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Abstract .

This thesis defines a partially ordered set (P,<) where

—.—each mw &P isal” 1'pe::yz_uhich_a,complete,first:ordex_theoxy_,ILh,,NAAAAA,AA,AW,
may or may not possess and ﬂ0,$ Ty denotes that
9T (T possesses Ty + T possesses ﬁo). in this way a "complexity"
éfeordef’ <« on the class T of all such theories is obtained by

letting T T, denote that Y¥w (TO possesses T+ T, possesses T}.

0 1

Some density results concerning (FP,<) and (T,4) are given after ' ) a
' some basic properties are examined. In particular Keisler's finite
cover property and Shelah's indepeédence property are. found gquite

useful. - -
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Introduction

F

Keisler (1967) employs ultrapowers to define an ordering @ on
the class T of all complete theo;ies T which provides a measure of

complexity for such theories. He defines the finite cover property and

. _; E 3 -|&|] E. -I r

property in ' T then T is not <-minimum and if T is not <-minimum

then T is not K-categorical. He also defines the versatility prop-

' erty and shows that if some formula fp(x,g) 7of T admit; the versa- .
‘tility property in T then T is <-maximm.

Shelah (1971) defines the order, strict order and ir‘sdependenée‘
properties and shows that T is unstable iff some formula ep(;,;) of
T admits the order property in T iff some fc?nmla w(;;;) of T
admits the strict order or independence property in T . Furthermore
he shows that if some for;:lla cp(;,;') of T admits the order property
in T then some formula ¥(z,w) of T admits the finite cover
property win- T . He also shows that if some formula ¢(x,y) of T
admits tﬁe finite cover, order, or independence property in T then -
some formula #:(z,;) of T admits the finite cover, order, or
independence property (respectively) in T . This result makes it

easier to decide whether any formula of T admits any one of ‘these

- properties in T .




Lachlan {(1975) shows that if some formula cp(;,;r) .of T

admits the strict order ptoperty :m T then some formula w(z,;) of

-T admits the strict order property in T .

. 'Evidently the above properties are useful in providing a

measure of complexitj? for such theories.

This thesis constructs a poset of properties of complete -

theories (P,<) which is used to define an ordering 4 on T which

provides another measure of complexity for such theoriesi.
- In §0 some preliﬁnaries are. covered.

In §1 some basic definitions are given. In 1.0 properties of
formulas are defined which include the above properties in a natural
way. In 1.1 P is obtained by identifying any pair of properties of
formulas if they are admitted by the same complete theories. In‘71.2
< 1is obtained by identifying any property of complete theories with. -
the class of all complete theories admitting it. Here (P,<) is shown
to be a lower senilattice.‘ In 1.3 = is obtained by identifying any
complete theory with the set of all properties of complete theories -
which it admits. Here (T,4) is shown to be an upper semilattice.
In 1.4 an archetypal property of complete theories is defined to be
any property of complete theories for which the class of all complete

theories admitting it contains a smallest member. Such properties of

complete theories are shown to be nee_t-irreducihle. In 1.5 a prime

property of complete theories is defined to be any ptdperty of complete
theories for which the class of all complete theo::ies admitting it
contains any disjoint sum of complete theories iff it contains one of

the complete theories being summed. Such properties of complete .



theories are shown to, be . jcin—eirfeaucible (and vice :vérsa) . Fr’on* this . -
F1 . ,""

>1t follows ea511y that the meet of Jom-lrreducz.hle pi’:opertles oﬁ S '

complete theomes is again 301n-1rreduc1ble. ‘ : 'ﬁ .

4

In §2 some basic examples are pronded which qulg' 1nforma-

2 e

tion about (P,<) and (T,e . In~2.0 the m1n14num and maxnnum P

. 7 .-

properties of complete theories are defined a_nd;_lt is shown th@ﬁ\‘fhe ;
oA - =

theory of atomless Boolean algebras does kft admit the latter. From . -

this it follows easily that < and « are different o;‘derinqs.

Furthermore the maximum property of formulas is l-dimensional in the ’

v

sense that if some ¢(x,y) admits it in T then some w(z w) . admits
it in T . From this it follows eas:.ly that the maximum property of
complete theories is prime. 1In 2.1 the finite cover and partition

properties of complete theories are defined and it is shown that each

2, o

‘may be used to provide an embedding of the poset of subsets of W

(modulo finite sets) into (P,<) and to show that (P,<) is not a
lattice. Purthermore 4I:‘he,parti.t:i.on property of formulas is l-dimensional
and from this it follows easily that the partition property of complete -
theories is prime. 1In 2.2 the order, strict order and independence
properties of complete theories are deflned and the latter are shown -
to be archetypal. In 2.3 the strong 1ndependence and versatlllty

properties of complete theories are deflned and the former is shown )

to be prime although whether the strong independence property of

formulas is 1-dimensional is unknmm Tn 2.4 some remarks are given
about the relative positions ‘in (P,<) of the above properties of

complete theories. 1In 2.5 regular and Whitman theories are defined



7‘ and»'are use& to show thait"c.:er’ﬁ:—in cou;ieté. thepries <-ini't’:certain
’ 'prépe:ti;s ;af é:@lete the'oriesf ' In<2.6 the fbartlal orAer and line
. .. —propéiti;as of"c':oqg:lrete.theoriesiare défix;ed and the former is shmm A ‘-’. N
to be archetypal while the latter is shown to be quite weak. In z;i‘ -

- somé remarks are given. about the relativ,ve positions in (P,3) o‘f:*‘the

properties of -complete theories are definéd and it is shown that if a

E o P e w e ¥ s ’ . B
, countable complete theo&ry admits every independent property of complete

5 theories thenltiadnlts evexy property of complete thgox:ies__ | ﬁ
T In §3 sone density results about (P,s) are given which imply - .
that ﬁmch of (P,<} is dense. Howeve.r it is shown that prime —a;che-
typal properties of eomplef:e .theoriies provide gaps in (7,4} so it v )
follows that (7,4) is not dense. L ‘

In §4 some open questions are raised. . e
.
N



0 Preliminaries

In this paper complete theories have infinite models.
Standard notation is employed. If ¢ 1is a formula , T is a complete
theory and A,B are structures of a language L then ¢ is a sentence

if no variables occur free in ¢ , zp(xo,...,xn_l) denotes that at most

the vari Wﬁm&wgw

9 (l¢), T } & denotes that ¢ . is a theoremof T , A F T denotes _
H

that A is amodel 6f T , T = ThA denotes that T is the theory of

denotes that A is an elementary substructure of B . Let

°

BnT (OhT) denote the Lindenbaum algebra of (open or quantifier-free)

formulas cp(xo, s X

Yy of T and let S T= SB T denote the
n-1 _ . n - n .

- corresponding Stone space of T g Obviously T is quantifier-eliminable
iff Bn'r‘ =0T {(n < w) . A complete formula of T is any atom

cp(xo,...,xn_i) of B T . By Ryll-Nardzewski (1959) if T is

countable then T is Rycategorical iff each formula w(io,'...,xn_l)

of T is.a finite disjunction of Ebmplete formuilas . gpi (xo,...,xn l)

gf T. If x = {fo""xm-l) and vy = (yo,.-.,yn_i) ~ are sequences
- — I —_ -
2 = = . i =" 3 :
let 2{x) = m, rix) {xo...g 'xn—l} cx(1) =x.(i<m,
—-n - U

b 4 y = (xot--~txn_llyor!'-;Y‘H_l

r(z) = c( U r(y ‘and r(x N r(y) =¢ . Furthermore let X C ¥

) and let z = x ~ y denote that

denote that /rix) © r{;) - In 2.5 the distipction between x.  and

r{x} mm ignored if no confusion results.

