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Abstract 

Typical survival analyses treat the time to failure as a response and use parametric 

models, such as the Weibull or log-normal, or non-parametric methods, such as the 

Cox proportional analysis, to estimate survivor functions and investigate the effect 

of covariates. In some circumstances, for example where treatment is harsh, the 

empirical survivor curve appears segmented with steep initial descent followed by a 

plateau or less sharp decline. This is the case in the analysis of survival experience 

after coronary artery bypass surgery, the application which motivated this project. 

We employ a parametric Weibull changepoint model for the analysis of such data, 

and bootstrap procedures for estimation of standard errors. In addition, we consider 

the effect on the analyses of rounding of the data, with such rounding leading to large 

numbers of ties. 
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Chapter 1 

Introduction 

Many harsh medical interventions involve a substantial risk of mortality with the 

resulting survivor function appearing segmented in nature, with a steep initial de- 

scent followed by a less sharp decline. In some situations, if the patient survives the 

intervention, there are substantial gains, perhaps even a cure of the disease; after 

the initial rapid descent, the survivor curve declines very slowly. The estimation of 

the survivor curve in such instances, and particularly the changepoint of the survivor 

curve, marking the end of the initial steep descent, are the focus of this project. 

The specific context is an understanding of the effects of Coronary Artery Bypass 

(CAB) grafting surgery. This is a particularly invasive procedure with some risk of 

mortality. With CAB, it is natural to view the distribution of the time to death 

(the response variable) as consisting of two or more parts. These represent operative 

mortality, or death within a short period after surgery, and long-term survival. In 

previous analyses of CAB data, operative mortality has been defined as death within 

30 days of surgery (Gharamani et. a1 2001; Chiu 2002), and analyses have proceeded 

using a logistic model for operative mortality and a proportional hazards model for 

long-term survival (survival time after 30 days). 
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The objective of this project is to explore the benefits of a parametric analysis of 

the CAB data using a segmented Weibull distribution to model the survivor function. 

One such benefit may be a data-driven approach to locating the changepoint of the 

survivor function and thus an empirical determination of the period which defines 

the intial short-term or operative mortality. The methods employed in this project 

are an adaptation of a model proposed by Noura and Read (1990) who outline the 

use of parametric modelling of the baseline hazard in terms of piecewise Weibull 

distributions. Bootstrap techniques are employed to obtain standard errors of the 

estimates. 

1.1 Changepoint Models in Survival Analysis 

Standard procedures for survival and event history analysis involve modelling time 

to death or failure, often as a function of covariates, using either parametric or semi- 

parametric (e.g. the Cox proportional hazards model) approaches. Various parametric 

families of models are used in the analysis of lifetime data, including the exponential 

and the Weibull, with the latter being popular due to its flexibility. In the situation 

we consider, the survival curve is more complex in that it appears segmented and 

cannot be effectively modelled with a single distribution over the entire curve. 

Survival processes that involve a changepoint, a time point at which the survival 

experience changes, arise in both the industrial and biological contexts. In reliability 

analysis, changes in the failure rate can be encountered following a major overhaul 

or maintenance activity. In survival analysis, changepoint models arise, as discussed, 

in the case of harsh treatment interventions where there is substantial risk of not 

surviving the treatment but a much lower risk of failure if the individual survives 

beyond an initial short-term period after treatment. Patra and Dey (2002) describe 
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scenarios that arise in clinical trials where the onset of undesirable side effects may 

cause a different failure rate after a threshold time. They also describe other situations 

where such segmented models may be useful, for example, involving the introduction 

of a new treatment where the impact of the treatment is not immediate but affects 

the failure rate only after some lag time. 

The study of changepoint problems in survival anlysis has mainly focussed on 

modelling of the hazard function. Classical approaches to modelling the hazard rate 

with changepoint are considered by Nguyen et al. (1984) and Loader (1991). Nguyen 

et al. (1984) consider a parametric approach, modelling the segmented hazard func- 

tion using a mixture of truncated and delayed exponential distributions, and propose 

estimation techniques for obtaining consistent estimators of the changepoint and the 

hazard rates before and after the changepoint. Loader (1991) also considers a para- 

metric approach and uses maximum likelihood methods for estimation of the initial 

hazard rate and changepoint. Approximate confidence regions for the changepoint 

and the size of the change are obtained through a study of the asymptotic prop- 

erties of the estimators. Patra and Dey (2002) propose a Bayesian approach for 

studying a general class of models for hazard functions with a changepoint and, in 

general, for curves which are functions of survival times. Gijbels and Gurler (2003) 

also consider the problem of estimating hazard functions with a jump discontinuity 

for right-censored data; they consider not only the problem of estimating the change- 

point location but also the size of the jump as well as the hazard rate before the 

changepoint using a comparison of three methods: a parametric maximum likelihood 

estimation approach, a nonparametric approach using a Nelson-Aalen type estimator, 

and a least squares estimation procedure which also uses the nonparametric Nelson- 

Aalen estimate of the cumulative hazard function. Noura and Read (1990) consider 

parametric modelling of the baseline hazard in terms of piecewise distributions. Their 
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piecewise model of the baseline hazard is adapted in this study. 

