

int 1i;

for (i=0;i<MAXITEM;i++){

if ((bMatrix([all.itemList([i]+bMatrixf{a2).itemList[i])==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++) {

if ((bMatrix{al]l.itemList[i]l+bMatrix[a3].itemList{i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){

if {({(bMatrix[al).itemList[i]l+bMatrixfad].itembList{i])}==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++) {
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for

for

for

for

-

for

for

for

for

for

for

for

for

if ((bMatrix(al].itemList(i]+bMatrix[a5].itemList[i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; 1++) {
if ((bMatrix{al].itemList[i]l+bMatrix[aé].itemList[i])==2)

return TRUE; //there is a conflict

(i=0;1<MAXITEM; i++) {
if ((bMatrix{al].itemList[i]+bMatrix[a7].itemList[i])==2)

return TRUE: //there is a conflict

{(1=0;1<MAXITEM;i++){
if ({(bMatrix([a2].itemList(i)+bMatrix[a3].itemList[i])==2)

return TRUE; //there is a conflict

(i=0; i<MAXITEM; i++) {
if ((bMatrix([a2].itemList[i]+bMatrix[ad].itemList[i])==2)

return TRUE; //there is a conflict

(1=0;1i<MAXITEM;i++) {
if {((bMatrix([a2].itemList[i]+bMatrix([a5].itemList{i])==2)

return TRUE: //there is a conflict

(1=0; 1<MAXITEM;i++){
if {((bMatrix[a2].itemList[i]+bMatrix([a6].itemList([i])==2)

return TRUE; //there is a conflict

(i=0;1i<MAXITEM;1++) {
if ((bMatrix[a2].itemList[i]+bMatrix[a7].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; 1++) {
if ((bMatrix([a3].itemlList{i]l+bMatrix(ad].itemList[1])==2)

return TRUE; //there is a conflict

(1i=0; i<MAXITEM;i++) {
if ((bMatrix[a3].itemList[i]+bMatrix[ab].itemList[i])==2)

return TRUE; //there is a conflict

{(1i=0; 1<MAXITEM;i++){
if ((bMatrix[a3].itemList{i]+bMatrix[a6].itemList{i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++){
if ((bMatrix{a3].itemlList[i]+bMatrixfa7]l.itemList{i])==2)

return TRUE; //there is a conflict
(1=0; 1<MAXITEM;i++) {
if ((bMatrix([ad].itemList[i]+bMatrix[ab].itemList[1i])==2)

return TRUE; //there is a conflict
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for

{(1i=0; 1<MAXITEM; i++) {
if ({(bMatrix[a4l.itemList[i}+bMatrixl[aé6]).itembList[i])==2)

return TRUE; //there is a conflict

}
for (1=0;1i<MAXITEM;i++) {
if ((bMatrix(ad].itemList{i]+bMatrixfa7].itemList{i])==2)
return TRUE; //there is a conflict
}
for (i=0;i<MAXITEM;i++){
if ((bMatrix(a5].itemList(i]+bMatrix(a6].itemList[i]))==2)
return TRUE; /,/there is a conflict
}
for (i=0;1<MAXITEM;i++){
if ((bMatrix([a5].itemList[i]+bMatrix(a7].itemList{i})==2)
return TRUE; //there 1s a conflict
3
for (1=0;1<MAXITEM;i++){
1f ((bMatrixla6].itemlist(i]+bMatrix[a7].itemList[i])-=2)
return TRUE; //there is a conflict
}
return FALSE;
}
F e e
//conflict8()
2 g
int conflict8(int al,int a2,int a3,int a4,int ab,int aé,int a7,int a8){
int 1;
for {i=0;1i<MAXITEM;i++){

for

for

for

for

for

if ((bMatrix[al].itemList{il+bMalrix{a2).itemList[i])==2)

return TRUE; //there is a conflict

(1=0;1i<MAXITEM;i++){
i1f ((bMatrix[al].itemLisz{i]l+bMatrix(a3l.itemLisc({i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix(al].itemList[i]+bMatrix(ad].itemList{i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++){
if ((bMatrixlal).itemList[i]+bMatrix[a5].itemList{i])==2)

return TRUE: //there is a conflict
(i=0; 1<MAXITEM; i++){
if {((bMarrixiall.itemLisc[i]+bMalrix(a6].itemList[i])==2)
return TRUE; //there is a conflict