Let @A(;,;) = {b ¢ fA;i(x) A Eo(b,a)} denote the (;,;)-definable

subset of fA'i(x) defined by a in A_. If a ¢ }A!‘f;(a)r let



t4(@) = {o(x)|A ko (@)} denote the type realjged by a in A and

let tz(;) = {otx)]o(x) is open and A f (p(;)'} denote the open type

realized by a in A . Each ordinal o = {B|8 < o} is equal to the
N . S -

set of ordinals smaller than it and each cardinal is an initial ordinal.

If A,B are sets then A A B denotes (A-B) U (B-A), |a] denotes the

. B
“cardinality of A, P{A) denotes the power set of A, A - denotes the
. , : B . . ' .
set of functions from B 1n{o A (or {A l if convenient) and whenever

A CB let AO

{Al) denote A (B~3a) and let thebcocardinality of A,

in B be -|B-a| . 7# preorder (T,<) is any set (or class) T 7
together yith’a reflexiQe transitive binary relation =< on T . Let
(T!E'Slz) denote the poset (partial oraer) obtained from  (T,<) by

the congruence = on (T,<) definedby s = t iff s <t and vtrs s .
Suppose {T,<) is a poset. If s,t €T 1e£ (s,t) = {r € Tls < < t} _
(the other intervals are defined similarly). Any S ¢ T is dense in
(T,<) if s,t €T and s < t implies (s,t) N S + ¢ . Let Qk (v)

denote meets (joins) in (T,<) . Any t € T is A-irreducible

(v-irreducible) in (T,<) if t=r A s (t=r V s) impligg,ft =r

-

4

or t=s . A lattice is any poset (T,<) where s At and sVt
exist whenever s, t €T .
Model theory can be found in Sacks (1972), Shoenfield (1973)

or Chang and Keisler (13973). o

Keisler's order can be found in Keisler (1967).

\ _
Stable theories can be found in Shelah (1951) or Shelah (1978).
The folloﬁing well-known automorphism Egst for quantifier-

elimination is useful. If T is a countable complete theory then

! 2




e s o i b e s

(1) T is quantifier-eliminable

(2) For every countable A | T and a, b € |A|

tg(g) = tg(fa there exists B¢

that f(a) = b

are equivalent. To prove this assume that

%(a) such that

A and f € aut(B) such

T is a countable completé

theory. If (1) holds, A F T is counta

0]

tA(E5 = tz(g) let B > A be countable an

ble, a, b ¢ |A|*® ana

d %;homogeneous. To

construct f € Aut (B) such that f(a) = b use the &shomogeneity of

B in a back and forth argument after noti

are elementarily equivalent (since T is

tg(g) = tg(g) and A{B). Thus (2) hold
easily that each ultrafilter on OnT exte

filter on- BT . By Makinson (1969) OnT

9 The following- well~known partiél

useful. If T is a countablé consistent’
-models tﬁen

- (1) For every countable A, BVF=T, a

such that tg(a) = tg(i)zfand a

b € |B|- such that ;X(E"n a) =

ng that (B,2) and (B,b)

quantifier-eliminable,

s. If (2) holds‘it follows

nds uniquely to an ultra-

= BnT”;"Thﬁs (1) holds.

isomorphism test is also

theory with only infinite

2 e AP, B e (at

GHIAI there exists~—

6 —N
tB(b b)

- . o,

b o

bt it BN i i L e e

ST

implies

S —(ﬁ%ﬂ**is*compiete,—Ngcateguricaifand—quaﬁfi’fiEFeriniﬁraﬁi €.

3

i' »

3
[

e




To prove this assume that T is a countable consistent theory with
only infinite models. If (1) holds then T is *;categorical {use a
back and forth argument), T is complete (use the‘tos’-Vaught test)

and T is quantifier-eliminable (use the automorphism test). Thus

“(2) helds.’

The next result 15 used t© shCW‘that*Cértain‘compietE‘theorieéA*“*f***‘*
omit the versatility property of complete theories. Let T be a

complete quantifier-eliminable theory in a finite language without

functions. Then there exists a polynomial £ such that rSnT!:E2f(n)
(n<w . To pfove_this assume that T is a compiete quantifier-

. ;
eliminable theory in a language consisting of constants ci(i < m)

andApredicates, Pij of arity i+l (i,j < m) . A basic formula is

f - - = = ’ . . -
any formula,o the forp ci xo, x0 xl‘ or Pijr(xo,f ,xi)

‘ 2 T ) .
_Thus there are m + m + 1 basic fqrmulas. An n-arrangement is any

. ‘ : : . L= i+l .,
formula @(xo,...,xn_l) which stétgs which =x € {xo"f"xn-l} (i< m)
satisfy each basic formula. Thus there are - v
) . {m.'.
- : 2 m m - .2 mn
o M2 PR R LR LR L < gty 2
) N — . —~ b ~ N .
m m m m
1+ (1+2m) n+mn+ | +mn f (n) S
= 2 Tt = 2 n-arrangements where-
, 2 m : . - . I /'
f(x) =1-+ (1 + 2m)x + mx“ + ... +mx . But each ultrafilter in SnT g !

is generated by an n-arrangement so lSnT| <t s

S

Rkttt bt LA IR MR U
|
1
|
|

The following result concerns the definability of complete
theories within other complete'theories and is used to compare the

complexity between such theories. Although the following definition



admits obvious generalizations it is sufficient for the purposes of this
thesis.  If Ab’Al are structures for languagés (without functions)

A . s . \—. — n <
LyL, ‘then A, is definable in Al L if lAOI IAll for some n < W

and if for every constant c¢ of L _/ there exists a sequence of

constants c¢ (of length h) of Li such that Cp = Ek andvifi
: 0 1

e — i fdiiowSAeasiiy?that*' — T 15 1lydefi i nd
above 1t 2 if TB. is logallygqFf?nab}e—tn——TIfﬁh’

‘\i
¥

for every predicate P of L0 there exists a formula P of L1

. By changing the formulas P (if necessary) it

such that P, =P
A0 A1

may be assumed that infinitely many of the variables of 'il do not

occur in any of the formulas P . For each variable x of L0 let

X be a distinct sequence (of length n) of distinct variables of L1

whigh do not occur in any of the formulas P and for each formula

@ . of L0 let ¢ be the formula of L obtained from ¢ by the

"~ following rules: If ¢ is s =t whefe‘-s,t ‘are terms of L0

-of T, then T0 is definable in T, . If every finite reduct of T

is definable in T, then TO is locally definable in T

then ¢ is s=¢t . If ¢ is P(so,...,sm_l). wherer P is a

predicate of LO and so,

) . If Q4 is W, Pvx or‘,3xw then 76- is '1@1 Pvx

ceedSp g are terms of L0 then ¢ is

P(SO, .. -’-’gm

-1

or 3IxY (respectively). It is easy to show that if ¢ is a sentence

of LO' then )46 E ¢ iff Al = ? - Suppose - T, T, are complete

theoxkes in L_,L, . If some model of T, is definable in some model

0’1

1 1

0

. From the

1 1

@(;355 is a‘£ormu1a of T0 there exists a formula, w(;,;3 of T1

(namely ¢(x,y)) such that if ®p (;};6),...,¢A(;}Eh_l) Tare
0 ) 0




10.

