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Abstract 

In this thesis, we study various issues arising from the QED theory of underdoped, high tempera- 

ture superconductors in 2+1 dimensions. The theory breaks up roughly into two sectors: fermionic 

and bosonic. With regard to the fermionic sector, we consider confinement of the emergent gauge 

field which we take to be compact. In the absence of fermions, the interaction between monopoles 

is Coulombic and the well known result is that the pure gauge theory is permanently confining. 

With the addition of fermions, the interaction becomes logarithmic, and an analogy with the usual 

Kosterlitz-Thouless transition suggests a deconfinement transition for the fermions. We show, how- 

ever, that, when screening is taken into account, the deconfined phase is destabilized and fermions 

remain permanently confined. 

The bosonic sector models Cooper pair phase fluctuations, whose effect on the depletion of the 

superfluid density we examine in two separate studies. In the first of these, we study the quantum XY 

model, and show that the quasi-two dimensionality, low critical temperatures and large d-wave gap 

characteristic of underdoped cuprates severely constrain the form of the superfluid density. Under 

these assumptions, we find that phase fluctuations alone are insufficient to account for recent obser- 

vations of deviations from Uemura scaling, and that the quasiparticle contribution is a necessity. We 

use our results to satisfactorily fit the recent data. 

In the second study, we model the cuprates by a layered system of interacting bosons and ex- 

amine the collective excitations in this system. Depending on the anisotropy and the interaction 

strength, we find find four different regimes of temperature dependence of the superfluid density. 

We argue that interactions in the underdoped cuprates are effectively short-ranged and weak. 

Finally, we study the related issue of disordered, interacting bosons in the large-N limit and 2 

strong commensuration. Perturbatively at weak disorder and numerically at strong, we show that th 

screening of the random potential due to interactions is insufficient to delocalize the single-particl 

states so that no superfluid transition occurs from the Mott insulator. 

... 
111 
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Chapter 1 

Introduction 

"We can blame Bednorz and Miille~" 

This is the opening proclamation of one writer's[l] attempted synthesis of the fast-paced field of 

high temperature superconductivity. Indeed, the 1986 discovery of superconductivity in the ceramic 

compound Ba,La5-,Cu505(3-,) by the above mentioned gentlemen[2] has sparked a renaissance 

in the field which most people thought was a closed book after the extremely successful theory of 

Bardeen, Cooper and Schrieffer (BCS) in 1956[3]. The blame and, therefore, the credit lies squarely 

with them, and for the achievement they were duly awarded with the Nobel prize in 1987,' one of 

the quickest turnarounds in the Swedish Institute's history. 

With now over 100 materials belonging to this class of cuprate superconductors, and with criti- 

cal temperatures as high as 138 K, the importance of their discovery is undeniable. The incredible 

growth of the field is due in large part to their high transition temperatures, well above the tempera- 

ture of liquid nitrogen and, thus, experimentally accessible for most researchers. The technological 

implications are also very attractive, from superconducting magnets for use in medical imaging de- 

vices and magnetic levitation trains to supercooled wires in electrical power grids. For theoretical 

physicists, these materials posed an immediate challenge, as it was quickly realized that the super- 

conductivity in the cuprates differed drastically from the conventional BCS kind, and the struggle to 

find a coherent explanation began. 

'...for their important breakthrough in the discovery of superconductivity in ceramic materials. 
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Figure I .  I : Schematic structural diagram of La2Cu04 

1.1 Introducing the cuprates 

The cuprates are characterized by layered planes of copper and oxygen atoms, with as few as one 

plane per unit cell in the lanthanum compounds and as many as seven in mercury based materials[4]. 

A single unit cell of undoped La2Cu04 is shown in Figure 1.1, highlighting the CuOa planes sand- 

wiched between 'charge reservoirs' of La and 0 atoms. The crystallographic directions are in (a 

and b) or out of (c) the plane. Myriad evidence now points to these CuOz layers as crucial players in 

the physics of high temperature superconductivity, and there even seems to be a direct relationship 

between higher critical temperatures and an increased number of layers, but only up to three layers, 

after which the critical temperature decreases[4j. 
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With such an anisotropic crystal structure, one might speculate that these materials also display 

other anisotropic properties, and they do. Measurements such as electrical transport[5], penetration 

depth[6] and magnetic torque[7] all indicate that cuprate superconductivity is quite two-dimensional, 

occurring primarily in the Cu02 layers. For example, the ratio of c-axis to in-plane penetration 

depths can be as high as 100 in YBa2C~306-x[8, 91. 

It must be noted, of course, that the pure, undoped materials, like the one shown in Figure 

1.1, do not display superconductivity. In fact, all cuprates are believed to be antiferromagnetically 

ordered insulators at half-filling, with NCel temperatures of around 300 K. This is in contrast to 

conventional superconductors which are typically very good metals above Tc, conforming to Lan- 

dau's fermi liquid paradigm[lO], and for which magnetism is quite detrimental. Superconductivity 

is achieved in the cuprates through a process known as doping, where oxygen is added or out of 

plane atoms are partially substituted for others, such as strontium in place of lanthanum in the case 

of La2-,SrXCuO4. In this way, mobile holes are introduced into the Cu02 planes, and these quickly 

destroy the antiferromagnetism. 

With increased doping, resistivity measurements demonstrate that these materials become su- 

perconducting at some critical value x,d and below the critical temperature T,. This is known as the 

underdoped regime and is characterized by increasing critical temperatures and quasi two dimen- 

sionality. Eventually, a maximum Tc is reached at what is called optimal doping, after which the 

transition temperature declines in the overdoped regime until the superconducting state is destroyed 

at xed. At the same time, the anisotropy between ab-plane and c-axis properties also decreases and 

the materials become more three dimensional[ll]. Beyond xed, the materials are believed to behave 

like conventional metals. The situation is summarized in the generic phase diagram shown in Figure 

1.2. 

1.2 Understanding the phase diagram 

In contrast to conventional superconductors, which are well described by the BCS theory at weak 

coupling, the cuprates are strongly correlated electronic systems, and their low-doping behaviour can 

be well understood in this context. The strong Coulomb repulsion near half-filling (x = 0) forces 

the conduction electrons to singly occupy the available sites, thus completely blocking the motion of 

charge and resulting in a Mott insulator. Particle exchange can only occur through virtual processes 

which require oppositely aligned spins, due to Pauli's exclusion principle, and antiferromagnetism 
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Figure 1.2: Generic temperature-doping phase diagram of cuprate superconductors, showing the 

antiferromagnetic (AF), superconducting (dSC) and pseudogap (PG) phases. 

is therefore the natural outcome. 

Understanding the phase diagram as holes are added is much more complicated. Within the 

framework of the BCS theory, the emergence of superconductivity from the antiferromagnetically 

ordered Mott insulating state seems paradoxical. In conventional materials, the superconducting 

state arises due to an instability of the weakly interacting Fermi liquid to phonon mediated pairing 

between electrons[3]; it is difficult to imagine how this pairing can occur in the face of the strong 

interactions present in the cuprates. To further complicate the situation, experiments early on found 

no sign of an isotope effect in high temperature superconductors[l2], thus effectively ruling out the 

conventional pairing mechanism. 

Another candidate for electron pairing has a magnetic origin and is, thus, consistent with the 

cuprate phase diagram. The essence of this mechanism can be seen in the t - J  model, which is be- 

lieved to capture the important physics near half-filling. The t -  J  model is derived from the Hubbard 

model for large interaction U: 
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where J = t2/u. The J term describes virtual spin exchange processes, and results in antifemo- 

magnetism at half-filling. Fourier transforming, this term becomes[l3] 

which displays attraction in the 's*' and 'd' channels, described by the order parameters cps+ (k)  = 

(cos k, + cos k,) and cpd(k) = (cos k, - cos k,), respectively. The mean-field theory of the t- 

J model demonstrates that the the ground state is indeed superconducting[l3]. Beyond mean-field, 

other states are possible[l4, 151, and there is not currently a consensus on whether superconductivity 

survives in the phase diagram. 

However, the above argument does show that superconductivity can, in principle, arise from 

mechanisms other than by phonons, and that this superconductivity is of quite an unusual type. 

Conventional superconductivity leads to an order parameter with s-wave symmetry, which is com- 

pletely isotropic in k-space. In the above derivation, the order parameter can have very particular 

k-dependence, characterized by the form of the function v , ~ +  or cpd; these two types of order are 

extended s-wave (s*) and d-wave (d). When the superconducting gap opens, these two orders pre- 

sumably compete for precedence, but it is the d-wave state which is of lower energy. This is because, 

near half-filling, the s*-wave gap is almost zero over the entire Fermi surface, while the d-wave gap 

vanishes only along the directions k, = f k,. Thus, the energy gained by condensing in the s*-wave 

state is much lower than for the d-wave state[l3]. 

1.3 Gap symmetry 

The question of the order parameter symmetry has been extensively studied by experimentalists and 

it is now well established that cuprates are d-wave superconductors. The earliest evidence for this 

was provided by measurements of the in-plane penetration depth by microwave cavity perturbation 

techniques[6], where a linear low-temperature behaviour was observed, characteristic of an order 

parameter with nodes. The reason for this temperature dependence is that the nodes in the gap at the 

Fermi surface allow quasiparticles to become excited at arbitrarily low energies, and these quasipar- 

ticles can, therefore, efficiently destroy superconductivity. This should be compared to the s-wave 

case which has a full isotropic gap everywhere on the Fermi surface and, thus, quasiparticles are ex- 

cited only when the threshold energy set by the gap is overcome. This leads to an exponentially acti- 

vated form for the temperature dependence of the penetration depth[l6]. More conclusive evidence 
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for d-wave pairing comes from angle-resolved photoemission spectroscopy (ARPES)[17], which is 

able to probe the gap along different directions in k-space. There, the gap is seen to vanish along 

the ( f  n ,  f n)  directions, and maxima are observed along (0, f n)  and (f n,  0). The most direct 

evidence, however, comes from phase sensitive measurements of Josephson comer junctions[l8], 

which indicate a sign change of the order parameter between the a and b directions[l9]. 

1.4 The pseudogap 

Some of these experimental techniques have also been used to shed light on the non-superconducting 

state above T,, and have yielded very surprising results. As these materials are heated above their 

critical temperatures, a spin gap persists, slowly shrinking and finally vanishing at some much higher 

temperature T*, which can be almost as high as room temperature. This effect is most prominent 

in underdoped samples and disappears in overdoped, though exactly where is unclear. This gapped, 

non-superconducting state has been dubbed the pseudogap and is indicated in the phase diagram 1.2 

by a dashed line, since it is not believed to demark an actual phase transition. 

Many different explanations of the pseudogap exist, including competing orders or the resonat- 

ing valence bond (RVB) state; the scenario to be promoted here involves preformed pairs above 

T,. This model interprets the line T* as the mean-field temperature at which Cooper pairs are 

formed, but before phase coherence is established. The pseudogap is then a phase fluctuating d-wave 

superconductor[20, 211, with a fully formed gap. Evidence for this comes from heat transport[22], 

which measures the gap magnitude at various dopings. The values extracted from these measure- 

ments seem to correlate extremely well with the observed pseudogap, indicating that the pseudogap 

and superconducting gap are one and the same thing. 

1.5 Fluctuating superconductivity 

To assess the importance of phase fluctuations, it is useful to know the phase stiffness, as measured 

by the superfluid density at zero temperature. This quantity is accessible experimentally via pene- 

tration depth[6] and muon spin relaxation (pSR)[23-251 measurements, for example. For conven- 

tional materials, the superfluid density is proportional to the total number of electrons, and it should, 

therefore, be expected to decrease as holes are doped into the planes of cuprate superconductors. 

However, the aforementioned experiments clearly demonstrate that the superfluid density increases 
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with doping and is, in fact, proportional to x. In particular, early pSR measurements[23,24] saw that 

the zero-temperature superfluid density is proportional to the critical temperature, with a constant of 

proportionality which is universal for a wide array of cuprates. These observations imply a greatly 

increased role for phase fluctuations as compared to conventional superconductors, especially in the 

underdoped regime, and physical quantities should reflect these effects. This argument for phase 

fluctuations was first clearly put forth in an influential article by Emery and Kivelson[26]. 

In underdoped samples, fluctuation effects should be apparent above Tc and below T*. Indeed, 

recent experiments on the Nernst effect in underdoped lanthanum compounds[27, 281 indicate that 

vortex fluctuations are present near and above Tc. These experiments measure the voltage transverse 

to a thermal gradient in the presence of an applied magnetic field. Vortices diffuse along the direction 

of the thermal gradient, generating a transverse electric field via the Josephson effect. The results 

show a positive Nernst signal well above the critical temperature, but dying significantly below the 

apparent pseudogap temperature. This is good evidence for fluctuating superconductivity existing 

in the pseudogap state but does not obviously corroborate the preformed pairs viewpoint, since T* 

and the onset temperature for the Nernst signal are not identical[29]. 

Of course, phase fluctuations should also affect the physical properties in the superconducting 

state, such as the superfluid density. Unfortunately, the growing of clean, underdoped samples has 

been fraught with complications, and only very recently have reliable measurements been done[8]. 

The latest measurements of the lower critical field in ultra-pure YBa2Cu306-, indicate that the 

superfluid density decreases linearly from its zero temperature value, just as is seen from penetration 

depth measurements at optimal doping[6]. Recalling that the results at optimal doping were taken 

as evidence of d-wave pairing and, thus, due to quasiparticle excitations, the new low-doping data 

seems at odds with the phase fluctuation picture. 

As the doping is increased and the temperature at which phase coherence sets in also increases, 

the pseudogap temperature steadily decreases. At some point, these two energy scales cross and 

the relevant temperature becomes the one at which pairs form, concomitantly with phase ordering. 

The effects of fluctuations would then only be expected in a narrow region near the critical temper- 

ature. In conventional superconductors, which have long coherence lengths, this critical fluctuation 

region is vanishingly small[30]. On the other hand, because the cuprates are strongly type-I1 super- 

conductors with short coherence lengths, this region is much larger[30, 311 and has, in fact, been 

seen with a width of about 10 K in in-plane penetration depth measurements on optimally doped 

YBa2Cu306.g5[32]. In the new lower critical field data for underdoped samples[8], however, it 
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seems that this critical region has completely disappeared, again seemingly in contradiction with the 

phase fluctuation picture. 

1.6 A unified view of the superconducting state 

To tie together the distinct contributions from phase fluctuations and quasiparticles and to highlight 

their respective regions of influence, there exists a simple and elegant relation, first derived in the 

context of the RVB state[33] and known as the Ioffe-Larkin rule. In the case of, for example, the 

in-plane superfluid density, this relation is 

where ppf and pqp are the phase fluctuation and quasiparticle superfluid densities, respectively; this 

is essentially a mathematical expression of the Emery-Kivelson argument. From this, it is clear 

that the total superfluid density is determined primarily by the smaller of the two contributions, and 

that superconductivity is lost as soon as one of these becomes zero. In the case of optimally doped 

YBa2C~306.95, this relation describes what is observed experimentally extremely well. At low 

temperatures, the quasiparticle part is responsible for the linear temperature dependence, while near 

the critical temperature, it is the phase fluctuations that ultimately destroy superconductivity, with 

a wide critical region as their signature. To apply the Ioffe-Larkin rule to underdoped samples, it 

is crucial to have a clear understanding of the superfluid density resulting due to phase fluctuations. 

Only then can it be accurately determined to what degree this picture holds true for the cuprates and, 

in particular, whether the latest data are consistent with this viewpoint. 

1.7 Theoretical approaches 

There are, of course, many different ways of approaching the question of superconductivity in the 

cuprates. Traditionally, superconductivity has been viewed as a deriving from some 'normal' state, 

and this language is widely used today when discussing high temperature superconductivity. In the 

BCS theory, the normal state was, indeed, normal. These conventional materials were all good met- 

als at room temperature, well described by Landau's Fermi liquid theory, and the superconducting 

state was finally understood as an instability towards pairing caused by lattice distortions. The suc- 

cess of this 'bottom-up' approach has motivated many researchers to adopt a similar strategy for the 
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cuprates. 

Most current attempts begin with the t- J model introduced earlier. It is the simplest model which 

is believed to capture all of the key features of a doped Mott insulator[l4]. At half-filling, it describes 

the Mott insulating antiferromagnetic state, and doping is incorporated through the effective hopping 

term. Away from half-filling, the strong interactions must be taken into account by prohibiting the 

occupation of sites by two electrons. This is a complicated task, and most attempts seem invariably 

to lead to strongly interacting gauge theories[l4]. Nonetheless, significant progress has been made, 

and a whole host of possible states have been identified which emerge upon doping. Among these 

are, of course, d-wave superconductivity[l3], as well as the RVB state of Anderson[34] and various 

flux phases[35]. Clearly, however, the nature of the non-superconducting 'normal' state remains an 

unresolved issue. 

On the other hand, in contrast to the strongly correlated Mott insulating state, the superconductor 

which derives from it is quite well understood. It has d-wave symmetry and well-defined nodal 

quasiparticle excitations[22]. This suggests a break from tradition, and thus a 'top-down' approach, 

starting with the superconducting state, and determining what other states derive from it. This 

approach has been taken by several authors[36,37], most recently within the QED3 formulation[20, 

21, 38, 391. These approaches also lead to gauge theories as the effective low energy descriptions, 

and have provided results in qualitative and quantitative agreement with experiment. 

1.8 Scope of this thesis 

In the present thesis, we will adopt the 'top-down' framework presented in Herbut [20]. Our philos- 

ophy is in keeping with the preformed-pairs interpretation of the pseudogap state, and, in Chapter 

2, we will review the theoretical implications of phase disordering a d-wave superconductor with 

a well formed gap. We will see that the low energy theory can be described by an effective action 

with two emergent gauge fields which derive from the fluctuating vortex loops inherent to the two- 

dimensional system at zero temperature. The action for the phase fluctuations will take the form 

of a theory for two types of bosons coupled to the fermionic action via the gauge fields, while the 

fermionic theory will take the form of three-dimensional quantum electrodynamics (QED3) in the 

non-superconducting state. Due to a special symmetry, hidden in the original theory, the destruc- 

tion of superconductivity is accompanied by the dynamical generation of spin density wave (SDW) 

order and, so, the zero temperature non-superconducting ground state is connected to the parent 
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antiferromagnet at half-filling. 

After this introduction to the theoretical framework, we will proceed in Chapter 3 to a discussion 

of an issue which arises in all gauge theories - confinement. In the context of the cuprate supercon- 

ductors, confinement is related to the idea of spin-charge separation, and we will see that, just as in 

the pure gauge theory studied previously[40], the fermions in compact QED3 with matter fields are 

permanently confined. This work was first published in Case et al. [41]. 

The next two Chapters (4 and 5 )  will be dedicated to a discussion of the superfluid density in un- 

derdoped superconductors. Chapter 4 covers research previously published in Herbut and Case [42], 

where we probed the importance of phase fluctuations in determining the temperature dependence 

of the superfluid density in anisotropic systems. In trying to explain classic pSR measurements, we 

will see that phase fluctuations in this model are insufficient to describe the experimental situation, 

and that quasiparticles must be included via the Ioffe-Larkin rule to improve the agreement. We 

then predict the low-doping form of the superfluid density in this scenario and, also, argue that we 

can explain new observations on the relation between the zero temperature superfluid density and 

the critical temperature. 

The contents of Chapter 5  can also be found in Case and Herbut [43]. There, we recognize the 

caveats of the previous Chapter's arguments, and model the strong anisotropicity inherent to the 

cuprates by a layered system of bosons with Coulomb interactions. We will see that the effect of the 

layers is to screen the Coulomb interaction into a short-ranged one. The results from dilute bosonic 

systems then apply, and we find four regimes of temperature dependence of the superfluid density. 

Examining experimental data, we find that the underdoped cuprates are in the two-dimensional, 

short-ranged regime with weak to moderate interaction strength. We then argue that this explains 

the most recent lower critical field data on very underdoped YBazCusOs+,. 

The final content Chapter (Chapter 6) recalls early work done on the combined effect of disor- 

der and interactions on two-dimensional bosons and was previously published in Case and Herbut 

[44]. It is shown there, in the limit of a large number of order parameter components, that, while 

interactions partially screen the disorder, the ground state remains localized and no superfluid state 

obtains. While not directly related to the other studies, we will argue that the study of dirty bosons is 

of significance to the underdoped cuprates and that, in fact, the discovery of the elusive Bose-glass 

phase could be a potential candidate for the pseudogap state. 

While each Chapter will contain its own conclusions, in Chapter 7 we will provide an outlook 

to further studies related to the present thesis. 