(1=0; 1<MAXITEM; 1++) {
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for

for

for

for

for

—

for

for

for

for

for

for

for

if ((bMatrix{all.itemList([i]+bMatrix{a7].itemList[i])==2)

return TRUE; //there i1s a conflict

(1=0; 1<MAXITEM; i++) {

if ((bMatrixf[all.itemList([i]+bMatrix[a8).itemList[1])==2)

return TRUE; //there is a conflict
(1=0; 1<MAXITEM; i++) {
if ((bMatrix([a2].itemList[i]+bMatrix[a3].itemList[i])==

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {

if ((bMatrix[a2].itemList{i]+bMatrix[a4].itemList[i])==2)

return TRUE; //there is a conflict
(1=0;1<MAXITEM;i++) {
if ((bMatrix(a2].itemList{ij+bMatrix[a5).itemList(i])==

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++){

if ((bMatrix[a2].itemList[i]+bMatrix[a6].itemList[i])==2)

return TRUE; //there is a conflict
(i=0;1<MAXITEM;i++){
if ((bMatrix[a2).itemList[i]+bMatrix(a7].itemList[i])==

return TRUE; //there is a conflict

(1=0; i<MAXITEM;i++) {

if ((bMatrix[a2].itemList{i]}+bMatrix[a8].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {

if ((bMatrix{a3].itemList{i]l+bMatrix[a4].itemlList([i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++){

if ((bMatrix([a3].itemList[i]+bMatrix[ab].itemList{i])==2)

return TRUE; //there is a conflict

{(1=0;1<MAXITEM;i++) {

if ((bMatrix{a3].itemListli]+bMatrix[aé].itemlList[i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrixla3).itemList[i]+bMatrix{a7].itemList{i])==

return TRUE; //there is a conflict
(1=0;1<MAXITEM; 1++) {

if ((bMatrix[a3].itemList[i]+bMatrix[a8].itemList([i])==2)

return TRUE; //there is a conflict
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for (i=0;i1<MAXITEM;i++){
if ((bMatrix{ad4].itemList([i]l+bMatrix{ab}.itemList([1])==2)

return TRUE; //there 1s a conflict

for {(1=0;1<MAXITEM;i++){
if ((bMatrix[a4].itemList{i]+bMatrix{a6l.itemList[i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){
if ((bMatrix{ad].itemList[i]+bMatrix[a7]l.itenlist[i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){
1f ((bMatrix(ad].itemList{i]+bMatrix{a8].itemlistc[i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){
if ((bMatrix(ab).itemList{ij+bMatrix[ab].itenlist[i])==2)

return TRUE; //there is a conflict

[

for (i=0;1<MAXITEM;i++){

if ((bMatrix(ab5)].itemList[i]+bMatrix[a7].itenList[i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++) {
if ((bMatrix{ab5)].itemList[i]+bMatrix[aB].itemList[i])==2)

return TRUE; //there is a conflict

for (i=0;1i<MAXITEM;i++) {
if {((bMatrix{a6].itemList[i]}+bMelrix[a7].itemList{i])==2)

return TRUE; //there is a conflict

for (i=0;1i<MAXITEM;i++){
if ((bMatrix[a6).itemListl[i]+bMatrix[aB].itemList{i])}==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++) {
if ((bMatrix{a7).itemList{i]+bMatrix[a8].itemList{i])==2)

return TRUE; //there is a conflict

}
return FALSE;
}
/= e e
//conflict9¢()
] e e e

int conflict9{int al,int a2,int a3,int ad,int a5,int aé,int a7,int a8,int a9)(

int 1;