— - ) 2(x .
¢ (x,y)~definable subsets of ,Aol X} for some- Ao F=To there exist

R __ — 2z
Y(z,w)-definable subsets wAl(z,bo),...,wAl(z,bQ_l) of IA!J for
some Al F=Ti "which have the same nonempty Boolean combinations in

IAlIR(Z) as the corresponding ¢ (x,y)-definable subsets have in

[Aolz("). Furthermore if T ,T, are countable, T, is definable
in Tl and T1 is ﬁicategorical then by Ryll-Nardzewski (1959) it

.follows easily that. Tdf;uijgﬂategorical. L

-

The next result of this chapter concerns disjoint sums of

theories and is used to characterize prime properties of complete

[y

theories. If La(a < B) are languages without functions their

disjoint sum is the language I L, ©obtained by -adding unary

a<B

predicates ‘Pa(a < B) to their disjoint union. If Aaf is a

structure for La(a < B) their disjoint sum is the structure

I A for I L ,obtainea by interpreting P_ ‘as IA l {a.< B)
o o S5 CTa o
a<B‘ a<B .
P

“in their disjoint union. If ¢ is a formula of L, then ¢ ¢ s

the formula of I L ,obtained by replacing each subformula
o<B . ’ C

vy of ¢ with By(wAPa(y)) . . Note that if ¢ is a sentegle of

L then A |k ¢ iff X A ko . If T isa theory in L

o ol a<B o " _ , : o

P : ,
o, . : , . ,
then T is the theory in 3 La whose axioms are the formulas

o<
" - P4 where ¢ is
dx P (%), P (c), P(X 4...,X ) > A P (x.) and®,¢
a a 0 n-1 R ¢ 2N SR
- _,_,_./ l<n ’ “g “!

any constant of L, P is any predicate .of L, and ¢ is the



B T S

1.

universal closure of any axiomof T . If Ta is a theory in
La(a < B) then I 'TG is the theory in £ L  whose axioms are

a<B - a<B

rd

P -
Ta“'(a < B) together with the formulas TW3x (P (x)AR_, (x)) (a<a'<B) .

Furthermore if B < w then the formula VY x V P (x) is also an

G<B
axiom of I T . Notethat A [ T (x<B) iff I A kI T .
’ a<B : : ’ : a<B ~o<B
For each a < B and x let P (x) denote the formula v P (;X;)lh .
A S st bl e S At - =02 R X :
i<f (x)
and let I (x) denote the formula A_ e, (x(1)) . Let EQ

i<f (%)
denote the theory of equality on an infinite set. Then it is easy to

. - {
prove that if @(x) is a formula of X Ta there exist formulas

a<B
wij(xij) ”of cerﬁaln Taj(1,3<n) gnd openrforwulgs ,?in(*in) of
EQ (i<n) suwhthat I T | oG) <> v A¢f(gg where
a<B . i<n. j<n 313

- = U U- . * = .
X = xio .en xin (i < n) .and wij(xij) is

P

aj — ‘ — N, . —_—

. . . * c 2 R

¢ij (xij) AP, (*ij) (i,j<n) and ¢in(xin) is .

3

o. (x. YA (A TP (x, ) (i<n) . From this it follows easily
in Tin j<n aj in

that T = is complete (a<B) iff I T  is complete. Furthermore

a<B

Ed

Aﬂf443644a<8944i££44427ﬂ%§—<%ik—3a .’{E&ngutﬁegautomorphismgtest
a<6 U-<B . .

for quantifieffeliminatioh it then follows easily that Ty is -

complete and quantifier-eliminable (0<B) iff I T, is complete
. a(BV
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and quantifier-eliminable.
'i‘he final rersults 6f this chapter concern generic structures: .

f countable languages but ‘the proofs of:th;as'e resulfs afe omitted

. since they are similar ﬁo‘ the p'roo’fs found in Woodrow (1977).which

concerns generic structures of finité_languages.. Let L be a

language consisting of f’initely many predicates Pg_j of each arity
i<w. A structure A of L is good if

ceer > A £ .. ss of
ThA}- ,Pij,(},{,o', Lea%y ) x, # % for each PiJ A class of

T k=fei T T -
good structures of L is good. Let L be aclass of finite structures
of L closed under isomorphism and let '&: a coﬁntable structure
of ‘L . 1If

(HP) If £ : A~ B is an embedding of A into B
| and B € 2 then A €3

holds then ¥ - admits the here&it'ary property.

If
(JEP) If A,B € & then the_rerexist embeddings

f:A>C and g: B> C for some C € 3

holds then ¥ admits the joint embedding property.
If
(aP) 1If. fi : A > Bi (i<2) are embeddings and

‘.A'BO'Bl € Z then there exist embeddings

. g, * Bi + C (i<2) for some C € I  such that °

‘holds then I admits the amalgamation property. : S
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If
(BBL; If there exists a functioﬁ frwrw suchvthat
it AcB € I then
£6lAl) = min{llC] | A;c C € 2}
holds then I admits the - iﬁg property.

If AcM and JAl < Ro implies that A c B c M for some B € 3

then M is Z-finite. If A € 2 implies that there exists an

embedding f : A> M then M is I-universal. I1f A,B €3, A,Bc M

isomorphism g : M+ M then M is I-homogeneous. Finallf if M
is Z-finite, Z-universal and'Z-homogéneous then M is L-generic.
Let I be a class of finite structures of L closed under\ﬁsomorphisﬁ. 7 /
Then f/
(1) 'If M and N are Z-generic thenntheré exists
'and isomorpﬁism £ ;rM + N
(2) If I is countablerand admits JEP and AP then /
M isrz—generic for some M |
(35 If M is Z—géneric and I is good and admits

BP then M is N _-categorical

0
(4) If M is I-generic and I is good and admits

HP then M is quantifier-eliminable

(5) If % is good and admits HP, JEP and AP

then M is I-generic, Re—categoriéai and
quantifier-eliminable for some M
hold. In 2.3 {(5) is used to show that certain complete theories admit
the versatility property of complete theories but omit the,partition’

property of complete theoyies.
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§1  Basic Definitions

1.0 Properties of Formulas-

A property of formulas is any sequence p = (p(i)[i<m)
of open formulas of BA (theory of Boolean algebra in the language

L = {0,1,c,N,U} interpreted in the usual sensey. Note that each

open formula of BA may be viewed as a finite disjunction of finite
Venn diagrams. If q)(;,;) is a formula of a complete theory T and

¥(z) is an open formula of BA then ¢(X,y) admits ¥(z) in T if -

p(|A]F ), F blog (ag) s e a0y (iay = 1))