Bootstrap Techniques 

The bootstrap is a useful tool for obtaining standard errors and confidence intervals. 

Bootstrap techniques can be applied with few assumptions and minimal modeling or 

analysis to a variety of situations. In this project, we consider bootstrap methods 

specific to right-censored survival data. We experiment with different methods of 

resampling censored data to study the impact of such techniques on bootstrap esti- 

mates for a single changepoint model. As well, we consider a simulation study of the 

effects of rounding on estimation leading to tied observations as occur in this dataset. 

British Columbia Cardiac Registry Database 

The British Columbia Cardiac Registry database is a comprehensive, population 

based provincial registry that was created with the purpose of building an electronic 

patient record that would provide data for reporting, planning and research purposes. 

The database was created in 1989 by the provincial Ministry of Health in response to 

reported long waiting times for cardiac surgery. The data collection for the registry 

began in 1991. 

The database captures prognostic information on all open heart surgeries per- 

formed in the province. Cardiac surgeons provide information that populates the 

registry by documenting patient information through the Operative Report form, 

which is used to approve the procedure, and clinical data. 
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Coronary Artery Bypass Data 

The coronary arteries are the vessels that carry blood and oxygen to the heart mus- 

cle. These arteries can become clogged with fatty deposits, known as plaque, thus 

preventing the heart from getting enough blood and oxygen which often leads to chest 

pain and shortness of breath. This clogging of the arteries and the resulting heart 

condition is known as Coronary Artery Disease (CAD) also sometimes referred to as 

Coronary Heart Disease (CHD). There are three main treatment regimens for CAD: 

drug therapy, a surgical treatment known as angioplasty, and bypass surgery. Drugs 

are often prescribed as a first step to relax the arteries, lower the heart rate and blood 

pressure, and sometimes to thin the blood. An angioplasty procedure may be used to 

open and stretch a blocked artery in order to improve blood flow. For severe cases, 

Coronary Artery Bypass (CAB) graft surgery is recommended. CAB surgery is the 

most commonly performed 'open heart' operation. In CAB surgery, a blood vessel is 

taken from another part of the body and then attached above and below (to bypass) 

the narrowed part of the blocked artery thus restoring blood and oxygen flow to the 

heart. A bypass can be done for each blocked artery. 

This study is concerned with modelling the time to death of patients that have 

undergone CAB surgery. The data available for the analysis are limited to CAB data 

from the provincial registry database from 1991 to 1994 inclusive. In order to identify 

death dates for patients who had died, the cardiac registry data were linked with the 

death file at  the BC Vital Statistics Agency (VS) in Victoria, B.C. The two files were 

linked using the patients' unique personal health number, name, birth date, gender 

and place of residence at time of surgery. The method of probabilistic record linkage 

which calculates a weight for each pair of records and assigns a match based on the 

magnitude of the computed weight was used to match the data from the two sets. 
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For this study, the registry data were further limited to a subset consisting of the 

first isolated CAB surgery of all individuals who received at least one CAB surgery in 

this period. The term isolated refers to the scenario that no other procedure (such as 

a valve replacement) could be done at the same time as the CAB surgery. Here, we 

focus on one-year survival experience. Preliminary analyses of the five-year study data 

indicate that a model with a single changepoint would isolate one at about two years 

after surgery and the intention here is to consider whether an earlier changepoint 

exists, specifically one shortly after surgery. The total number of patients in this 

subset is 6060. The ages of the patients in the study ranged from 27 to 92 with the 

median age being 65. The breakdown of the 6060 CAB surgery cases by year and 

number of deaths in a particular year is given in Table 1.1. 