for (i=0;i<MAXITEM;i++){
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for

for

for

for

for

for

for

for

for

for

for

for

if ((bMatrix[al).itemList{i]+bMatrix(a2].itemList([i])==2)

return TRUE; //there is a conflict

(1=0; L<MAXITEM; 1++) {
if {((bMatrixfall.itemList(i]+bMatrix[a3].itemList[i])==2)

return TRUE; //there is a conflict

(i=0;1<MAXITEM;i++) {
if ((bMatrix[al].itemList[i]+bMatrix[ad)].itemList([1i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix(al].itemList{i]+bMatrix({a5).itemList[i]})==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++){
if ((bMatrix[al].itemList{i]l+bMatrix{a6].itemList[1])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {
if ((bMatrixflall.itemList{i]+bMatrixla7].itemList{i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXTTEM; i++) {
if ((bMatrixlal).itemList[i]l+bMatrix[a8].itemList([i]}==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {
if ((bMatrix({all.itemList[i]l+bMatrix{a9].itemLigt[i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrixlaZ2].itemList[i]l+bMatrix[a3].itemList(i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrix[a2].itemList[i]+bMatrix[ad].itemList{i])==2)

return TRUE; //there is a conflict

(i=0; 1<MAXITEM; 1++) {
if ((bMatrix[a2].itemList{i]+bMatrix[a5].itemList{i])==2)

return TRUE; //there 1s a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrixla2].itemList[ij+bMatrixlaé).itemList{i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++){
if ({(bMatrix[a2].itemList|{i]+bMatrix(a7].itemList[i])==2)

return TRUE; //there is a conflict
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for

for

for

for

for

for

for

for

for

for

for

for

(i=0; 1<MAXITEM;i++){
if ((bMatrix[a2).itemList[i]j+bMatrix[a8].itemList[i])==2)

return TRUE; //there 1s a conflict

(1=0;1<MAXITEM;i++) {
if ((bMatrix{a2].itemList[i]+bMatrix[a9].itemList([i])==2)

return TRUE; /.there is a conflict

(1=0; 1<MAXITEM;i++) {
if ({(bMatrix[a3].itemList[i]+bMatrix(ad].itemList([i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++){
if ((bMatrix{a3}.itemList{i]+bMatrixl[ab].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++) {
if ((bMatrix{a3]l.itemList[1]+bMatrix{aé].itenList[1i])==2)

return TRUE; /,/there is a conflict

(1=0;1<MAXITEM; i++) {

if ((bMatrix[a3].itemList[i]j+bMatrix(a7].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXTITEM;1++){
1f ((bMatrix[a3].itemList([i]+bMatrix[a8].itemList{i]}==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) (
if ((bMatrix[a3].itemList[i]+bMatrix{a9].itemList[i])==2

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrix[a4].itemList(i]+bMatrix[a5].itemList(i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;1i++) {
if {{bMatrix[ad)l.itemList([i]~+bMatrix[aé].itemList[i])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix[ad].itemList{i)l+bMatrix[a7].itemList[1])==2)

return TRUE; //there is a conflict
{(i=0;1<MAXITEM; 1++) {
if ((bMatrix[ad].itemList({i]+bMatrix[a8).itemList[1})==2)
return TRUE; //there is a conflict

(1=0; 1<MAXITEM;1++) {
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if ((bMatrix[ad].itemList[i}+bMatrix(a9].itemList[i])==2)

return TRUE; //there is a conflict

for (1i=0;1<MAXITEM;i++){
if ((bMatrix[a5].ltemlListli]+bMatrix{a6].itembList[i])==2)

return TRUE; //there i1s a conflict

for (i=0;1i<MAXITEM;i++)(
if ((bMatrix([aS].itemList{i]+bMatrixl[a7].itemList[i])==2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrix[aS%].itemList{i)+bMatrix[a8].itemList([i])==2)

