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ABSTRACT

The order structure of some nonstandard rusber systess is
investigated, especially order-properties and connections
betveen ~extermal subsets such as infinitesisals, iafinite

nombers and galaxies. 4

=

ctandard functions are used to exhibit some structure of

sodels of (full) arithsetic, introducing the concept of sky and.

coastellation. Applications to intersection of smodels are given.

This also leads us to characterizatidns of some well knoun

N\

~

‘ultrafilters on N. , . ' p
ters ond. < .
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\\§~“\ ; | PREPACE

The rigorocus treatseant of infinfiasinalé has been developed
by Abraham Robimsoa in the 60°'s. Since then the theorvihas been
studied extensively and asod‘in various branches of mathematics
as well s; 1; other scio-tific enterprise.

Se shall however 8ot be iaterested in monstamdard mumber
systess qt'i'tddl Bii‘ rather as Ai ot ject of siud%i'”fﬁefr”

; - CEL
structure fros various poiat of view will be investigated. Ve

pé}ieve it is interesting amd say be useful to have a picture of
the models one useées. .
We have collected some results starting ptinéipally with
Zakoa's paper im 1967, as very little was dore earlier. We have
. tried to give a good écco;lt of what has been achieved, bhowever

a selection has been nade. In partlcuiat, topological properties

- *ﬁWWtﬂﬁﬁt&'ﬂﬁtﬁHﬁ“ﬂﬂh—fhﬂ*w —
more. to the lisitatiosms of the author than to the lack of
. - Sy

importance of the topic.

~

Chapter 1 will iaftddncé nonstandard models of different
susber ;ystel; ve shall be ilteresied in, those até sainly the
real nusbers qnd'the natural nusbers.

- In chapter 2, we investiqaie the order structure of sodels.

¥e answer qdestions about cofinalities amd coinitialities of

certain external subsets, and try to relate thea by

order-isosorphisa if possible or by their order saturation.

The last chapter deals only with full arithsetic. Ve will

see that standard functions om B constitute an important tool

. 4 T 'i



fnuaid;hennnefstaniixqn£ihg“kxgncinxg'Q;thggﬁgodels-
Special atteﬁtioh’is given to pbasic nitrhpovefs {ie ultfapquéts
on M) and ultrafilters om M. | ,

Speciai notions will be .introduced ;nd defined  whenr
;ecessary. However, the usual ioﬂei~theqretic and set-theoretic
concepts ;re assemed to be kaown. In particular, ve assnl; "the
taidq:rgorberfalilit:'gfth'tielhltrdboiét ¢d§$£ih§iion;'a1€ﬁbﬁbhm

ve briefly recall the defimable ultrapowver construction.

Sose good iatrodections to‘the‘sub1ect have been written,

in particular [LST @ama {RYY .

o vii
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Superstructures

briefly.,
We start with a set of individuals (“non-sets™) A,which may

I. CHAPTER 1 , 3

BUBBER SYSTEMS

"#e shall be interested in some different number systems;one

is a supetsttuctdte based on the real numbers,containing “all of

analysis™, cne is the aatural numbers N={0,1,2,. « . } to&ethet

-with all functiomns and relations on Xi;similarly the rationals

and the reals with all fuactions and ' relations. After
introducing these pumber syﬁte-s.ue shall study their structure

quite independently in subsequent chapters.

Tbé theory of’infinitesinals' c;n be applied to certain
mathematical thEOties sech as . rTeal or coaplex
analysis,topology,etc. Ii ‘order to do this,we cons;tact a
superstructure that contaias all lathelatiéal objects under .

study in the given theory. We shall describe the process

v

contain the real nausbers or the underlyvying point set of a

topoloaical space.etc.rfhe superstructure V(a) is the set:



" 4)if y is am entity,P(y) is an entity '4‘

is ip V(a) iff its domainm D(r):= {x|(x,y) is in for some Y}

B Y :  S | ' ,
vy WJam - .

NaD n

wvhere A(0)=A and A(n+1)=P( L)’l(i))‘(uhete P is the pouwer set

e .

operation), toqéther with the notions of equality Y= anad

menbership “¢* on elements of V(A).

t

Elesents of A(n) are said to be of sort n. As noted
above,elements of type 0 (those of A) are individuals,that is if °

ek then y¢dx for all vy (although ye¢x and yex are alvays

leanianql). For x ’#56 Yy in A,vwe define xuy=xn1=x-1;ﬁ,and Ys X
holds always. | ‘
- >&e~;aegAuéesetibeTSﬂsefe&s¥ﬁ&;##e#%ies—o£<¥+k#7«ﬂef
the set elélenté of V(i) as entities.
1Yfor each n,A(n) is in V(A) and incln@eq in ¥ (1)

1

2)V(A) is transitive;if y is an entity and x is in y.then x is

in ¥ (A) o )

3)if y is an entity and x is incloded in y,then x is in V(&)

-

5)if x is a finite snpset of V(i);thén X is an entity

6)if x is an engity,then x:= {yly x} is also anm entity

Briefly the set theory of entities is <containmed imn the

entities, If-x and y are in A{(n),the ordered pair {{x,¥}.,{v}} is

-im A{n+2); similarly for n-tuples. A set of@ such n-tuples -

('n-ary‘ relation™) is im V(A) if all its tuples are of pounded

type (ie belong to some A(N)).

A .
AT I Y TITE S R R et VST

and its ranqe‘D‘(r)=D(f‘) are in ¥(a) (f' ={(y,x)|(x,y)is in 1}).

¥e define rrx={’l(z{y) i§ %9,‘ for songgﬂip x}itbgrjrf}!§gggg{7

¥

el R A R SR R 87



x¥,clearly r and x in ¥ (A) implies r[x fn,V(A).

e view i(A) as a aultisorted stgdé@%rebiéée [ET ). HE.V(B)
it ealled a nofstandard model .of V(A) if B is an elementary
extension of vV (A) {Ss ‘a, multisorted structure). 1In this
Situatio;; then fer o in V(AY, ve write #C for its
interpretation in V¥ (B). |

Elements of the fogy #C for C in‘V(A)rare called standard
meabers of Y(B),their elements are'calleé internal elements of
Y{B); ‘in particular ®i(n) is standard and all its elements are

X

internal,éo are - all elements of =V (A):= \_) zAa(n). Cther
- feo : -

elements of V{B) are rcalled external. The distincfion is
iiportant‘as we shall see because all properties of V(A)
transfer only tc internal elements of ¥ (E).
Fcr an entity 1 im VY (A), vwe have:
P(xy € sp(x) € F (%x)

ands V(R —————— > (®

[ - DAY L

VIS | <

This superstructure Y {(A) is really huge and we shall

sosetises only need some part of it. ’

——

b

"ARITHEETIC

[s o] .
NFe call A o &,) BJA?) the elementary part of V¥ (A),it

Nao
consists of A together with all functiozns and relations on A. By

i 48 el pbigit fen e e

- (full) arithmetic,we msdan the elementary part of V(¥). Note that



A

e

D

arithmetic has always uncountably many functions and relations.
eié-é;i;ty part of V(C) as the

o Similarly,ve " consider the

rational nusber system;and the elementary part of V(R) as the

real nulbé{‘sgstel.*

U |




II. Chapter Two o ' 7

o
opder structure of ponstapdacrd pumber sysiess

Introdaoction
LS
”

We shall ¥Oork, unless specified,uith models V¥ (*R) of

"V(R);but as the reader will note,most of the propositions carry

to the elementary part of V(R),or V(Q). Ian fact,ve usually only
N ‘
require that the base set is a field.
It 1is known, [EK1 ] ,that the order type of the nomnstandard

. <
natural nusbers *N has the form H*(zﬁu)e,uhete v 1is ..the order

type of the ﬂ&tﬂfaiwhﬁlbefs‘1m;ﬁ15mifs”fﬁ1&t$ﬁ“0tﬂﬁt*11vﬁﬁaﬁdeW’

is a dense order type. ¥We shall investigate further properties
of ©,and see that most of its order gproperties come directly
fronlihe structure of *R.