= - 2(y) , 2 (x)
for some A FT and Bgreerdg g € A" (where P(JA|""*))

is viewed as the power set Boolean algebra of . Otherwise
¢(x,y) omits W{z) in T . Thus o¢(x,y) _,'_a_d.mi\ti_w(?) in T iff
some finite Venn diagram of Y(z) is admitted by some
¥ (x,y)-definable subsets ¢ (X,a.),...,0, (X,a ) of '[A]“;)' '
o A 0TI ITAT T (zy -1

for some A k T (note that since T 1is complete any A kT may
be chosen). If cp(;,;) is a formula of a complete theory T and

p 1is a property of formulas then o (x,y) admits p in" T if there
e)&’gs\@ strictly increasing s_equence' a € w® such that 9 (x,y)

admits p(a(i)) in T for every i < w . Otherwise o¢(X,y) omits

p in T . If T isa complete theory and p 1is a property of

f ormla&ihen;tidmitsfp—if_theze_exists_a_ﬁm&a_o@_of_T—

such that cp(;,;) admits p in T . Otherwise T omits p . A

principal property of formulas is any property of formulas p such
that thé’ﬁlriowing holds: If np(;,;) is a formula of a complete

theory T and q:(;,;) admits p in T then (p(;,;) admits p(i)
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in T for every i< w . A l-dimenéiohal property of formulas is any

property of formulas p such that the following holds: If T is a
complete theory and T admits p then some formulas w(x,;b of T

admits p in T . The principal part of any property of formulas p

is the property of formulas E;=(A p(i)[i<w)v where it may be éssumed

J<i

by changing variables (if necessary) that for each i < w no variable

occurs in more than one conjunct of A p(i) . The o~-th part of any
j<i

property of formulas p (where a € ¥ is a strictly increasing
sequence) is the property of formulas p(a) = (p(a(i))[i<m) . The

intersection of any properties of formulas po,pl is the property

~ of formulas poﬂpl = {po{i}vpl{i)ii<w) . The union of any properties

of formulaé [}

. - 3l
,0,91 is the property of formulas pOUpl (po(i)Apl(l)ll w)

‘where it may be assumed by changing variables (if necessary) that for
each i < w no variable occurs in more than one conjunct of

po(i)Apl(i) - Using the above definitions the folloying lemma may be

- ".' ~
easily proved. P
Lemma 1
If @(;}53 is a formula of a complete theory T and p,DO,pl are

properties of formmlas then the following hold:

{1) p 1is principal

(2y 1If PyPy arxe principal then poﬂpl, pOU91 are principal
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(3) ¢(x,y) admits p in T
- :
@ (x,y) admits p(i) "in T for every i <w —
. 4 .

o(x,y) admits p in T

d——
9{x,y) admits pla) in T for some strictly increasing sequence

(4) ol(x,y) admits oftp, in T

-

~

7”"7@_f;’5jia_dﬂtr?6‘orfﬁz‘ i T —— —

(5) 9(x,y) admits p.Jo, in T
-3

: f;(;,;) admits D

L i f . .
o and pl in T (i .po or pl is principal

the converse holds) )
If s,a(;:—,;) is a formula of a complete theory T 1let
pfle (;,;),T) be some proper‘l;y of formulas e;ﬁumerating those open
formulas of BA which c{;,,_y-) admits in‘ T . If wi(;i,;i)(i < n)

are formulas of a complete theory> T ard 2.(;i) = 2,(;3_) {i,j<n) let

p(@i{xi,yi) {i<n), Y be the property of formulas p(w(;,; n z -\;),T)

_ =T = -

where ¢ix,y oz w) is the formula v (. (x.,v.) A g, =

: i 7174 i

i<n

—_—N -0 -
w A [ A z_  #w.}) . Thus pleix,y z -w, T) enumerates those
i | 3 °
i#i

open formulas of BA which the parameterized disjunction

vl {x.,7.) A& =w. A (( Az #w)) of the formulas
p s 1 i ) kS 4

i<n . iFL 7

£



o
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1.1 Properties of Complete Theories

If po,pl are properties of formulas then p0 is
equivalent to p1 {written po ~ pl') if po,p1 are admitted by the .

same complete theories. Clearly ~ is an ‘equivalence relation. A

‘property of complete theories is any equivalence class of ~ . If »p

is a property of formulag let [p] be the e;;uivalence class of ~

containing p . If q:(;,;) is a formula of a complete theory T - and

. () fp} is principal

% —is a property of complete theories then—g¢{(x,y) —admits 7 —in T
if q;(i',;i admits p in T for some p €T . Otherwise ¢(x,y)
E’f_s_ &!7 in T. If T is a complete theory and Ls is a Broper;:y
of complete theories then T admts T if T adnits p for some
p € ™ . Otherwise '1“ omits 7 . A principal property of c&lnplete
theories is any property of complete theories containing a principal -

property of formulas. A l-dimensional property of complete theories °

is any property of complete theories containing a l-dimensional
property of formulas. Using the above definitions the fbllowing lemma

©

may be easily proved.

Lesma 2
If T is a complete theory and p,po,p1 are properties of formulas

then the following hold.

(2) T admits [p] >
‘ -+
T admits ({p]
&
T admits f{p(a)] for some strictly increasing sequence. Q € ﬁsw



&
&
(3} T admits [poﬂol]
R bl o
T adnuta"- 'IDO] or [91]
(4) - ?‘*a@ts {pﬁi}pl}
T admits [p ] and [p ] (if p_ or p. is principal the
A4 " X i v Py .
converse holds). | )
4
*
e \" .
-

ekt T a1
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1.2 Ordering Properties of Complete Theories

Let P be the set of properties of complete theories and

iat PP be the subset of P consisting of principal properties of

complete theories. If gO' Hl € P let HC; < T, mean that every

1

oo i x . > a‘__ﬁ » EE 1
'El';j':i,izé 1 3 1 [ 3 0] 1
every complete theory (in the language of ong binary predicate)

admitting 'ﬁl admits 7?0 . Obviously (P,<) and (PP,<) are posets.

Theorem 1

i bt s s

The poset (P,<) is a lower semilattice which is digtributive in the

e i St 1

/‘
following sense: If 7, HO,\ﬂl ¢ P and T,V T exists then

TAT TAT i T AT T ) = ("W AT TAT .
( 7 O)V( 1) exists and (OV 1) { O)V( 1)

T, T T i3 gt T VT i i1 T AT
If =, o' M1 ¢ P and vV T 1 exists then v ( o l)
exists and T V¥ (?Fo A vsl} = {(n vV TI'O) ATV ﬁl) . The poset (PP,<) =

is a distributive sublattice of (P,=

Proof . : \
Suppose ITO = [po] € P and 1Tl = [pl] € P, 1f 7= {po n pll

then Lemma 2 shows that '

N ek s §

{1) If T  1is a complete theory then T admits T iff

T i b1 v
admits "o or 1

o ' and from {1} it follows that for every 7 € P

{2y T = ‘40 A El iff 7w satisfies (1)

- 3

so {2) characterizes meets in (P,<} . Thus (P,<} is a lower

semilattice. By Lemma 1 ‘JO A T:'l ¢ PP if TTO, Trl € PP so (PP,<




"”‘”’f"igw';”70r““ﬁgf€"FP”Wthén”fﬂ‘”V‘ﬁ‘*”exiStST‘iﬁfifﬂﬁé‘l“ﬂa‘Vgﬂigégpp if

b 5
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is a lower semilattice. If p0 is principal or pl is prihcipal and

T o= [pO U p1] then Lemma 2 shows that ' L

(3) If T is a complete theory then T admits 7 iff T »

2

dmit ki a m
| a s 0 an N

and from (3) it may be proved that for every m € P

(4) w= WO v ﬂl iff T satisfies (3)

so (4) characterizes jqins in (P,<) . Obviously if 7 satisfies (3)

mT=T T . ) T="T m™ . £ w_ € PP
then 0 v 1 Thus suppose o v 1. I 0 or

T € PP then Lemma 2 shows that T satisfies (3) since it may be ’

assumed that po is principal or p1 is principal.' Thus suppose

ﬂo f PP and ﬂl ¢ PP . Then by Lemma 2. [po(a)] > WO and

{pl(B)] > T. whenever «, B € o’ . are étrictly increasing sequences

5

" {hence [po(a) U pl(B)] 2»“0 Y “l = T since

(0,0 U P (B11 = [p (@)1, [ (B)] by Lemma 2). But if T 1 a

complete theory which admits m, and ™ then Lemma 2 shows that T

-

admits {po(a)) and [pl(B)} for some strictly increasing sequences .

o, B € ww SO byhlfmua.z T admits [po(a) U pl(B)] so T admits T .