return TRUE; //there i1s a conflict

for (1=0;i1<MAXITEM;i++) {
if ((bMatrix[aS].itemList{i]+bMatrixlad).itemList([i])==2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrixla6].itemList(i)+bMatrixla7].itemList([1])==2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrix[a6].itemList{i]+bMatrix[a8].ltemList[i])==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++) {
if ((bMatrix{a6].itemList{il+bMatrix[a9].itemList([i])==2)

return TRUE; //there is a conflict

for (1=0;1i<MAXITEM;1++) {
if ((bMatrixl[a7].itemList{i)+bMatrix(a8].itemList{i]))==2)

return TRUE; //there is a conflict

—

for (1=0;i<MAXITEM;i++){
i1f ((bMatrix{a7].itemListfij+bMatrix[a9].itemList[i]})==2)

return TRUE; //there is a conflict

for (1i=0;i<MAXITEM;i++) {
if ((bMatrix{a8].itemlList[i]+bMatrix[a9].itemListl(i])==2}

return TRUE; //there is a conflict

3
return FALSE;

}

e e

//conflictl0{()

J e e

int conflictlO(int al,int a2,int a3, int a4,int a5,int aé6,int a7,int a8, int a9, int alo0)({

int i;
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for (i=0;1<MAXITEM;i++) {
if ((bMatrixlal].itemList[ij+hbMatrixfa2]).itemlList([i])==2)

return TRUE; //there i1s a conflict

for (i=0;1<MAXITEM;i++){
if ((bMatrix[al].itemiist(i]+bMatrix{ald].itemList[i]))=-2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrix[al].itemList[i]+bMatrixla4d4].itemList{i])==2)

return TRUE:; //there is a conflict

for (1=0;1<MAXITEM;i++){
if {{(bMatrix[al].itemList[i]+bMatrix{a5].itemList{1]}==2})

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){
if ((bMatrix[al].itemList(i]+bMatrix{aé].itemList{i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){
if ((bMatrix{al].itemList[i]+bMatrix[a7].itemList{i])==2)

return TRUE; //there is a contlict

for (1=0;1<MAXITEM;i++){
if {(bMatrix(al].itemList 'i}+bMatrix([aB).:temList{i]))==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++) {
if ((bMatrixlal).itemList[i]+bMatrix(a9].itembList{i))==2)

return TRUE; //there 1s a conflict

for (i=0;1<MAXITEM;i++){ )
if ((bMatrix([al].litemList[i]+bMatrix[all].itemList([i])==2)

return TRUE; //there is a conflict

for (i=0;i<MAXITEM;i++){
if ((bMatrix[aZ)].itemlList{i]+bMatrix[al].itemList({i])==2)

return TRUE; //there i1s a conflict
for (i=0;1i<MAXITEM;i++){
if ((bMatrix({a2}.itemList{jil+bMatrix{ad].itembList([i])==2)
return TRUE; //there is a conflict
for (1=0;1<MAXITEM;i++) {
1f ((bMatrix[a2].itemList{ij+bMatrix{aS].itemList{1])==2)

return TRUE; //thére is a conflict

for (1=0;i<MAXITEM;i++){
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for

for

for

for

for

for

for

for

for

for

for

for

if ((bMatrix[a2].itemList[ii+bMatrix[a6].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; 1++) {
if ((bMatrixf{a2].itemlList[i]l+bMatrix[a7).itemList([i]}==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) (
if {((bMatrix([aZ2].itemlList{i])+bMatrix[a8].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; i<MAXITEM;i++){
if {((bMatrix([a2].itemList[i]l+bMatrix{a9].itemList{i1])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix(a2).itemList{i]+bMatrix[all].itemList([i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if {((bMatrix[a3].itemList[i]l+bMatrix[ad].itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++){
if ((bMatrixf{a3).itemList[i]+bMatrix{ab5].itemList{i])==2)