1994 
Total 

Table 1.1: Coronary artery bypass data summary 

Number of Cases 
1372 
1571 
1546 
1571 
6060 

Figure 1.1 illustrates the Kaplan-Meier survivor function for the CAB patients for 

the 1-year period of follow up. The scale of the y-axis was narrowed to begin at 0.95 

to show more clearly the shape of the survivor curve, especially within the first 30 

days. The estimated 30 day and 1-year survival probabilities are 98% (97.6% f 0.2%) 

and 96% (95.8% '0 0.3%) respectively. The steep initial descent in the Kaplan-Meier 

curve defines the period of operative mortality and is followed by the less rapid decline 

in survival probabilities. 

Number of Deaths 
5 3 
76 
5 3 
72 

254 
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Days 

Figure 1.1: Estimated survivor function: one year follow up data 
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1.5 Plan of the Project 

The plan of the project is as follows. 

In Chapter 2 we consider a parametric analysis using a segmented Weibull distri- 

bution to model a survivor function with a single changepoint. Bootstrap methods 

for estimating variability of estimators are discussed. 

In Chapter 3 the model is fitted to the British Columbia cardiac registry data and 

compared to the fit from a Weibull model without a changepoint. 

Chapter 4 presents a simulation study to investigate the effect of rounding on 

parameter estimation. 

Chapter 5 provides an overview of the project and a discussion of future work. 



Chapter 2 

Modelling with Piecewise Weibulls 

2.1 Introduction and Model Assumptions 

Traditional survival analysis involves fitting a model to a single response, survival 

time, which is measured relative to a relevant time-origin (for example, the start of 

a treatment). Both parametric and nonparametric approaches can be considered for 

this purpose. Within the group of fully parametric statistical models, the Weibull 

model is very widely used. The model is flexible enough to describe many different 

types of lifetime data. It is often applied to lifetimes of a variety of manufactured 

items, as well as in biological and medical applications. This flexibility and the fact 

that the model has simple expressions for the probability density and survivor and 

hazard functions partly account for its popularity (Lawless 2003). 

Under the assumption of a Weibull distribution, the probability density of lifetime, 

Here, a (a  > 0) is the shape parameter and 6 (6  > 0) is the scale parameter. 
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Incorporating covariates only into the scale parameter, 6, implies proportional hazards 

for lifetimes. We focus here on the development of a two-stage Weibull model with 

one changepoint. 

Let a represent the single changepoint considered. Let T, denote the i-th lifetime, 

Li denote the i-th censoring time and ti = min {T,, Li). Here, lifetime is defined as 

the interval between date of surgery and date of death. Though written here in a 

broader context, note that for the CAB data censoring time is defined as 365 days 

since we are considering only a one year follow up for all patients and all patients 

were followed for this period. Then for i = 1, . . . , n let 

0 if the ith individual is censored 1 i f O < t i < a  
wi = { ci = { 

1 otherwise 0 otherwise 

For a Weibull distribution the cumulative hazard function is (tl6)" and its logarithm 

is a log t + A* where A* = -a log 6. Let g (t) denote the logarithm of the cumulative 

hazard for a piecewise Weibull distribution with one changepoint. Then for the ith 

individual: 

g (ti) = ci (A; + a1 log ti) + (1 A ci) (A"; log ti) , P2) 

where A; and al refer to the parameters of the Weibull segment before the change- 

point, a, and X>nd a2 refer to the parameters of the Weibull segment after a. In 

order to have continuity of the survivor function and hence g (t) at the changepoint 

a ,  we require that 

a l loga+A; = a210ga+X"; (2.3) 

so that 

A1;, = X; + (a1 - a2) log a 

Note that the restriction (2.3) that imposes continuity of g (t) ensures continuity at 

the changepoint of the survivor function S (t) or equivalently, the cumulative hazard 
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function H (t). However, this is not the case for the hazard function h (t). Denoting 

X = A;, we write g (ti) = log H (ti) in terms of the three model parameters X ( A  E %), 

a1 (a1 > O), and a2 (a2 > 0), as 

The hazard function h (ti) for the ith individual is 

H (ti) 
h (ti) = H' (ti) = exp [g (ti)] g' (ti) = - [cia1 + (1 - c ~ )  a2] = 

ti ti 

and the survivor function is S (ti) = exp (- exp [g (ti)]), or 

The probability density function is 

f (ti) = h (ti) ~ X P  { -H (ti) ) 

2.2 Likelihood Development and Maximum Like- 

lihood Estimation 

We build the likelihood function for the segmented model using (2.7) and (2.8) by 

considering the contribution of each individual to the likelihood. Suppose that a 

sample of n individuals yields observed lifetimes Tl . . . , T,. For each individual we 

have ti = rnin (T,, Li) and a censoring indicator wi. Thus, the data arise in pairs 

(ti, wi), and assuming independence among the data pairs for the n individuals we 

can build the likelihood for the ith individual as 
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The logarithm of the likelihood becomes 

n 

log L = C {wi [ci log a1 + (1 - ci) log a,] - Wi log ti + wi log H (ti) - H (ti)} (2.9) 
i=l 

where log H (ti) is defined in (2.5). 