¢

Hence T satisfies (3). From the above it follows that ,Lif T_ € PP

o

[

9 1

\

» € PP and 7w € PP so (PP,<) is an upper semilattice so it is a

?ro\ 1-=43 111
lattice. The distributivity of (P,<) and (PP,S) follow from (2)

and (4).
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{mepPP | T admits  T}.

If T is a compléte theory let I(T)
From (2) and (4) in the above proof it foilows that I(T) is a prime

ideal of (PP,s) .

Theorem 2

If Ta(a < B) are complete theories (withmut functions) then

(T T)= ¢ I(r) .
ab *  ag ©
,Proofr

Suppose 'Td(a < B) are complete theories (without functions)

in the languages La(a < B) and suppose T = £ Ta is their disjoint
o<B

ASY ."‘

sum in the language L Ld obtained by adding unary predicates
o<fB - .

Pa(a < B) to the disjoint union of the 1angu&g€§‘TLa(a'< B) . It
suffices to show that Z I(Ta)VCVI(T) 'éﬁdi I(Tj c i”;T(Td)V;
o<B : o<fB

To show that L I(Ta) cI(m it sﬁffices to show that I(Ta) cI(m.
o<B ’ :

for every O < B . Suppose T € I(Td) for some O <« B'. Then
W(;)§), admits T in Ta for some formula ¢(x,y) of Td .
It suffices to show that some formula m(;}§'n z) of T admits V

7T in T . But letting ¢(§)§'n z) be the formula

P

o= o - _ : = _
() _E?'Y) A Pa(x) A Pa(y) A z, = zl) v (( V'1Pa (x(i))) A 22 = z3)

K : i< (x)
0 —

—_of T . it is easy to show that Y(x,y z) admits in T any open
formula of BA which ¢(x,y) admits in Ta . Thus Y(x,y 2)

admits T in T . To show that I(T) ¢ I I(Ta) it suffices
o<B



to show that for every T € I(T) there exist Ty € 1T )03 < n) 3

¥

such that T= Vv Vv T .
j<n i<n

T in T for some formula (p(;,-f)

th xist £ (X, ., Y.,
ere exis ormulas wij(xlj,ylj)

< . #

3 ‘ /

Suppose . T € I(T) . Then ¢ (x,y) admits

of T . It is easy to prove that

of Ta (i,j<n) and open formulas
i

T 7’77\T'7”V"” 'ﬂ?ff —— It suffices ﬁto**shbwthat—TPadmtts—ﬂ*.‘Sinceﬁ %'7,7777f'7

T b oo(x,y) < Vv

@f (x. Y. ) is ¢

x of EQ (i < n)

v..)

. (x,
?in'*in'¥in

x  — —
A (pi(x,Y.)

— §f<{}~j§31”~——37 i
X =x Yoo U; (i < n) _=;
io . in ¥ =¥
P
(o 30
* (%.,7..) is 3% .,5.0 AP
Ci5%157Y5 5 i3 ¥i37Yi57

in "in “in in

(xin.yin) A (‘A ‘]Pa.(xin)) A ('A i
J<n j }<n

such that

where ) . R
U e e U—

yin(l < n) ,

"(x,.) AP (§;j)qu<n) and

J a. 13 a

J- J

_(Yin))(i < n).

)4
o
-]

For notational convenience assume that r(;; j) +-r(§i j)r whenever

i <i.<n and j<n. Let x =

0] 1

L . -
i,jxn 1let i3 [pij], where pij

= T ) = -
i<n let in [pin] where Vp,

1 ‘n' 3 Y .
Obviously i3 € I(Ta..) (i,3<n)
1]
mT=s Vv V T,. . Thus suppose T'
j<n i<n t

j<n i<n

0 1

(X _ .00 :sX ) . For each

0 2(x)~1
= p(¢, . (X,..¥..)s T ). For
p(¢ij(xij'yij)’ Taj) or each

p(win(xin,yin), EQ).

It suffices to show that

is'a complete theory which admits

b
L

admits vV VvV ﬂi.
}<n i<n

such that ¢, (z,,,w..) admits p,.
i3°7137743 ij

there exist formulas wij(;' oW, L)

'f T' . .
157715 o (i,J<n)

in T'(i,j<n) . Obviously T'




admits Trin(i < n) so there exist formulas VY, (z

.. ) of T (i< n)
in in in .

(namely the formulas (pin(;

in'yin) (i < p)) such thatv lpin(z, JW, )

in in

admi. ts pin in T' (i < n) . By changing or adding variables

(if necessary) it may be assumed that E—i = _z-if_i (i<n,j=n) for

= =

sequences of variables ;j (j = n) such that

— - _ _ .o _ - -
r('zjio)>ﬂ r(zjl)r 7¢ Fjo <3 -,,n),. For erach k< Z(X,), let xk be

a distinct sequence of variables of leng>th n and let g
X=x ﬂ...ﬂ; -, Also let 'R(x x .) (j <n) be
0 2(x)-1 " 2t Ry MXgreese¥pg) Y

) (3 <n),

Rj (’xo, .o ,xn_l

formulas of T' such that T' | 3x_0...3xn_l

T | 13x0...3xn_l(Rj_ (x,

5 ’ ,Xn_l) le(x r 'xn—l)) (Jo < Jl < n)

0]

and T' |_ 3xo...3x A '1Rj(x0,...,x' Y . Furthermore let

n-1 n-1
i<n .

V. (% '_z—j',;v- ) be wi.G.,G S A A Rj&k)) (i,j<n) and let

j 3 i _
€ !
xk r(xij)

¥, (x Zn,G.n) 7- be win(En,Gin) A (A AV-.le (Ek)) (i < n). Then letting
J<n x -

N Z.,%..) it is not difficult to.show that

- x =
N A -
Y (x =z,w) be VvV llrij(x ‘zj i

i<n j=n

d)*(}—_c nE,;) admits in T' any open formula of BA which (p(;,y)

i AL a2 1 L et e R GBI i i i e

L e =N == . . -' .
admits in T . Hence d)*.(x z,w) admits . T in T' so T' admits .

It may be proved that Theorem 2 fails for direct produéts of
theories. In fact Wierzejewski (1976) provides a structure A such
that T = ThA admits the order property of complete theories yet

TxT = Th(AxA) does not. Hence I(TxT) # I(T) = I(T) + I(T)
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1.3 Ordering Complete Theories

Let' T be the class of all complete _theories. If TO'Tl €T

let T0 -« Tl mean that every property of complete theorieg admitted by .

i i : . v iff 1 C .
TO is admitted by Tl | Clearly T0 - Tl i (TO) I(Tl)
Hence . (T,«) . is a preorder. If T.T £ T let T =7 mean that

TO < Tl and Tl - T0 . Clearly = is a congruence on (T,«) . Hence

(T|_,«]_) is a poset. Note that if T, € T then ‘T, E T, for some

N

< min {|T0|,2 0}. In fact

T, (without functions) € T such that ITll =

1

suppose T, €T . lLet J(TO) = {m € I(TO)ITT [p((p(;,;),TO)] for some

formula o¢(x,y) of TO} and for each 1 GJ(TO) let’ T be the

<

complete theory in the language of one predicate Pﬂ(;,‘;) obtained by

interpreting P_(x,y) as- ¢(x,y) in T_ . Letting T K6 = I Ty
m o .

meJ (T,)

it follows from Theorem 2 that . I(Tl) = I(TO) . Thus T may be

viewed as the set of all complete theories in a language consisting of

N .
2 ‘0 predicates of each arity (including 0). Note that if T (o< B)

" are complete theories without functions then it follows from Theorem 2

that ( Z Ta)l= = Vv (TU'I ) . In fact Theorem 2 shows that T P I(T)
a<B T =B = :

induces a join-'preserving embedding (Tl=,< l:) +> (Ideals (PP,s),C) .