return TRUE; //there is a conflict

(1=0; i<MAXITEM;i++) {
if ((bMatrix[a3].itemList[i]+bMatrix[a6].itemList[1])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++){
if ((bMatrix[a3).itemList[i]+bMatrix[a7].itemList{i1])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix[a3).itemList[i]+bMatrix(a8).itemList[i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrixfa3].itemList{i]l+bMatrix([a9].itemList[1i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++){
if ((bMatrixfa3].itemList(i]+bMatrix{all].itemList(i]}==2)

return TRUE; //there i1s a conflict

(1=0;1<MAXITEM; i++){
if ((bMatrix[ad).itemList{i]+bMatrix[a5].itemList[i])==2)

return TRUE; /,/there is a conflict
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for

for

for

for

for

for

for

for

for

for

for

for

for

(1i=0;1<MAXITEM;1++){
if ((bMatrix[ad].itemList[i]j+bMatrixfaé].itemList[i])==2)

return TRUE; //there 1s a conflict

(1=0; 1<MAXITEM;i++){
if ((bMatrix([ad4).itemList{i]+bMatrix{a7].itemList([i])==2)

return TRUE; //there is a conflict

(1i=0; 1<MAXITEM;i++) {
if ((bMatrix[ad].itemList[i}+bMatrix[a8].itemList([1i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;1i++){
if {(bMatrix[ad].itemlist[i]+bMatrix{ad].itemList{i]}==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrix{ad).itemList{i]+bMatrixlall).itemList([i])==2)

return TRUE; //there is a conflict

(1=0;1i<MAXITEM;i++) {
i1f ((bMatrix(ab].itemList[i]+bMatrixfa6].itemList[1i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM; i++) {
if ((bMatrix[a5].itemList[i]+bMatrix{a7}.itemList{i])==2)

return TRUE; //there is a conflict

(1=0; 1<MAXITEM;i++)
if ({(bMatrix{a5)].itembList{i]+bMatrix(a8].itemList([1])==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM;i++) {
if ((bMatrix[a5).itembList{i]+bMatrixfa9].itemList[i])}==2)

return TRUE; //there is a conflict

(1=0;1<MAXITEM; i++) {
if ((bMatrix[ab].itemList[i]+bMatrix[al0].itemList[1i])==2)

return TRUE; //there is a conflict
(i=0;1<MAXITEM;i++) { )
1f ((pMatrix{a6] . itemList{i]+bMatrix([a7}.itemList([1])==2)
return TRUE; //there is a conflict
(1=0;1<MAXITEM; i++) {

if ((bMatrix(a6].itemList{i]+bMatrix{a8].itemlList[i])==2)

return TRUE; //there is a conflict
(1=0; 1<MAXTITEM;i++) {
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if ({bMatrixlab].itemList{i]+bMatrix{ad9].itenmList{i1]))==2}

return TRUE; //there is a conflict

for (1=0; 1<MAXITEM;i++}{(
1f ((bMatrix[aé].itemList{i]+bMatrix[all].itemList[i])==2)

return TRUE; //there is a conflict

for (1=0;i<MAXITEM;i++){
1if ((bMatrix[a7)].itemList[i}+bMatrix[a8).itemList[i])==2)

return TRUE: /,/there is a conflict

for (i=0;i<MAXITEM;i++)}{
if ((bMatrixf{a7].itemList([i]+bMatrix(la9].itemList({i]}==2)

return TRUE; //there is a conflict

for (i=0;1<MAXITEM;i++){
if ((bMatrix[a8].itemList[il+bMatrix[ad].itemList[i])==2)

return TRUE; //there is a conflict

for (i=0;i1<MAXITEM;i++){
if ((bMatrix{a8].itemList[i]+bMatrix[all].itemList[i])==2)

return TRUE; //there is a conflict

for (1=0;1<MAXITEM;i++){
if ((bMatrix[a9).itemList[i])+bMatrix{all).itemList(1i])==2)
return TRUE: //there is a conflict
}
return FALSE;