Chapter 2 

Theoretical framework 

In this Chapter, we introduce the theoretical framework which sets the context for the work done 

in subsequent chapters. We will see that the theory breaks up roughly into two parts: a fermionic 

(spinonic) and a bosonic. These two sectors are coupled by two U(l) gauge fields which mediate 

the strong-correlation effects. The derivation presented here is based primarily on the articles of 

Herbut[20, 2 11, although other derivations exist(38, 391. 

2.1 Preamble 

The cuprate superconductors are known to be of d-wave type, conforming to the usual BCS phe- 

nomenology. Importantly, it has been experimentally determined that quasiparticles in this state are 

well defined, with very long lifetimes[45, 461. These observations suggest that we begin with a 

theory in terms of d-wave quasiparticles and determine what states arise when the superconductivity 

is destroyed. 

In principle, this destruction can happen in several ways. In conventional superconductors, the 

primary means is by driving the gap amplitude to zero through thermal fluctuations. This situation 

is well described by the Landau-Ginzburg mean field theory, which holds except in a very narrow 

temperature range around Tc[30]. In the cuprates, on the other hand, the saddle-point value of the 

gap qualitatively follows the observed pseudogap[47], which is divorced from the actual critical 

temperature on the underdoped side of the phase diagram. As already discussed, our interpretation 

is to identify the pseudogap with the formation of the superconducting gap, so, at temperatures well 

below T*, amplitude fluctuations can be safely ignored. This argument has been made more precise 
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in the context of the mean-field theory of the t- J model[l3]. 

In the t -J  model, we saw that magnetic exchange interactions allow ordering in the extended 

s-wave channel as well as in the d-wave channel. Fluctuations towards this type of ordering, or any 

other, could then also lead to the loss of d-wave superconductivity in the cuprates. At least in the 

case of s*-wave order, the d-wave saddle point has been argued to be stable to these fluctuations, as 

we11[13]. 

The final mechanism for the destruction of superconductivity is by fluctuations in the phase 

of the order parameter. These can proceed classically (thermally) or quantum mechanically (due 

to interactions). We have already argued that the observed low superfluid density indicates an in- 

creased role for phase fluctuations, and we will assume that this is the relevant mechanism for the 

underdoped cuprates. Further justification can be found in Paramekanti et al. [13]. 

2.2 BCS superconductivity and the effective low-energy action 

We begin by considering the usual finite-temperature BCS action: 

where c and ct are (electron) quasiparticle annihilation and creation operators, respectively. The 

projection of spin along the quantization axis is denoted by 0 = f 1 and we are using the shorthand 

k = (wnl k). Quasiparticle interactions are being neglected in the present discussion, and, anyway, 

they are irrelevant if weak; their effects have been considered elsewhere. Since we are interested in 

describing the cuprate superconductors, we will assume the dXz-,z form for the gap function: 

Evidently, this form displays nodes along the diagonal directions k, = f k, and it is around these 

points that we will focus. 

Referring to Figure 2.1, the nodes (2)-(iv) are located at wave vectors f KI,n. At these points, 

the fermi-surface is ungapped so we expect the low-energy theory to be dominated by contributions 

coming from wave vectors in the vicinity of the nodes. Proceeding with this in mind, we can 

construct a four-component representation of the original action (2.1) by defining the fields 
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Figure 2.1: Schematic diagram of the fermi surface (dashed line) indicating the four nodes (i - iv) 

in the d-wave order parameter, located at kKI ,n .  

where Iq'l << IKil, reflecting the fact that we are interested in the low-energy effective theory corre- 

sponding to (2.1). The construction implemented here clearly is not unique. In our definition (2.3), 

each field is essentially composed of two Nambu-Gor'kov spinors, one for each of the nodes in a di- 

agonally opposed pair; in another popular prescription, it is spin-reversed states which are combined 

in a similar manner. The choice one makes in this regard is dictated by the particular symmetry of 

the problem which is being brought to light. For the second choice above, we would recover the full 

SU(2) spin-rotation symmetry of the problem, while our choice (2.3) yields a (hidden) chiral SU(2) 

symmetry. This second point will be elaborated as we proceed. 

The functions J(k) and A(k)  can now be expanded in the vicinity of the nodes. For nearest- 

neighbour hopping, the kinetic term can be written: 

[(k) = -2t(cos(kx) + cos(k,)) - p, (2.4) 

where t is the hopping parameter and p is the chemical potential. Noting that [(Ki) = 0, we find, 
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since lKi,,J = lKi,y 1 e kj. Further, rotating the 9'-frame by 7r/4 leads to 

J(KI + q') z 2 h t s i n ( k f ) q X  = vfq,. (2 .6)  

Similarly, from the definition (2 .2) ,  we find 

A ( K I  + q') z f i ~ o s i n ( k ~ ) q ~  - vaqy. (2 .7 )  

Also, for k z K i  it can seen that 

Finally, we can rewrite the original action (2 .1 )  in terms of the nodal fields Qi to arrive at the 

low-energy effective theory: 

or in real space: 

where p = 1/T and the Fourier transformed fields are 

An upper (UV) cutoff A is implicit in all momentum integrals, the scale of A being set by the 

pseudogap energy, T* .  The 4 x 4 matrices in the above equations (2.10,2.11) are given by M I  - 
-ia3 @ a3 and M2 G ia3 @ al, where the ai are the usual Pauli matrices: 
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2.3 Order parameter fluctuations 

The form of the effective theory (2.11) has been derived neglecting fluctuatic Ins in the order parame- 

ter field, A(r) ,  and it is the inclusion of these to which we turn now. Returning to the original action 

(2.1), we can write the pairing term in real space as 

where the sum is over nearest-neighbour sites. In real space, the pairing field is given by A,(T) = 

-Ay (T) = Ad. Fluctuations are incorporated by expressing this as 

where q,(r) and <P,(T) represent amplitude and phase fluctuations, respectively. <P,(T) can be 

further decomposed into @,(T) = 4(r)  and a y ( ~ )  = 7r + O(T) + 4 ( ~ )  SO that Q(T) accounts for 

deviations away from the d-wave saddle-point, while 4 ( ~ )  are uniform phase fluctuations. Since we 

expect that the fields q and O are massive (i.e., gapped), we neglect their fluctuations and concentrate 

only on the field 4. 

At this point, it is useful to rederive the effective low-energy theory corresponding to the pairing 

term (2.14), but in a different way from that of the preceding section, so as to clarify how fluctuations 

are included in the final form of the action. Fourier transforming the fields (2.3) to real space using 

the definition (2.12), we find 

From this, we can write 

so that, when we compute products of electron operators, we can choose to write the @-pairings in 

the most convenient way. To be precise, we will consider only terms which connect elements at the 
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same node. As an example, consider the following contribution to the action from node (2): 

Near half-filling (kf = 7r/2) and expanding in gradients of the Q fields, we find 

after rotating the coordinate axes by 7r/4 such that ay - 8, --t &a,. We have also explicitly 

included the phase fluctuations by writing Ai = f vnei4 with VA defined in (2.7). Integrating by 

parts the second term and using the relation 

1 
- (e"iay + = e i~ /2 ia  ,i4/2, 
2 ) Y 

we can write, now incorporating contributions from all nodes, 

SA = JdPdr /d2r  {vA@ia$q + (1 - q y  
the matrix is defined as 

0 ei4/2iaie@/2 0 

In the absence of fluctuations, this is identical to the form derived in the previous section. However, 

we now clearly see how the action becomes modified in the presence of fluctuations. 

It is usual at this stage to absorb the order parameter phase by a redefinition of the fields. There 

are countless ways of performing this change of variables, but most lead to multi-valued fields in 

the presence of vortex configurations. For example, consider the change of variables, 

As we traverse a path encircling a vortex, the phase changes by 27r and, as a result, our fields acquire 

an overall minus sign. Due then to the non-singular nature of the transformation, branch cuts must 
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be introduced which unnecessarily complicate the problem[39]. To avoid such complications, we 

proceed by writing the phase as a sum of a regular ("spin-wave") part and a singular part coming 

from vortices[39,48]: 

4 ( ~ )  = dreg(r) + 4vort ( r ) .  (2.26) 

Further dividing the vortex configurations into two completely arbitrary groups, A and B, we can 

now choose to absorb the entire phase of group A ( B )  vortices into spin up(down). In this way, as 

we encircle a vortex from group A (for example) with a spin up or down field, acquiring a phase of 

27r or 0, respectively, our field doesn't change sign; hence, our transformation is single-valued. 

To implement this procedure, introduce a new field 

where U ( r )  is the diagonal 4 x 4 unitary matrix with elements { e - ' @ ~ ( ' ~ ) ,  ei@B('), e - '@~( ' ) ,  e i @ ~ ( ' ) )  

and 4, = 4reg/2 + 4vort,a, (Y = ( A ,  B ) .  As we can see, spin up and spin down are transformed 

differently, the former associated with group A,  the latter with group B .  Substituting this new field 

into our action (2.1 1) and including phase fluctuations via (2.22), we have 

Examining this term-by-term, we will be led to consider derivatives ap4A,B(r ) ,  which we will find 

convenient to rewrite as 

With these definitions, the action (2.28) becomes 

sf [Gi] = la d~ / d2r { ~ i ( r )  [(a; + ia,) + v f M l  (& + ia.) + vAhf2(% + ia,)] G I ( r )  

+(I + II,x - y)  +iv,J,,). (2.31) 

The current J,, is defined as 
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which, in terms of the original electronic operators, can be written 

(where the sum is over spin a and the four nodes n) and 

(ii)t (ii) 
c1 cl ) + ((ii) + (iv)). 

We interpret these as the total electron density at the nodes (2.33) and the current carried by the 

electrons at the nodes (2.34,2.35). Taken together J, is the physical 3-current and we, thus, deduce 

that the true electromagnetic gauge potential A, can be introduced through the replacement v, + 

v, + A,. This should be contrasted with the minimally coupled way by which the field a, enters 

the theory. This also suggests how to include the effect of moving away from half-filling: tuning the 

electronic chemical potential h is equivalent to shifting A. + A. + ih. We will explicitly include 

this later, in Chapter 5. 

As was mentioned earlier, our goal in transforming the action (2.1) as we have is to elucidate the 

symmetry properties of the theory. Apart from the SU(2) symmetry alluded to at the outset, we now 

recognize two emergent gauge symmetries related to the fields a and v in (2.31). We pause now to 

consider these, leaving the discussion of the global properties until a later section. 

We can isolate the (as yet uncertain) charge of the 9 fields by making the usual gauge trans- 

formation A, -+ A, + 8,~. However, we can make use of the gauge freedom afforded by v, to 

absorb this shift, leaving a and, in particular, 9 unchanged. Hence, the 9 fields are electrically 

neutral fermions, and we will refer to them as spinons[34]. The action (2.31) is also invariant under 

the transformation a, + a, + 8,x, 9 + 9eCi", with v, unchanged. Recalling the definition of 

the gauge field a, we see that this invariance reflects the freedom we had in dividing the phase field 

into A and B. That is, shifting a as described is tantamount to redefining the regular part of + A  

as 4reg/2 + x and that of +B as +,eg/2 - X .  As usual, we must eventually deal with this freedom 

by gauge fixing. We also recognize that there is an additional arbitrariness in dividing the vortex 

part of the phase into A and B: all groupings are completely equivalent. This can be dealt with by 

averaging over all possible divisions, as we shall see next when considering the dynamics for the 

gauge fields. 
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2.4 Duality and gauge field dynamics 

The gauge fields a and v are dependent on the fluctuating positions of the vortex defects and will 

acquire dynamics from them. To determine this, we assume that the fluctuations are described by 

the 2+1 dimensional XY-model given on the lattice by 

- 
where i labels lattice sites and C P  is a unit vector in the p = 7, x, y direction; K is the unrenormalized 

phase stiffness. Approximating the cosine using the Villain transformation[49], we have 

which can be decoupled by the Hubbard-Stratonovich transformation[lO] 

Now, we can integrate over the phase field which simply acts as a Lagrange multiplier, imposing the 

'no-divergence' constraint 

A . Li = C(L~,,  - Li-e,,P) = 0. (2.40) 
P 

This can be satisfied by rewriting Li as a lattice curl, 

Substituting into (2.39) and defining mi = A x ni, 
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The fields Si mediate long-range (Coulomb) interactions between the integers mi which we can, 

thus, interpret as the density of vortices of the original angle-valued fields, 4i. Due to the condition 

A . mi = 0 arising from their definition, the vortices close upon themselves and we refer to (2.42) 

as the vortex loop representation of the XY-model. 

Having isolated the singular contribution of the fluctuating phase field, we can introduce the 

groups A and B by dividing mi = mA,i + m ~ , i  such that A . mA,i = A . m ~ , i  = 0. The gauge 

fields a and v can then be incorporated by recognizing that 

which follows from the defining relation of the vortex density V x V 4  = 27rm. The partition 

function is now 

where r and t are Lagrange multiplier fields imposing (2.43). The usefulness of this representation is 

now clear: we are able to completely sum over all possible divisions of the vortices into two groups, 

thus removing the arbitrariness of this assignment and the associated gauge freedom. This is done 

by way of the Poisson summation formula (see, for example, Jose et al. [50]), which then forces the 

combinations l A  = S + r and l B  = S + t to be integer. Then, 

Integrating over S and rearranging slightly, we find 
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We can now replace the A x terms with new (integer, divergenceless) fields h A , ~ .  Then 

loosening the integer-h restriction using the Poisson summation formula, we have 

where the Lagrange multiplier fields, as usual, impose the required constraints. We have also added a 

small chemical potential which shouldn't affect the results in the limit x - 0. We can now recognize 

in the second and third lines of (2.47) expressions similar to the partition function of (2.39). Indeed, 

reversing the steps which led to (2.39) from (2.36), we arrive at 

From symmetry considerations[5 1, Part 11, Chap. 51, it is straightforward to deduce the continuum 

version of the partition function: Zx = D[a, v ,  bn]exp(- Sb) with 

A remarkable consequence of the above duality transformation is that the electronic charge that 

was 'lost' in going from the original BCS action (2.1) to the spinon action (2.3 1) has been recovered. 

The transformation (2.27) effectively fractionalized the electrons, the charge being carried away by 

the fluctuating phase and becoming attached to the bosonic fields bn as a result of the duality. To 

see this, introduce the electromagnetic gauge field A into the original form of the XY-model(2.36) 

with the substitution Aq5 - Aq5 + QTA, where QT is the (unknown) total charge. Repeating the 

steps leading to the continuum dual action (2.49) produces the same final form, but with 2.v; - 
2K(u, + (QT/2)A,)2. NOW, the usual gauge transformation A, - A, + L$x requires that u, - 
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v, - (QT/2)dPX,  and so the bosonic fields must transform as bn - bnexp(-i(QT/2)x),  proving 

that they each carry charge QT/2. To make this gauge transformation consistent with the invariance 

of the fermionic sector of the theory (2.31) as discussed in the last section, we further require that 

QT = 2, which is simply the charge of the original Cooper pairs. Thus, each b field carries charge 

one. 

Since we are interested in the dynamics of the gauge fields, we should at this point integrate 

out the bosonic fields so that we have an action entirely in terms of a,  v and A. Consider first the 

condensed phase of bosons, cr < 0. Minimizing the action with respect to the bi, we find that 

and the action becomes 

We see that all of the gauge fields are massive and, thus, we identify this as the superconducting 

phase at low energies. Note also that a and v are decoupled so that we can decompose the full action 

(spinons + fluctuations) into spin and charge sectors. Writing 

where Sf and Sb are given by equations (2.3 1) and (2.49), respectively, we define 

and 

In the symmetric phase, (bi) = 0 and integrating over bosons to one loop yields 

A further integration over v generates a Maxwell term for A, as well, and so this clearly is not a 

superconducting phase. In fact, the Maxwell term for A implies a charge gap and, therefore, the 

system is insulating. We also note that, again, a and v are decoupled so we can decompose the 

theory into spin and charge sectors given by 
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and 
(qLvu~v%) Scharge = i(u, + A,) J p  + 2Z(vP + A,)' + 

24x0 
(2.57) 

Having dealt with the gauge fields and their dynamics, we can now return to consideration of 

the global symmetry of the theory. In particular, we will focus on the breaking of this symmetry as 

we leave the superconducting state, and on the resulting order. 

2.5 The Dirac theory and its global symmetry properties 

To identify the global symmetries of the theory, it is useful to bring the action (2.31) to the convenient 

Dirac form. This can be obtained by constructing three matrices yo, y l  and 7 2  which satisfy yo2 = I, 

yo71 = M1 and 7072 = M2. It is easy to find that there are four sets (along with all continuous 

rotations between), 

and that these satisfy the Clifford algebra, {y,, yv) = 26,,,[52]. In terms of these matrices, the 

action (2.31) becomes 

where Gi - I i y o  and we are dropping tildes on the I fields from here on in. 

The convenience of the Dirac form stems from its symmetry properties made manifest by the 

properties of the y-matrices. For example, it can be shown that the matrices 

satisfy the Lorentz algebra and, thus, generate the Lorentz group provided the y matrices satisfy 

the Clifford algebra. Then, the Loi generate Lorentz boosts and the Lij generate spatial rotations 

(2 ,  j = 1,2). 
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One could correctly note that a two-component (Dirac) representation would suffice to represent 

this algebra in 3 (= 1+2) dimensions, with the Pauli matrices playing the role of the 7,. However, 

there is no fourth matrix which anticommutes with the Pauli matrices and so the Lorentz symmetry 

is the maximal global symmetry in this representation. 

By contrast, in the four-component representation, it is in most cases possible to find such a 

fourth (and fifth) anticommuting matrix. Then, an additional U(2) symmetry (per Dirac field), re- 

ferred to as chiral in the field theory literature and hereafter denoted Uc(2), can be identified, its 

generators given by {I, 7 3 , 7 5 ,  735) where y:, = ^(0717273 and 735 = 2 ~ 3 7 ~ .  Referring to the 

numbering of (2.58-2.61): 

The full theory, therefore, has a global Uc(2)xUc(2) symmetry, one factor for each @ field; in the 

isotropic limit, vf = VA, this expands to U,(4). 

The significance of the chiral symmetry is evident when we consider the massive theory. The 

term rn@lyo@i breaks the chiral symmetry, reducing the SUc(2) subgroup to Uc(l) generated by 

735 .  This should be compared with the two-component representation of the theory in which the 

symmetry is the same whether the fields are massless or not. 

Such a term can arise through a process known as dynamical mass generation, which is an 

example of spontaneous symmetry breaking whereby some order parameter not sharing the same 

invariance properties as the action acquires a non-zero vacuum expectation value. In the present case, 

the order parameter is a composite operator (Gi@i) and, by convention, we refer to its condensation 

as dynamical symmetry breaking. In the low-energy action (2.62) we are considering, the relevant 

dynamics are associated with the fluctuating gauge field a and were determined in the last section 

(2.51 and 2.55). 

Of course, the exact form of the action for a will determine whether the mass term is generated 

or not. In the next section, we'll focus on the non-superconducting state and consider the role of 

dynamical symmetry breaking there. 
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Figure 2.2: The fermion self energy , C ( q ) .  The straight, double line is the full fermion propagator, 

the wiggly, double line is the full gauge field propagator, D,,(p - q ) ;  the circle is the bare vertex 

y, and the triangle is the full vertex function. 

2.6 QED3 and chiral symmetry breaking 

In the insulating state, the spin sector of the theory (2.56) can be written, 

We can neglect the charge sector (2.57) by observing that integration over v will yield only short- 

range interactions between the 9 fields, which are, thus, irrelevant at low-energies[20]. Making the 

further simplification that vf = VA = 1, the low-energy effective theory for the insulating state is 

then described, at zero temperature, by quantum electrodynamics in 3(=1+2) dimensions: 

We use the notation D, = 8, + ia, and assume a sum over Nf fermion flavours; for us, Nf =2. 

QED3 is a theory which is well known to exhibit dynamical symmetry breaking by the gen- 

eration of a fermion mass term[53, 541. To see this, we write down the fermion self energy (see 

Fig. 2.2) as 

where the gauge field propagator is, in the Landau gauge, 

In writing (2.70), we have neglected wave function renormalization and vertex corrections; these 

effects should be included in more sophisticated treatments, but apparently most results are in agree- 

ment with this simple treatment[55, 561. Assuming a finite mass for the fermions, C(0) = m, the 
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polarization to lowest order in l / N f  is 

The self energy (2.70) can then be written as 

where we have rescaled p /m  + p and C (p)  /m + C (p) .  It is interesting to compare this expression 

with the (perhaps) more familiar gap equation in the BCS theory of superconductivity. Indeed, 

the symmetry breaking which occurs there is also dynamical, since the order parameter is again 

a composite operator. Now, we notice that the righthand side of equation (2.74) is a decreasing 

function of the mass, so, it is clear that this equation can always be satisfied by taking N f  to be 

small enough. We, thus, conclude that dynamical mass generation occurs in QED3 for N f  less than 

some critical number, NfC The value of NfC is determined from equation (2.74) at m = 0: 

Evaluation of the above integral obviously depends on C(p) which must be self-consistently de- 

termined from (2.70); the full solution yields N j  = 32/r2.  The mass for fixed N f  can also be 

determined from this procedure and one finds that m z (192ra)exp 

Importantly, the critical value NfC = 3.24 is greater than the N f  = 2 in our case. More complete 

treatments also generally find NfC z 3, although there is still some controversy with regard to this. 