-~ _Hence f,U:| ,:,4_],:)'_i&amuppez,,semilaj:tice;fﬂinally_no,te_thai;if T0

~is locally definable in T

-

then T, <« T, . Thus _ -
v ES -

TXT«T (so I(Px T c I(T) = I(T) + I(T)) for every T €T .

Also EQ « T for every T € T . Hence (T|_,<«|.) is an upper

semilattice with a smallest element (namely EQI___.) .

-



.+ _apd T ds A-irreducible in" (P,5) .
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1.4 Archetypal Properties of Complete Theories
If T €T and T € P then T is archetypal for i
(and T is archetxégl)'if the followihg holds: T admits w' iff

e <.ﬂ . Note that if W € P and 7w is archetypal then T € pP

Hence T is archetypal for T
iff T € PP and I(T) = {m'€PP|m'=w} . From Theorem 2 it follows

that if Ti is archetypal for ﬂi (i < 2) then TO + Tl is
archetypal for ’ﬁb v ﬁl . Hence if W . is archetypal i< 2)

v T, is archetypal. Finally note that if TO is archetypal

then ﬂo 1

. + E ) B . HE
for ﬂo and T1 admits ﬂo then TO T1 T1 since by Theorem 2

I(T0 +T)) = I(To?.+ I(Tl) C'I(Tl) + I(Tl) = I(Tl) c I(To) + I(Tl) =

I(T0 + Tl)w.

=
\

. 2}
s
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1.5 Prime Properties of Complete Theories

If W € P then T is Erime'if the following holds:. TO + T

¥

1
admits m iff TOV admits T or T1 admits ﬂn. i ’
Theorelfl 3
If m€P then T is prime iff T is V-irreducible in (P,=<) .
Proof

Suppose T € P'} T is prime and T is not v-irreducible in

1 0] 1 1

{P,<) . Then = ’=*7r6 vm, for some Tw_, m., € P such that Tl'o',' T < 7.

Hence there exist TO, T. €T such that T0 admits T but not T

1
i ' m . + + T
and T1 admits ﬂl but not .. But T0 < T0 T1 SO T0 1
i . imi + T i T, . + i
admits ﬂo Similarly TO T1 admits 1 Hence T0 T1 admits
no v ﬂl =T . Since 7 is prime it follows that T0 admits T or

T, admits T and this is a contradiction. Suppose T € P and T

is ' v-irreducible in (P,<) . It suffices to show that is prime.

Thus suppose T0 + T, admits 7T . It suffices to show that T

1 7o

admits T or T1 admits T . Let T = [p] . Then T0 + T1 admits

[p(a)] for some strictly increasing sequence o € ¥ . Hence

[pla)] ,E I(TO + Tl) = I(TO) + I(Tl), SO [p’(a)] =T, v M. for some

: 1
, £\
- e M < - =
T € I(TO) and m € I(Tl),._But A < [pla)] Ty V 1T17 sO
To= (T AT VAT A ) . ‘Since T is v-irreducible in (P,<) it

follows that T = TA T, or T =T AT, . Hence T, admits T or

—0- I ©
T admits T t

1 . ' -



Corollary 1 ™
£ m M ¢ P are v-irreducible in (P,<) then Ty ATy is
V—irreducible in (P,3) .
Proof
| Suppose W,}Vﬂ € P are v-irreducible in (P,= ; By

0" 1

Theorem 3 WO' ﬂl afe:prime. It follows easily that HO A ﬂl is prime.

By Theorem 3 T A L is v-irreducible in (P,=) .
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§2 Basic Examples

2.0 The Minimum and Maximum Properties of Complete Theories
Iet O be a property of formulas which enumerates the open
formulas of BA. Since EQ «T for every T € T it follows that EQ

i

}A—\-~7AﬁAffgvfAuuisgarchetypaluforkélﬂlAékﬂehce [0]1 :is archetypal so [0] € PP and

: [0] is A-irreducible in (P,<). Furthermore [0] < m for every = € P.

] Note that if T € T then T is archetypal for [0)] iff T <€ EQ .

Example 1
Let 0<n<w. If T ThA = Th(lAl, P4r Ey) where 1Al =

c |A| ana E4 c Py X ([A] - By is the graph of some bijection
PA + (|A] - PA) it is easy to shOW'ﬁhat T is definable in EQ.
Hence T <EQ so T is archetypal for [0].
Example 2 : -
‘Let T = ThA = Th(|A|, Pi)i<w where |A| > w and the Pi CVIAl (i<w)
are independent (each finite Booleah combination of the P? (i<w)
is nonempty). It is easy fo show that T is ;oca11y d§finab1e in
EQ. Hence T <EQ so T ig_gfchetypal for [0]. . Note that T is

superstable but not Nd~stable.

£ ) E@. le 3

i .

i . Let T = ThA = Th(|A], where |A| :_xo and the
A

LI - E1 C LAi‘x_iAjAilsmlggaregequlnalence,relatlgnsgsugh that for every

i < w each equivalence class of Eé is the union of infinitely many
L

equivalence classes of Ei?lA . It is eésf to show that T is

locally definable in EQ. Hence T €4EQ so T is a:chetypal for

[0]. Note that T is stable but not superstable.
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et 1 =0. Obviousfy [1] € PP and ¥ < [1] for every
m € P . Note that if ¢(x,y) is a formula of a complete theory T
then cp(;,;) admits 1 in T iff for arbitrarily large n < w there
| M“;)

exists A }= %,and a partition of into n w(;,;) ~definable

subsets such that the union of any m < n of them is also

e X, y) —defi : <wlet I —be a property of —

formulas such that if w(;,;) is a formula of a complete theory T
then w(;,;) admits ln in T iff for arbitrarily large n < m'< w
there exists 7A}= 'Ii‘”\ and m cp(;,;_i -&eifinéble éﬁbséts of Mlzrﬂ ' -
such that the union of any £ < m of them is also ¢(x,y)-definable
but the intersection of any ¢ f m of- them is nonempﬁy iff £ <n .
Lemma 3 -
If T is a complete theory and 0 < n < w then the following hold:
(1) If some formula cp(;,;) of T admits —J'n in T then some

formula wg,;) of T admits 1, in T

o l
s

(2) If some formula ¥(x,z) of T admits 1, in T then some

formula x(x,#) of T admits 1 in T .

In particular [1] = [ln] (0 < n < w).

Proof
Suppose the premise of (1) holds. Letting #»(;,-z-) be
- = * - - _ =-N=0n 0n-= y
p(x,y} A { A zp(x,yi)) where z =y Yo ++ Yoo it follows

i<n-1

easily that ¢(x,z) admits 1 in T . Suppose the premise of (2)

holds. Letting x(x,w) be (¥(x,z) A wol =w) Vv ( v(x,z) A w, = w)

= _=N N n N
z W, W, W

where w = w, it follows easily that x(;,;)

0 1 2 3
admits 1 in T .