//Once the bid with highest bidding price or highest profit is found,
//all conflict bids will be deleted.

int auctionCompete(int max) {

int m,n;

if (bMatrix[max].sold==DELETED)
return O;
if (bMatrix([max].sold==FALSE) {
bMatrix[max].sold=TRUE;
processedBidder++;
}
for (m=0;m<bidderListIdx;m++) {
if (bMatrix(m].sold==FALSE){ //
for (n=0;n<MAXITEM;n++) {
if {((bMatrix{max).itemList[n)+bMatrix[m].itemList[n])==2){
bMatrix[m}.sold=DELETED;
processedBidder++;

break;
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)
3
return 0;
)
) mmmm m
//Reads input data into the internal memory structures.
e e S

void readInput{char *argv[]){
char buf(81};
int templ=0;

double temp2=0.0;

FILE *fpl, *fp2;
if {(fpl = fopen{argv[l], "r"})==NULL) {

printf ("Cannot open <item file>\n");

exit (1);

}

if ((fp2 = fopen{argv(2], "r"))==NULL){
printf("Cannot open <bid file>\n");
exit (1);

}

while (TRUE) {
if (fgets(buf, MAXLEN, fpl)==NULL)
break;
processltemInput{buf, &templ, &temp2);
iMatrix|[templ].itemPrice=temp2;
}
while (TRUE){
if (fgets(buf, MAXLEN, fp2)==NJLL)
break;

processBidInput (buf);

vold processItemInput{char *buf, int *itemNo, double *itemValue) {
int i=0,3j=0, process=FALSE;
char temp [MAXLEN];

while (TRUE) {

if (process==TRUE || i>MAXLEN)
break;
else if (bufl{i++)l=="{"){

while (TRUE) {
if (bufiij==")"){
process=TRUE;

break;
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temp[j++]=buf(i];
14+;

}

temp[j]1="\0";

*itemNo=atol {temp) ;

}
else
1++;
}
3=0;
process=FALSE;
while (TRUE) {
if (process==TRUE || i>MAXLEN)
break;
else if (bufli++]=='{"){
while (TRUE) {
if (buf{il=='}"){
process=TRUE;
break;
}
temp [j++]=buf[i];
1++;
}

temp[ji="\0";

*itemValue=atof (temp) ;

else

1++;

void processBidInput (char *buf){
int i=0,3j=0, process=FALSE;
char temp [MAXLEN] ;

while (TRUE) {

if (process==TRUE || i>MAXLEN)
break;
else if (buf{i++]=='{"){

while (TRUE} {
if (bufli]=="}"){(
process=TRUE;
break;
}
temp[j++)=buf[i];

1++;
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temp{jl="\0";
bMatrix|{bidderListIdx].bidderID=atol (temp};

else
i++;
}
3=0;
process=FALSE;
while (TRUE) {
if (process==TRUE || 1>MAXLEN)
break;
else 1f (buffli++]=="{"){

while (TRUE) {
if (buffil=="}"){
process=TRUE;
break;
}
temp(j++]=bufli];
i++;
}
temp{il="\0";

else
1++;
)
3=0;
process=FALSE;
while (TRUE) {
if (process==TRUE || 1>MAXLEN)
break;
else if (buf{i++]=='{")(
while (TRUE) {
if (bufij=="}"){
process=TRUE;
break;
}
temp(j++]=buf[i];
i++;
}

temp[il="\0";
bMatrix(bidderl.istIdx] .bidPrice=atof (temp);

else

144
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APPENDIX C

Source Code for Greedy Search Technique

This appendix provides the source code of the greedy search technique (GST)

program used in the evaluation.

/* _________________________________________________________________
Author: Andy Law
Date: 2003

Degcription:
The program uses greedy search technique (GST) to identify winners in a
combinatorial auction.