To maximize the logarithm of the likelihood with respect to the parameters, we 

employ a grid search or likelihood profile approach: maximum likelihood estimates of 

A,  01, and a 2  are obtained for a fixed value of the changepoint parameter a and the 

search covers a range of values of a to locate the overall joint maximum likelihood 

estimates. 

The first derivatives of the logarithm of the likelihood with respect to the param- 

eters al, a2, and A, are required for the grid search and they are: 

dlogL 
n 

wi (1 - ci) -=x + {wi - H (ti)} [(I - ci) log ti - (1 - ci) log all 
da2 i=l a 2  

For fixed a ,  the maximum likelihood estimates of al, a 2 ,  and X may be found using a 

Newton-Raphson updating algorithm. Experience shows that there are no problems 

in implementing this algorithm in this scenario. An alternative updating algorithm 

may be constructed as follows. Let ap, XP, a l p ,  and a 2 P  denote current values of the 

parameters a ,  A, al, and a 2  respectively. As well, let ciP and HP (ti) denote ci and 

H (ti) evaluated at current values of the parameters. Then, the likelihood equations 

for a1 and a 2  may be arranged to provide updates using: 

alp+1 = - Cy=l wicip 
Cy=i [wi - Hp (ti)] [ C ~ P  log ti + (1 - C ~ P )  log ap] 

a2p+l  = - Cr=l wi (1 - cip) 
'& [wi - Hp (ti)] [(l - tip) log ti - (1 - cp)  log ap] 

(2.11) 
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An algorithm for finding the mle of the parameters A,  al, and a 2  for fixed a may then 

be obtained as follows. Given current values up, XP, a l p ,  and a2p: 

dl0 L Step 1. Compute HP (ti).  Solve + = 0 iteratively updating X to convergence 

with all other parameters fixed at their current values. Set XpS1 to be 

the value of X at such convergence. 

Step 2. Compute H ( t i )  evaluated at up, a l p ,  a 2 P ,  and using X at XpS1 from step 1. 

Denote this to be HP (t i)  for this step 2. and then obtain a one-step update 

of a1 and a 2  using (2.10) and (2.11). 

Repeat steps 1 and 2 to convergence; either the score vector is suitably close to zero 

or updates of A,  al, and a 2  using steps 1 and 2 above do not change substantially 

from the previous iteration. 

2.3 Bootstrap Methods for Confidence Interval Es- 

t irnat ion 

Bootstrap methods are based on simulations or resampling of the data and are very 

useful for assigning measures of accuracy to statistical estimates. The advantage of 

the bootstrap is that it requires few assumptions and little modelling and can be 

applied in a systematic way to a large number of scenarios. 

One can best describe the distinction between bootstrap methods and traditional 

parametric statistical inference through the concept of the sampling distribution of 

a statistic. Consider a population probability distribution F which has a parameter, 

0, that is estimated by means of a statistic, say, T,, whose value for the sample is 8 
computed from a sample of size n drawn from the population under consideration. 

The sampling distribution of T, is the relative frequency distribution of all possible 
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values of T, computed from an infinite number of random samples of size n drawn 

from the population. It is of interest to estimate this sampling distribution in order to 

make inferences about the population parameter, 0. Traditional parametric inference 

involves making assumptions about the shape of the sampling distribution of T,, 

however, the nonparametric bootstrap is distribution-free relying instead on the fact 

that the sample's distribution is a good estimate of the population distribution. 

A brief description based on the work of Efron and Tibshirani (1993) of the essen- 

tial concepts involved in the nonparametric bootstrap method follows. Let xl , . . . , x, 

be a random data sample of size n which are independent and identically distributed 

(i.i.d) outcomes of random variables X I , .  . . , X, from a population with cumulative 

density function (CDF) denoted by F .  An estimate of the CDF, say, k, can be 

constructed from this sample. The empirical distribution function (EDF), or p, is 
defined such that there is probability l l n  on each observed value xi, i = 1,2, .  . . , n. 

The notion of the plug-in principle is also important in understanding the bootstrap. 