-~ preserves unions it follows easily that x(z,w) —admits £ in
- Agﬁ4By_LemlEL;LJazna4farnnlaggﬁiz+;lggadnits;4144in44144441f41214h9;ds

30.

Theorem 4
1 is 1-dimensional.
Proof

Suppose m(;};é is a formula of a complete theory T which

admits 1 in T . It suffices to show that some formula w(z,;) of

T admits 1 in T . Por notational convenience assume that

- n n -
x f xo xl . Thus w(xo Xgs

compactness theorem there exists A £ T and nonempty, disjoint

¥y) admits 1 in T. By the

p{x

5 n X, y)-definable subsets Ai‘ of JA] x |A] (4 < w) such

»
that U Ai is also ﬁ(xo f x5 y)-definable whenever S C w -and
ie€s '
Is] <M,. For each i <2 let £, : |A] x |A] > JA]| be the i-th

projection of |A]l x |A| onto [A| (thus £, (a;,a;) = a, whenever

agsay € IA‘}. By the compactness and Ramsey theorems it may be

assumed that N £,(2,) $ 4 iff N £,(a,) $+ ¢ whenever
éESQ 1651

Syr Sy Cw and [SOI = !Si! < Ny. Thus either (1) there exists

0 <n < w such that £,(a) $+ ¢ iff |S| < n whenever |S| < w
i€s ’

or {2) N £,(A) %4 wvhenever Is] <w . If (1) holds let
i€s

x{z,w) be 3xl¢(x0 a Xy y) where z = X and w=1y . Since f

3

_ _ 1 - _ -
let y{z,w) be w(xo Xy, y) where z = Xy and w = X,

Since fl preserves disjointness whenever a2, € IA‘ it

fD (ao) ’
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fbllows easily that ?(z,;) admits 11 in T . By Lemma 3 some

formala ‘b(z,;) of T admits 1 in T .
Corollary 2
{11 is prime. " s

Proof

S WWWWAM
SUppo i

i B ‘ . i<2
{1}1. It suffices to show that Ti admits [1] for some i < 2 .
Since z Ti admits {1} Theorem 4 shows that some formula q;(x,;)

of LT admitslin I T . Let L "Ai E oz T,. It is easy to
i<2 i<z * - L 4<2 i<2

prove that there exist formulas cpi(x,;i) of Ti (i < 2) such-that
every o(x,y)~definable subset of | I Ail is the union of a
i<2 .

wo(x,;o)-definabl'e subset of ]AO{ and a cpl(x,;l)-definable subset

of |A From this it follows easily that b5 (x,;i), _admits 1, in

1}'

Ti for some i < 2. By Lemma 3 Ti admits [1].

5

Example 4
Let T = 'I‘b.A = 'I’h(%AI ' ?AJEA) where i%Au ZRO D)

By S Py % (Hi-—PA) is t!je graph of some bijection Py ‘P(M{ - PA)'
Letting o(x,y) be BE{y,x} it is clear that o¢(x,y} admits °11 in

T . Hence T admits {1].

ie o

et T =ThA = Th{w,0,1,+,*) where A is the standard model of Peano

arittmetic. Letting g{x,y) be a formula of T which asserts that

’




e arE T o

X is a prime divisor of y it is clear that ql(x,y) admits 11

in T . Hence T admits [1].
Example 6 s “
Let T = ThA where A is an infinite Boolean algebra containing

admits 11 in T . Hence T admits [1].

infinitely many atoms . Letting cﬁ(x,y) be a formula of T which

asserts that x is an atom contained in y it is clear that o(x,y)

Example 7

Let T = ThA where A is an infinite Boolean algebra containing no (\

atoms. Then T omits [;1. Otherwise some formula o¢(x,y) of T

admits 11' in T . By tbe conpaqtf\ess theorem it may be assumed

that there exist nonempty, disjoint, cp(x.;) ~definable subsets Ai . > e
of |A}l (i<w) such that the union of any finite number of them is

als_o q:(i?,;) -defin.able. Prom the lwell—known result that T is
quéntifié\rﬁ\lininable and X ,-categorical it follows easily that

for some n < w every o(x,y)-definable subset of ]A] is the } n

of at most n n-basic subsets of IA[ where an n-basic subset of

[A] is any‘sub\se\t of |A] of the form

{a,b] = fa € A} a;caca AlA {hi+0fbiﬂa+0Abi:-a+0))}

1<n _
Mﬁnqﬁm#fﬁibﬁal—anﬂ Alj of
bi < al—-—ao—frfn?.—ﬁms—there—exxst—rr-bastc—subsets of “
Al (i<w, j<n) such that Ai = Y Ai. for evé::y i<w. Rote that if

3<n

2 =[a,b] and A' = [a',b'] are n-basic subsets of |A| then

~

“~
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} = {bé,.f.,b‘ }

A=A" iff a_=a a, =a; and {bo,.--,b b 17

0 c." 71 n-1
i1f A= [a,b] and A' = [a',b'] are n-basic subsets of IAI let

-

ASA' mean that al Caj Aa < al and let A = A' mean that

,f A<A' and A' < A. Using Ramsey's theorem it may be assumed that
A, . A, . iff A . = A —whenever i ,i',i A ri—F<w
1030 1131 1230, .1331 Q"1 2 3°0°1
and i,-i, ia-iz have the same sign. If &, A' are n-basic

13

subsets of Al - then a’ covers A if  A<A' AANA' % 4 .

Obviously A' covers A if A’ = A. It is easy to prove that if
A= [a,b] and A’ = {a',b'] are n-basic subsets of [A| and
A <A' then A' doés not cover A iff 0 # b; < a - a) or
8] % bi.c air- a, for some  i<n . éiom.this it follows easily‘that

if A < A' < A" are n-basic subsets of |A| and A" covers A then

A" covers A'. It is also easy to prove that if A, AO: veer Ao
are n-basic subsets of Al and AcCA_ U ... URA then A,
0 m-1 i

covers - A for some i <m . From this it may be proved that for

> z . ] ‘e <
each ig < n there exists some f(]o) < n such that Aojo = Alf(jo)
and & 3 ’is <-maximal among the A, ., (j‘<nl or t

1£(3,) , 13

A, =A . and 2 .
o Gf(JO} Of{jol

Indeed let jo <n . Since U Ai is- @(x,§}-definable there exist
. i<n

is <-maximal among the Aoj;(j-<n).

n-basic subsets B, of |A] (k < n} such that UA, = UB_ . 1In
k j<n T k<
. i<n n

particular A, c LB for i <n so there exist i_ < i = n
130 k<n x ° 1

and k, <1 such that B~ covers A, . and A, {thus
- o *o70 170

SR S

it hatcin 1. tkonis. b L



. B and A. . = Bk ). Since Bk c U Ai. there exist
070 0 170 0 0 i<n *

i, < T3 < <
i, n and jl n  such that Ai . covers Bk (thus Bk : Ai

3, <n such that A, . <A, . and A, . is Z=-maximal
2 i j i 2

Choose
271 292 1o

271 %o 0 271

34.