Program Execution Format:
bft.exe items_file.txt bids_file.txt

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

[ = e e e e —
#define MAXLEN 80

#define MAXITEM 20

#define MAXBIDDER 1000

#define TRUE 1

#define FALSE 0

#define DELETED -1

#define NO_ITEM

typedef struct itemMatrix //item information ADT
{

double itemPrice;
} ITEMMATRIX;

typedef struct bidMatrix //bid information ADT
{

int bidderID;

int itemList [MAXITEM];

double subtotalvalue;

double bidprice;
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int sold;
} BIDMATRIX;

BIDMATRIX bMatrix[MAXBIDDER] ;
ITEMMATRIX iMatrix{MAXITEM];
int bidderListIdx=0;

int processedBidder=0;

int winner [MAXBIDDER] ;

double tempRev=0.0;

//1 if sold, -1 if deleted

//bids information

//items information
//total number of bids

//

void readInput{char *argv(]};
void processltemInput (char *buf,
void processBidInput (char *but);
void initialize();

void processBAuction();

int auctionCompete (int max) ;
void displayResult();

//main() module

int main (int argc,
clock_t start,
double duration;

if
{

(argc 1=3)

printf ("Usage:

exit (1);

)

start = clock();

printf{ "%s\n",argvill};

printf( "

printf(

printf(
initialize();
readInput (argv) ;
processAuction () ;
displayResult ();

finish =
printf(
printf( *
printf{
duration =
printf( "%
return 0;

void initialize(){
int 1i,3;

for

winner[il=-1;

for

finish;

char* argvl]) {(

auction <item_file>

(1=0; i <MAXBIDDER; i++)

(i=0;i<MAXBIDDER;i++){

bMatrix([(i].bidderID=-1;

17

(double) (finish -
.61f seconds\n",

~

/

int *itemNo,

start)
duration

double *itemValue) ;

<bid_file>\n") ;

/ CLOCKS_PER_SEC;
)



bMatrix(i].bidPrice=-1.0;
bMatrix([i].sold=FALSE;
bMatrix[i].subtotalvalue=0;
for (j=0;j<MAXITEM; j++)

bMatrix{i].itemList[j]=-2; //must be even number
}
}
J ) e e e e e e e
//Displays the auction results to the command screen.
] m e

void displayResult () {
int i,73;
double rev=0.0;

printf ("BidderID Bid Price ItemList\n") ;
for (i=0;i<bidderListIdx;i++){
if (bMatrix([i].sold== TRUE)} {
printf ("$51 ", bMatrix([i]) .bidderID);
printf("%-15.2f",bMatrix[i].bidPrice) ;
rev=rev+bMatrix(i].bidPrice;
for (3=0; j<MAXITEM; j++){
if (bMatrix[i].itemList([jl==1)

printf{"%i ",j);
}
printf{("\n");
}
}
printf("\n");
printf("Total Revenue = %.2f",rev);
printf("\n"});
}
e
//Auction is processed.
W e i bbb b
void processAuction () {
int 1=0, highestBidIdx=-1;
double highestPrice=0.0;
while (1) //always true
{
highestBidIdx=-1;
highestPrice=0.0;
if (processedBidder == bidderListIdx)
break;
for (i=0;i<bidderListIdx;i++)
{
if (bMatrix[i].sold==FALSE)
if (bMatrix[i] .bidPrice>highestPrice)
{
highestPrice=bMatrix([i].bidPrice;
highestBidIdx=1i;
}
}
auctionCompete (highestBidIidx} ;
}
}
/e

//0nce the bid with highest bidding price or highest profit is found,
//all conflict bids will be deleted.
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int auctionCompete(int max) {
int m,n;

if (bMatrix{max].sold==DELETED)
return 0;

if (bMatrix{max].sold==FALSE){
bMatrix[max!.sold=TRUE;
processedBidder++;