SOl ve shall be interdsted mainly in the underlying set =R
of a model V(*R). For this r;ason and also because se uili cf ten

deal with many models simultanecusly,we shall use the notation

#Ra,or just Ra,a am ordinal,to denote either the underlyinq set

0of a model or the whcle structure based on that set.

In this chapter,®*™ peans order-isomorphisa.



of *R/Go coincides with &.

sisilarly ve may defime an order < on ®R/No by:

s , 7
¥e now giv? some sei-theoretiéal défihi{;gigﬂggﬁ7nota£ions:
Pefipitions apgd notatiops N - . :
1)Let &,B bajsnhsets of an ordered set (X,<). ¥We write ACE
to mean that every element of A is lés%*than every elelgnt of B,
2)A is coihitial (cofimal) in x,{f for';ll x 1n‘x.there is
an a in A with a<x ( azx ). A an%{x are said to be coinitial
{(cofinal) (with each other) if A is ;oinitial (cqfinal)rin X and
: vice-ve:sa;
3)Given a set X, I+ denotes its positive elements,and xi
its positive infinite elements (vhenever it makes sense). -
e ndu introduce twvo usefual eaniyalence rela;ions on =E.
B)YFor x,y in *R,ve write:
x~y iff {x-y|<T for some r in R+ —
12y iff {x-yi<r for all r in R+ ~
The relations-andv= are equivalence relations and cligges
are dencted ,h}”Ablmﬁ(44l&1¥m~0£~~I}m~aaduwﬂxwm4]eaadﬁﬁ9£ﬁ~}$w—WW?§%V
respectively. Both Gx and Bx are convex subsets ot *R. Go is the
set of fi;ite Hyperreals,and Mo is the set of infinitesimals.
¥e define (fgtal) order,relatfbn < on ?R/Go by:
\ze Gy iff b 0 E&d vy-x is positive infinite ;
It is easily seen fbat the order type of the pp;itive part -
-

"y 2 By iff x<y and nyrié ﬁééifi;éW£6£Winfinitesilal

Vith these definitioms in mind,ve shall study in the next

sections some set-theoretical similarities,connections and



s

\
Pt0per{ieJ of the sets SR,*Ri,*Ni,0 and ao'& |

A

$1 Cofimalities,coinitialities and ordex-isomorehisms

—~

We urxte cof (1) (coim¢X)) fo cpfinalxty of X (coinitiality

of X). :Thé first few resnlts are folklore, and they already

appear in {KS5] . | : . ". | o .
1.1 Propesition

1)x<of (8) =cof (*K) =cof (*R)=coin (Ro+) * a _ a ;

2)coin(®) = C°1ﬂ(*li)-coin(¢gi) c°f(Q°Q§ L .

Qg_p_g{.nnecan that M = v+ (¥+v)@, so that the first eauality 1é

clear. Since ¥ and R are cofinal,this is true for *#K and: *R

vhich inplies the second. Finally the last one is trivial by the

,»correspondence X «»1/1;

2)Aqain the first gquality holds just by réxanininq, the ordé?“\\\h/,

type of *N. Por the second equality,defime:
f:¥Ni-= %Ri aé the identity mapping, ‘

then the range of f is coinitial in #*Ri. Also,the last eﬁua}ity

is éleat by x<™>A/x. -} ﬂ | |

1,2 Proposjtjop Llet a,B,C hé open intervals with endpoints in

xN,0,%*K respectively;tgen: ' |

afe order-isomorphic,A has a first and last element

T
1}k and

A
2)B and i are order-isomorphic,cof (B)=coin(B)=coin (8)
-

3)C and C are ordet-isonorphic cof(c) coin{C)~cof(¢R)

proof:1)Let A= (n,m)c ¥%,define:



L

f:A—*r'j by a|-->n+m-a

-

b e

then f is the required isomorphisa. PO £
2)Let B=(Gn,Gs) < 8,vhere n,m are in *Ni. Define:

+

£4YB->B by Gbj--> Gf (b) ' - .

vhere f is as in 1),f maps (n,m) onto (n ®) of *Wi; so  that, f‘A-

-L; he

is the required isomorphism. The last ﬁassertion folloug 57

traanslation. N -

B)Basily - followus by- transfer pripciple;since R is

order-fso-orph1c to any- nondeqenerate open 1nterval and R =

L

1]
-
*

el

l:.ligimm c | -

‘ir ‘
e Hhe 1

i

[ “hﬂ

1)X binary relation r in I(R) is said to be ggggg[;gn; if given
any finite number of elemeats t , t ,... .t‘of its domain D(r),

there is a y in V(R) 'such that (t ,y) is ip r for i=1,... ,k.

2)A nonstandard model vi(#ﬂ) of V(R) is called an enlacgment

if,for '‘any concurrent reletion r im V(R), the:e is ay in V(=R)

with (t,y) in,vt fox,all,t,1nﬂn4;};45ieada;drdonaan,. —

The existence of ealargments follows immediately ffrpl

compactness. There also exist ultrapowers which are enlargments. -

It is clear that elementary extension preserves the~ enlargsent
property. Enlargments are frequeitiy used i£7app11cations.
Before the next result,ve disqress s£lightly and recall the

‘"definable ultrapower consttnctionA(teferedce is mainly [C] ).

Generally,considex a structure A with a definable subset 1

)

Lt LR A ek kb AL ) e

SRR ‘ﬁ‘d Lo

bl el

A, and let ﬂ; be an ultrafilter " on the Boolean algebra of

il

N ~‘¥mvu Lo e
.