This principle states that if a parameter of a probability distribution F is to be esti- 

mated from a random sample drawn from F, and the EDF $' is used to estimate F, 

then any function 0 = t (F )  can be estimated by applying the same function to p, 
8 = t F . The bootstrap is advantageous in that it allows the study of the bias and ( A )  

standard error of 0 = t F regardless of how complicated the functional mapping ( 3 
8 = t (F) is. Having defined the EDF, a random i.i.d. sample of size n is drawn from 

F with replacement. The bootstrap sample is denoted as x* = (al*, x2*, . . . , xn*) 

where the asterisk indicates that the components of x* are not the actual data set 

but a randomized or resampled version of the original data set XI, .  . . , x,. The pa- 

rameter estimate from the bth bootstrap sample, b = l , . .  . , , is denoted O* (b). 

Having obtained parameter estimates from B independent bootstrap samples, the 

bootstrap estimate of the standard error, s e ~  , is found through an application of 
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the plug-in principle that uses the empirical distribution F in place of the unknown 

distribution F. Specifically, the bootstrap estimate of s e ~  0 is defined by s e p  (-1 P*) 
and is known as the ideal bootstrap estimate of standard error of 8. A computational 

way of approximating the numerical value of s e p  0* is by computing the sample 

standard deviation of the B  replications: 
(-  1 

where 
B 

I!? = C O* (b) / B .  

Note that 

lim s^eB = s e p  = s e p  
B+w 

The bootstrap estimate of standard error usually has relatively little bias; the 

smallest possible standard deviation among nearly unbiased estimates of s e ~  0 (-1 
occurs with B  = oo in the asymptotic (n + oo) sense. Since we must stop after a finite 

number of replications, $eB always has greater standard deviation than gem, and the 

magnitude of the discrepancy can be illustrated in terms of the coefficient of variation 

of s^eB, the ratio of the standard deviation of s^eB to its expectation (see Efron and 

Tibshirani 1993). The coefficient of variation reflects variation both at the resampling 

level (due to stopping after B  bootstrap replications) and at the population sampling 

level, as the ideal estimate $em can still have considerable variability as an estimate 

of s e ~  0 due to the variability of using F as an estimate of F. Thus reliable results (-1 
are best obtained by using many bootstrap replications. 

For this project, standard errors of parameter estimates were obtained using the 

nonparametric bootstrap that resampled the CAB data survival times with replace- 

ment and imposed fixed time censoring at 365 days for each of the bootstrap sam- 

ples. Standard errors for each of the parameter estimates were obtained by applying 
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equation (2.10). One additional bootstrap technique was employed using the Boot 

library, developed by Angelo Canty, which includes special algorithms for resampling 

of right-censored data. Specifically, the other method considered was the so-called 

weird bootstrap. 

The weird bootstrap method for resampling censored data was introduced by 

Andersen et al. (1993). This method of resampling works by simulating from the 

Nelson-Aalen estimate of the cumulative hazard function. At each of the observed 

event times (lifetimes or failure times), the risk-sets as given by the original sample 

are kept fixed. In this way, the censored observations are held as fixed. For each of 

the bootstrap samples, new events are randomly drawn within each risk set. Let Y (t) 

represent the number of observations in the risk set at time t. Then, the number of 

deaths at time t is simulated from a Binomial Y (t) , d$$) distribution where d N  (t) ( -) 
is the observed number of events at time t. Hence the weird bootstrap (i) fixes the 

censored data and (ii) generates the number of deaths from the binomial distribution 

each time a death was recorded. Since the events are drawn independently among 

the fixed risk sets, the strangeness of this bootstrap is that the resampling strategy 

can result in data sets with either fewer or more observations than the original data 

although the observed number of censored observations will remain the same. 



Chapter 3 

Application to the CAB Data 

3.1 Preliminary Data Exploration 

The CAB data consist of 6,060 cases, with 254 deaths. Of the 254 deaths, 145 of 

them, or 57%, occurred on or before 30 days. This large percentage of deaths early 

on is reflected in the Kaplan-Meier survivor function presented in Figure 1.2, which 

shows a steep initial descent. The average of the 254 lifetimes for this data set was 

77 days. An important point to note is that lifetimes are rounded here to the nearest 

day. In Chapter 4 we explore the effect of such rounding on our analysis. Table 3.1 

summarizes the average lifetimes of those individuals who died within two groups: on 

or before 30 days and after 30 days. 