In any case, whether NfC is greater than or less than 2, we expect the chiral symmetry to be broken at 

some point, if not immediately upon exiting the superconducting state, then deeper in the insulating 

state due to irrelevant terms such as repulsive interactions[20]. 

The physical significance of chiral symmetry breaking can be seen by rewriting the dynamically 

generated mass term using the original electronic operators. Of course, the form that obtains depends 

on the choice made for the matrix yo. Referring to the notation of (2.58-2.61), we denote the 

respective matrix as 'yo, s = 1 . . . 4 .  For s = 1, 
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which we can recognize as staggered spin density wave (SDW) order[20, 571, the periodicity of 

which is set by the node-spanning wave vector, 2Ki. This is particularly intriguing since the state at 

half-filling is known to be an anti-ferromagnetic insulator, thus, the SDW is a natural candidate for 

the correct doping-evolved state. Repeating the above exercise for s = 2 yields a sine-SDW rather 

than the cosine-SDW of s = 1. 

For s = 3, the situation is slightly different; in this case, the mass acts like a particle-particle 

potential, encouraging the opening of a pairing gap in addition to the already established d-wave 

gap. The sign of the potential is reversed for opposing nodes, and so we interpret this as p-wave 

pairing. The resultant state, then, is a d + ip  insulator. 

The mass term associated with the fourth set of gamma matrices is quite different from the 

other three. As we previously noted, the fourth set does not allow a representation of the chiral 

SUc(2), and so the mass term does not break this symmetry. The mass term does, however, break 

parity (e.g., x + -x) and time-reversal symmetry (t + -t), both of which are expected to be 

preserved in QED3. For this reason, the term mQi(470)Qi is not expected to become dynamically 

generated[20]. 

It is useful to notice that the sets of generators of SUc(2) (2.64-2.66), corresponding to the 

different yo matrices, are simply permutations of each other. Consequently, under the action of 

a broken generator, the order parameter is rotated in the direction of the yo for which the broken 

generator is its 735. That is, the transformation of the fields @ + exp[i19Y~~]@ rotates yo as 

where y35 is either y3 or 75. This is nicely summarized in Figure 2.3. Thus, the different orders 

are degenerate and related by chiral rotations. In the isotropic Uc(4) case, the manifold of possible 

(degenerate) states is increased and includes, for example, one-dimensional charge stripe ordering 

and a d + i s  insulator[20]. However, including perturbations such as a weak repulsion or anisotropy 

lifts the degeneracy, and it has been found that the lowest energy state is the SDW[58]. 

2.7 Outlook 

The QED3 theory has been used recently to study many aspects of cuprate superconductors and 

the pseudogap state. The fine structure of chiral symmetry breaking has been studied in Seradjeh 

and Herbut [58], and the effect of velocity anisotropy on the antiferromagnetic instability has been 
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Figure 2.3: SU,(2) triangle representing the relationship between different orders and broken gen- 

erators [20]. 

studied in Lee and Herbut [59]; the lattice version was examined in Lee and Herbut [60] and spin 

response was considered in Herbut and Lee [61]. This theory was also applied to the question of 

coexistence between antiferromagnetism and superconductivity in the pseudogap[62]. 

In the remainder of this thesis, we will apply this framework to the questions of spinon confine- 

ment (Chapter 3) and the superhid density (Chapters 4 and 5); in Chapter 6, we will consider the 

closely related dirty boson problem. 



Chapter 3 

Confinement 

In discussing the emergent gauge fields a and v in the preceding Chapter, we ignored a subtlety 

arising in the dual formalism of the XY model describing the phase fluctuations. Re-examining the 

partition function (2.46), we notice that the v field appears in a quadratic term, a feature not shared 

by a. The consequence of this term is to render the action non-invariant under shifts of v, while 

a may be shifted by integer multiples of 27r with no effect on the theory. The gauge field a then 

appears to take on the significance of an angular variable, defined on the compact interval [0,27r), 

while v takes on values from the entire real line. Thus, we are tempted to distinguish between a and 

v as being compact and non-compact gauge fields, respectively. 

However, there is a further subtlety, since a and v both derive from the same set of vortex defects 

which form closed loops. A necessary characteristic of compact gauge fields is that they give rise 

to vortex lines, terminating in sources of magnetic flux (monopoles). Clearly, a does not satisfy this 

condition and we must conclude that it is not compact. 

Compact gauge fields do arise, though, in other theories of strongly correlated systems[63], and 

their study constitutes an important and open problem. We will consider the issue of confinement in 

such theories, mentioning later what is expected for the non-compact versions. 

3.1 Introduction 

Gauge theories of compact U(l) fields in three dimensions have long been of interest to researchers 

in high energy physics. For particle physicists, they serve as relatively simple models exhibiting 

non-perturbative phenomena such as chiral symmetry breaking[53, 541 and confinement[40], be- 
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lieved to be crucial to our understanding of more realistic theories like quantum chromodynamics. 

Additionally, assuming compactness for the gauge fields of nature provides, by consequence, a nat- 

ural explanation for the quantization of charge[64], an issue which remains unresolved. 

Now, as we have mentioned, such 'toy models' arise naturally as real, effective descriptions of 

strongly correlated systems in two spatial dimensions and at zero temperature, elevating them from 

the realm of training grounds for more fundamental theories, to the level of actual physically relevant 

models. As such, the intriguing questions studied in the high energy community are now important 

for condensed matter physicists. For example, we have already seen how the antiferromagnetic state 

of the cuprate superconductors arises naturally from the breaking of chiral symmetry. In the present 

Chapter, we will address the issue of confinement in the context of our effective compact QED3 

(cQED3) description of the pseudogap state. This work has previously been published in Case et al. 

[411. 

Confinement is a crucial issue in all compact U(l)  theories and is believed to result from the un- 

binding of magnetic monopoles, which are invariably present due to the compact nature of the gauge 

field[40]. In a pioneering work[40], Polyakov showed that, in pure compact quantum electrodynam- 

ics without matter and in d = 3, confinement is permanent for all values of the gauge coupling. 

The situation where the gauge field is coupled to matter is more subtle and has been the subject of 

considerable debate. It has been argued that coupling to relativistic massless fermions transforms 

the usual Coulombic interaction between monopoles into the much longer-ranged logarithmic in- 

teraction at large distances[33, 65491. When applied to a single monopole-antimonopole pair, this 

would suggest that monopoles may bind into dipoles, in analogy with the celebrated Berezinskii[70], 

Kosterlitz and Thouless[71] (BKT) transition in two dimensions. However, while the effects of a 

finite density of monopoles on the BKT transition in d = 2 are well understood[7 1,721, the situation 

in d = 3 appears less clear[73]. The difficulty lies in the fact that, while the screening in the dipole 

phase in d = 2 just amounts to a renormalization of the dielectric constant, in d = 3 it changes 

the form of the interaction[74-771. This point of view was expounded in Herbut and Seradjeh [74], 

using a renormalization group treatment of the problem, and extended to the case of non-relativistic 

fermions in Herbut et al. [75], the results being that screening transforms the logarithmic potential 

back into the Coulombic form, and the deconfined phase is always unstable to monopole unbinding. 

In the remainder of the Chapter, we introduce the anomalous sine-Gordon action, which is dual 

to the original cQED3. Using a variational method, we first recall Polyakov's original result within 

this framework and, then, present a generalized method which allows us to account for screening. 
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We will see that, in the absence of screening, the theory indeed undergoes a deconfinement transi- 

tion, but that this solution is unstable when screening is taken into account. We begin by clarifying 

the difference between the non-compact and compact versions of QED. 

3.2 Compact vs. non-compact QED 

The distinction between the non-compact and compact versions of QED arises when we consider the 

theory on a lattice. The pure gauge sector can be written in two ways, both of which must reproduce 

the continuum limit[78], 

as the lattice constant 1 + 0. Writing the curl in the above equation in its simplest discrete form, 

1 
Fp, = 7 [a, ( r  + 6,) - a, ( r )  + a,(r + 6,) - a,(r)] (3.2) 

the non-compact lattice version of (3.1) is simply 

where the combination 12F,, is dimensionless; q is the dimensionless, bare charge, about which 

we will have more to say later. In another formulation, use is made of the elements U,(r) of the 

compact group U(1): 

u ( r )  = e' 'a~(r).  
P (3.4) 

The quantity la, takes on values from the compact interval (072.rr]; hence, the designation 'compact 

QED'. As 1 + 0, the domain of a must span the entire real axis, and, so, the continuum limit is 

clearly non-compact. The gauge invariant action for a is the product of these U(1) factors around an 

elementary plaquette, and has the form, 

This form has the proper continuum limit (3.1) and is clearly different from the non-compact case 

(3.3). 

It should be noted that, in taking the continuum limit, we must identify q2 = i j2/1. Thus, q 

cannot be held fixed as 1 + 0 but, instead, must also vanish such that q is constant in this limit. 
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The continuum limit then corresponds to either 1 + 0 or Q + 0. The relevance of this will become 

apparent when we consider the compact, pure gauge theory (3.5). 

Pure gauge compact QED3 (3.5) was first studied by Polyakov, who showed that non-dynamical 

fermions are permanently confined due to the monopoles arising from the compact gauge field. 

We will consider this simpler example before moving on to the theory with dynamical, massless 

fermions coupled to the compact gauge field. First, however, we will introduce the duality transfor- 

mations on the action (3.5) to amve at an action for the monopoles only. 

3.3 Duality transformations 

Compactness of the gauge field leads to topologically non-trivial configurations which are known 

as monopoles, in exact analogy with the vortices of the XY model. As we saw in the last chapter, it 

is possible to perform transformations on the original action to anive at a theory in terms of these 

defect degrees of freedom. The duality transformations on the action (3.5) are quite similar to those 

of Chapter 2 and we will try to adopt the same notation here. We begin as usual by writing the cosine 

term in the Villain approximation. However, to facilitate later results, let us generalize this as 

For the present case of the pure gauge theory, u(r) = 1/(24". In writing the above action, we have 

dropped the constant term and set 1 = 1 for clarity. A Hubbard-Stratonovich transformation then 

yields 

Representing F,, = E , ~ ~ E ~ ~ ~ A ~ ~ ~ ,  and defining L, = E,,,M,, and mu = (1/2)~,,,n,,, (3.7) 

becomes 

Integrating over a will now force L to be curl-free, and so we can write L, = A,cp. A further 

where the monopole density is p = A,m, and V-' = -1/(8n2)~r,,u-'Ar~,u. 

density may be expressed as p(r) = q,6r,ra, so this action (3.9) represents a 

The monopole 

gas of charges 
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(monopoles) interacting via a potential V ( l r a  - rbl). For the case u = 1 / ( 2 t 2 ) ,  the potential has the 

Coulomb form, 

V(Ira  - rbl) = 

- - 

The action (3.9) with the Coulomb potential 

t21ra -rbl' 

is well known to be equivalent to the sine-Gordon 

equation[50]. We present a derivation here, but with a general expression for u ( r ) .  

Return to the action (3.8) after having integrated out a, and add a fugacity for the monopoles so 

that 

the limit y + oo is assumed. Removing the integer constraint on the density p by way of the Poisson 

formula[50], and integrating over the resulting real field, we find 

Finally, rescaling 27rcp + cp, the latter action becomes, up to a Villain approximation, 

which, for u ( r )  = 1 / ( 2 ~ ~ ) ,  is the usual sine-Gordon equation with effective temperature t2/(47r2). 

We will focus on the dual action (3.13) to establish confinement in the original theory (3.6). In 

the next section, we reproduce Polyakov's result that no transition occurs in pure gauge cQED3. The 

remainder of the chapter will then be dedicated to the theory coupled to massless fermions. 

3.4 Permanent confinement in pure gauge cQED3 

Polyakov focused on the sine-Gordon theory given by 

and showed that no transition exists for any value of the gauge coupling q or, equivalently, effective - 
temperature T - t2/(47r2). We will demonstrate this result using a variational approach based on 

the Gibbs-Bogoliubov-Feynman (GBF) inequality[79]. 



CHAPTER 3. CONFINEMENT 34 

The GBF inequality establishes a strict upper bound on the free energy of a system through the 

relation 

F 5 Fvar = Fo + ( S  - So),, , (3.15) 

where So is some trial action chosen to approximate S ;  Fo is the free energy associated associated 

with So and (...)o represents an average within this ensemble. We are free to choose any form for the 

trial action, the inequality (3.15) being completely general, but for simplicity in evaluating averages, 

we choose the Gaussian form[80] 

The evaluation of Fvar is now straightforward. With F = FSG, this yields (up to a constant) 
- 

Fvar - - - v 

In deriving the above expression, we have used the result for the propagator 

To take full advantage of the inequality (3.15), we now minimize Fvar with respect to Go to 

produce the optimal Gaussian theory approximating FSG: 

where the 'mass' m is determined implicitly through 

A is the ultra-violet (UV) cutoff. The right-hand side (RHS) has the following limits: 
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Figure 3.1: The solid curves are the left- and right-hand sides of (3.21); the dotted lines are the limits 

given in (3.22). The solution m* is determined by the intersection of the solid lines, as indicated. 

Thus, the only solution of (3.21) for any value of? has a finite mass, m*. This is depicted graphically 

in Figure 3.1 where we plot both the left- and right-hand side, and the solution is the intersection of 

these curves. 

To understand what the finite mass solution means, look at the monopole density. This is deter- 

mined from 

where we have used the definition of the fugacity y = e ~ p { ~ ) .  It is clear then that a finite m 

solution corresponds to a phase of (free) monopoles. Since only a finite m solution exists for (3.21), 

we conclude that the monopoles are always free in the theory (3.14). To be completely clear, we 

mention that a solution with m* = 0 corresponds to p~ = 0, from which we would conclude that 

monopoles form into bound dipoles. In two dimensions, the theory (3.14) indeed possesses such 

a solution, and the accompanying transition is of the celebrated Berezinskii-Kosterlitz-Thouless 

(BKT) type. 
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To elucidate the relation between the phase of monopoles and confinement, we require a (gauge 

invariant) operator which distinguishes between the confined and deconfined phase. The Wilson 

loop is believed to be one such[64], and is defined as 

Polyakov showed[64] that the expectation value of (3.24) satisfies the 'area law': 

where Sc is the minimal area bounded by the contour C. In words, the Wilson loop measures the 

energy required to separate two 'test charges' (non-dynamical fermions) by a distance R, propagate 

the pair for a time T ,  and bring them back together; this defines the contour of integration in (3.24). 

The exponent can be written ySc = E(R)T where E(R) = yR is the energy required to separate 

the fermions. Thus, the area law indicates a potential between the test charges which increases 

linearly with separation, the hallmark of confinement. 

At this point, it is useful to construct a phase diagram for the fermions in QED3, based on the 

results we have discussed so far. We have just seen that the theory with Nf = 0 has no transition 

for any value of the coupling constant, 4. On the other hand, we saw in the last chapter that, in the 

continuum limit q = 0, the theory has a chiral symmetry breaking transition for a critical number 

of fermions Nf = NfC. These two limits correspond to the axes of the diagram shown in Figure 

(3.2). Coupling the theory to fermions (Nf # 0) leaves open the issue whether the transition in the 

continuum limit extends to finite Q. Indeed, there are compelling reasons to believe that perhaps it 

does, as we discussed earlier, and such a possibility is indicated in the Figure by the line labeled N& 

This is just the question we will address in the remainder of this chapter, using the dual formalism 

introduced above. A final subtlety of the phase diagram as drawn has to do with the relationship 

between confinement and chiral symmetry breaking. We are making the assumption that the theory 

has a single transition, if at all, so that the two phenomena go hand-in-hand[81]. Furthermore, based 

on numerical results[81], we expect that confinement will coincide with chiral symmetry breaking, 

thus explaining our choice of plotting Nf rather than ? l / N f .  
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Figure 3.2: The known and possible phases of cQED3. The transition in the continuum (q = 0) 

is between chirally symmetric (CS) and chiral symmetry broken (CSB) phases; pure gauge cQED3 

(Nf = 0) is permanently confining for any value of the coupling. The possibility of a boundary 

between confined and deconfined phases is indicated by the dashed line N/. 

3.5 Introducing fermions: the anomalous sine-Gordon theory 

We are interested in the phases of cQED3, with the gauge field coupled to massless relativistic 

ferrnions on a lattice: 

The sites of the three dimensional quadratic lattice are labeled by r, = {r, x, y). SF is the lattice 

action of massless fermions coupled to the gauge field which reduces in the continuum limit to 

QED3 with Nf flavours of four-component Dirac spinors. Using staggered fermions[78], this takes 

the form 

1 Nil2 

SF [x, a] = 5 x x 71, ( r )  [%, (r)ezap(')Xn ( r  + 6,) - Zn ( r  + 6,)e-'ap(')Xn (r)] , (3.27) 
r,, n=l 

where 711 = 1,712 = (-1)" and 713 = (-l)"+Y. 
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In the case of continuum QED,, the fermion polarization to one-loop order is [53]. 

Incorporating compactness of a, in the spirit of the Villain approximation, this suggests that we 

consider a theory closely related to cQED3 

where the n,, are integers. The action (3.29) has the same continuum limit as cQED3 to the leading 

order in large Nf and may be understood as a compact quadratic approximation to it. We assume 

that the original cQED3 and the theory (3.29) are in the same universality class. 

In the presence of fermions, when Nf # 0, the original Maxwell term proportional to 1lq2 

becomes irrelevant at large distances, and can be neglected with respect to the second term in (3.29). 

Now, in our previous notation, u = Nf/(161Al) and the potential between monopoles is 

at large distances. Inserting this into the general expression (3.13) yields the anomalous sine-Gordon 

(ASG) action 

(3.31) 

where T = 2/ ( N ~  a2). The non-analytic gradient term proportional to Iq13 is a consequence of the 

coupling to massless, relativistic fermions. 

The most remarkable feature of (3.31) is that the coupling to fermions modifies the potential 

between monopoles, from Coulombic to the much longer-ranged logarithm in three dimensions. 

Such a logarithmic interaction is more famously encountered in the 2DXY model[70,71] where the 

monopoles (vortices), because of the long-ranged nature of the potential, undergo a BKT transition 

to a bound dipole phase. In the next section, we review how the competition between the energy 

and entropy can lead to such a transition. In the present context, this would imply a deconfinement 

transition for fermions, in contrast to the situation in the pure gauge theory. We contend, however, 

that screening due to the medium must be taken into account and present an electrostatic argument 

showing that the bound phase is destabilized in the presence of dipoles. 
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3.6 Stability of the dipole phase 

The change in free energy due to a single monopole in a sample of linear size L can be written[74] 

For T < = 1/(127r2), the free energy increases in the presence of free monopoles, and we, 

thus, expect that the system will favour the formation of bound dipoles. This corresponds to a de- 

confinement transition at the critical number of fermions, NfC = 24. This simple argument works 

surprisingly well in the case of the BKT transition where screening of the medium merely renormal- 

izes the effective temperature. However, the situation in three dimensions is quite different, as we 

will now demonstrate. 

The potential at a distant point r due to a collection of logarithmically interacting monopoles 

can be expanded in the spirit of a multipole expansion as 

from which the various moment densities can be established. In a sea of monopoles and dipoles, the 

potential of an isolated charge Q will be modified from the bare logarithm due to polarization of the 

medium. To account for this, the potential can be expressed as 

V(r) = / dr' {(-  ln lr - r'l)p(r') + 

where (P) = nd (p(r1)r') is the thermally averaged dipole moment density (nd is the dipole number 

density). For a small dipole of unit charge (p = 1) in the electric field of Q, the energy is •’ = -rl.E, 

and the thermal average can be evaluated: 

j- d3r' (ndr1 cos 0) exp 
(P )  = 

j-d3r' exp {T} 

which defines the electric susceptibility X, - (nd/3T) (rt2). Writing the electric field as E = 

-VV, the potential, after an integration by parts, is now 
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In Fourier space, assuming an isolated charge p(rt) = QS(rt),  we can solve for the screened poten- 

tial 

Transforming back to real space, the potential felt by a distant external charge no longer has the 

logarithmic form, but is instead the Coulombic , V - l /x .  Thus, the presence of a finite density 

of dipoles destabilizes the bound phase, leading to free monopoles only. In the language of the 

previous energy-entropy argument, screening modifies the energy of an isolated monopole, which 

now scales as 1/L and, therefore, entropy always dominates at large distances. 