A-definable subsets of I; we let Def(l') be the set of definable

functicns from I to iA. ¥We obtain the definable sltrapover -
= _

/

il :5v;;f.ax,‘,f;-,x,:wwwﬁfw%ﬁ'i‘f‘m*ﬁ*ﬁm%%



;Défiil)lﬁmﬁi'f&E{Efiﬁ&ufﬁaﬂéiﬁf?§T§EEé relation:
s g iff (i in )=} is tn D ~

Thes to any function f in Def(lI-).there is assoclated its

7 :
equivalence class £f/D in the definable ultrapower. To each a in

—————

A,ve assiqn the class 3/0 of the constant functiOﬁfa‘IiETT;i and

this induces the diagonal elbeﬁdinq‘A .A~é’ Def(A )/D.uhich is
elewmentary if 2 possesses definable Skolea functionms. : ;
Here is a uell-knoun fact as a fitst application.rlrrrirrii’ : =

1.4 ggépgsitigg Any model R, has an elementary (proper) f

H

elongation R, ; we denote this by R« R(ied xeR V¥yeR, (xvv)) Cos

h;ééiﬁl;t P:={ (nof In is in K,} ( M, -undetiyinq set of natural
.;Blbets of R). Since F has the finite intersection property,ve
" can extend F to an ultrafilter D on definable Subsets of N. ~ 4

Now form R :=Def (E.")/D. It is clear that id4/D,the = -

eqnivalénce . class of the identity mapping witnesses the

7wcondition. -1

1 would like to remark that in the case we carry.the whole
superstructure,we car extend F to an internal ﬁltrafiltet«b, and

~the comstruction above provides an‘end-extension N, of MN.. _

1.5 Proposjtion Let a be an_infinite reqular cardinal. Then

there is an enlargment *R with cof (%R) =a.

elouqations -1

- ko
2;2_{ Pick an enlargment R, ,then build an a-cbain of elementary . 2
]

"1:6 Propgsition Ler R.be any nonstandard model,then there is an
- elewentary extension k of R satisfying: N

"1)Nne N dmel, (a7n) f{hence R, and R are cofinal}

i Lot s S Al bk Ehd e i die sl gl ki il
MMMM%%%WWMN%mﬁwh &



nggf:!.et F:= {m,a, ] I nen and u,.él,i) F has the finite

\ '~ intersection ptobetty and thus can be extended to an ultrafilter
D o» definable subsets of N . ‘

"Porm R, :=Def (R Ne )/De. cleatlf ia/p satisfié; 2). -

Farther,given f ih 'Def(l'_") and [n,n_ ] as above,thei:e is am in N,

, / such that fr-(n,,n_"](- (bf transfer); benc'er ——af/—D':c-:/D - so-- N, is
cofinal in i,‘,uhich lpiove's 1). -| | I -
‘Here is a slight ilbetalegg. )of a result in [KSY .

is an enlargment %R such that cét (*R) 'e’a and coin(*Ri) =b

proof:By corollary '1.5,'choose R, with cof(R,.)=a. ¥We-define 'by
trgnsfi‘nite induction an {gelenentary chain (R, | nK b} of
nonstandard lodels< and a coinitial subset (n‘l« b} of 6ouer b

'such that:

~ T)yR,and R _are cofinal for each «x

jmn,el‘i and n_< é‘)l%i | - |

The comstruction is as follows. Choose any n_cWi,Suppose that (R,

/ I\KF} and {n,tu‘/” have been defined éatisfqinq 16 2.’ uhere/k\:.
Let R'= URK,then l'=é}l,and N®' and R are cofinal. Now se use ~

\«f
proposition 1.6 to get %)72',cofina1 with each other,and nﬁin ’,i
) v .

saiisfyiaq 2.
Finally put 2*R&= }'.28“ e« Since *)N and B, are cofinal,

-—— LR -4

;'cof (*R) =cof (R ) =a ,and coin (#Ri)r =coin (*Ni)=coin({n | x<o})=b. ~1|

Proposition 1.7 answers szvéijnl guestions raised by Zalion

[z1}] « In particular,ve see that@ %R caa have countable

10



aacountable,ther *R can obviously not be order-isomorphic with
its monads MEx since cofimalities do not match. .

Bow it is clear that if *R is ordét-iso-o:pbic with Po, (or
eguivalently any ‘Mx), then cqf{¢nf=coin(*xi) (cr eqniyaléntly,,.
= - - .K ] -
cof (@)=coin(®) (by 1.1)) . KAIqh[KS} thought thg . converse to be

true. Although he gqave a proof which remains true in the

countatle situation,an error! has been found for thé”unconntable

case. In fact we are able to provid& a counterexample?,

- For ®wny structure A, we dénote the ultrapower of A modulo U
by U'PtOd {(3) .
First recall that n,_«nP means that q; is an eié-en“ztv

elongation of;‘RK'; In this case,ve write (B, %ﬁ’ to denote the

gap (A,B) of Bp'uhere A= ft in 5‘ Iasen,\ (r<s)),and B=B~\l.

i

Ve spllt tﬂe consttuctioa in two seperate parts.npuatd and

dounuatd.
1)0puard Start with any nonstandard model R,
a)Sﬁqcessor stage:.

ﬂ A
Xt . . v
If R, is constrncted.x<(a'); ase a coapactmess argqument (or

vhatever you want) to produce an elomgation R, » R making élso
sure that you have filled a11 gaps (5‘ E,) for allﬁfd. (e shall

see later that ve can fill qaps in a much nicer way)

-
_---------p“‘---- *

iI amR indebted to llan !ekler for pointing out the error

2 Here aqain,I am very imdebted to both Greq Cherlin and Alan
aeklet L
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by Lisit stages:

. Mot - ‘ ’ '
. i K€ (2 = = .
¥ Rp,f< ( ) are constructed,let R, = &%Rﬁ' #e put R’ ﬁg&“f

. X+ }
. N Rﬁ; then cof(R')= Q.L Ferther note that for 1limit ordinals

-u<(iﬁ)+,ever1~qap (R ,R"') has character (cof(x).(;*} | S
2) Qgggua:g Let S,=B' as constucted above,and I°=B'1. let U

be aay nomn-primcipal ultrafilter on K.

a)Successor steps:

~

: - VRS 4 ‘ .
If s, is cqnst:ncted,x<‘3 )ilet Se, :=U-Prod (s,). Hence I,

':=5, 1 coidtains some infinite ausber saaller t;an,any element of

.

»

I, (eg the class of the ideatity mapping)

13

b)Lilit‘stiqes:
(L?"\)f B ’ - v_
If Sp,p<x¥® Jare comstructed, just put S‘-%:&q@.
Finall ust. put >R:= () Ve et I= (J 1, the fanfinite
v 3 P . .‘('HS( - 9 w( )t x 3
positive part of *R. *

e resark that basic ultrapovers,as used in the downward

r

o
g
>

construction; never fill gaps (A,B) of nnéopntablé character (ie
hoih cof(h) and coin(B) unconatable} since the index sat R is

Nit
countable. Hence for li-itx'<(3 Jof uncountable cofimality, (1,1,

A

- ) hagflcha:acter "(b,cof (x )) vhere b2, (in fact

b=66f(U-Prod(l))(thc gap (I,I,) has sisilar leaainqAas aboyef. ¥
|

® .‘Ic"’ . .
. Bote also that cof(#R)=;:Xal¢ﬂi)= (1,)50 that 3R is a

candidate for a counterexample:

~ sisce all R,aad all S5 _are esbedded in *R&,we introdnce{\?

— - - - —notatiom for clarity:— T A

i) for u<(£.y,let A,=initial segment of SR+ determined by K,

ie A ={r in SR+{Isch, (£¢5)} — : : T

12



Successor steps: -

/s-;ﬂ msnch that f(% <
t

- lﬂi‘%f’mﬂes . : -

i:LLfﬂLJ( <(1- Y +let B, 'tmmumum-mdﬁf

ie B ={r im *R|Isec], (s<I)]}
Of course we have %R+= 'Ul,‘and 1= UB—
Now let uUs assume #n = Ho.or uhat is eguivalent =R+ = Bo+.