Table 3.1: CAB data average lifetimes before and after 30 Days 

Survival Time 
530 days 
>30 days 

Avg of Lifetimes 
8 days 

169 days 

No. of Deaths 
145 
109 
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3.2 Model Fitting 

Graphical inspection of the Kaplan-Meier survivor function estimate is often useful in 

assessing the appropriateness of a parametric model. If the piecewise model is appro- 

priate, a diagnostic plot should show well-defined sections meeting at the changepoint 

value. Visual inspection to locate the changepoint is also useful in providing good 

initial estimates for the maximum likelihood grid search procedure. Figure 3.1 shows 

a plot of i n s  ( t )  against t  where s ( t )  is the Kaplan-Meier estimate of the survivor 

function. The plot does appear to reveal distinct segments. As well, it is somewhat 

suggestive of a changepoint at  30 days which supports the initial intuition about the 

changepoint location. 
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Figure 3.1: Diagnostic plot of CAB data: the logarithm of the Kaplan-Meier estimate 
of the survivor function versus time 
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The parameter estimates of the postulated segmented model (2.2) are provided in 

Table 3.2. 

Table 3.2: Parameter estimates for segmented Weibull model applied to CAB data 

Note that there were 99 patients who died before 9 days which represented approx- 

imately 39% of all deaths, and 68% of all deaths before 30 days. The changepoint 

estimate is much lower than initially postulated. 

The usual nonparametric bootstrap and the so-called weird bootstrap provided 

approximations of the standard error and bias for the parameter estimates. For both 

methods, 1,000 replications were obtained and for each replication, a grid search of 

I day increments was employed for the maximum likelihood estimation. Tables 3.3 

and 3.4 summarize the results of the bootstrap replications including the average 

value of parameter estimates, standard deviation, bias, the absolute value of the bias 

divided by the standard error and 95% confidence intervals based on percentiles of 

the bootstrap distributions. 

Table 3.3: Standard errors and bias - nonparametric bootstrap 

1,000 Nonparametric Bootstrap Replicates 

a 

a1 

a2 

X 

Estimate 
9.0 
0.78 
0.26 
-5.81 

Mean 
10.14 
0.80 
0.25 
-5.83 

Std.Dev 
3.52 
0.09 
0.02 
0.15 

Bias 
1.14 
0.02 
-0.01 
-0.02 

Abs(bias)/Std.Dev 
0.32 
0.19 
0.26 
0.16 

95% C.I. 
(4,171 

(0.65,l.Ol) 
(0.21,0.30) 

(-6.15, -5.56) 
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Table 3.4: Standard errors and bias - weird bootstrap 

1,000 Weird Bootstrap Replicates 

The bootstrap results show very little variation between the methods. Efron and 

Tibshirani (1993) state that values of the ratio of the bias to standard error less than 

about 0.25 indicate that the small sample bias observed can be ignored. This ratio 

is presented in Tables 3.3 and 3.4 and the results obtained from these bootstraps 

indicate that there may be some small sample bias in the estimate of the changepoint 

parameter. 

a 

a2 

X 

The histograms of the 1,000 bootstrap replicates from the nonparametric boot- 

strap for each of the parameters appear in Figure 3.2. Corresponding plots from the 

weird bootstrap method were very similar and are not provided here. The distribu- 

tion of the changepoint parameter is bimodal, with the first mode at 9 days and the 

second at 13 days. Figures 3.3 and 3.4 are boxplots and qqplots for the bootstrap 

replicates for each parameter. The qqplots for all parameters except a2 demonstrate 

non-normal distributions. 

Estimate 
9.0 
0.78 
0.26 
-5.81 

Mean 
10.35 
0.79 
0.25 
-5.83 

Std.Dev 
3.41 
0.09 
0.02 
0.15 

Bias 
1.35 
0.01 
-0.01 
-0.02 

Abs(bias)/Std.Dev 
0.40 
0.13 
0.28 
0.14 

95% C.I. 
(4, 19) 

(0.66,l.OO) 
(0.20,0.30) 

f -6.14. -5.57) 
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Figure 3.3: Boxplots for the 1,000 bootstrap replicates a) Changepoint parameter 
b) Ql c )  a 2  d) 
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Quantiles of Standard Normal 

-3 -2 -1 0 1 2 3 

Quantiles of Standard Normal 

Quantiles of Standard Normal Quantiles of Standard Normal 

Figure 3.4: QQplots for the 1,000 bootstrap replicates a) Changepoint parameter 

b) a1 c) a2 d) 



CHAPTER 3. APPLICATION TO THE CAB DATA 

3.3 Comparison with Single Weibull Model 

For the single Weibull model, the shape parameter estimate is 0.35 with estimated 

as -5.19. Figure 3.5 compares the fit of the piecewise and single Weibull models 

with the Kaplan-Meier estimate of the survivor function. Based only on this visual 

inspection, the piecewise Weibull model seems to give a better overall fit to the data. 