To address this issue in a more systematic way, we next study the anomalous sine-Gordon action 

(3.31) using the GBF variational approximation employed in the pure gauge theory. To the lowest 

order, we will see that this approach agrees with the na'ive energy-entropy argument, owing to the 

neglect of screening. We will then introduce a systematic generalization of this method meant 

to capture such non-trivial effects, and show that a finite mass solution does indeed exists at all 

temperatures, in agreement with our electrostatic argument. 

3.7 Variational approach 

Again, we choose the trial action to have the Gaussian form 

and calculate Fvar: 

Minimizing F,, with respect to Go(q) yields the optimal Gaussian theory that approximates FASG: 

with the 'mass' m determined self-consistently through 
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Figure 3.3: The solid curves are the function f (m)  for ? > ?, and ? < ?,, as indicated. The 

solution m* is determined by the intersection of the solid lines with the f (m)  = 0 axis. A finite 

solution exists only for ? > ?,. 

A is the ultraviolet cutoff and ?, - 1/(127r2). Determining the solutions of (3.41) amounts to 

identifying the roots of the function 

It is evident that m = 0 is one such root for all values of ?. We next demonstrate that a solution 

with finite m* exists for? > ?,. In the limit of small m, f (m)  has the form 

while for large m 

f (m >> A3) = m, v ?. 

For ? > ?,, f (m)  changes sign and, thus, has a root with m* > 0, while only the m = 0 solution 

exists for ? < ?, [82]. This situation is depicted graphically in Figure 3.3. 
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- 
The stability of the m = 0 solution for T > Tc can be determined from the variational free 

energy (3.39) with the solution (3.40) for G;'. Evaluating the free energy we find 

Then 

so that for T > Tc any solution with m* > 0 is of lower free energy than with m = 0. That is, the 

stable solution at T > Fc has finite m*. 

Again, we identify the finite m* solution with the phase of free monopoles, while m = 0 indi- 

cates the dipole phase. The simple variational calculation would, therefore, suggest that monopoles - - 
undergo a binding-unbinding transition at T = Tc (i. e. at N = NfC = 24) in exact analogy with the 

equivalent calculation one can perform for the standard BKT transition. The value of Tc also agrees 

with the simple energy-entropy argument which we presented in the last section. 

An obvious objection to this simple calculation is that minimization of the variational free energy 

(3.39) by construction cannot yield any momentum dependence of the self-energy, but can only 

determine its constant part, the 'mass' m. The renormalization group [74] treatment of the ASG 

theory suffers from the same problem to the lowest order in fugacity, and would likewise nalvely 

suggest the BKT transition. The same holds for the direct perturbative evaluation of the self-energy 

in the ASG. However, it is easy to check that the self-energy does become momentum dependent 

to the second order in fugacity, with the leading analytic term -- q2 at low momenta. This is just 

what one would expect based on the simple electrostatic analysis of the problem where this term 

translates into the Coulombic interaction in real space. The presence of such a term would, however, 

drastically alter our present considerations. Indeed, if we add by hand the term Q~~ with Q # 0 in 

the denominator of the integrand in the self-consistent equation (3.41), we find 

for all T .  Hence, the non-trivial solution would exist for all temperatures, exactly as in Polyakov's 

original treatment of the pure gauge theory. This is natural since Q # 0 means that the original 

logarithmic interaction between monopoles is, even without free monopoles and only with a finite 
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density of dipoles, screened into the Coulomb interaction for which the standard argument for the 

confined phase readily applies. 

In the next section we propose a modified self-consistent calculation which provides a systematic 

perturbative approximation to the free energy and which reduces to the GBF method to the lowest 

order. As we will see in Section 3.9, such an approach has the advantage of including the screening 

effects in a self-consistent way, therefore overcoming the limitations of the purely variational theory 

discussed in this section. 

3.8 Self-consistent perturbative approach 

There are many ways in which one may generalize the variational method of the previous section. 

For instance, one may add a second-order term -4 ( ( S A S ~  - 5 ' 0 ) ~ ) ~  + 4 (S*sG - SO): to Fvar and 

extremize the new energy functional. Such a second-order extension, however, has little variational 

justification. For a more systematic generalization, we go back to the GBF inequality (3.15). Ex- 

changing the roles of S A ~ ~  and So, we find 

Extremizing F< with respect to a quadratic action So yields 

which is simply the equation for the exact propagator in the ASG theory. The right hand side (RHS) 

of the equation may be rewritten as 

with A S  =: S A ~ ~  - SO. In this form, (3.49) may be understood as a self-consistent equation for the 

action So, which we may attempt to solve by expanding the RHS in powers of AS,  for example. To 

the first order in A S  this becomes 

which is precisely the relation one would obtain from extremizing Fvar with respect to So in (3.15). 

That is, the first order approximation to (3.49) reproduces the GBF result from the previous section. 
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The equation (3.49) forms the basis of our modified variational approximation to FASG. TO the 

first order in A S  it reduces to the GBF equation of the previous section, and when solved self- 

consistently to all orders, gives the best variational lower bound to the free energy, provided by F, 

in (3.48). 

In addition, consider the expansion of (3.49) to order ( A S ) n .  One can show (see Appendix A.2) 

that the resulting expression is the same as the one that would arise from extremizing the function 

Here F ( ~ )  stands for the expansion of the true free energy of the system, FASG, in powers of A S ,  

truncated at ( A S ) n .  As an illustration, consider the n = 2 case. From F(')  = Fo + A S  and 

~ ( 2 )  = ~ ( 1 )  - 1  AS AS)^)^ - (AS):). we can compute the functional derivatives 

In the above, we have used 

Now, adding the derivatives together, and setting the result to zero, we find 

where we have defined the connected averages 

This is exactly the result which follows from expanding (3.49) to second order. 
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The utility of identifying the appropriate variational free energy to be minimized is evident when 

it is cast into the alternate form (see Appendix A.l) 

It is then clear that the sequence {F::?} converges to F for any So. Therefore, the So determined 

self-consistently from (3.49) yields the variational sequence that best approximates F A s ~  within the 

family IF::? [So]}. 

Having established the validity of our systematic extension to the GBF inequality, we will apply 

this to the anomalous sine-Gordon model (3.31) using the second order result (3.57) derived above. 

In particular, we will show that the density of free monopoles is finite at all T > 0, and that charge 

should consequently be permanently confined in cQED,. 

3.9 Confining Solution for T > 0 

From the definitions of SAsG and So (3.31 and 3.38) it is straightforward to calculate the connected 

averages of (3.58) and (3.59). Our second order result (3.57) then yields the quadratic equation for 

G, l ( s )  

where 

00 

A h ,  Go] = q i q 3  + 11 + a6 - 2a2 (c + ~ ( - l ) n d n q 2 n )  
n=O 

'-2 6 B[q, Go] = q + 2a?lq13. 

In the above expressions (3.62,3.63), we have defined 

4 = J d 3 ~  
(R cos 8 )  2n 

sinh Do (R) , 
(an)! 
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and the real-space propagator is Do(R) = d3k/(2.rr)3~o(k)eik'R. 

We can solve the quadratic of (3.61) and expand in powers of l q 1 3 / ~ o  to yield the result for 

Gil(q):  

~ i ' ( q )  = m + ~ ( m ) q ~  + 'T(m))q13 + . . . , (3.68) 

where the coefficients are defined as 

and with A. = A[q = 0, Go]. For these equations, we should choose the solution corresponding to 

the upper sign in (3.69 - 3.71) to ensure that m 2 0. In what follows, we neglect terms higher order 

in q than q3 as they should be irrelevant at low momenta. 

As announced, the second order result includes additional renormalization of the bare terms 

as well as the generation of new momentum dependent terms. Most importantly, the leading term 

proportional to q2 has now appeared. 

In the analysis to the lowest order, we found that the bound phase of monopoles corresponded 

to low T .  In what follows we will restrict ourselves to low temperatures by assuming T A  << Q and 

show that monopoles are unbound even for arbitrarily small temperatures. By continuity this would 

imply that they are free at all temperatures. 

Let us start by examining a: 

1 
= y exp { - 4r2Q(m) ( A  - d z a r c t a n  Q(m> ( A / F . ) )  } , (3.72) 

When m -+ 0, we will assume m/Q(m) -+ 0, and justify this assumption a posteriori. The 

coefficient a now takes the form 
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Next, we examine the equation for b  

- - 1 
--Do(0) + 0(T). 

2 

From this we find 

b = -  
A + 0 ( T ) ,  m << A3. 

47r2Q(m) 
Next, as the terms c and do always appear together, we consider the combination 

Evaluating this yields 

( c +  do )  = m-l +u(T), m << A3. 

Similar analysis applies to the coefficient d l :  

which gives 

d l  = - Q(m) + " (T ) ,  m << A ~ .  (3.79) 
m2 

Evaluating (3.70) for Q then we find 

Solving this for Q # 0 yields 

and we see that m/Q(m) indeed approaches zero as m -+ 0, thus justifying our earlier assumption. 

Substituting this solution for Q(m) into our mass equation (3.69) gives 
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which can finally be solved for m # 0 to give the finite mass solution 

,* = &2J23y.  

The corresponding finite value of Q is 

Note that m* is proportional to y  so that small fugacity translates to small m*, in accord with our 

assumption that m << A3. 

To show that monopoles are free when m # 0, we calculate the monopole density as before 

(3.23). From (3.52) we see that the free energy associated with our second order equation (3.57) is 

1 1 
F::; = Fo + (AS), - z ( ( ~ ~ ) 2 ) o  + 4 ( ~ ~ ) t .  (3.85) 

From this, the monopole density can be calculated. 

For m = 0, the monopole density vanishes, while for our finite m solution 

From the free energy (3.85), it is also possible to show that the finite m solution is the stable solution 

for all temperatures. In fact, the free energy diverges as log(l/m) as m approaches zero, but has a 

finite value for finite m. It is then the free phase of monopoles which is favoured at all temperatures. 

Thus we have demonstrated that for arbitrarily low T a finite mass solution always exists for 

the self-consistent equations (3.69 - 3.71). This implies that monopoles are always free at low 

temperatures, or, in terms of the original lattice model (3.26), that the electric charge is presumably 

confined for any number of fermion flavours. 

3.10 Conclusions 

We have studied cQED3 where massless relativistic fermions coupled to the compact gauge field 

result in a logarithmic interaction between magnetic monopoles. One may suspect that this could 
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lead to a BKT-like transition where free monopoles bind into monopole-antimonopole pairs at low 

enough effective temperatures. Although the simplest mean-field approximation would predict such 

a transition, we argued that by design this treatment misses the screening effects, which are crucial 

in this problem. To address this issue we developed a combined variational-perturbative approach 

which allowed us to include screening self-consistently. The modified theory then leads to the 

plasma phase of free monopoles as being stable at all temperatures, in agreement with the renormal- 

ization group treatment of the problem [74]. Our conclusion is also in agreement with a numerical 

study of cQED3[83]. 

This result has implications for the phase of fermions at finite coupling. We've already seen that 

a chiral symmetry breaking transition occurs for 4 = 0, which corresponds to the continuum limit 

of the theory (3.26). For q > 0, we effectively integrated out the fermions, and concentrated on the 

phase of the remaining monopole degrees of freedom. Now imagine having proceeded, instead, by 

integrating out the gauge field to determine the phase diagram of the theory in terms of fermions. It 

follows that we would find again a single phase, one of either preserved or broken chiral symmetry. 

In a numerical study comparing compact and non-compact QED3, Fiebig and Woloshyn [81] found 

that free monopoles enhance chiral symmetry breaking; that is, the chiral condensate (GQ) is an 

increasing function of monopole density. This suggests that we must find fermions in the chiral 

symmetry broken phase for finite q. This is summarized in the proposed phase diagram shown as 

Figure 3.4. The line N; suggested in Figure 3.2 does not mark a phase boundary, and so we omit it 

here, although the renormalization group treatment of the problem[74] does indicate a crossover be- 

haviour occurring as Nf is increased. In that work, the flow of the fugacity monotonically increases 

for Nf below this line, which is the sign of free monopoles. However, above this line, the fugacity 

first decreases before ultimately running away, which suggests that fermions might actually appear 

deconfined at not too large distances. 

The fermions in our picture, of course, represent the neutral low-energy spinon excitations of 

an underdoped cuprate superconductor. In the superconducting phase, the gauge fields are massive 

and so the theory, which is not QED, does not confine spinons. In this sense, there is an effective 

fractionalization of the electrons into its constituent spin and charge parts, as has been pointed out 

before. Upon exiting the superconducting state, these spinons become confined into (neutral) spin 

one objects and, thus, spin-charge separation does not persist into the spin density wave state, since 

there are no longer any uncharged, half-spin excitations in the particle spectrum. 

A fractionalized, free spinon state corresponding to deconfinement is known as a spin liquid, 
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Figure 3.4: The actual phases of cQED3. The transition in the continuum ( q  = 0 )  is between 

chirally symmetric (CS) and chiral symmetry broken (CSB) phases; pure gauge cQED3 (Nf = 0 )  is 

permanently confining for any value of the coupling. We have shown that permanent confinement 

persists in the presence of massless fermions and with q # 0. In terms of the chiral symmetry, we 

expect that the single phase is the chiral symmetry broken phase. 

and it has been shown[75] that such states are generically unstable in two dimensions for compact 

U(l)  gauge theories. The present result is a specific example of this. It has recently been argued[84], 

though, that monopoles are, in fact, irrelevant and that deconfinement can occur, stablizing the spin 

liquid state. This argument suggests that our starting point (3.29) is flawed, and that we should 

ignore the compactness of a arising from fermions. In the absence of monopoles, the theory is 

similar to the case in the continuum limit and a deconfinement transition may indeed be possible. 

However, the validity of this claim of the irrelevance of monopoles is unclear, and so the issue 

remains unresolved. 

In contrast to the compact case, non-compact QED3 is believed to undergo a transition[85] for 

finite coupling q. Numerical results also seem to indicate that the critical number of fermion flavours 

increases as the coupling increases[85], as in Figure 3.2, though it is an open question whether 

the transition extends to infinite q or not. As before, the chirally symmetric phase corresponds to 

deconfinement, and so whether the critical number of flavours is above or below two determines 
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whether spinons are confined or not. 



Chapter 4 

Uemura scaling 

In this Chapter, we will begin our discussion on the application of the theory (2.52) to the superfluid 

density in the underdoped cuprates. This research can be found in references [42] and [43], the 

former being the subject of the current Chapter, while the latter will be covered in the next. 

4.1 Introduction 

The superfluid density and its temperature dependence are fundamental properties of superfluids and 

superconductors. Both the zero temperature value and the low temperature behaviour are indicators 

of key properties involved in the condensation process. Perhaps the earliest experiments were per- 

formed by Andronikashvili[86] using a torsional pendulum suspended in 4 ~ e  below the A-transition. 

The period of oscillation of the pendulum is directly related to the normal fluid density, and these 

experiments provided the earliest justification of Landau's two fluid model of superfluidity[87]. 

In superconductors, the superfluid density is related to the depth of penetration of an applied 

magnetic field into the interior of the sample[6]. For conventional materials, or whenever the 

BCS theory applies, the temperature dependence is entirely due to the form of the superconduct- 

ing gap function and, thus, may serve as an indicator of the pairing symmetry. For superconductors 

with isotropic s-wave symmetry, the full gap induces an exponentially activated form for the low- 

temperature behaviour[l6], while the high-temperature superconductors display a linear in temper- 

ature behaviour[88], characteristic of an order parameter with nodes[89]. Indeed, this observation 

provided the earliest compelling evidence for d-wave symmetry in the cuprates[6]. 

The behaviour near the critical temperature is also notable, since it reflects the importance of 
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critical fluctuations. In optimally doped samples, a wide critical region has been observed where 

p,(T) - (T, - T)u ,  with the critical exponent v FZ 0.67[32], indicative of 3DXY criticality[31]. 

These regimes of high and low temperature are intimately related by what has become known 

as Uemura scaling. Based on early muon spin relaxation relaxation measurements[23, 241, the zero 

temperature value of the superfluid density was seen to depend linearly on the critical temperature. 

This observation was subsequently seen in various other experiments and became adopted as a 

fact, and a necessary prediction for any candidate theory of high temperature superconductivity. 

Very recently, however, new experiments have begun to display marked deviations from this linear 

relation[ll, 901, as sample preparation techniques have improved and experimental methods grown 

more reliable. The consensus which is beginning to grow is that p,(O) depends sublinearly on T,, 

though with what power is still not well established[8]. 

To develop a theoretical understanding of the superfluid density and, thus, hopefully an under- 

standing of the relation between p,(O) and T,, we need to isolate the factors which determine the 

temperature dependence. In principle, of course, there are many things to consider; for example, 

we have already mentioned the superconducting gap, or quasiparticle contribution. Another impor- 

tant contribution comes from fluctuations around the 'saddle-point' value of the gap - amplitude 

and phase fluctuations. As we have already argued, though, the only relevant fluctuations at low 

dopings are in the phase, and so we will focus on those only. The energy required to induce such 

fluctuations is measured by the phase stiffness, which is related to the superfluid density and which, 

therefore, decreases with underdoping[88] (as also implied by the Uemura scaling). This simple 

observation led to the influential arguments of Emery and Kivelson[26], which assert that it is the 

phase fluctuations which are solely responsible for the depletion of the superfluid density at low 

dopings. 

Besides the obvious logic of the above claim, it also readily explains the dome-like shape of 

the high temperature superconductors' phase diagram. In the BCS mean-field theory, the transition 

temperature can be determined from the gap equation, and steadily increases with underdoping[47], 

in contradiction with the observed critical temperature. On the other hand, the critical temperature 

in the absence of any disordering effect except phase fluctuations, is an increasing function of phase 

stiffness and, thus, of doping[26]. This last is an entirely empirical statement, and in particular 

does not explain why the phase stiffness is proportional to doping, as observed. In any case, the 

actual transition temperature is then determined by the lower of the two temperatures, implying the 

dome-like shape as observed. 
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This argument provides a definite framework in which to theoretically determine the behaviour 

of the superfluid density and, thus, to assess the validity of its assumptions. The goal of the current 

Chapter is to determine the superfluid density in the XY model of phase fluctuations, and to see 

what this predicts for the universal relation between p,(O) and the critical temperature. We will find 

that phase fluctuations alone are insufficient to account for the magnitude of the Uemura relation 

as seen in the old experiments, and that the contribution due to quasiparticles must be included to 

make the theory consistent with observations. Furthermore, because of a strong doping dependence 

of the quasiparticle contribution, a deviation from the linear relation is predicted, in agreement with 

the most recent experimental data. 

4.2 Definitions of the superfluid density 

The superfluid density is a quantity which provides a response to the imposition of a helical twist of 

the order parameter[9 1 1, 
iko.r 

$0 = ($(.>) + $oe 7 (4.1) 

with a wave number ko = OIL. It is clear that the effect of such a twist is to simply shift k + k +  ko 

in the kinetic energy term of the Hamiltonian, the result being 

We can see then, by expanding the square, that the cross-terms are the equivalent of a Galilean 

transformation to a reference frame moving with velocity v = hko/m, i. e. ~ ( k )  -+ ~ ( k )  - hk . v. 

The consequence of such a transformation is a net momentum flux, due to the flow of quasiparticles, 

given by 

( B )  = Vpnv .  (4.3) 

This last expression then defines the normal fluid (mass) density, that of the non-superfluid quasi- 

particle excitations. To find the superfluid density, we simple subtract this from the total density, 

p, = p - p n  This argument is completely equivalent to that of Landau, and in particular reproduces 

the famous result for interacting Bose systems, that p, -- T~ in three dimensions[87]. 

Relating to the above definition, one could also consider the change in free energy due to a 

flowing superfluid. The velocity defined above could equally be considered a superhid velocity (in 

the laboratory frame), and the associated increase in free energy from the non-flowing case can be 
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This definition, however, does not lend itself to ready calculation, as did the first. Another drawback, 

shared also by the previous definition, is the reliance on translational invariance. The total momen- 

tum is not well defined for lattice models, and so the arguments presented above are not valid in 

such circumstances. 

A more general and rigourous definition, which avoids the complications arising from transla- 

tional non-invariance, has been given in terms of the helicity modulus [91], which measures the free 

energy difference between systems with different boundary conditions. The idea is to impose a twist 

in the order parameter by fixing the phase at opposite ends of the system to differ by some angle 0.  

The change in free energy is proportional to the square of the angle, the constant of proportionality 

being the helicity modulus T :  
1 

A 3  M - T ( T ) O ~ A / L ;  
2 

(4.5) 

A  is the cross-sectional area and L  is the length. The approximation becomes exact when the pitch 

of the twist goes to zero, which in this instance must be achieved by taking the thermodynamic limit, 

i. e. 