'By ~ the correspoadence x(—" 1/x betueen Ho+ and I,we may further

assume that we have an inverse order-iscmorphisam: \

f:¢n+¥-/:-»1 g o ' e , f

Y . * ‘ -
Ve shall derive a comtradiction,but we need the following lemma:

o~

1.8 lLesma In this situation ie ~f-*R+/-'—-$ I an inmverse

- order-isomorphiss, then for all regular a(?-‘yfﬁ e is a v with

cof (v)=a and such that:_ T ' : o

- f r k/-a--”l Bv

e v

,and an inverse order- 1souorphisn fr /A,(--- B, However chat“,

#B)-(cof(v),(i )) -(b,. (1) ) and on the other side char(l B

) X,
) (b,cof (v))= (b,h) uhere bs i, This is a contradiction.

BIt relains‘ to prove the lemma:

proof of 1g!._ }.8Pick your favourite ordinal Ko < ( ),and let -

p-¥ % be such that £(AOSBe. -

N
Given A.‘,%Hi\th AW % letx »(, such that "'..?' £ (B ) and

t!

CIf  we asSnle the lel-a vith azw,ue find a v vith cof(') w,

T L S e L

LR 2SR

oy

S put A= Om ,ge= Upy . Notefthat:
i
£} :A <S> g for all limit ordinals ¥ \
Nov let A~ #{J‘Aﬁ, B.~ *({B,ﬁ- I}e,t\fzs%qu) :S,l:p,(ﬂ,),. J'luan,,chmu:lxj cof (v

13
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This completes the counterexasple.

Bemark:ror uhich cardinpals a doeslfhe:e.exist *B_snch that
cof (¥R) =coin (*Ri)=a but #Rlzlno? The obviods conjecture 1$ for
every pnéountable‘requlat cardinals. The proof ﬁbo;g ~gan be -
mocdified to show that ifya is a requla; uncountable cgrdinal and
there is an ultrafilter U such that cof(U-Prod(¥)) # a; then .
there gxists %R as above. It is consistent (see Propositien 1.11

below) that the'conjectnre is true.

Here is. & —way to fill qaps keeping track of what ve m*
doing. We usé internal ultrapowvers to fill qapé (R, ,R,) in the
situvation of R<«R. 4'
1.9 Lemsa Assume R <«R, ,then there is an elementary extemsion §K,
of kailling-the'qap (R, ,R,),and such that R, and R,are cofinal.

g;gg{ The proof goes exactly like 1. 6 Just replace F by ?'={[n,n4

l uel ,nel and n)l } fl
This allovs to describe the possible characters of the gqap

(R| 'Rg_) 4
1:10 Propositiop For every reqular infinite cardinal a,b; there

are msodels R «R _vwith char(n.,nl)=(a;b)
proof:start with R, of cofimality a (by 1.5), pow fors an
elonqation R, Q(R (1.4); fimally iterate 1.9 b tines. -1

B Cnnclﬁﬂinqgihis_sectioanxegnonldgiikeutogsa¥—a—no£é—os—%he————————

cofinality of U~ Pxod(i) for a ppuf 0O on N, -

He recall the defilition of a scale onuio,the set of all

(X3
functions from ¥ to N. We first defime a partial ordering < on & .

Y

14



by:

C£<g iff IV (f (W< g(m))
thenr for all cardinals &k ‘g{g)'a k-scale is a set S={f,|«< k}
such that: > |

Nf,< § for all wepek

2)for every g:¥-->¥,there exists f in S such fhat a< £,

It is cleér that for any'npuf U on N, a k-scale deteraines
a cofinal sequence in U-Prod(N),so that its Eofinality is cof (k)

'”1ndependently of U. It is consistent that for any fixed k, there

is & k-scale f{cfs {3P+

‘ The question is whether it is consistent that the
cofin&lity.depepds on U. We show that it ¥s consistent (with
A48 .}haf.fOt ail tequlat-uncountable cdtdinals a.bS‘fitheré is
an vltrafilter U such that cof (U-Prod(N))=b and the coinitiality

of the ~nonstandard part is a. The proof given here comes froas

‘ideas by A. Mekler; a differemt proof appears im [CA] ,but the

theores should be attributed to folklore.

First we note that it is sufficient to show there is a npuf

U, with cofinality (of d%-?tod(l)) equal to b, and a npuf U,with
Haz ‘ :

coinitiality (of the nonstandard part) equal to a; since ve can

":-’ .
fors =*8=0,  -Prod(U  -Prod(¥)), which 1is isomorphic to a. basic

sltrapower with the required cofimality and coiniti#ality.

R e ——

51&;9 bgthggns;xn;xigjsua:ggsinilaifﬁsegcbncenx;axegongthe

coinitiality reguiresent. ’

1.11 Proposition Let M|=ZFC, a uncountable and reqular in R,and

ask. Consider F=Fn(kxw,w) and G P-generic over K. Then 1in
»

15
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Vi

g

o

M

B[G),there is a npuf O with coinitiality equal to a.
proof: Le

the restriction of G to axw. Then A[G]=B[G' ) Gal; hence we are

Let S={b<k jasbh<k },G' the restriction of G to Sxv, Ga

reduced to P'=Fn(axw,u), Ga P'-generic over N{G' ],and cof (a)

ancogntable. So it suffices to prove the proposition with k=2,

regular uncountable. Ga gives the sequence { 9, \ XxX<a }e.

We work in M[G] ,and comstruct U as follows:
M

Let U, be any nonprincipal ultrafilter im P(w). O, ,and in

(-]

fact for’allx,uK will not need be in M[G, ] ,but the ilpbrtant

: e
thing is that all their set-elements are.
' Ml
Given U, ,an ultrafilter in P(w) . .define:
X:={{n € N| .q‘_“(n) <f(n) }Yif:¥-% K is in K[G] ,and £/0,1is
ndnstandard]i '

Y:={{neN}| %M(n))n }} for each melR } ‘

e R o

finite intersection property. Hence extend F to an ultrafilter U,,

MWaw)
ia P(w) .

At limit stages,if U, ,p<® is comstructed, let U ==#it% and

Misal
U, an ultafilter on P(w) extending D; .

Pinally, 1let u= Uwu, . .U, is an ultrafilter since a is
- K<a

;teqnlar and uncountable. So it suffices to'shou that fg, lx< a }

is coinitial in U-Prod (¥)i. If £/0 is nonstamdard, then f is in

byl

st }L;‘-‘i PP,

ne} fqr sose x{because a is reqgular uncountable and P is ccc).

Bot f/U is also nonstandard, so g /fU<f/U. =~}

The reader interested in further results omn coumtable

ultraproducts is refered to {C1] . - R

16
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42 Particuler models and Y| -sets

In this saction, we investigate properties of some
particular aodels aostly related to q“-sets. The results are
taken from [HL} .
2:1 pefimitions

1)Let x be an ordinal. An ordered set (X,<{) is said to be

[ 7]

‘an \‘-set provided that whenever A<B are sutsets of X of pover

less than X,, then there are x_, x,, x,in X such that:
. .
X, < A ¥ x <« B <« x,

Y

By a back-and-fé??i/:;qnlent. Ragsdorff has shoun that any two
3 1 4
\a-sets of power ', are order-isomorphic. Such sets are said to be

cf order type qa. Assuming ZFC only, there are q“;sets of ﬁouer
~ A’ .

I for all & .
2) V(*E) is said to be comprehensive if every function f:A-2
8 has an internal extemsion f!:$A-39B, uberd A and B are any

elements of V(R) (of the same type).