}

for (m=0;m<bidderListIdx;m++){
if (bMatrix[m].sold==FALSE){ //

for (n=0;n<MAXITEM;n++){

: ; N . if . -
((bMatrix[max].1telest[nJ*bMatr1x[m].ﬁtelest[n]):: ) {
bMatrix[m].sold=DELETED;

processedBidder++;
break;
}
3
}
}
return 0;
}
2
//Reads inputs into the internal memory structures.
e e
voild readInput {char *argv[]){
char buf{81];
int templ=0;
double temp2=0.0;
FILE *fpl, *fp2;
if ((fpl = fopen{argvi{l], "r"))==NULL) {
printf {"Cannot open <item file>\n"):;
exit (1);
}
if ((fp2 = fopen(argv(2], "r"))==NULL) {
printf ("Cannot open <bhid file>\n");
exit (1);
}
while (TRUE) {
if (fgets(buf, MAXLEN, fpl)==NULL)
break;
processltemInput (buf, &templ, &temp2);
iMatrix[templ) .itemPrice=temp2;
//printf ("%i %.2f\n",templ, temp2);
}
while (TRUE) {
if {(fgets{buf, MAXLEN, fp2)==NULL)
break;
processBidInput (buf);
}
}
e it
//Reads items_file.txt into iMatrix.
e e e e e e

void processItemInput (char *buf, int *itemNo, double *itemValue) {
int 1=0,3j=0, process=FALSE;
char temp[MAXLEN];
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while (TRUE) {

if (process==TRUE || i>MAXLEN]
break;
elgse if (bufii++]=="{"1){

while (TRUE) {
if (bul{il=="3"){
process=TRUE;
break;
3
temp [j++]=bufli];
1++;
}
temp [J]='\0":
*{temNo=atol (temp) ;

}
else
14+
)
3=0;
process=FALSE;
while (TRUE) {
if (process==TRUE || i>MAXLEN)
break;
else 1f (puffi++)=="{"){

while (TRUE){
if (bufl(il=='}"'){
process=TRUE;
break;
3
temp{j++i=buf{il;
i-+;

\
g

temp[i'="\0";
*itemValue=atof (temp) ;

void processBidInput (char *buf} {
int i=0, =0, process=FALSE;
char temp[MAXLENI];

while (TRUE) {

if (process==TRUE || i>MAXLEN})
break;
else 1f (bufli++)=="{"){
while (TRUE){
if (bufiil=="3}"){
process=TRUE;
break;

}
temp{j++]1=buflil;

1++;



}
temp(j]='\0";
bMatrix{bidderListIdx]).bidderID=atoli (temp) ;

else
i++4;
)
j=0;
process=FALSE;
while ({TRUE) {
if (process==TRUE || i>MAXLEN)
break;
else if (buf[i++]=="{"){
while (TRUE) {
if (buff{il-=+3y"){
process=TRUE;
break;
}
temp [j++]=buf(i];
44
}

temp [J1="\0";
processBidltem({temp) ;

[}

else
1++;
}
3=0;
process=FALSE;
while (TRUE) {
if (process==TRUE || i>MAXLEN)
break;
else if (buf{i++l=='{"){

while (TRUE) {
if (bufli)=="3}"){
process=TRUE;

break;
}
temp{j++])=bufli];
14+

3

temp[jl="\0";
bMatrix bidderListIdx] .bidPrice=atof (temp};

}
else
1++;
}
bidderListIdx++;

//Stores those items that are wanted by particular bids in bidMatrix

TR R i i it
void processBidItem(char itemList{]) {

char buf[10];

int len = strlen(itemList);

int i=0, =0, itemListIdx=-1;
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double subtotal=0.0;

while (TRUE) {
if (i»len)

break;
else if (itemList[il==' ' || itemList[il=='\0"'} {
buf[j]="\0";
14+
j=0:

itemListIdx=atoi (buf);
bMatrix [bidderListIdx] .itemList{itemListIdx]=TRUE;
subtotal=subtotal+iMatrix[itemListIdx].itemPrice;

}
else
buf(j++]=itemList (i++];
}
bMatrix (bidderListIdx] .subtotalValue=subtotal;
}
F e e e e
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