T ( T )  = lim 
A,L+oo 

Comparing (4.5) with our previous definition (4.4), with ko = OIL, we immediately recognize 

This now allows for the direct calculation of ps by evaluating the partition function under specified 

boundary conditions. Such a calculation, however, is not necessarily practical[92]. In particular, 

the free energy of the finite system must be determined, which is difficult. The final definition we 

will introduce makes use of the free energy in the thermodynamic limit, and should be completely 

equivalent to the preceding definitions. 

In the definition (4.6), a fixed twist angle was applied along a finite length L, and the thermo- 

dynamic limit was imposed to take the pitch to zero. We could equally apply a twist with wave 

number ko to the infinite sample[93], and then the appropriate limit would be ko + 0. The free 

energy would now have a term proportional to k;, analogously to ( 4 3 ,  suggesting a definition of 

the helicity modulus 
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That this is equivalent to the above definitions has been shown for several simple models[94], and 

we will assume it to be valid always. In particular, we will use it in the next section, when we 

establish the relationship between the superfluid density and the magnetic field penetration depth in 

superconductors. 

In anisotropic materials like the high temperature superconductors, it is necessary to differentiate 

between the superfluid densities along the different crystallographic directions. The definition (4.8) 

can still be used, by substituting ko with koti, where i represents the direction along which p, is to 

be determined. We will primarily be concerned with the superfluid density in the CuO planes, p,b. 

4.3 Superfluid density and the penetration depth 

The most conspicuous feature of superconducting materials is zero resistance to the motion of charge 

carriers[95, 961. From Ohm's law[97], j = aE where j is the current density, a is the conductivity 

and E is the electric field, infinite conductivity, therefore, implies that the field is zero. When applied 

to the Maxwell equation -cV x  E = aB/at, this implies that the magnetic field in the interior of 

a superconductor is constant. However, what was observed experimentally[95] was the complete 

expulsion of flux from the superconductor, now known as the Meissner-Oschenfeld effect. 

To explain this situation, the Londons[98] developed a phenomenological theory based upon 

Maxwell's electrodynamics. For a density ns of superconducting electrons, the current density is 

j s  = -ensv, which can be used to write the Lorentz force law as 

In the presence of a time-dependent magnetic field, Faraday's law of induction states that 

so that, by taking the curl of (4.9), we are led to the relation between the current density and magnetic 

field 
a e2 ns 1 e2ns 
- at ( v x j S + - B ) + - V x  mc ens [ j s x  ( V x j s + - B ) ]  mc =o .  (4.11) 

In light of the Meissner effect, the Londons proposed that the correct solution for superconductors 
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so that the observed behaviour can be recovered. To see this, apply the Maxwell equation 

so that the London equation (4.12) reduces to 

where we have also used the Maxwell equation V . B = 0. In one dimension, we easily find that 

satisfies the differential equation (4.14). This solution clearly shows that the magnetic field decays 

rapidly in the interior of the superconductor, over a characteristic length, 

known as the penetration depth. 

At this point, it is enlightening to comment upon the implications of the foregoing phenomeno- 

logical approach. We saw that the assumption of zero resistance is not sufficient to fully describe 

superconductors, and as such, cannot be the defining feature of superconductivity. However, as- 

suming the London equation (4.12) as our starting point, and substituting this back into (4.9), we 

find 

In the interior of the sample, where B = 0, (4.17) implies E = 0, from which we can infer zero 

resistivity. Thus, the Meissner-Oschenfeld effect implies superconductivity and is, therefore, the 

true defining feature of a superconductor, though not necessarily its most prominent. 

Returning to the superfluid density, let us recall the definition (4.8) 

We saw that one way to introduce the helical twist was through the replacement V + V + iko 

in the kinetic energy. Such a shift is very reminiscent of the minimally coupled way by which the 

electromagnetic gauge field enters, V + V -i(e*/hc)A, where e* = 2e is the charge of the Cooper 

pairs. In fact, identifying ko = -(e*/hc)A, we can re-express the helicity modulus in terms of A: 
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This can be related to the penetration depth A, by noting that a(F /V) /aA  = - j,/c, and from the 

London equation (4.12), j, = - ( c / 4 r X 2 ) ~ .  Then, 

which gives us experimental access to the superfluid density in superconductors, through measure- 

ment of X[6]. 

In the high-temperature superconductors, which are quasi two dimensional materials with a layer 

thickness d, the helicity modulus in the CuO planes can be written in units of Kelvin as 

Inserting the requisite constants, one finds 

which allows us to easily convert between the experimentally reported penetration depth, and the 

helicity modulus. 

4.4 Scaling theory for the helicity modulus 

The scaling theory of critical phenomena[99] predicts universal behaviour for critical exponents and 

amplitudes near continuous phase transitions. The basic idea is that there is a diverging length scale 

I which is responsible for all singular behaviour as the critical point is approached. To see this, we 

can write, from dimensional analysis, the singular part of the free energy density 

where D is the dimensionality. For the classical critical phenomena implied here, we will take the 

tuning parameter to be t = (T - T,)/T,, and so the f superscript indicates the sign of t .  The 

correlation length has the power-law divergence, 

* -  & t - v  I - c o I I  , (4.24) 

determined by the critical exponent v, and we can now compute thermodynamic quantities such as, 

for example, the specific heat: 
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We have made an additional scaling ansatz for the singular part of cv to introduce the critical 

exponent a.  Inserting the free energy (4.23) into (4.25) leads to the usual hyper-scaling relation 

2 - a = vD, which is the well known Josephson scaling law. Additionally, one can deduce the 
* -DA&. amplitude relation B* = - (2 - a )  (1 - a )  kB (to ) 

At zero temperature, the situation changes slightly[100]. The integral over imaginary time 0 5 

T 5 ( k B ~ ) - l  extends over the entire positive real axis, so the temporal correlation length I ,  can 

diverge. That is to say, the correlation volume ED[, grows unbounded in all directions as the critical - 
point is approached. For such quantum critical phenomena, we assume a tuning parameter 6 to 

control the transition at S = 0. The scaling form of the free energy can now be written 

In analogy with the diverging spatial correlation length, 

we define a temporal correlation length exponent via 

Substituting these into (4.26), we find 

where the dynamical critical exponent is defined to be z = v,/v. The scaling form (4.4) simply 

demonstrates the fact the quantum critical phenomena are just like classical critical phenomena, but 

in (D + z )  dimensions. This suggests, for example, the modified Josephson scaling law 2 - a = 

v ( D  + z ) .  

As our interest is in the helicity modulus, we now turn to consideration of the free energy (4.4) 

in the presence of a twist in the order parameter phase. We make the simple modification 

as determined from dimensional analysis, and use the definition (4.8) to find 
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Extending this to small but finite temperatures, we write 

- 
Now, assuming a line of critical points exists Tc(6), the critical temperature will scale as Tc I ~ I ~ ~ ,  

and the helicity modulus, in the limit 6 + 0, behaves as 

Remarkably, for 2D criticality, this relation implies T (0)/Tc = Q (Q constant) independently of the 

nature of the quantum critical point, i. e. z. This behaviour has been seen in experiments on the high 

temperature superconductors[23, 241, and is widely known as Uemura scaling. 

At higher temperatures, the helicity modulus takes the form 

In two dimensions, this predicts the universal jump of the helicity modulus at Tc, 

VTC) - = constant, (4.35) 
kB Tc 

which is known as the Nelson-Kosterlitz jump[lOl]. The renormalization group establishes that the 

constant in this relation is 2/~[101].  

In the next section, we will review the experimental results. In particular, we will see to what 

extent the Uemura scaling is satisfied, and extract the amplitude Q. 

4.5 Uemura scaling 

The apparent proportionality between the zero-temperature superfluid density and the critical tern- 

perature was first observed in muon spin relaxation measurements[23, 241 and for a wide array of 

cuprate superconductors. From their data, we can estimate the slope to be 3.0 K . pm2, with a 

margin of error of f 0.2 for the YBaCuO data and f 0.5 for LaSrCu0[102]. Converting the slope 

to a dimensionless amplitude Q via the formula (4.22) requires knowledge of d, the layer thickness. 

Assuming this to be the minimal thickness along the c-axis so that the material superconducts, d can 

be determined from measurements on superconductor-insulator superlattices[l03] or from crossing- 

point phenomena in magnetization measurements[l02]. Otherwise, the width of a unit cell in the 
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c direction can be used as an upper bound. For YBaCuO, we find 10 A < d < 12 A producing 

1.82 < Q < 2.48, while for LaSrCuO, d = 7.6 &lo21 and 1.37 < Q < 1.88. Evidently, Q is not 

truly universal, due to its dependence on d, though we may say it is around 2 for most materials, and 

certainly greater than 1.37. 

4.6 Depleting the superfluid density: the Ioffe-Larkin rule 

In principle, the depletion of the superfluid density is due to several effects. However, we have 

argued that only d-wave nodal quasiparticles and order parameter phase fluctuations are relevant at 

low energies. The contributions from these two effects can be summarized in the so-called Ioffe- 

Larkin rule[33]: 

where ppf results from phase fluctuations and p,,, quasiparticles. This simple relation can be easily 

derived from our effective theory, presented in Chapter 2, as we now show. 

In the superconducting state, the full action (2.52) becomes 

In expressing this, we have restored the dimensionful constants, and written the condensate prefactor 

of the last term as J(T) .  As far as the charge part of the action is concerned, integrating out spinons 

in the above action just causes the bare stiffness K to acquire a temperature dependence, so we can 

include the effect of Sf by simply making the replacement k - k ( T ) :  

Integrating out v is a trivial matter, and leads to 

The action is now in a form which is amenable to the determination of the helicity modulus via the 

definition (4.19). We easily identify 
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The relationship (4.7) connects the helicity modulus to the superfluid density; applying it here clearly 

reproduces the Ioffe-Larkin rule above (4.36) where J(T) ,  arising from phase fluctuations alone, is 

proportional to h f ( T )  and E(T)  cc pqp(T), having resulted from integration over spinons. From 

here on in, to avoid any confusion, we will write these contributions as Y p f  (T )  and Yqp(T) ,  respec- 

tively. 

To make contact with experiment, we can now evaluate the quasiparticle and bosonic superfluid 

densities separately, and combine them using the rule (4.36). This task will be the focus of the 

remainder of this chapter. In particular, we will be interested in the relative importance of each 

contribution to see which is the factor that determines the Uemura scaling. 

4.7 Quasiparticles 

At optimal doping in high temperature superconductors, the quasiparticle fluctuations are expected 

to be the dominating contribution[6]. The reason for this is that the zero-temperature superfluid den- 

sity (i. e. phase stiffness) is quite high, so that phase fluctuations are inhibited. At lower dopings, the 

stiffness is reduced, thus increasing the role of phase fluctuations[26]. To understand the importance 

of the respective contributions, we consider each in turn, starting here with the quasiparticles. 

Before evaluating the superfluid density due to d-wave quasiparticles, it is useful to compare 

with the situation in s-wave superconductors. The form of the gap in these two cases is quite 

different, as shown in Figures 4.1 and 4.2. As we can see, in the s-wave case, an isotropic gap forms 

around the Fermi surface, and an energy proportional to A. is required to excite quasiparticles. On 

the other hand, the d-wave form displays nodes at special points on the Fermi surface, so only an 

infinitesimal energy is required to excite quasiparticles in their vicinity. It is natural to speculate, 

then, that d-wave quasiparticles will be much more effective at depleting the superfluid density than 

their s-wave counterparts. 

The evaluation of the superfluid density in the s-wave case is standard[3] and we'll just quote the 

result here. The temperature dependence, as a result of the full isotropic gap, has the exponentially 

activated form[l6] 

where we have set the Boltzmann constant kB = 1. To recapitulate, at temperatures below the gap 

energy, thermal fluctuations with sufficient energy to excite quasiparticles are exponentially rare, 



CHAPTER 4. UEMURA SCALING 

Figure 4.1: Sketch of the s-wave gap function. The Fermi wave vector is indicated by kF and the 

gap magnitude is Ao. 

Figure 4.2: Sketch of the d-wave gap function. The Fermi wave vector is indicated by kF. The gap 

function changes sign around the Fermi surface, resulting in the four nodal points. 
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Figure 4.3: The depletion of the superfluid density due to quasiparticles. The solid line is the s-wave 

result[l6]. The data points are experimental results on optimally doped YBCO - open circles are 

from a-axis measurements, open squares are b-axis, taken from Bonn et al. [88]. 

and the superfluid density is effectively undepleted. At higher temperatures, quasiparticles are more 

readily able to overcome the barrier, and the depletion proceeds rapidly. This is displayed by the 

solid line in Figure 4.3. 

Also plotted are experimental results on optimally doped YBCO taken from[88]. The low tem- 

perature behaviour is drastically different from the s-wave case, indicating that the order parameter 

of the cuprates must have a different symmetry[6]. Of course, it is now well known that the high 

temperature superconductors are d-wave, as we've been advocating throughout. To see what ef- 

fect these quasiparticles have on the depletion of the superfluid density, we will now perform the 

calculation alluded to in the previous section; that is, integrate out fermions in Sf. 

Upon integration over fermions, the action develops a term (1/2)II,, (q)  A, (q)A,  ( -q) ,  where 

II,,(q) is the fermion polarization or current-current correlation function[52]. It follows, then, from 

the definition (4.19), that the helicity modulus in the i direction is simply IIii(q = 0). To one- 

loop order, this is represented diagrammatically in Figure 4.4, where the wavy lines represent the 

electromagnetic gauge field, and the solid lines are fermion propagators. Explicitly, we can write, 
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for the x-direction, 

The trace over the y matrices is easily evaluated and yields 86,,oSv,o - 4S,,,. Redefining vf kx + kx 

and vn k, + k,, the above integral becomes 

The Matsubara sums can be done in the usual way[lO] and the resulting integral over k is not 

difficult. The final result is 

which is well known from other methods[104-1061. We see that the temperature dependence due 

to nodal quasiparticles is quite different from the fully gapped s-wave case: the depletion of the 

helicity modulus is now linear in T. 

In the cuprates, the T = 0 supemuid density grows continuously as optimal doping is ap- 

proached. From this fact, we can infer that, at large enough dopings, the quasiparticle contribution 

to (4.36) will dominate, since the phase fluctuation term would be a very small addition. We would 

expect, then, experiments on heavily doped materials to display the low temperature behaviour de- 

scribed in (4.44). Indeed, this is exactly what has been seen in materials near optimal doping [6](see 

Figure 4.3), and, at the time of its discovery, provided the first compelling evidence for d-wave 

pairing in the cuprates. 

As the materials are underdoped, the phase stiffness shrinks, and is proportional to doping at 

low dopings. It then seems natural that the phase fluctuation contribution becomes dominant near 

the underdoped quantum critical point, and so must be taken into account. 

4.8 Phase fluctuations 

Our model for phase fluctuations is the XY-model (2.36) of Chapter 2. In the following, we will 

adopt a slightly more general theory, including interactions and anisotropy, which we refer to as the 
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Figure 4.4: The fermion polarization bubble at q = 0. Wavy lines represent the gauge field, and 

solid lines are the fermion propagator. The vertex function is v fys  

anisotropic quantum XY model: 

The first two terms of the action describe the usual classical phase fluctuations, in the plane and out 

of the plane, respectively. The last term represents the quantum phase fluctuations arising from the 

number-phase uncertainty relation A n  . A 4  2 1 for the canonically conjugate pair (n, 4), where n 

is a density. The interactions tend to fix the density, and so the phase fluctuates due to this quantum 

mechanical relation. To be specific, we will assume the Coulomb interaction, 
- 1 

( r  - r 2 - 2') = ( r  - r'12 - (2 - 21)~) , (4.46) 

though our results are general. For illustration, we will also consider the short-range repulsion, 

V = 6,,,16,,,1. The parameter a tunes the anisotropy between the x - y plane and the z direction. 

We will mostly be interested in cr = 0, but will comment on the effect of finite a later. 

The temperature dependent helicity modulus can be calculated using the variational Gibbs- 

Boboliubov-Feynman (GBF) approach[80] introduced in Chapter 3 (3.15). In the present case, we 

will approximate the theory (4.45) with the trial action, 
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where we have set a = 0. The free energy can be evaluated exactly as before, except now we are 

working at finite temperature. We can write 

where Rij is a vector pointing to nearest neighbour sites, and we can determine the propagator by 

Fourier transforming the trial action (4.47): 

G;' ( k ,  w,) = 4Ypf (T) sinZ 
Rij 

Rather than minimizing the variational free energy with respect to the propagator, as we did before, it 

is now more convenient to minimize with respect to Ypf (T). This directly yields the self-consistent 

equation for the helicity modulus 

The second line results from evaluating the Matsubara frequency sum and taking the continuum k 

limit; we've also defined the function 

In the classical limit X2 = 0, we can easily determine the low temperature behaviour of Ypf. 

The self-consistent equation becomes 

which, to lowest order in T, yields Ypf(T) = K - T/4 which is linear, just like the quasiparticle 

contribution. This is the known result [107, 1081 for the depletion of the helicity modulus due to 



CHAPTER 4. UEMURA SCALING 68 

spin waves excitations, giving credence to the variational approach. At higher temperatures, trans- 

verse vortex excitations must be taken into account, though these are not expected to be important 

except very close to Tc[109]. Here and in the following, we will assume that these excitations serve 

only to establish the critical temperature through the Nelson-Kosterlitz jump in the stiffness (4.33, 

T (Tc)/Tc = 2/7r. For the non-interacting case in our self-consistent Gaussian approximation, this 

yields the Uemura ratio Q ( a  = 0, X2 = 0) = (2/7r + 114) % 0.89, which should be compared with 

the known value, incorporating vortex effects, QzDxY % 1.11[107, 1081. Anyway, it is clear that 

classical phase fluctuations alone cannot account for the observed value of the ratio Q -- 2. 

We include quantum phase fluctuations by setting X2 # 0. Interaction affects the helicity mod- 

ulus in two ways: First, its zero temperature value is reduced from the bare value K. This can be 

seen by setting T = 0 in the self-consistent equation (4.50), 

In the last line, we have expanded in powers of the interaction strength; the term 0(X2) cancels 

when the helicity modulus is reinserted self-consistently. The correction to Ypf (0) from interactions 

is negative, and so the helicity modulus is reduced from its bare value. 

The second effect of interactions is the introduction of a new quantum energy scale, below which 

the depletion of Tpf (T) is suppressed; for example, the energy scale for Coulomb interactions is the 

plasma frequency[97]. We can see this by determining the temperature dependence from (4.50). For 

short-ranged interaction, V(k) = 1. At low temperatures, the integral is dominated by the region of 

small k, and so we can approximate sin2(k.Rij/2) % ( k . ~ ~ j ) ~ / 4 .  Scaling TPf(T)X2k2/T2 + k2, 

we find that the helicity modulus has the form, 

T ~ f ( T )  = 1 - constant x 
T,f (0) 

where the quantum scale is T, = x ~ / ~ Y ~ / ~ ( o ) .  Performing a similar operation for the case of 
pf 

Coulomb interactions, V(k) = 27r/k, we find 

T ~ f ( T )  = I - constant x 
Tpf  (0) (E) 
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where T, = X ~ / ~ T $ ~ ( O ) .  SO, we see that the depletion of Tpf (T) is much more strongly suppressed 

at low temperatures by quantum fluctuations than by classical fluctuations. This situation is shown 

in Figure 4.5. 

In plotting the helicity modulus, we have estimated the critical temperature, even for the in- 

teracting case, from the Nelson-Kosterlitz relation (4.35). It has been shown[llO] that for a weak 

Coulomb interaction, the coupling X is irrelevant (in the renormalization group sense), and so the 

transition remains in the BKT universality class. In particular, the discontinuous jump in the helicity 

modulus still holds, and the transition occurs at Tc = (7r/2)Ypf (T,) Using this, we can compute 

the ratio Q in our self-consistent Gaussian approximation. Expanding in powers of A, we find 

Putting this together with the expansion (4.53) for Ypf (O), we find 

We notice that Q ( a  = 0, X2) clearly is a decreasing function of X2. This is demonstrated graphically 

in Figure 4.6. The symbols represent the full solution to the self-consistent equation for short-ranged 

(*) and Coulomb (0) interactions, the lines are the low order results from (4.57). 

Although the preceding self-consistent Gaussian approximation in principle includes only the 

spin-wave phase fluctuations, it should be a reasonable indicator of the interaction dependence of 

Q. The main contribution to the depletion of the helicity modulus for T I 0.8Tc in the classical 

2DXY model comes from these spin-waves, and it is the increase of their energies with interaction 

that should ultimately be responsible for the proposed decrease of Q from the non-interacting case. 