3)Y (=R} is weakly compprehenpsive if comprehensiveness holds

kal

in any case A <R for asy n in N and BSR (that is for the
elementary part of Y (R))

R)¥(sR) 1is geguentislly <comprehepsive if V(®R) satisfies

seak comprehensiveness for A=k,

4 ) ‘
222 pLopositiop If ¥Y(¥R) is seguentially coaprehenmsive; them ¥R — -

is an 9 -set.

proof:Consider twpo countable subsets A<B of *R. We distinguish

A

17



four cases concerning tbe efdef structure of A and B.
If A has a last elenent-a and B has a first element b, then

A £a <(a+b)/2 <b* B so that we found a “tetween® element in that
case. |

Suppose A has no last elelept but E has a first element b.
Since A has countable cofinality, we can extract an increasing
seguence f:N--7 A uhosg range is cofinal in A. If we consider f£
as a function with codomain %R, we can agély sequential
comprehensiveness to obtain an internal extension f':¥N- *R.

de now define S:={n in =M|¥keEN(k<n - £ (K)<f'(n)< b)}. S
is internal (see internal definition principle in Stroyan[Lﬂ ) .

—
Also, clearly s2¥. But X is an external subset of *N, hence
there exists an n in *Ni with neS;this implies that f' (k)<f' (n,)<
b for all k in K. Since the range of f is éofinal in A, we have:
- A<f'(n_)<b<SB

This is aqain a 'bet@een“ element.

The case where B has no first elemsent while A has a last
elesaent is treated similarly.
< If A has no last element and B has no first, we define a
cofinal increasing sequence f:N- A and a coinitial decreasing
seguence q:N-é B with respective internal extemsions f°' anq<ff7*\
¥e define S as:
S={m in FNINKeFN(kcn -S> fY (K)<EY (D) CG* (K))}
and the result follows similarly. This proves condition for

*hetween” element.

1e



e
1t only r1emains to show that cof(#R)} -is uncountable. -
Consider apn increasing sequence f:N--Y #R with intermal extension
f*':*N--Y%R. By an arqument similar to the abtove, ;e find a ne*Ni
with f*(k)<f*(n_) for all k in N, brovihq the assertion. -|
Bow since any densely ordered sef withost endpoints is X,
-saturated iff it is an Y, -set, we deduce that the order
structure of any seguentially comprehensive R ic X, -saturated.
It 1is not hard to see that ahy ultrapouer» model is
conprehensive,lllence sequéntially coaprehensive; in fact it is
ﬂ§i£ khoun that any ultrapower is x‘-saturatéd. '

- It mnfollous from Hausdorff's theorem that the order
structure cf the hyperreal line is determined up to isomorphisa
in any sgqnentially comprehensive model of analysis *R of power
F,. AssuliﬁE:CH, this will be the case fcr &qy basic wultrapower
model ¢R=U-Prod(ﬁ)' for any nonprincipal ulg;gfé}gg; D 9",!1
Further Erdos et al have shown that for any ordinal x>0, ‘any two
real closed fields whose d?det-gtructures are m‘-sets of pouser N«
are iscmorphic as ordered fields. In our situation, the next
'proposition follows also from uniqueness of - saturated
structures. We thus have the following:

223 Proposition '(CH) For any non—princiPal vltrafilter U’on N,
*R=0-Prod (R) is unique up tc isomorphisa of oédered gield. 4(

#e have seen that %R, 6, and Mo &sre not in aéﬁetar
isomorphic, however we have the following: —_— B
228 Proposjition *E 1is an q‘-set iff Po (thus any Px) is an N

-set
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proof:The proof is straigqhtforward via x(>¥/x -} ..
225 Propositien *R is an f\,-set iff @ is an,ﬂ“—set |
proof:We take the positive part of *R/Goc as a typical set of
order type 6. It is sufficignt to show that R+ 1s\an \‘vset iff
¥R+/Go is.ﬁn q;-set.

It 1is not hard to see that 384;60 is anf\K-set if %R+ is;
$0 we concentrate on the converse.

Assome *R+/Go is an 1, -set. Consider two subsets A<B ofiqa*
of power less thaQ Xan » Because cof (*R+)=coin (R+) =cof (8)*
{seet.1l), we canm find !;ﬁ& I;I_in ¥R+ such that

b 4 ‘<A <B<« X

It remains to find a Ybetween™ element, ve comsider two
cases:

1) Suppose first that B-A:={(b-albe¢B and a e} contaims no

igf}pifé%ilals. Choose v in *Ri such that wa 1is infinite for

some 2 in A, and define:
A*:=(a in A| ava }.
s e noyv¥ juip in R+/Go by forming: \ :
G‘:={ G| ael'},.G%:={ Q$t-b&B }
Clearly we have:
G ESIATISIAICS , 16,1 €IBI< T

'rurther by our choice oﬁ 2 and v, §~>O (in ®R+/G0) . Now
given any a in A', b in B, uerha¥§4 T
vb-wa= w(b-a) is infinite, since b-a is not infinitesimal,

this shows that O<G*,< G, But ®R+/Go is an '\‘-set, hence GA'<G' < GB

for some r. We thea have A<r/wcB.

20



2) Suppose b'-a' is infinitesimal™ for some a' in A and b' in B. éi_z

e
g
s

Pick a nonzero positive infinitesimal i and define:

d

A':=fa-a’+i jaed and ava') \\
B':={b-a'+i |beB amd bsh'}

Hence A* < Po+ (this is why we added i), B'sMo¢+ and also B'—l'&-
Uo;. Purther [A'|S|AIS Yx, }B"}S|BiI< X and henée |B*=4%}) = |§'llA']<#«
» By proposition 1.1, coin(Bo+)=cof (€)1 by hypothesis, so we

can find § in Mo+ with B'-A'>j (1e_b-a>1 for all b in B* and a
in A'). Now to use *E+/Go ve define:

€£:={GAJ aek*} t’k,:=fGAJ beEB 'Y %
It is clear that GO C since B'cMo¢. Now consider aed', beB'; ve
have: | ,» . 2

1/4a - 1/jb = (b-a)/iba » j/iba = 1/ba is infinite
bence 0<Gt.<GA.in %“R+/Go. Also lGﬁ,lill'I&lAk.‘L . |G‘.l<.1’. and he'nce
0<GE<GF< G# for some r. It follous that |
Acl/3r ¢+ a*' -i<cB -

and the proof is complete. -|

Since Q is dense ina R, we get from 2.5 :

226 ;ogol]§;1 #Q is an f,-set iff © is an q.-set. -1
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III. CEBAPTER 3
Monstapdard Models of Arjtheetic

Introduction

7 Let ¥ denote the set of all functions f:N---Y K. We shall be
intetested in Q{F}={>f|f is in P}, the set of all standard
functions for a monomorphisa §. Note qﬁat‘&(ry=*r, the set of
internal functioms, properly includes @{P} if %N »éroperly
includes ¥. We first investigate the stucture of =N nsinq‘the
extensions of StatﬂatﬂWfﬂthiO#S?“TheH*SOIEﬂlyviftgthﬁS”UfwfﬁiS” -
on intersections of submodels of a given mcdel will be given in
saection 2. Finally, in sectiom 3 ve develop some combinatorial

results about nltrafilterskgg ¥.