When a1 = a2, or equivalently, when a1 - a2 = 0,  the piecewise Weibull model 

reduces to the single Weibull model. The minimum value of the bootstrap estimate of 

a1 - a2 from the previous section is 0.348, providing further evidence that the single 

Weibull model does not give a good fit. A 95% confidence interval for Lil - b2 based 

on the bootstrap distribution is (0.414, 0.737). 
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days 

Figure 3.5: Comparison of single Weibull and piecewise Weibull fit 
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Residual Analysis 

A primary tool for model validation is graphical residual analysis. Graphical methods 

have the advantage that they readily illustrate a broad range of complex aspects of the 

relationship between the model and the data. Specifically, we consider the modified 

Cox-Snell residual in determing lack-of-fit. The residual in this case is defined as 

follows: 

( (ti) if ith observation is a death 
e; = - b ( H (ti) + 1 if ith observation is censored 

The definition above follows from the fact that if a continuous random variable T 

has survivor function S (t), then S (T) N U (0, 1), SO that the cumulative hazard 

function, H (T) = - log S (T) has a standard exponential distribution. That is, the 

full set of residuals should look roughly like a sample from the standard exponential 

distribution. Kalbfleisch and Prentice (2002) recommend plotting these residauls 

against the expected order statistics of the standard exponential distribution when 

there are few censored observations. If the fit of the model is adequate, the plot 

should be a straight line with slope 1. Alternatively, having computed the residuals, 

one could calculate the product-limit estimate of the survivor function of ti (SPL (&)) 

and then plot - log SPL (&) versus &. Again this should be roughly linear. Figure 3.6 

illustrates plots of the modified Cox-Snell residuals for both the piecewise and single 

Weibull models. In the plot of the piecewise Weibull model residuals, a roughly linear 

shape is seen and no glaring discrepancies surface. However, the plot of the residuals 

from the single Weibull model does not demonstrate the same linearity. 
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Residuals From the Fit of the Piecewise Weibull Model 

residual 

Residuals From the Fit of the Single Weibull Model 

0.01 0.02 0.03 0.04 

residual 

Figure 3.6: Modified Cox-Snell residuals for piecewise and single Weibull models 



Chapter 4 

Simulation Study on Rounding 

Effects 

4.1 Introduction and Simulating Data 

A simulation study was performed to investigate the effect of rounding on parameter 

estimation and on bootstrap estimation of standard errors. 

Using the parameter estimates from the CAB data presented in Table 3.2, lifetimes 

were generated from a piecewise Weibull model using the inverse transform algorithm. 

Equation 2.7 gives the survivor function of the i th individual under the segmented 

Weibull model, which can be written as: 

exp {- exp [A + a1 log ti]} i f O < t i < a  s (ti) = 
exp {- exp [A + a 2  log ti + log a1 (al - az)] )  if a < ti < co 

The CDF is then given by: 
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We have that 0 5 F  ( t i )  5 1 for all ti. At the changepoint, a,  F  ( a )  = 1 - 

exp {- exp [A + al log a ] ) .  The simulated data set is created by first generating ran- 

dom numbers, u, from the uniform distribution U [ O , 1 ]  and then transforming these 

to the survival times of interest using the CDF as given above. We then have: 

log [- log (1-u)] -A 

t =  { if u 5 F  ( a )  
log [- log (1-u)]-A-a1 loga tap  loga 

(32 
) i f u >  F ( a )  

For this study, censoring was imposed through a fixed time censoring mechanism to 

mimic the CAB data; all individuals with survival times of greater than 365 days 

were censored. 

Rounding of Simulated Data 

We consider the effects on estimation given that lifetime data are rounded to the 

nearest day or to the nearest hour. The grid search increment size for obtaining 

the maximum likelihood estimates was dictated by the rounding scheme. For the 

unrounded data, a grid size of 0.5 days was used. For data rounded to  the nearest 

day, the grid size was 1 day. A grid size of 0.5 days was also used for the data 

rounded to the nearest hour. Note that when imposing rounding on the data, there 

is the possibility that some very short survival times will round to zero values. In 

addition to consideration of the rounding scheme, it is important to also determine 

how best to deal with rounded zeros. For the purposes of this project, when rounding 

to the nearest day, those values that round to zero were set to a nominal survival 

time of 0.05 days, and when rounding to the nearest hour, rounded zeroes were set 

to  0.005 days. 