From these considerations, we conjecture that the universal ratio in 2D is bounded above by the 

non-interacting value, QzDxY % 1.1 1, well below the Uemura result. Combining this with the 

lower bound implied by the Nelson-Kosterlitz relation, we find that the class of models described by 

the action (4.45) in 2D ( a  = 0) generically yields a ratio Q which is restricted to the range 

Incorporating the effect of the third dimension by slowly tuning a # 0 will also be deleteri- 

ous to the magnitude of Q. Away from the pure two dimensional system, the Nelson-Kosterlitz 

jump in the helicity modulus ceases to hold, and the curves should be expected to become rounded 
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near the transition, with higher critical temperatures. Indeed, Q has been computed for the 3DXY 

model[l 1 1] to be QSDXY M 0.45. The upper bound (4.58) proposed above then holds for all values 

of the anisotropy parameter: 

&(a, x ~ )  1 QSDXY. (4.59) 

So, it seems that the experimental value for Q is well above the upper bound coming from phase 

fluctuations alone. To bring the theory in better agreement with the data, we would have to assume a 

much lower value for the layer thickness d. Using d = 6A yields Q = 1.09 and just below our upper 

bound, although this is a much smaller thickness than has been measured. It seems more reasonable, 

then, that another mechanism must be responsible for reducing the superfluid density. Fortunately, 

we have one such - quasiparticles. 

1.5 

- 

---___ --- _ _  .. - 
.... 

0.8 - - 

T 
Tpf (0) 

Figure 4.5: Helicity modulus vs. temperature in the self-consistent Gaussian approximation, for 

the 2D XY model (solid line; a = e, = O), and with Coulomb interactions (dashed line; a = 0, 

e: = 5/7r and V(k) = 27rlk). The straight dotted line denotes the universal BKT limit, Tpf (Tc) = 

(2/7r)Tc, at which the helicity modulus discontinuously vanishes. Note that T, for fixed Tpf(0) 

increases with interaction. 
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Figure 4.6: The amplitude Q(a = 0, x2)  = Ypf(0)/Tc in the self-consistent Gaussian approxi- 

mation for the helicity modulus in 2D, with Tc defined by Ypf (Tc)  = (2/7r)Tc, for long ( 0 )  and 

short-range (*) interactions. The lines are the weak-interaction results from (4.57); K = 1. 

4.9 Phase fluctuations + quasiparticles 

As we established earlier, the superfluid density resulting from d-wave quasiparticles has the form 

Higher order in temperature corrections are negligible in the very underdoped case where Tc << A, 

and we will drop them hereafter. We can now combine the quasiparticle and phase fluctuation 

contributions by way of the Ioffe-Larkin rule derived previously (4.36). It must be noted that the 

temperature dependence of the phase fluctuation part is a much higher power than linear, and can 

be dropped in comparison to the quasiparticle part. To make this more concrete, notice that the 

depletion in, for example, the Coulomb case (4.55) is significant only when T N Tq. From the 

scaling arguments near the quantum critical point (4.33), Y p f  (0) N Tc and so Tq >> Tc in the very 

underdoped cuprates. The Ioffe-Larkin rule now leads to 

Y ( T )  = Y (0)  - ( ? z z 2 )  T 
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The factor z2 = T ~ ~ ( O ) ~ / ( T , ~ ( O )  + T q p ( 0 ) ) 2  is often referred to as the charge renormalization 

factor, in analogy with a Landau Fermi liquid parameter accounting for screening by the background. 

To elucidate, we could have included the effect of phase fluctuations in the spinon action (2.31) 

through the phenomenological replacement of the term iAi  Ji --t i zAi  Ji. Integrating out fermions 

as we did earlier in this chapter then leads to exactly the expression above. In the language of that 

section, the replacement amounts to a renormalization of vertex function v f ~ s  4 z v f y j .  

Even though we have concluded that it is the quasiparticles which determine the temperature 

dependence of the helicity modulus, it is still the unbinding of vortices in 2D which leads to the 

transition, and we expect the critical temperature to be determined by the relation (4.35): 

where the slope y is the bracketed expression in (4.61). This predicts a particularly simple form 

for T ( T ) ,  as depicted schematically in Figure 4.7. The slope y of the helicity modulus is expected 

to change with doping, as plotted; this stems from the factor z 2 v f / v A .  The d-wave gap velocity 

V A  is known to increase with underdoping[22], while the Fermi velocity v f  remains approximately 

constant[l7]. The behaviour of the charge renormalization factor is much less well established, 

but if anything, decreases with underdoping[ll2]. Altogether, this predicts a decreasing slope as 

we approach the underdoped critical point. The effect of vortex fluctuations near Tc will be to 

deplete the superfluid density even more, thus lowering the critical temperature. Additionally, with 

0 < a << 1, some rounding of the BKT jump should be expected, along with a slight increase in Tc. 

These fine effects are being omitted in the Figure, but should be expected in experiments. 

The addition of the quasiparticles contribution y in (4.61) now makes the agreement with the old 

Uemura data much better than with phase fluctuations alone. From heat transport measurements[22], 

the ratio v f  / v A  -- 10, and the charge renormalization is estimated to be z  -- 0.5 - 1 in underdoped 

materials. Putting this together, we find y -- 1. Using (4.62), we determine the ratio Q = y + 2/7r x 

2, as has been observed experimentally. More importantly, the doping dependence of y, thus, implies 

a systematic deviation of T c ( T ( 0 ) )  from the simple linear relation. Even if we conservatively assume 

z  remains constant with doping, the decrease of V A  makes the slope y a decreasing function of 

doping and, therefore, of T (0) .  The curve Tc versus T ( 0 )  is then a convex up function, which seems 

to have been observed recently. 

To be more explicit, note that our expression (4.62) with the relation (4.22) between T and 1 / ~ ~  
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Figure 4.7: Schematic behaviour of the helicity modulus vs. temperature in a low-T,, large gap, 

quasi-2D d-wave superconductor. Doping is assumed to be decreasing from top to bottom. Note 

that both T, and the slope should decrease with underdoping (see the text). Dashed line again 

represents the universal BKT limit. 

yields 

We can now use this expression to fit available data. Figure 4.8 shows data taken from [ l l ]  where 

circles(squares) are taken from a(b)-axis measurements. Also plotted is the Uemura result, Q = 2. 

To avoid contributions from chains in the b direction, we consider only the a direction, though 

both sets clearly show a departure from linearity. To fit the data, we need to know the doping 

dependence of VA, which we can extract from heat transport measurements [22]; we will assume 

fixed vf = 2.5 x lo7 cm/s [22]. The doping dependence of z is more problematic, since it is appears 

only in combination with vf and VA and is, thus, subject to compounded uncertainty. In the Figure, 

we attempt to fit the data using both a constant z = 1 (no charge renormalization; dotted line) and 

a doping dependent z = Tc/C (solid line) where C is a proportionality constant. The rationale for 

the doping dependent scaling form comes from the definition of z arising from the Ioffe-Larkin rule, 

z cc Tpf(0) and from the fact that T(0)  cc Tpf(0). Together with the scaling arguments presented 
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Figure 4.8: Data reported in [ l l ] .  The lines are fits to the data as discussed in the text. The convexity 

of the curves is due to the doping dependence of the quantity 2 2 ( V F / V a ) .  

earlier, that T(0 )  -- Tc, this implies the doping dependent z IX Tc as proposed. 

We can see from the Figure that the data do not display the Uemura relation, but are better 

described by a convex up curve. The doping independent fit clearly shows such convexity, resulting 

entirely from the dependence of vn on doping, which however does not fit the data very well. On 

the other hand, assuming further the suggested doping dependent form for z ,  we can fit the data 

much better. In that case, the best fitting parameter is C = 79 K. 

4.10 Conclusions 

The underdoped cuprates are characterized by a low critical temperature, large d-wave pairing gap 

and quasi-two dimensionality. In this chapter, we examined the role of phase fluctuations on the 

superfluid density under these assumptions. We found that, while the superfluid density is depleted 

linearly in the absence of interactions, the inclusion of Coulomb interactions essentially eliminates 

the longitudinal spin-wave fluctuations responsible for this behaviour, rendering the quasiparticle 

excitations the dominant contribution at low temperatures. Phase fluctuations are then only relevant 
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near T, where vortices control the physics, resulting in a BKT transition and the accompanying 

Nelson-Kosterlitz jump in stiffness. Using the Ioffe-Larkin rule to combine the effects of both the 

phase fluctuations and the quasiparticle excitations, we then derived a relation between T (0) and T, 

which displays a marked deviation from linearity as seen in early experiments, but in quantitative 

agreement with more recent data. 

Our argument differs greatly from another recent attempt to explain the curvature seen in the 

data[90]. There it was postulated that an additional gap, in competition with superconductivity, 

opens up in the density of states. The advantage of our argument is that it invokes only very general, 

phenomenological observations of the underdoped state. In particular, it relies only on the fact that 

the superconducting gap is increasing as the critical temperature decreases, and on the quasi-two 

dimensionality. 

One drawback of our argument is the prediction that the low-temperature slope of the superfluid 

density should decrease quite rapidly (- x2) with underdoping. This is a common consequence of 

effective theories of underdoped cuprates[20, 1041, but has not been observed experimentally[8,88]. 

Indeed, this has been one of the major theoretical obstacles: theories which correctly predict a 

zero-temperature superfluid density which decreases linearly with underdoping, incorrectly predict 

a quadratically decreasing slope. It should also be noted that the Nelson-Kosterlitz jump in the 

superfluid stiffness has not been seen either, except possibly in ultra-thin samples of YBaCuO. 

The fact that the experimentally determined slope is only very weakly doping dependent[8], 

while a theory based on nodal quasiparticles predicts y - x2, suggests that phase fluctuations 

do somehow play a role in depleting the superfluid density. We have seen in this Chapter that 

Coulomb interactions in a strictly two dimensional, or anisotropic three dimensional XY model 

completely eliminate the spin-wave fluctuations from the problem. To reinstate the importance of 

phase fluctuations, we need a mechanism whereby interactions can be effectively neglected. In 

the next Chapter, we'll examine a layered system of Coulomb interacting bosons, and see that the 

presence of the layers screens the interaction into a short-ranged potential. In the dilute limit, this 

means that the temperature dependence of the helicity modulus is dominated over a large range by 

the form of the non-interacting Bose condensate, which is, for all practical purposes, linear. In this 

way, phase fluctuations become a crucial factor in determining the helicity modulus. 



Chapter 5 

Layered superfluids 

In the last Chapter, we saw that the XY model of phase fluctuations, as an effective theory for 

the depletion of the superfluid density in cuprates, was insufficient to describe what is observed 

experimentally. This was due to the Coulomb interaction which effectively lifts the energies of 

the low-lying spin-wave excitations above the plasma energy, modifying the non-interacting linear 

in temperature behaviour into the T5 power law. Such an argument has been used in the past to 

criticize the phase fluctuation mechanism of superconductivity[l13], leaving only quasiparticles as 

the relevant contribution in the Ioffe-Larkin rule (4.36). 

However, cuprates are strongly anisotropic materials, with the anisotropy between the transport 

properties in the ab-plane[6] and along the c-axis[9] increasing with underdoping(l02, 1141. We 

might expect, then, that the plasmon dispersion will become more anisotropic, as well. In fact, this 

is indeed the case, and it is well known that the large plasmon energy gap becomes replaced by a 

much smaller one, proportional to the coupling between the two dimensional layers[l3, 115, 1161. 

It is then natural to hope that the plasmon mode will be much less effective at gapping the phase 

mode, leading to an increased role for phase fluctuations in depleting the superfluid density. 

In this Chapter, we will study in greater detail the combined effect of large anisotropy and 

Coulomb interactions on T (T). We will model the phase fluctuation component of the Ioffe-Larkin 

rule (4.36) by a layered system of bosons, interacting via Coulomb interactions, which provides 

a rather general representation of a charged, layered superfluid. This work has been published 

previously in Case and Herbut [43]. 
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5.1 Themodel 

The model we will consider is essentially the bosonic theory derived in Chapter 2 (2.49), generalized 

to arbitrary filling by introducing the chemical potential for the electrons via the shift A. + A. +ih. 

We will neglect the unnecessary complication of two bosonic species, and assume the gauge fields to 

have been integrated out, giving rise only to renormalized interaction terms. The action for coupled, 

Coulomb interacting layers can then be written as S = J{ d ~  J d2r L, where 

and h has been absorbed into the definition of the fields. Here, the index i runs over the N two 

dimensional layers and t is a weak Josephson coupling between the layers. The Coulomb interaction 

is 

K j ( r  - r r )  = e2/ ( c  J I P  - r f 2  + li - j 2 d 2 )  , (5.2) 

d  being the interlayer separation and E the static background dielectric constant. We assume the 

presence of a neutralizing background of density po equal to the average areal density of bosons at 

the chemical potential p. 

Of particular note in the above action is the presence of the linear time derivative term, which 

is known to arise for a general, incommensurate filling of lattice bosons[ll7]; in the present case, it 

must be included away from half-filling (i.e. for x # 0). Fisher et al. [117] have pointed out that the 

universality class of the model with this term is that of the continuum Bose gas, while, in its absence, 

the lowest order time derivative term is d: and the universality class is that of the XY model. This 

sharp distinction between the commensurate case of the last Chapter, and the incommensurate case 

of the present (together with the inclusion of the layers), provides the needed mechanism by which 

phase fluctuations gain importance in the Ioffe-Larkin rule. We begin this discussion by considering 

the excitations in the layered bosonic system. 
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5.2 The bilayer system 

The nature of the excitations in the superfluid system (5.1) is most explicit with only two layers, 

which differs already from a single layer in a fundamental way. Let us first introduce the usual 

density-phase variables as 

bi (r , r ) = JPO + ITi (r , r ) ei4i('1T), (5.3) 

where the Il fields represent fluctuations around the average density po, and 4 are the usual phase 

fluctuations. Expanding the action (5.1) to second order in these fields leads to 

The simple transformation to variables 4* = (#q f 42)/& IT* = (IT1 f I12)/fi diagonalizes 

the action, which can be written as the sum C = C+ + C-, where 

where V*(r) = Vll(r) f V12(r). The Gaussian integration over II* is now straightforwardly done. 

After Fourier transforming, we find 
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leading to two branches of excitations with energies, 

with the Fourier transform of the interaction, 

Note that the low momentum behaviour of V+ and V- differ drastically. Whereas V+ -- 1 / k  has the 

usual long-range Coulomb form, V- -- 1  represents a screened, short-range interaction. As a result, 

the branch w+ describes the usual two dimensional plasmon, w+ = J 4 ~ h 2 e 2 ~ ~ k / ~ m ,  while, for 

t = 0, the other branch has the linear dispersion w- = ( 2 7 r h 2 e Z p O / ~ m ) ~ k .  In terms of the field 

theory, the upper mode describes the two layers oscillating in phase with one another at no cost in 

Josephson energy; however, being that the total density fluctuation II+ is the canonically conjugate 

variable to 4+, these oscillations represent true charge density (plasma) oscillations and, thus, pay 

the respective cost in Coulomb energy. On the other hand, the out of phase mode described by 

w- is subject to the Josephson energy, but the oscillations may occur so as to perfectly screen the 

Coulomb interaction in one plane by the other, since the canonically conjugate variables are 4- and 

the density difference, n - .  

The remarkable feature of the above result is that, in a system with negligible Josephson cou- 

pling, the Coulomb interaction becomes effectively short-ranged, as far as the low-energy exci- 

tation spectrum is concerned. More precisely, when t = 0, w- deviates significantly from w+ 

when k  << lid. For a large separation between layers, and with l / d  << k  << (87rme2po/h2~); ,  

w- = W+ - A. Finally with ( 8 ~ m e ~ p ~ / h ~ ~ ) i  << k,  w z w+ z h2k2 /2m.  If, however, inter- 

actions were weak or the layers were brought close together so that l / d  >> (8 rme2p0 /h2c ) ) ,  the 

dispersion w- would change directly from linear to quadratic, without the intervening region. 

In this regime, w- becomes identical to the phonon spectrum of the weakly interacting Bose gas. 

This is illustrated in Figure 5.1. With a finite Josephson coupling, w- approaches the Josephson gap 

for k  << m. If t is large, of course, w- >> w+ and the plasmon would resume its place as the 

low-energy mode of the system. 

Having elucidated the nature of the low-energy excitations in the two layer system, we will now 

turn to the many layer system, as is relevant to the cuprates. In particular, we will be interested in 

how the low energy modes affect the depletion of the helicity modulus. 
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Figure 5.1: The two branches wk of the excitation spectrum of the two-layer system, with t = 0 

and weak Coulomb interaction. The lowest mode crosses over from linear behaviour at low k to k2 

behaviour. The plasmon starts out as &before crossing to k 2 .  

5.3 The many layer system 

For a system with N layers, the situation is analogous to the bilayer system. There is still just one 

plasmon mode, but there are now N - 1 lower energy modes with linear dispersion. To see this, 

consider the interaction matrix 

When k t 0, K j ( k )  = (27re2/ek) ( 1  + O ( k d ) ) ,  so in this limit 

This matrix has one eigenvector with eigenvalue 27re2/ek, and N - 1 with eigenvalue zero. The 

former eigenvector is just the total density which is canonically conjugate to the sum of the phases 
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and describes the plasmon. The latter N - 1 modes, being orthogonal to the plasmon, are electrically 

neutral, and consequently cross over from linear dispersion at low momenta to the Josephson gap at 

k = 0. 

We can determine the exact form of the dispersion in the physically relevant case of infinitely 

many layers. Returning to the Lagrangian (5.4) in the density-phase representation, imposing peri- 

odic boundary conditions in the z direction, we find, after a Fourier transformation, 

with the short-hand K = (w ,  k ,  I;,). Now integrating out density fluctuations leads to the excitation 

spectrum 
2 

w ( k ,  k ~ )  = e ( k ,  k,) (2poV(k ,  k,) + e ( k ,  k,)) , (5.15) 

where e ( k ,  k,) = h2k2/2m+2t s in2(kzd/2) .  The Fourier transform of the interaction in the layered 

system has been calculated previously[ll8] to be 

27re2 sinh ( k d )  
V ( k ,  k,) = - 

~k cosh(kd) - cos(k,d) 

The plasmon mode corresponds to k,  = 0 ,  and from the spectrum (5.15), we find that it has the 

usual gapped, three dimensional form w2(0,  0 )  = w i  = 47rh2e2po/~md. The remaining modes with 

k ,  # 0 have the linear dispersion w ( k ,  k,) = wpkd/2  s in(kzd/2)  for k << l / d  and with t = 0. 

These become gapped when t # 0 ,  w ( k  + 0 ,  k,) + wpJ=. 

5.4 The dilute boson limit 

From what we have seen, it seems that the Coulomb interactions are irrelevant at low energies in 

the layered bosonic systems. Unfortunately, though, the screening due to the other layers merely 

replaces this long-range potential by the short-range one, and we might still expect the depletion 

of the superfluid density due to phase fluctuations T~ (as determined in the last Chapter) to be 

negligible compared to the quasiparticle contribution. While this reasoning is, in principle, correct, 

it is known that, in the dilute limit[92, 1191 and for an incommensurate filling, a temperature region 
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Figure 5.2: Schematic depiction of the helicity modulus in a dilute superfluid. Interacting behaviour 

occurs below Tquan, while classical critical fluctuations determine the behaviour above TCrit. At 

low enough densities, the system displays ideal behaviour over an appreciable temperature range 

Tquan < T < Toit. At extremely low temperatures T < Tgap, Y p f ( T )  - Y p f ( 0 )  is suppressed 

exponentially. 

over which the system behaves as an ideal Bose gas appears, and the regions of interacting critical 

behaviour near T = 0 and T = Tc shrink. This is depicted schematically in Figure 5.2. 

As a concrete illustration of this, consider a dilute system of bosons in three dimensions, in- 

teracting via a short-range interaction of strength A. From dimensional analysis, we can write 

Y p f  ( T )  = y p f  ( o ) Y ( x / ~ ,  T T ~ ) ,  where r is the average interparticle distance. Evidently, the dilute 

limit r -+ co is equivalent to the weak interaction, high temperature regime, and the temperature 

dependence has the ideal Bose condensate form Y % 1 - (T/TBEC);,  where TBEC is the Bose- 

Einstein condensate temperature. At low enough temperatures, interactions become important and 

y % 1 - (T /T , )~ ;  this transition happens at TqUan - (X/r)TBEC. Similarly, the width of the classi- 

cal critical region is Tc - TCrit - ( x / ~ ) ~ T ~ ~ ~ .  We see that both of these regions shrink much faster 

than Tc % TBEC with dilution, as the helicity modulus behaves more and more like the condensate 

of the ideal Bose gas. 

In the language of the renormalization group, the above argument is a result of the irrelevancy 
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of short-range interactions in three dimensions at the quantum critical point. We can see this by 

constructing the beta-function for the dimensionless interaction j\ = Xlr, 

which demonstrates that the flow is towards zero interaction. It is interesting, also, to consider the 

two dimensional case[ll9]. The interaction is already dimensionless, and by simple power counting, 

is marginal. Actually, interactions turn out to the marginally irrelevant, so the above conclusions still 

hold, except that the interacting critical regions vanish logarithmically slowly with dilution and it is, 

thus, much harder to reach the dilute limit. 