11 ziassigng ir nopstapdard arjithsetic

»

b

¥e denote by P the set of ali functions f:E---> N, by FO the '

subset = of P comsisting of finite-to-one(hence unboundedi

functions, and bty Pt thér class of functions which are both
finite-to-one and monotonic (equivalgntly monotqgnic unboumded). .

¥e begin with some definitions , tecall‘that-*lizzi\l.

22



1.1 definitions (Puritz [PCT1])

1)¥e define the exact range of an infinite number a by:
er(a)::{#tka)lf is in F}n *Ni

2Yfor a, b in *mi, ve write a b (b is accessible froms a);, if.

=*f (a)?)b for some £ in P. If not a 7‘b,'werurite ;«b (ie ﬁf(a)( b

for all f in F;a®b denotes a /'b and b /' a

For a in *Ri, let sk(a) #({x im *Ni|x®a}, called the sky of a,

5)Ue define a-<bp if $f(a)#b fof some f in P, and a <= b if both
a--7b and b--Ya, a and b are said to be linked.
| Pat con(a):={b in *Mi} a <= Bf, called the coanstellation of a.
In the sequel we write f for *f;it vi}l be clear fronm ‘the

context whether we mean f or *f. Q,X;‘ /

‘1:2 lemma: ° is an equivalence relation on *Ni.
"proof:Reflexivity and symmetry are obvious.‘Snppose a°b and b°c,
‘then f(a)» b and g(bI;c for some f, g in P. It is’ easy to
construct f1 and gl in P doninat1n§ f and g for all n. Hence we
have: g1-£f1(a)rg1-f (a)rq1 (b)7g(b)”c so that a 7 c. similarly c_?

a hence ac. -| g

1,3 Proposjtion:

1)-->is reflexive and tranmnsitive

)

2)a->>b iff er(a)2er(h) (so a<->b iff er(a)=er(b))

3)a<;4?b iff £ (a)=b fof\QOIE 1-1 function f
4) ¢--Vis an equivalence relation

proof:A11 1is obvious except maybe first implicatiorn of 3). So
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snppnsafmajiéuhfmié, )= {b)=
N} g-f(p)=n }. Then a is in %S and f is 1-1 6; S. We may assume
S=510S2 are all infinite, S1n siégg; andA'; is in #si. Just
redefine £ on M\ S1 so that £ is 1-1 everyu}ere. -1--

1.8 Lempa f(a) is infinite for all infinite number a iff f is in

r0 (finite-to-one) 7 ] ‘

proof:let f be fimite-to-ome, a be infinite and n be in N; wve
. want to show that f(a) is infinite ie f(a)yn or equivaleatly ac

ix in %=w] f£(k)Yn}. Since f is in r03a(kva implies £(k)>n) is

true in N, hence In ¥¥. But since n is standard, = may be chosen .

-

standard. So ae{ k in #N| krm}S{k in 5N| £(k)>n}.

Conversely, suppose f is not finite-to-one, ie constant on some
infipite set s <SH;say f£(S)=n. We ha;e'Vx(xes implies f(k)=n).
§iqce S is infinite, *S'cgntgins an infinite number a and hence

f(a) =n is not infinite. -|

125 Lg;g_ f(a)°a for all infinite a iff f is finite- to—one
proof:Assume f is f;niteoto-one. We neead qplv show,t(;) 7‘;.
Define f1 as follows:

- for all n N, f1(n)=largest = for which f (m)<n

f1 is well defined since feF0. Boreoqét f1-f(n)» n for all n.
Hence fl.f (ayra and f(a) 2 a2, |

Coaversely, if f is not finite-to-one, then by 1.4 pick ac

~infinite with f(a) finite, them clearly f(a)xas -

126 Proposition (Puritz [PC1]) Let a in &M be infinite, then:
1)et1(a):={f(a)| f is in F1} and sk(a) are coimitial and cofinal

2)Bo countakle set is either coinitial or cofinal in sk(a)

<
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: - e - - e
ggg_ﬁ.1)ﬂy lenna 1.5, f1(a)®a for all £f1 in 4, hence erl(a)s

,,,,,,,,, - X

sk(a). ¥e have to shog,that given b in sk(a), there are f1, g1

in F1 with f£1(a)sbsgl(a). Since a /' b, g(a)¥b for some g in F.
"It is easy to comstruct g1 in r thaf do-inates q for all n,
hente’q1(a)Wb. On the other side, b 7' a, so let f{(b)» a and
" assume f is already chosen from Fl. Define f1 in F1 as folldus,
a kind of inverse of f:

ror all n in N, fl1(n):=smallest @ with f(m)?n

rhen f1¢F1, and f1(a) is the -‘smallest b" with f(b*)¥ a:hence

f1 (ll\ ba [ e .

2)let S be a countable subset of sk (a) and  suppose S has a

E

subset S1={a(n)| n €N} with a(0)va(1)?2(2)7 ... (if no soch set
exists, S is obvionsi} not coimitial in sk(a))let qgeF) such that

gfa(r))za n=0, 1, 2, ... and define f in F1 as follows:

For gll n, f(r):=max{ %!l)t k, 1:n1

then '(Vi]‘Xﬁii}ﬁf?hfiiti;”iiiﬁfimiiéfiii}etse' of f as defined
.in 1); then since f(a(-)rwqéa(-)YIa, we have flja)<a(l) for all
#. f1(a) is in sk (a) by 1.5, so S is not coinitial in sk(a). The
rest of the proof is straightforwvard. -|

1.7 lemma Let a be infinite and‘lssk(i}rbe a pqpndedrsnbse;iof
sk (a) (ie xcAcy for some x, vy in sk(a)) The; there is a funcg;oﬁ

f in F1 and b%a such that f {A}={b}

_ [esark:By propositiom 1.6, any countable subset of any sky is

bounded - ' 7 ,

proof:Since A is bounded in sk(a), we can find f, g in F1 such

that g(a)<’n <{f(a). Hence g {a)*a®f(a) and ‘there is an r in F1,
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- which we cap assume strictly increasing such that r-q(a)*f(a).

¥ou define.k(1)=9; k(2)=r(k(1)), kK(3)=r(k(2)), .o ;¥e have k(1)<
ltZ)‘<k(3)<... L;t = be the largest integer of *J§ such that k(m)<
q(a). then k(l+1)7q¢a) ‘and - ’ ' ’ -
k(-42)~r (K (3+1))51 (g (2) ) £ (a)327g (2} k (m) :
SO we define-
t}Yif = is odd D(Oi={0, k(i);ﬂ ,'D(l)’tF(ZI°T),Ak(Zl‘TT“{lfOI 170
2)if IF;S even D(1)=[y(2l). (2?02)-1 N

rand ;2: either case, l‘{ﬁ(l). k(me2) - —] =D(1l) for so:e 1., Kovw we
uadmi; d:eil&e f{n)y=p for —-all--n —in-Dfp)i— ﬂa:e# A=Y e
constant. Note that f’is in 1 so that f(a(n))®a(n) by 1.5. This
completes the proof-| ‘

neqativé instance of the vabover is with a model %N

equipped with a highest sky sk(a) and A= a, (. uiich is

uabounded in sk(a). If @& standard function is constant on 1.

this constant has to be finite. o —
Let B be arny nonstandard sodel of arithmetic. As arithmetic

’ contaiﬁs Skolem functions for all formulas, every subamodel gs an

elementary submodel. Thus if a M. the set:

il.aét(g)=(£(?)lf:l-ﬁ'l)

- is theruniverse of anm eleieitaty subaodel of M. Such subdbsodels,

generated by a sinqle element will be called ptinéipal. In fact,

ve shall see noirthat for-a infinite in B, this primcipal mode]

is isosorphpic to a basic ultrapower UDa-Prod(N) for a suitable

noa-principal ultrafilter (npuf from now om) UDa on‘>.
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rhe7§oliouinqAcanmggwfonggwigmLEQlj,nnd5ICB] .