For the simulation study, 1000 data sets were generated from a piecewise Weibull 

model with parameter values set to be the maximum likelihood estimates as given 
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in 3.2, and the three different approaches to rounding were applied to each data set. 

Table 4.1 shows the number of distinct and tied lifetimes in the CAB data as well 

as corresponding averages for the 1000 simulated data sets where generated data are 

rounded to the nearest day. There is fair agreement in the number of ties in the 

simulated data sets with those in the CAB data. Although details are not presented 

here, note that the sorts of extreme number of tied observations in the CAB data, 

however, are not replicated in the simulations. 

Table 4.1: Ties in CAB data and simulated data sets with rounding to nearest day 

Level of Ties 
distinct lifetimes 

2-5 ties 
>5 ties 

Table 4.2 summarizes the mean values of the 1000 parameter estimates obtained 

under each of the three rounding methods. The parameter estimates are very close 

CAB Data 
86 
30 
6 

to the generating model parameters. Surprisingly, even data rounded to the nearest 

Simulated Data Averages 
82.50 
29.47 
9.14 

day seem to provide good estimates of parameters. 

Table 4.2: Mean value of simulation estimates 

Parameter 

a 
Q1 

Q2 

A 

Table 4.3 summarizes the standard deviations of the parameter estimates of the 

1000 data sets. Here again standard errors are quite similar for the three rounding 

schemes. There is good agreement between the standard deviations presented below 

and the standard errors presented in Tables 3.3 and 3.4 for the parameters al, a2, 

and A. However, this is not the case for the changepoint a where larger standard error 

True Value 

9.0 
0.7777 
0.2561 
-5.8076 

Maximum Likelihood Estimates 

Unrounded Data 
9.1 

0.79 
0.26 
-5.84 

Data Rounded To 
Nearest Hour 

9.0 
0.79 
0.26 
-5.84 

Data Rounded To 
Nearest Day 

8.7 
0.76 
0.26 
-5.74 
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estimates are obtained from the nonparametric bootstrap approaches. In addition, 

the distribution of li based on the parametric bootstrap is closer to normality than 

that obtained from the non-parametric bootstrap procedures of the previous chapter. 

However, the parametric simulation discussed here has been somewhat helpful in 

providing reassurance that rounding does not drastically affect estimators. 

Table 4.3: Standard deviations of parameter estimates from simulated data sets 

Parameter 
a 
a1 

Q2 

X 

Maximum Likelihood Estimates 

Unrounded Data 
1.11 
0.08 
0.02 
0.21 

Data Rounded To 
Nearest Hour 

1.14 
0.08 
0.02 
0.20 

Data Rounded To 
Nearest Day 

1.41 
0.09 
0.02 
0.21 



Chapter 5 

In this project, we have proposed a parametric piecewise Weibull model with a sin- 

gle changepoint for analysing CAB data to reflect two distinct outcomes: operative 

mortality and long-term survival. A nonparametric bootstrap method provides the 

standard errors of parameter estimates. A simulation study of the effects of rounding 

of the data on parameter estimation found that even with the rounding of survival 

times to the nearest day, good estimates can be obtained. 

In examining the diagnostic plot presented in Figure 3.1, it seems natural to 

attempt to locate a changepoint by looking for changes in linear segments which 

define sharp changes in slope. Visually then it would appear that a changepoint at 

approximately 30 days meets this criterion. The question is thus raised, in the Weibull 

changepoint model, how informative is the changepoint in determining important 

features of the data. It may be that the changes in slope are more important, in 

which case an approach using linear splines could be considered. In addition, Figure 

3.1 seems to suggest a multi-changepoint scenario. Expanding the proposed model 

to include more than one changepoint, as per the model outlined by Noura and Read 

(1990), would be useful, especially as preliminary analyses of data from a five-year 
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followup suggest another changepoint at about 2 years. 

As the goal of a typical analysis of lifetime data is not only to model the survivor 

function but also to investigate the relationship between the response (survival time) 

and covariates, a natural extension of the work presented in this project is to include 

covariates into the modelling process. Primarily it is of interest to determine the 

covariate effects which can predict operative mortality in order to be better able 

to distinguish those individuals who should pursue a less severe treatment regimen. 

It is important that covariate effects be allowed to be different over parts of the 

segments of the survival curve as previous work by Ghahramani et. a1 (2001), and 

Chiu (2002), has shown that certain prognostic factors for operative mortality and 

long-term survival do in fact differ. In their segmented model, Noura and Read (1990) 

do include covariate effects. However, their formulation assumes that both segments 

of the survivor function are influenced by the same set of covariates. 
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