The foregoing discussion highlights the importance of a detailed analysis of the bosonic contri- 

bution to the helicity modulus. Applying this to the cuprates gives a greater role to phase fluctuations 

in determining the temperature dependence of T ( T ) ,  as we will see in the remainder of this Chapter. 

5.5 The helicity modulus in the layered system 

We will derive the helicity modulus using our first definition (4.3) 

where pn is the normal fluid mass density. The net momentum flux in the plane is 

where nb(w)  = (eW(klkz)/T - 1 ) ~ '  is the usual boson occupation number, and the last line follows 

from expanding in v and performing an angular average over k .  This, of course, yields Landau's 

famous formula for the normal fluid density, which we convert to the helicity modulus using (4.7), 

h4d d2k  =Id  dk ,  anb(w(k7 k z ) ) )  ; (5.20) 
T p f ( T ) = Y p f ( o ) ~ / m / _ , / d %  k 2  (- 8 w ( k 7 k Z )  
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Figure 5.3: Four regimes for the temperature dependence of the helicity modulus Y p f ( T )  in a 

layered bosonic system with weak Coulomb interactions: I) quasi-two-dimensional (2D) regime 

with weak and effectively short-range (screened) interaction, 11) quasi-2D regime with weak long- 

range interaction, 111) three-dimensional (3D) regime with weak long-range interaction, and IV) 

3D regime with strong long-range interaction. t is the inter-layer Josephson coupling, X = 

( 2 x e 2 / ( e d ) ) / ( h 2 / ( m d 2 ) )  << 1 is the dimensionless strength of the Coulomb interaction, and d  

is the inter-layer separation. 

we have also taken the continuum limit. Performing the derivative, and rewriting the result in terms 

of dimensionless quantities, this becomes 

We have defined f ( y 7  z )  = y  + (2i-jT) s i n 2 ( m / 2 )  and dimensionless parameters 2 = X / T d  where 

the characteristic energy scale is Td = h 2 / m d 2 ;  the dimensionless interaction is X = 2 ~ e ~ / € d ~ ~ .  

This expression is expected to be valid for X << 1 and not too close to T, where critical fluctuations 

set in. 

We can now use this expression (5.21) to determine the temperature dependence of the helicity 

modulus for various values of the parameters. We will assume t / Y p f ( 0 )  << 1 as is relevant to the 

underdoped cuprates, and consider Y p f  ( T )  as Y p f  ( 0 )  is lowered at fixed t ,  roughly corresponding 

to underdoping. We will see that this leads to four distinct regimes of temperature dependence, 

summarized in Figure 5.3. 
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I: The 2D regime with weak, short-range interactions 

For a weak Josephson coupling T p f  (O)/t >> 1, the system is quasi-two dimensional. Also assuming 

X << 1, T p f  ( T )  takes on the non-interacting form, 

for high temperatures (below T,). Deviations from this are significant within the critical region 

of width TLit = ATc, where the behaviour is - (Tc - T)";  the interacting behaviour (4.54), 

ATpf  ( T )  - T ~ / T : ~  (0)X2, becomes significant below T:,, = Y p f  (0)X. Due to the presence 

of the Josephson gap, there exists another low temperature scale Tiap = d m  below 

which ATpf  ( T )  is exponentially suppressed. Estimating the critical temperature from (5.22) to 

be Tc x 27rTpf ( O ) /  1n(2.irTpf (O)/t), the relative sizes of these low temperature regions are 

while (Tc - TLi,)/TC = A. When these temperature scales are well separated, 

there exists a wide range over which the non-interacting form of the helicity modulus appears. This 

is satisfied for 

such an interval for X indeed exists for Y p f  (O)/t > 1. 

To summarize, in the regime with Y p f ( 0 ) / t  >> 1 / X ,  marked I in Figure 5.3, the long-range 

nature of the Coulomb interaction is irrelevant, except at temperatures below Tiap. The interactions 

instead appear effectively short-range, and weak. As a result, quasi-two dimensional non-interacting 

behaviour can be observed over a wide temperature range. The size of the low temperature interact- 

ing region shrinks with underdoping (reducing T p f  ( O ) ) ,  though logarithmically slowly. Again, we 

can interpret this as the renormalization group flow of the interaction strength to zero, with diluting. 
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11: The 2D regime with weak, long-range interactions 

As we further decrease T p f  ( O ) ,  eventually we reach 1/X M Tpf (0 ) / t  where the left hand side 

of the inequality (5.26) ceases to hold. We are still in the quasi-two dimensional regime since 

Tpf (0 ) / t  >> 1, however the two low temperature regions coalesce, Tiap = TiU,,, and the non- 

interacting behaviour (5.22), therefore, crosses directly over to exponential, with no intermediate 

short-range behaviour. The interactions, thus, appear effectively long-range in the quantum critical 

region. 

111: The 3D regime with weak, long-range interactions 

When T p f  (0)lt M 1, the system reasserts its full three dimensionality, and the non-interacting form 

of the helicitv modulus is 

to lowest order in A. By contrast, the interacting form has the famous -- T4  behaviour which sets 

in below Ti:\, = T p f  ( O ) X ,  while the exponential suppression sets in below Ti&, = ,/-. 
From (5.27), we estimate Tc = ( 8 ~ ~ ~ ~ ( 0 ) ~ / ~ ( 3 / 2 ) ) ~ / ~  and find the relative sizes of the low 

temperature regions to be 

and 

Also, the size of the classical critical region is again A. Evidently, T::\, < Ti& for T p f  (O)/t < 1/X 

and 1/X >> 1, so when Tpf (0 ) / t  M 1, the non-interacting behaviour crosses directly over to the 

gapped exponential form at low temperatures, without the intervening three dimensional interacting 

behaviour. The interacting region is, therefore, effectively long-ranged, but the strength of interac- 

tions is still effectively weak. 

IV: The 3D regime with strong, long-range interactions 

From (5.29), we see that the Josephson gap becomes comparable to Tc when 
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The exponential form of the helicity modulus then dominates the entire temperature range, and 

the system appears to have strong, long-range interactions. In electronic systems, strong Coulomb 

interactions are known to lead to a Wigner crystal, which is what we would also expect in this 

bosonic case, due to the very low density. 

These four regimes of temperature dependence are summarized in Figure 5.3. To apply this 

framework to the underdoped cuprates, we must now try to estimate the values of the relevant pa- 

rameters, Y pf ( O ) / t  and A. 

5.6 Application to underdoped cuprates 

The superfluid density at zero temperature p,(O) is given by the bare density po only at zero interac- 

tion. Otherwise, it is depleted from this value, so we can write 

to relate Ypf (0)  to the unknown mass m. The bare density, from our effective theory and also from 

gauge theories of the t - J model, is just the density of doped holes, so po = x /a2 ,  where a is the 

planar lattice constant. The mass can then be written as 

so that the characteristic temperature is subject to the constraint 

We can use the Ioffe-Larkin rule (4.36) to estimate Ypf (0) from the experimentally relevant Y (0),  

where the quasiparticle and phase fluctuation contributions are related via the charge renormalization 

factor 

This leads to the relation 
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where z = 0.8 at x = 0.1[22]. Also at this doping in YBaCuO, the zero temperature penetration 

depth is approximately 50 pm-2[1 11 which we convert to Kelvin units using our expression (4.22) 

with d = 12 A, so that Tpf (0) M 2000 K. Using this, along with the lattice anisotropy (a/d)2 = 0.1, 

we find 

Td > 2000 K. (5.37) 

The anisotropy between planar and c-axis transport properties, as seen in, for example, penetra- 

tion depth measurements, is characterized by the ratio 

which is estimated to be approximately in YBCuO and independent of doping[9]. Such a large 

value is responsible for the approximately two dimensional behaviour seen in the cuprates. We can 

now estimate the ratio 
pf ('1 - - lo4. 
t 

Finally, the interaction X requires knowledge of 6 which is measured in experiments on the 

dielectric constant to be E = 30 and doping independent[l20]. Using this in the definition of the 

interaction strength, we find 

Due to interactions, Tpf (0) in reality could be well below the non-interacting value h2po/rn used to 

establish this upper bound. Additionally, the estimate of X is very sensitive to the precise value of 

z ,  which, if much larger, would significantly decrease this estimate. We consider (5.40) to be a very 

conservative upper bound on the strength of the interaction, and believe the actual value most likely 

to lie much below it. 

Comparing these experimental values with the inequalities derived in the last section, we see that 

the left hand inequality (5.26) X << Tpf (0)l t  is very well satisfied for the doping x = 0.1 used to 

establish these values. Even taking into account that, with underdoping, the value of T(0) decreases 

by about two orders of magnitude from optimally doped YBaCuO with Tc = 93 K to underdoped 

samples with Tc = 5 K[8], the above inequality still safely holds in the highly underdoped cuprates. 

This indicates that the high temperature superconductors are well in the two dimensional, short- 

ranged regime, though with a not quite weak interaction strength, since X - 27r/ ln(27rTpf (O)/t). 

With such an intermediate coupling X E 1, the regimes 11, I11 and IV overlap significantly, indicating 
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Figure 5.4: The scaled helicity modulus Y p f  ( T ) / T p f  (0) as a function of TIT, for various values of 

the dimensionless interaction A. The value relevant to the cuprates is estimated to be X N 1. The 

experimental data are taken from lower critical field data and scaled as in Liang et al. [g]. 

that the crossover from 2D short-range behaviour goes directly to the 3D long-range regime as we 

dilute the system. 

The effect of a moderate interaction strength on the helicity modulus is shown in Figure 5.4, 

where we plot T p f ( T )  for various values of A. We can see that the approximately linear, non- 

interacting behaviour becomes slightly more curved as we increase the coupling, though changing 

this slightly from the estimated value X % 1 has little effect. Strictly speaking, the helicity modulus 

obeys the simple scaling used in Figure 5.4 only approximately, though residual dependence on 

T p f ( 0 )  at fixed X is extremely weak. Each curve in this Figure, therefore, accurately represents 

a family of curves for widely different values of Tpf(0) .  Absent from the Figure is the critical 

region of width AT, around T, with temperature dependence (T - T,)", v = 0.67; this adds further 

rounding to the curve at high temperatures. 
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T (K) 
Figure 5.5: Experimental data on Hcl measurements, taken from [8]. Symbols are as is Figure 5.4. 

5.7 Experimental ramifications 

Only recently have reliable, high precision measurements of the superfluid density in very under- 

doped cuprates been performed[8], due in large part to an experimental breakthrough in the produc- 

tion of clean, low Tc samples. The results have been quite unexpected and produced much debate as 

to their interpretation. The situation is displayed in Figure 5.5, taken from [8]. The measurements 

are of the lower critical field at various underdopings, which is related to the penetration depth via 

ao[ln K + 0.51 
H&')  = 47rX2 ( T )  

or, using our conversion formula (4.22) for the helicity modulus, 

6.2 x 47r 
T ( T )  = 20.7,ln K + 0.51 ($1 (&) ' 

The quantity K is the dimensionless Ginzburg-Landau parameter which differentiates between type-I 

( K  < 1/.\/2) and type-I1 superconductors ( K  > I/*). In YBaCuO, K varies only by about a factor 

of two from optimally doped to very underdoped samples, with K z 55[8]. 

The main features of the data can be summarized as follows: 

1) approximately linear temperature dependence over almost the entire temperature range; 
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2) the slope decreasing very little, if at all, with underdoping; 

3) the absence of a 3D critical region around Tc. 

The combination of the first two points defines what has been the major crux in our theoretical 

understanding of the underdoped cuprates. As we know, a linear temperature dependence is char- 

acteristic of the quasiparticle contribution to the helicity modulus with phase fluctuations neglected, 

but theories which correctly predict this behaviour also predict a highly doping dependent slope, 

which is clearly not seen. This is equally true of the theory of a phase fluctuating d-wave supercon- 

ductor presented in this thesis: the charge renormalization factor z2 cr Y$(0) w x2. The results of 

this Chapter, however, provide a resolution to this conflict. 

We have shown that the Coulomb interactions become effectively short-ranged and are signifi- 

cant only within an ever shrinking region near zero temperature. Over a wide temperature range, the 

decrease of the helicity modulus is the approximately linear form of the ideal Bose condensate and, 

thus, the phase fluctuation contribution is on par with that of quasiparticles. The important differ- 

ence between phase fluctuations and quasiparticles, however, is that the 'slope' due to the former is 

unaffected by doping while that of the latter is decreasing. Therefore, the phase fluctuation contri- 

bution becomes more and more dominant as we approach the underdoped critical point. This is clear 

from the Ioffe-Larkin rule with both fermionic (4.44) and bosonic (5.22) contributions included, 

to lowest order in interactions and temperature. Recalling that the charge renormalization factor is 

proportional to doping, the last term in brackets is completely negligible in the extremely under- 

doped limit. Recently, it was shown[l21] that the non-interacting, purely bosonic superfluid density 

provides an excellent fit to the experimental data. Indeed, the present work can be thought of as the 

justification for neglecting Coulomb interactions in that article, and the fact that the non-interacting 

superfluid density describes the data so well bolsters our argument that the true effective interaction 

strength is much less than the estimated X -- 1. The effect of turning on a small X should only add 

slight curvature to the fit, making the agreement better. To make this more precise, in Figure 5.4, we 

have displayed the scaled lower critical field data (as in Liang et al. [8]). We see that the best fit is 

for X = although it is clear that any X < 0.1 would be almost equally good. 

The final point concerns the critical region. In optimally doped samples[32], the width of the 

critical region is about 10 K or 10%. We might then expect a similarly observable effect in the 

underdoped samples, of the order of 1 K. However, this is not the case, and in fact, the superfluid 
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density appears to go to Tc linearly, which happens to be the mean-field behaviour (v = 1)[30]. This 

fact can be nicely explained within the present theory, however. As was pointed out earlier, the size 

of the critical region shrinks with dilution, or with underdoping. For example, in three dimensions, 

ITc - TI/Tc rn ( r n ~ l r ) ~  from the Ginzburg criterion. In two dimensions, interactions are weakly 

irrelevant, and so the critical region width X should be modified to A/ In ln(r)[119]. Therefore, as 

we dilute the system, the critical region slowly vanishes, becoming undetectable in very underdoped 

samples. In fact, that no critical region is seen at all, even in 20 K materials, is further evidence that 

the effective interaction strength is much smaller than our predicted value. 



Chapter 6 

Dirty Bosons 

This final Chapter contains work previously published in Case and Herbut [44] (see also Case and 

Herbut [122]) and is somewhat out of line with the previous discussions, not having direct bearing on 

the underdoped cuprates, and containing work completed before the formulation of the framework 

presented in Chapter 2. However, as this research applies generally to bosonic systems in which 

both interactions and disorder play a role, we may hope that our results can be brought to bear on 

the physically relevant issue of disordered high temperature superconductors. With this in mind, we 

will proceed by introducing the problem, highlighting some reasons for a general interest in dirty 

bosons. A discussion of disorder and the underdoped cuprates will wait until the final section, after 

our results are presented. 

6.1 Introduction 

To motivate an interest in disordered bosonic systems, it is useful to note some facts about their 

electronic counterparts. It has long been appreciated that non-interacting electrons have all their 

single-particle states localized by disorder in dimensions two and less[123]. With the addition of 

interactions, it is less clear whether a metallic state can occur, but if the interactions are attractive, 

we might expect a superconductor, at least in two dimensions. This follows from the criterion 

first derived by Hams[124], that weak disorder is irrelevant if the exponents of the pure system 

in its absence satisfy uD > 2. In dimension D = 2, the pure system undergoes a Berezinskii- 

Kosterlitz-Thouless (BKT) transition for which u = m[71], so this bound is strongly satisfied. It 

should, therefore, be possible to observe a transition from the localized (Anderson) insulator to the 
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superconductor, and the question then arises, how is the superconducting state at zero temperature 

destroyed? 

To address this issue, it is useful to think in terms of the Cooper pairs, which are interacting 

due to their underlying electronic constituents. By the usual number-phase uncertainty relation, the 

interactions drive quantum phase fluctuations and are responsible for the loss of superconductivity. 

The transition can then be understood as the loss of phase coherence of preformed Cooper pairs, 

rather than being associated with the pairing of the electrons. This suggests that the appropriate 

effective theory to consider is that of interacting bosonic degrees of freedom in an external random 

potential[l25]. 

Further motivation for studying the dirty boson problem, at least in D = 2, comes from the 

argument that two dimensions is special with respect to the diffusive properties. The conductivity 

a has no inherent length scale, and so, at the superconductor-insulator quantum critical point, will 

be finite (non-zero) and universal[l26, 1271. This is surprising since the states on either side of the 

transition have either a = 0 (insulator) or a = m (superconductor). 

For these reasons, the problem of disordered and interacting bosons has attracted much attention 

throughout the years [117, 1281, but has proven very difficult for a theoretical analysis, since it 

inextricably combines the effects of interactions and Anderson localization. Just like its fermionic 

cousin the metal-insulator transition [129], the problem of dirty bosons seems to lack a simple 

analytic mean-field theory around which to begin a systematic study. Most of the information on 

the dirty boson quantum phase transitions derive, therefore, from numerical studies [130], and more 

recently from an expansion around the lower critical dimension [131-1331. 

In this Chapter we will be concerned with a limited class of the dirty boson models at a com- 

mensurate filling, and study the limit where the number of bosonic species N is large[134]. As is 

well known in this limit the mean-field theory, or the saddle-point approximation, becomes the exact 

solution. We will see that the potential, though weakened by screening due to interactions, is always 

random and, thus, the eigenstates of the problem remain localized, eliminating the possibility of the 

superfluid phase in this limit. 
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6.2 Strongly commensurate dirty bosons 

The quantum mechanical action at T = 0 that defines our problem is 

N 

where t (2, T) is a real N-component bosonic field, t2 = t z, and V(Z) is a random (in 
a=l 

space) external potential. For simplicity, it will be assumed that V(Z) is uncorrelated, so that 

(V(x)V(y)) = WS(x - y). We will mostly be interested in two dimensions (D = 2), but will 

leave a general D in the action to comment later on results in other dimensions. Note that disorder is 

assumed to be a random function only of spatial coordinates, while it is completely correlated in (i.e. 

independent of) the imaginary time. This is what makes it much stronger than in the corresponding 

problem in classical mechanics. The theory (1) for N = 2 describes the superfluid order param- 

eter in the Bose-Hubbard model, at a density of bosons commensurate with the lattice [117], also 

known in literature as the random-rod problem 1135, 1361. For N = 3 the theory may be used to 

describe disordered quantum rotors, i.e. the magnetic quantum phase transitions in the Heisenberg 

universality class in the presence of quenched randomness [137]. When N = 1 the theory describes 

a random system with the Ising symmetry. In general the action (1) provides a minimal description 

of the quantum disordered interacting system, and for N = co has been studied by renormalisation 

group methods in the past [138, 1391 with conflicting results. The purpose of this Chapter is to shed 

some light on the physics implicit in this model, and, in particular, to argue that the model allows no 

superfluid phase in D = 2. 

To see what is involved in solving the problem in the (spherical) limit N = m, perform the 

standard HubbardStratonovich transformation on the quartic term and integrate out all but one of 

the bosonic fields. This leaves one with the transformed action: 

which is just the original 

field at the saddle-point is 

1 
+-(N - 1) In det {-a: - V2 + V(Z) + x(Z7 T) - P )  , 

2 

problem rewritten exactly. Assuming that the Hubbard-Stratonovich 

independent of imaginary time, ~ ( 2 ~  T) = x(2) ,  and that t l ( Z ,  T)  = 
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N ;  c40 (21, the saddle-point equations become 

where 4, (2) are the random eigenstates, and E, the random eigenvalues of the susceptibility matrix 

with EO being the lowest eigenvalue. The Eqs. (6.3)-(6.5) are completely standard, and the only 

novelty compared to the case without disorder [140] is the random spectrum instead of the usual 

plane waves. 

From the second saddle-point equation (6.4), we see that either EO = 0 or c = 0, which suggests 

the following possible phases. When there is a gap, EO # 0, the system is a Mott insulator (MI) 

with localized eigenstates, and c = 0 simply reflects that no condensation into the lowest state has 

occurred. As we tune the chemical potential, and the gap decreases, we may reach a point where 

EO = 0. At this point, we no longer have a Mott insulator, and c may become non-zero. However, 

even with finite c, the state may not be superfluid if the lowest eigenstate remains localized. This 

gapless, non-superfluid state has been dubbed the Bose glass (BG)[117], and is further characterized 

by finite compressibility, unlike the incompressible Mott insulator. The superfluid state (SF) arises 

only when the lowest (gapless) state finally becomes extended. We will argue below that, in the 

large-N model considered here, only the Mott insulator and superfluid states are possible, though in 

the incommensurate case, the Bose glass phase should be expected. 