1.8 zxoggggggon Let % be any'nththndhfd°lbdel of arithsetic and
- a i; B be infinite. Put Ua={§ B} a *S5}. Then UDa is a hpuf,agd
| ¥uer(a) = Ua-Prod (N)
proof:1t is straiéﬁtforward to check that Ua is a mpuf on N. For
example Da is noa-principal, for let S(n)={n+1, D+2, .c. } then
ae#S(nf for ali'n?'hdt’ {)'Sln{aﬂ. - o
Now ve define: |
j:U0a-Prod (1) -->> 0 o er(a)
T 1f7fif?;:aﬁﬁ¥$ffai )
j is well-defined and 1-1 fbr:
*f (a)=%g(a) 1ff ac{nesN|%f (n)=%q(n)}
334 ae#{uu‘(n)zq(nn ' c
iff {nel| f(mn)=g(mn)}eUa

iff f/0a=q/Ua

By its definition, § is onto. Purther for-any formula ¥(x, «.. ,
‘2 and Q/Ua. cos Q(Ua in Da-Prod(n),
Ua-Prod (®) |= §(f/Ua, «.. , £/U2)

Iff (] W 1= $(£(B), ... , f(n))}eba

Iff aal ¥ 1= 4(£(0), «oe , £40)))

iff ¥ cer(a) |= ¥(J(f/Va), ... , 1(£/va)) -1
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By proposition 1.8, a -odel generated by a single .elemeéent
is jJust a basic ultrapovwer. Re-é-ber that assaming CH, all basic
ultrapovers are isomorphic with 6= A, .

A model =¥ generated by a single element a of a given
nohsfa#datd mnodel # qill be denoted by ¥ (a). Becallithat:

B(a)={f(a) |f:8-IN} (in B)

From now on, we fix a ao-stapdard model of arithretic 8.
2:1 Proposjtion Let a, bel; then ‘

H(a) and M (b) are cofinal iff a®p

-

proof:Suppose that N(a) and .N(b) are cofinal, then there is a ¢

. in ¥ (a) with é»b; but c=f(a) for some f in ¥ and hence & 7“

Similarly b 7 a sb ab.

~

Conversely, suppose a®b amd consider c=f(a) imn K(a). Ve

search for d in l(b) uith ﬁwc. cOnstrnct fl -onotbnic do-inatinq
f for all n. Since b ? a, g(b)Yya for some g and hence
£1-q (b)%E1 (a) 2 (a) =c -
but fl.g(b)eN(b), hence N(b) is cofin;; i; K(a). Similarly, hN(a)
is cofinal in K (b) and the proof is complete. -|
8ith the basic ﬁlttapouer picture at hand, the last

proposition is gquite natural since fcr every principal model

E(x), x correspoads tggidlnx,nI_ngkxnﬂ4jlguhich,isfgasgnegghate—~—

seen, in the highest sky.

N

Bere is another characterization of cofinality:

222 Proposjition (Blass [B11 ) Let cel'and fcP, then:

¥
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%S and £r5 is finite-to-one.
Further if these equivalent conditions‘héld, there exists f'<F0
vith f(c)=f'(c). -

proof:Suppose first that ve have a set S SN with frs

finite-to-one and ce¥S. Define f' in FO as fqllous:

-
’ -

f*(n)=f(n) if neS, or £'(n)=n if nées
Sincé 'Vn(nes—%'f(n)=f'(nf) is true in N, it is true in B, so
f(c)=f"*(c) and- this proves the last assertion. But now c@f* (c)
by 1.5, hence M (c) and N(f°*(c))=R({(f(c)) are cofinal by 2.1.
Conversely, suppose X(c) an R(fic)) are cofinal. Then
B(f(c)) has an element, say h-f{c) with hff(cy»c. Put S={nj|n <h
f(n)}, - then ce¥s. Also for n in S and m in N arbitrary, f(n%;l
--*n<¢h (m) so that f}S takes the value I\?f most h(m) +1 'tiieé:r
which cq:g&q@as the proof. -}
2.3 Corollary Let ceM and feF, then:

c®f({c) 1iff there 1is a set S N such that ce*s and fPS is

finite-to-ocne., -|

424 Proposition lLet { *N;,| ie I} be submodels of a given model

B. Spppose there are infinite a®b in B such that %N, nfa, BX @
for all.i.
Then {} *N. is nonstandard; in fact N #N° contains a

' t

principal model.

R S U

f(q)zf(%)°a for all Lie 1. 1f we let c=f(a), then:
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8(c) € (V¥ is nonstandard. -
The corollary appears in Blass fBl] , but uwe replace the
countability of I. In fact , if I is countable, condition 1
implies conditibn 2.
225 Corollary Let {$N; | ie¢ I} be pairwvise cofinal suﬁnodels of
.| ané suppose that: | 3
1yat least one of ¢l¥(hence all *E;) has a highest sky, skéc)
say,
2) there are a®b in sk(c) such that *N. nfa, D]l #p for all 1,
then {1 *¥. is cofinal with each *H.; ip fact [;=¢#¢ee&t3%ﬁsf*afff"ffm
principal model cofinal with each *¥,.
Further if I is cogntable, we may drop condition 2).
proof:The proof is straightforward by 2.4, 1f I is countable,
then by 1.6 condition 2) is always satisfied. -}

The next lemma is analogous to Corcllary 2.3, the proof is

left as an exercise.
2:6 leama Llet ceB® and feP, then:
f(c)<--7c iff there is a set StK with c«%S and f}S is one-one -|

Of course, a<-->b iff N(a)=W(b).

He conclude this section with a preposition om descending
chains of principal models, due to Cherlis and Hirschfeld fCH] .
4=71 Proposjition Suppose»l(a.)?l(a‘)Ql(a‘ )2 ses 1is a strictly
descending chain  where all a, are infinite; then there is an

infinite b with

R
ey & () ¥(a,)

proof:%e first note that ve may assume ahgaifor) all . 1Imdeed,

4

(.
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L.

since f.,(a, )=a for some f{,’put:
kﬁx):=nin{yif11)=x). and O otherwise.
then k(x) ¢->x (use lemma 2.6 with S=f,{k}) whenever f(y)=x for

some y; hence ¥ (k(a_ ))=N(a ) and k-(a,)<&; so fust replace q"by

k.(ain)"

iow let §d§h)=ar, amganand put

c :=f ‘f ’f' * e f

[ LI S Y y
50 that a(a°)=g\, and define
n
h(z):=lin{qn(x) la(x)»n and Wisn a(x)yq(x))
(3 XY

{ie we look at the seguence 1;41)} and take the last element up
to where the sequence decreases or at the last that is still
bigger than its index)

Then h(a_) is infinite, for an°)>n for all nek and {QJa_))

is decreasing by assumption, So let h(a )=b. We show that be Fﬁ

o
(a2 )
Fix 7 and <efine:

g'(x):=x if ned, £ .f-..0f (x) if n7d
LY LE ni

and put:

h*(x):=minfa'y(x}! q(x)>n and¥1§ksn q;(x)\qéﬁx)}
Since the tollosing is trueiin N:
(,:i(,) and %(x)vj anc x>q(x) and ... and qfx)>%£x)) —-=y

(h{x)=h"'(y))

It

and the left side is true in N for a » W€ have:

~b=h (a )=h'(§§a‘ ))=h'(57) l({l): this completes the proof.
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33 skies of basic Dltrapowers

¥e know that any basic unltrapower U—Prod(N) has a highest
sky, the sky of the ideﬁzity'nappinq id.

However, the npugmber of skies may depend on U. Furthér_ue
may ask about the structure of a constellation inside a sky. 1In
fact, this glives us sowe characterization of uvltrafilters. The
reéults areﬁfro- Puritz [{PC11] and [PC2] . |
31 Definition |

Let be any npuf on ¥, .and a, bs X, cardisal nuabers
(possitly finite). Let P be a partition of ¥ into countably many
disjoint sets D,, mek, some of which may be enmpty.

U 1 said to be b-sparse with respect to P if there is a
set S in U such that |SaD,l<b for all m. U is said to be
ab-sparse 1f for every partition P satisfying |D_l<a for allw,
either DU for somew, or U is b-sparse with respect to P.

¥e denocte by S(sb) the set of all ab-sparse npuf on M. -
pefinition

A npuf U on N is called S—Stable,lor a P-point, if everf
function on N is finite-to-one or conslant on some set iﬁ u.

3,2 Propgsition Let U be a npuf on K, TFAE:

1)U is S -stable

230 is X X, -sparse

3 *N=C-Prcd(N) has only one sky

proof:1)--> 2)Given a partition P={D,} of Nk, consider the ‘_

fanction f (n)=m for all neD,, =0, 1, 2, ... Then f is constant
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0 «
o

on some set in U means fhat Qfﬂ fOor some m, anq‘finigg-gg—ggg
some set S in U means that [SnD,l<Ve for‘allil. Hence U is Y/ X.
-sparse.
2) ~-7 3)%k has only one sky means that a 7‘id for every infinite
a. For each meN, let D :={nja,=s} and put Pa={D_,}. Pa is a
partition of H; It DelU for some =, then a is finite: Otherwise
there must bte a set S U such that S nDe is finite for all =.
Define :
f (m) :=largest nusber in Sngkik 8, and 1 otherwise.

Since S<{nif(a.)wn}, f(a)¥1d and a /' id so *N=Nusk (id}.
3)--71) lLet f be any function on H. 1f f/0 is finite, then f is
constant on some U-set. If f/0 is infinite, then using 3),
g(f/U)7id for some g-in P. Hence 5= {n] q-f(n)$ p}:auv and f is
finite-to-one on S. -}
‘pefipition

A npuf Uv on Kk is cailed rare, or a ¢g-point, if every
finite-éo—one function on R is one-to-one on some set in U,
3.3 Proposition Let D be a npuf on N, TFAE:
1)U is rare
2)0 is %Y -sparse
3)The hightst sky of *N=U-Prod(X) is a single constellaiion

4
proof:1)--7 2)Let P={D, ) be 2 partition of X with D finite for

all a. ¥e define: °
f(n)=a for all né€Dd,

then f is finite-to-one:vhencé ocne-to-one on some set S in U;

hence S0 <2 for all m in ¥,
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3 -

2) --7 3)Let aesk (id) and consider again, for each mel, D :={n} a,

=a} . Since f(a)»id for some f in F ie S:={n| f(a, ) njeU then
D:=Snntis finite for all a. Ifhue partition N\S intd singletons,
wve get a pa{tition: " N
P':=(q;}uisinqletons cf K\S}
wvhich consists of finite sets only.
Assuming 2), theré is a U-set S' which meets.-every set in
P' in at ;ost one point. Let S'':=5'nS and define f1 in F by:
fi(n):=the number ia S'"n D' if nonempty, 1 otherwise
then for all n in S*' (and for U-almost all n) f1(a,)=n, so that
fil(a)=id. But acer (id), so ac<-> id for all aesk(id).
3)-=>f) Consider a finite-to-cne function a(n),<and form D, :={n}|
a{n)=n}. Define: 7
f(m):=max {n| neDy} or 1 it@-pty
then f(a)» id so afid. By ass ibtiohlé(a)=id for some aq. Hence
{njg.a(n)=n}cU, hence a is omne-to-one on some U-set.:-|'
Pefinjtjon / - 7
A npuf U on N is cafiﬁijwselective, minimal, Ramsey or

absolute, if every function on N is one-to-one or constant on
some U-set.

3.4 Proposjition Let U be any npuf on N; TFAE:

1)U is selective
2)0 i;]ﬂ» ?-sparse
3)*Hi=U-Prod(M)i is a single constellation

g;oog:?olibus from 3.2 3.3 since S((2)=5(\, ) s(2)y -1i

Pefinition &
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A npuf U on K is called rapid if for each function f on R, -~

there is a U-set whose p® element is> f (n)

325 Proposjition Let U be any npuf on N, TFAE:
1)U is rapid |
2)con(id).is“coinitia1 in sk (id)
proof:1)--> 2) sSuppose U is rapid. Consider a/U in sk (id) and f
such that f(a)»id, ie S:={n| f-a(n)xn}c U, By assumption there is
a U-set t={t,, t , t;, «s¢ } such that tglf(q),for ali n. Hence
‘for all n in S: x

tea(n)> f-a{n)> n )
Since t, as a functio on N, is 1-1 increasing, we may define:

é\(l)=n wvhere n is determined by t (n)sm<t (n+1) |
then Nn ?-t(n)=n, and«: is monotonic. Hence a(nri}un) for all n
in S so that a/U%t/u. |
‘ But for all n in tnS, n=tkf§ixsone k and :
t-:(*n)=t'-~t\‘t(k)=t (k) =0 ie t(t/0)=ia; hence t<¢-=id,
2)--71) Consider any f in P. It is easi'to majorize f by a 1-1
strictly increasing function h. He'shou 1) holds for h, hence
for f.

First define ;‘as follows: . | ‘

HA(D):=I determined by'h(-)in<h(l*1), O‘fbr n<h (0)
Clearly El°id°h. By hypothesis, there are functions q and k with
a(g‘, ie S:={n} q{a)<£'(n)}&0: and T:=1n1't'tqfnfthtnTTﬂ?ﬂi"Lteif”*“i”
R:=5aT. R€U, R={r , L, I;, «oe }o A-picture will help to see —

that r ¥h(n) for all n. -|
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The exiStence'df the previous npuf is proved wusing CH.
Fuorther S. Shelah proved the existence of: Pvpoinfs is

independent of ZFC.

I would 1like to suqnhtize some pcssible structure of the

-

’set of skies for axb;sic‘ ultrapowver. ‘Assulinﬁ CH, _there are
ﬂpasic ulttapowersé with n skies for everyrn iﬁ‘ﬁ,‘and We may
prescribe vhiqhvskies vill constitute & single constel ation.
Iitespective  of CH, there are basic ultrapowers with skies.

The interested reader is referred to [ PC1] for more details.
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