In the pure case with V(Z) = 0, the solution to the saddle-point equations is uniform, x(Z) = 

XO, and the model leads to the well-known large-N critical behavior in D + 1 dimensions [140]. 

The correlation length exponent, for example, in the pure case is v = 1 / ( D  - l ) ,  and in D = 2 

the Harris criterion [124] (that says that disorder is irrelevant if v D  > 2) implies that disorder is 

precisely marginal. When V(2) # 0, in the MI phase the saddle-point Eq. (6.3), after integration 

over the frequency, can be written in the basis (4,) as: 

The functions 4, are the eigenstates of the screened, but nevertheless random, potential V(Z) +x(Z) 

and would, therefore, naively all be expected to be localized in D = 2 [123]. In particular, for the 
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localized ground state the first term in the sum in Eq. (6.6) becomes large as €0 + 0 precisely in 

the region of localization, which by self-consistency implies that ~ ( 2 )  is also large there. That, on 

the other hand, then implies €0 is large, and not small as assumed, and one runs into a contradiction. 

Evidently, for the spectrum to extend all the way to zero, the discrete sum in the last equation must 

be able to be approximated by an integral, so that the infrared singularity becomes integrable. For 

this to occur the weight of each of the terms corresponding to the low-energy states in Eq. (6.6) 

must vanish in the thermodynamic limit as the inverse of the system size, which is tantamount 

to delocalization of the low-energy eigenstates. Put differently, the collapse of the gap must be 

accompanied by the simultaneous delocalization of the ground state, so that the gapless phase is 

necessarily a SF. There can be no intermediate localized BG in the model at N = m. 

With this picture in mind the appearance of the superfluid phase in the large-N model in D = 2 

appears rather counterintuitive: although screening introduces correlations into the effective random 

potential, the states should nevertheless always remain localized. In the rest of the Chapter we 

first show that although to the lowest order screening does reduce the random potential, it does not 

make it completely smooth and consequently the MI gap cannot close. This conclusion is further 

corroborated by the numerical solution of the self-consistent equations on a lattice and absence of 

the finite-size scaling of the gap and the ground state participation ratio. In concluding, we compare 

our result with other studies and speculate on the implications for physical cases N = 1 ,2 ,3 .  

6.3 Weak-disorder expansion 

For a given random configuration the self-consistent equations can not be solved analytically, and 

one has to resort to numerical computations. For weak disorder, however, we can expand the matrix 

element in (6.3) in powers of the screened potential. To that end write x(Z) = ~0 + xl(Z), where 

S Xl(Z)dDZ = 0. The uniform part xo is just the renormalisation of the chemical potential, while 

?(Z) = V(Z) + ~ ~ ( 2 )  is the screened potential, which should vanish with vanishing randomness. 

Expanding the right hand side of (6.3) in the MI phase in ?(Z) and taking the Fourier transform, we 

get (for 9 # 0) 
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Figure 6.1: Diagrammatic representation of (6.7). The heavy dashed line represents the self- 

consistently screened random potential, while the thin dashed line is the bare random potential. 

where 

is the standard polarization bubble and 

and 

The propagator for the clean case is given by G;'(w,p? = w2 + p2 + R2, where R2 - xo - p > 0 

and is the MI gap. Eq. (6.7) can be represented diagrammatically as in Fig. 6.1. 

We next introduce the two point comlator @(gb(F) = (v(q7 c(-q+ F)), where (. . . ) rep- 

resents disorder averaging, as a measure of the screened disorder. From Eq. (6.7) it follows that 

Diagrammatically, the second-order contributions may be represented as in Fig. 6.2. In the Ap- 

pendix A.3, we compute the above averages in D = 2. Note that although the random potential 

is assumed uncorrelated in space, the screened potential develops correlations and W(q7 becomes 

a non-trivial function of the wave-vector. For the low-energy states one expects the localization 

properties to be determined by F(q7 at small so we focus on the limit q + 0 and denote - 
W($  + 0) = W. To the second order in W in the limit R + 0 and in D = 2 one then finds 
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Figure 6.2: Diagrams corresponding to the second order terms in the expansion (6.1 1). 

(see the Appendix for details): 

where the constant c = 1/(87r), and A is the ultraviolet cutoff implicit in (6.7). 

The last equation is our central result, and several remarks are in order. To the first order in W, 

one finds that as R -+ 0, W -+ 0, which one may be tempted to interpret as a sign of delocalization 

of the ground state. This is a consequence of the screening of the random potential by the medium, 

which to the zeroth order in disorder is pure and, thus, screens perfectly at q = 0. Also, recognizing 

the combination W/R2  as a dimensionless measure of screened disorder, to the lowest order Eq. 

(6.12) agrees with the Harris criterion: disorder is marginal in D = 2. The fate of disorder is, 

therefore, determined by the higher-order terms in the expansion. To the second order in disorder 

we find that 

i.e. goes to a non-universal finite constant as the gap decreases. If the bare disorder is weak the 

screened disorder will be even weaker, but always finite. The consequence is that the ground state 

and the excited states in D = 2 should remain localized [123], so that our qualitative argument 

from the introduction would imply that the gap can not close. This is in agreement with the direct 

numerical solution at strong disorder to which we turn next. 





CHAP 

Figure 6.3: Finite size scaling attempt of the ground state energy EO with z = 0.9 demonstrating 

the lack of a transition in our numerical calculations. The disorder averaging was done over 500 

configurations for L = 6, 1200 for L = 8, 1000 for L = 10 and 1000 for L = 12. 

given energy is provided by the participation ratio 

which is proportional to 1 / L 2  for the localized states and approaches a constant for the extended 

ones. In the critical region, one expects the participation ratio to assume a similar finite-size scaling 

form: 

where Df is the fractal dimension of the ground state wavefunction and @(x) another scaling func- 

tion. Our data for the participation ratio are shown in Fig. 6.4 for the sizes L = 8,10,  12. Again, 

attempts to find the common crossing point by tuning Df fail. We see that the participation ratio of 

the ground state grows as p is increased, but conclude that the ground state nevertheless seems to 

remain localized. This is consistent with the data for the ground state energy. 
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Figure 6.4: Finite size scaling attempt of the ground state participation ratio with Df = 0.5. Again, 

the inability to cross these curves at a common point indicates the lack of the transition. Disorder 

averaging was done over the same configurations as in Fig. 6.3. 

Our Newton-Raphson algorithm has difficulties converging as p is increased and the problem 

becomes more non-linear. It is possible we simply have not been able to reach the critical point in 

our numerical calculation. When taken together with the weak-disorder expansion and the physical 

arguments, however, we believe a more likely interpretation is that there is no SF phase in the model. 

6.5 Conclusions 

To summarize, we studied the large-N limit of the commensurate dirty boson theory, and argued 

that at weak disorder screening does not delocalize the ground state, and consequently, that there is 

no M I S F  transition in D = 2. Numerical results for the ground state energy and the participation 

ratio that support this conclusion were provided. 

Our conclusion agrees with the results of Kim and Wen [I381 who found that disorder is always 

relevant for D >. 2 and could not find any stable critical points within their renormalisation scheme. 

The latter point may in principle be interpreted in three ways: as a failure of the renormalisation 
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procedure, as that the transition is discontinuous, or that there is no transition. Our findings support 

the third conclusion. On the other hand, we are in disagreement with the recent study of Hastings 

[139], who considered the closely related random spherical model, and found the disorder to be 

marginally irrelevant in D = 2. At the moment we do not fully understand what is the resolution of 

this disagreement, nor how the ground state becomes extended in Hastings' theory. 

While we were mostly concerned with D = 2, the same perturbative procedure can be repeated 

in D = 3. We found that the same diagram in Fig. 6.2(e) that led to the finite term for W in 

D = 3 vanishes logarithmically as the gap decreases. More importantly, in D = 3 the Anderson 

localization problem allows a mobility edge, so the screened disorder need not go all the way to 

zero for the ground state to delocalize. We would, therefore, expect that the theory (1) would have a 

M I S F  transition in D = 3, as apparently has been found in earlier numerical calculations [141]. 

An important question is what our considerations imply for the physical cases N = 1 , 2 , 3  

mentioned in the introduction. We believe that in D = 2, for N = 2 the theory (1) does have a 

transition and which is in the B G S F  universality class. This has been found in the dual theory for the 

commensurate dirty-bosons [125], in both D = 1 and D = 2, and in detailed numerical calculations 

[130, 1421. The BG-SF transition is best understood in terms of disorder-induced proliferation of 

topological defects and, thus, is very specific to having a complex ( N  = 2) order parameter. The 

same topological mechanism will not apply to the case of a random quantum ferromagnet N = 3, 

and we conjecture that for N = 3 there may not be a gapless phase in D = 2. On the same grounds, 

we expect that for the Ising case N = 1 the transition again will exist [143]. 

Finally, we note the similarity between our problem and the problem of interacting disordered 

fermions in D = 2 [144]. In the large-N limit the metallic phase in the fermionic problem would 

correspond to an extended state at the Fermi level, as opposed to the extended ground state in our 

problem. Nevertheless, one can show [I451 that already to the lowest order in disorder, screened 

disorder remains finite and, thus, the state should remain localized. We would, therefore, expect that 

the fermionic version of the action (6.1) also should have only the localized phase in D = 2, at least 

in the large-N limit. 

6.6 Disorder and the cuprates 

At the beginning of this Chapter, we motivated the study of bosons in a random potential through 

consideration of the superconductor to insulator transition, under the assumptions of preformed 
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Cooper pairs and a phase fluctuation induced transition. In conventional materials, this is not neces- 

sarily relevant since the loss of phase coherence occurs with the collapse of the gap. In underdoped 

cuprates, on the other hand, we interpret the pseudogap as a phase fluctuating superconductor, and 

so the dirty boson problem is directly applicable to the study of disorder in these materials. With 

this reasoning, the transition from the superconductor to the pseudogap is in the BG-SF universality 

class, where the pseudogap is a compressible Bose glass. 

The concept of the pseudogap as a compressible, non-superRuid phase has been considered 

before[l46], though without any obvious motivation. In that study, the uniform susceptibility and 

electronic specific heat were calculated using a model of Dirac fermions coupled to a compressible 

boson current via a U(l) gauge field, and the results were shown to be in good qualitative agreement 

with experiments on the pseudogap state. 

Stronger evidence for a BG-SF transition comes from a variety of experiments (for a review, see 

[102], Chap. 7) near the underdoped critical point. These seem to indicate that the critical exponents 

are z a 1 and v a 1, in agreement with the epsilon expansion near the lower critical dimension for 

the BG-SF transition[l32]. It is clear, however, that more work is needed, both experimentally and 

theoretically, to establish the exact critical behaviour of the transition into the pseudogap state. 



Chapter 7 

Directions for future consideration 

7.1 On confinement 

In Chapter 3, we established that the anomalous sine-Gordon theory, believed to be dual to compact 

QED3, has no transition, and we discussed implications of this result for gauge theories of the 

cuprates. While such compact theories arise often in studies of high temperature superconductivity 

and other strongly correlated systems, we noted that, in the framework presented in Chapter 2, the 

gauge fields are actually non-compact, and we briefly mentioned what is known about this brand of 

QED. 

Several open problems immediately surface, however, from our discussion. First of all, it 

should be determined whether the anomalous sine-Gordon theory is indeed dual to cQED3, or are 

monopoles irrelevant at the transition, as suggested by Hermele et al. [84]. Extending the powerful 

numerical methods previously used on the non-compact theory[85] to cQED3 would circumvent this 

question, determining directly whether a deconfinement transition occurs or not. 

With regards to non-compact QED3, while it is believed that the deconfinement transition does 

occur for small coupling, the problem still remains to determine if this transition remains for all 

finite couplings. In terms of the effective temperature !? l/Nf, does a transition occur at !? = 0 

as we tune the coupling? 

Finally, we assumed that, in the presence of matter, confinement occurs due to monopole con- 

densation, as is the case for the pure gauge theory[64]. We also assumed that chiral symmetry 

follows the same transition. While current evidence seems to support these assumptions[81], further 

work is still needed. 
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7.2 On the superfluid density 

In Chapters 4 and 5, we discussed the superfluid density, primarily the effect of phase fluctuations 

thereupon, focusing on the in-plane value. However, much research is also dedicated to the c-axis 

superfluid density[9], which has a completely different functional form than its ab-plane counterpart. 

It would be very interesting to extend the considerations presented in this work to these c-axis 

measurements. 

A theory of the c-axis superfluid density would also have to include the quasiparticle contribution 

arising due to tunneling of electrons from one layer to the next. One attempt at such a calculation 

can be found in Sheehy et al. [147]. The tunneling process may, of course, depend on the particular 

pseudogap model used, and in this way, the c-axis superfluid density may provide a testing ground 

for various different theories. For example, in the RVB theory, a spin singlet must be broken in order 

to hop an electron out of the plane[l4], and so this excitation energy would have to be included in 

the calculation of the superfluid density. 

For the in-plane superfluid density, we made extensive use of the Ioffe-Larkin rule to incorpo- 

rate the effects of both phase fluctuations and quasiparticles. We derived this rule in the Gaussian 

approximation, and it is not obvious that it holds beyond this. In addition, we might wonder if 

this rule can be applied generally to superfluid systems when combining superfluid densities com- 

ing from different contributions. For example, when applied to conventional superconductors, the 

Ioffe-Larkin rule provides a simple explanation of why phase fluctuations can be ignored when de- 

termining the superfluid density: the phase stiffness is extremely large (on the order of the Fermi 

energy) compared to the gap energy, and so l /ppf << lip,,. It would, thus, be interesting to 

study a general superfluid system which has both types of contributions, to see how they combine to 

determine the physical superfluid density. 

7.3 On dirty bosons 

In Chapter 6, we saw that the large-N theory of strongly commensurate dirty bosons has only the 

Mott insulating phase, though we conjectured that the cases with N = 1 , 2  should indeed have a 

superfluid phase. The next obvious step is to consider the incommensurate theory, which includes 

the linear time derivative term. In this case, it can easily be shown that a gapless phase exists, though 

whether the eigenstates become delocalized or not is a much more difficult question. This problem 
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must necessarily be approached numerically. 

It would also be interesting to calculate the superfluid density in the presence of disorder. Ex- 

perimentally, sample inhomogeneity reveals itself in a modified low-temperature behaviour of the 

superfluid density, so this complication must be included in the evaluation of the total p,. 

7.4 Generally 

The general framework presented in Chapter 2 provides a complete effective theory for the under- 

doped cuprate superconductors. Many questions have already been addressed with respect to this 

theory, though many more remain untouched. One problem of current interest is whether antifer- 

romagnetism can coexist with superconductivity. There are conflicting theoretical claims on this 

problem[61, 621, and some recent experimental data in favour[l48], so a timely solution would be 

quite helpful. 



Appendix A 

A.l  Proof of (3.60) 

Here we will show that F?) indeed satisfies Eqn. (3.60). To this end, first let us define AF(") = 
F ( ~ + ' )  - F("). Then we may equivalently show that 

Let us also denote the path integral over the field cp(q) by Tr and define, for a real variable t ,  

Then, 3 ( 1 )  = - lnTr exp(-S) = FAsG and 

Tr ( A S  e P S )  
= 

= ( A S )  
Tr (e-S)  

On the other hand, we may expand the RHS of Eqn. (A.2) in powers of A S  as 

03 

3 ( t )  = Fo + C AF(" ( t )  
i=l 

where ~ 3 ( ~ ) ( t )  = t i A 3 ( ' ) ( l )  = t i ~ ~ ( i ) .  Thus 

03 

d3(t)  / = c i A F ( ~ ) .  ( A S )  = - 
dt t=l i=1 

Upon insertion of Eqn. (AS) into the definition of F, in Eqn. (3.48) and truncating the expansion 

at i = n we find (A.1). 
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A.2 Proof of claim concerning ~4:) 
In this Appendix, we will give the proof for our claim that the extremum of F::) as defined in (3.52) 

is given by the expansion of Eqn. (3.49) to order ( A S ) " ,  i. e. 

The calculations are, for general n, cumbersome and not very instructive so we will first present the 

case for n = 2 which is also the one with which we are concerned in Section 3.9. 

Setting n = 2, we see that Eqn. (3.57) follows from an expansion of the RHS of Eqn. (3.50). To 

show that the same result arises from extremising F$;!,n,), it is first useful to establish 

where g = g ( S o )  is an arbitrary function of So. Thus choosing appropriate forms of g for F ( l )  = 

Fo + ( A S j o  and F ( ~ )  = F(')  -  AS)^),, 2 + $(AS):  we find 

Inserting Eqn. (A.7) into Eqns. (A.9, A.10) and adding them together, we find that the restriction 

6 ~ $ ~ ~ / 6 ~ ~ ( q )  = 0 leads to the same equation as Eqn. (3.57). 

The proof for arbitrary n goes along essentially the same steps as above. Various truncated 

expansions we have defined can be read off the Taylor expansion identity 

by setting i to the desired order. In (A.11) Sb and V give an arbitrary splitting of the action into a 

bare and potential part respectively and 

1' - 1 . . . 6k1+...+kl,i. 
{k,)  kl=l kl=l 
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Notice that in Eqns. (A.9) and (A.lO) all the terms are to the same order of AS, which is also the 

largest in the corresponding expansion of the free energy. By choosing Sb = So and V = A S  and 

setting i = n in (A. 11) one can see, after some lengthy algebra, that the same is true for arbitrary n: 

Let us now define, for a real variable t, 

G(k, t) = - In Tr -so-AS-tcp(-k)cp(k) (A. 13) 

so that aG(k, t)/atlt=o = (p(-k)p(k)). Then, taking Sb = So and V = A S  + tp(-k)p(k) in 

Eqn. (A. 11) to compute this derivative, it can be shown through additional tedious but straightfor- 

ward algebra that 

(A. 14) 

where we have also made use of Eqn. (A.12). Thus, the requirement that be an extremum 

implies Eqn. (3.49) truncated at nth order, and vice versa, proving our claim (A.6). 
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A.3 Calculation of the two point correlator (6.11) 

In this Appendix, we provide the details of the calculations leading up to our main analytic result 

(6.12). We begin by calculating the integrals (6.8)-(6.10). Using the standard Feynman parameters 

[140] the integrals can be rewritten as 

(A. 15) 

& [4(:)2- I ~ ( ; ) ~ + C J ( ( : ) ~ ) I ,  -+ w (A. 16) 

k -+ 0. 

where we assumed D = 2 in evaluating the limits. The diagrams in Figs. 6.2(c),(d) will require the 

evaluation of the following two limits of 12: 

1 - & [ $ ( p ) 2 + o ( ( ~ ) 6 ) ] l  0 - m  (A. 18) 

where the limits - m  and p - 0 are taken with fixed p and 0, respectively, and in D = 2. We 

( $ 1  - 1  also define c - - - 
(4742 8 ~ '  

We can now evaluate the series (6.11) term-by-term. From the first order term, in the limit 

q- 0, we get 

(A. 19) 
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The contributions of order C3(w2) are shown diagrammatically in Fig. 6.2. Refemng to this figure, 

we label the corresponding terms generated in the expansion accordingly. To illustrate our proce- 

dure, we will explicitly calculate the diagram shown in Fig. 6.2(e) arising from the final term in 

(6.1 1). This term is 

where 

- + -  + -  + - 
( v ( ~ ) v ( < -  k ) v ( k t ) v ( - f -  6 ) )  = 2 ( C ( Z ) ~ ( P ) )  ( V ( f  E)v(-<- 6 ) )  (A.21) 

are the contractions which contribute for q'# 0. Using the definition 

and integrating over 2, (A.20) becomes 

(A. 22) 

- + 
We now replace W ( k )  in (A.23) to first order in W to get 

where the last line follows from substituting (A.15) and (A.16) into the previous line and making 
k  

the change of variable x = -; A is the usual ultraviolet cutoff imposed by the lattice. Expanding 
0 

the denominator in (A.24) and integrating over x now yields the result 

It is important to note that (A.25) does not vanish as fl -+ 0. 
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The calculation of the remaining terms now follows in a similar way. The diagrams arising from 

the second term on the RHS of (6.1 1) are those shown in Figs. 6.2(a),(b). These give 

and 

The third term on the RHS of (6.1 1) gives rise to the diagrams 6.2(c),(d). These give 

and 

(A. 29) 

Note that the two highest order terms in (A.28) cancel exactly with those in (A.27). Summing the 

contributions (A.19) and (A.25)-(A.29), we then get the result quoted in (6.12). As mentioned, the 

second order term that remains constant when R + 0 comes entirely from the diagram 6.2(e). 
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