(3' <n). Obviously A, .
'
27 100 2

among the Ai

< » > 0 > . N <
Ai 5 = Ai 5 If i,z 14y it follows easily that AOjO'— Aljz

and A_, is =-maximal among the Alj' (3' <n). Similarly if

> % < » 3 + < ‘ 3
i, i ‘1t follows easily that Aljo = A0j2 and A0j2 is

=-maximal among the A__., (j' < n). Letting f(jo) = j2 concludes

03

the argument. From this it follows that for some jo < n either
A, <A, or A . <A, for some m =< n . Indeed choose j
03o mjo ij 030 0

such that Of(jo) is cyclic where Of(jo) = {fl(jo)]i<m} for some

<n'

m=<n is the orbit of j under £ . It suffices to prove that if

o}

A o

A, A . then A . =< A . but if A, =< A . then
O]O lf(jo) ‘ OJO mj, ljo Of(JO)

. - Suppose A.. <A . v» Then A . <A "
03 03y~ 1£(3y) £ 1 13

A
»

for every 1 <m . Otherwise A \ =A | yet
. i-1,. s R
i-1f (30) 1f-(30)

o

A . =& for some 1 < m ., But then

£

L = a so A . i .
i-1877(5) iEF7(5) i-1£77(5
- ) 0 0
¢

1]

A i+l (since A . is
i-1£" (35 1-1£777(3 )

&
b

ie1 = A A
i-1£ (jo) i (30)



A 3 A LA | .
<-maximal among the Ai-lj' (3' < n)) so A. i-1 na + ¢

so A, n A, $+ ¢ and this is a contradiction. Hence

A. =A <a =A ., . Similarly if A ., =<A__ .
0,. m, . St
%3o  of (3  =E () ™o 135~ 0£(3)
-~ _then A g#;gAAAAgggg,iii, ,,,,,,,,,, for every i <m so

N . .
m-if (JO) m-i-1 £ (30)

= A = From this it follows that for

Am. 0 A - = AO.
o nf (3,) Ofm(jo) 3o
some j0‘< n either A,, <A (i <2n) or A <A.. (i< 2n).

}jo i+1jo » i+1jO - 1]0

Since Ua is @(x,?}-definable there exist n-basic subsets Bk

i<n 21
of |A| (k <n) such that Ua, = UB,_ . In particular
. . sen 21 k
i<n k<n .
c . < . . . <
A2ij U Bk for i < n so there exist i, < i, =n and ko <n
0 k<n
such that ‘Bk covers Azi . and Azi . . But
0 olo 170
A_.-. <A_. . =B or A.. . <A.. .. <B so B covers
+ -
21030 . 210 1]0 ko 21130 21I 1]0 ko ko.
a,. . or A,. . . In either case B, N (UA_, ) $¢ so
+ - +
210 130 211 130 ko i<n 2i+1
(UBY N (U A2i+1)_+ ¢ so (U, )N (Uay,, ) 4 ¢. and this is
k<n =n i<n i<n .

<

a contradiction since the A, (i < 2n+l) are disjoint.

e : Wﬁf44uf~Examplesgefaad41AshQWLthatﬁsomegtheoriesgofginfinite

S _ Booledn algebras are <4-maximum while others are not. In fact if

- : A,B are infinite Boolean algebras then ThA = ThB iff either both

A,B contain only finitely many atoms or both A,B contain infinitely

many atoms since it may be shown that if A contains only fipitely



many atoms and B contains no atoms then A is essentially
definable in B (and vice versa). But all theories of infinite
Boolean algebfas are <-maximum since it may be shown that they

admit the versatility property. Thus T0<l Tf does not imply that

<4
TO Tl .

Example 8
et T = ThA = Th(lBl Uss, 0, 1, N, U, ¢, E) where SB is the

o

Stone -space  of -an infinite atomless Boolean algebra i
B=(|B], 0, 1,0, U, ¢ and E C |B| x sB is defined by E(b,c)
iff b € c (b € |B|, c € SB). Letting ¢(x,y) be E(y,x) it is

clear that ¢(x,y) admits 1, in T . Hence T admits [1]. Note

1
that T is No—cétegorical (use a back and forth argument).
Exazﬁple 8 shows that some countable complete N 0-categorical»

theories may be <maximum even though 'countable completér non-

‘N_-categorical theories cannot be definable in them. .Thus T0 < Tl

0

does not imply that T

o is definable in T, .

1
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)

2.1 The Finite Cover and Partition Properties of Complete Theories
let fcp be a property of formulas such that if ¢(;}§) is
a formula*of a complete theory T then cp(;,-f) admits fcp in T

iff for arbitrarily large n < w there exists A F T and

n ¢(;,§)-definab1e subsets of such that the union of them v o

s 2 =) .
but the union of any n - 1 them is not |A|8(X)f_1n fact .

is

let.fcp(n) be~(x0U...an_l = 1) A (. XOU"'Uxi-l
. m i<n

Uxi+1U...an_1 $ 1)
for e#ery n<ow. §ﬁéi;h (1971) pfovéd that fcp is i-diménSionai.'
Uéing this result it is easy to prove that [fcpl is primé (see the
proof of Corollary é)i; Keisler (1967) proved £hat if T is a
countable complete theory which admits [fcp] then T is not
Nl—categorical, |

LI

Example 9

Let L be a language consisting of a binary predicate ~ and let EQV = !

be the theory in L whose axioms are

W‘— XNY'*Y'\.JX

XNy AN Yy~ ZFIXA~Z

3y .. 3x 0 A x.+x., (n < w) :
i<jen * 0
‘n n E
77777 ) B I yly ~ xg) A I3 yly m,xl) > Xy~ Xy (n < w

If S, TCw let EQV(S,T) be the theory in L whose axioms are




EQV
3x3:ny(y ~ X) (n € S) -
133y (y ~ x) (n €T

If S Cuw let EQV(S) be EQV(S,w~S). Note that EQV(S) is

complete whenever S € @ . Furthermore if |S| < No’then EQV(#S) < EQ W
(so EQV(S) omits ([fcp]). But if |s] = No and ¢(x,y) isi-'

X=y Vx +7y then -9(x,y) admité fcp in EQV(S). (so  EQV(S)
admits [£cpl) - |

If S, TCw and |s|, |T| <NO let (S,T) be the_sehtence

(A B3Iy v x)) A (A T3 (y ~ x) of EQV.
n€s n€T

Lemma 4
If ¢ is a sentence of EQV there exist sentences '(Si’Ti)' of -

EQV (i < w) such that EQV | ¢ « Vv (8;,T;) -
i<n

/dfgﬁ%bf. ' , .

Suppose ¢ 1is a sentence of EQV. Let ¢ be the set of
, .
all Boolean combinations of the sentences I3y (y ~ x) (0 < w).
Clearly ThA = ThB whenever A,BEEQV and ThAN ¢ =ThB N ¢ .

Let ¥=1{¥ €% | EQV|o~y}. It suffices to show that EQv U ¥ | o.

Suppose not. Then there exists A )= EQV U ¥ such that A i="\q> .

”tetf3Ef=‘{X‘€;¢‘+*A‘Fﬁx}7“‘ﬂotE"that‘if”48‘%fixﬁf1}3(:4theﬁ4“34F41¢”%AALAAA*

(since ThA = ThB). Hence EQV UX } Vo so EQV | x > Jo for
some x € X. . But then EQVI-QQp—*‘]x so Ix € ¥ X . Hence

¥
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both ¥, 9x € X and this is a contradiction.

: If SCu and |s| = R,

following holds: If o, BC S and |a| = |8] =X, then EQUV(a)

then S 'is thin for fcp 1if the

* admits fcp(f) iff |8 - al < NO' Note that infinite subsets of thin

sets for fcp are thin for 'f,cp.

Lema 5
Thin sets for fcp exis;t.”:
Proof B
For each formula o(x,y) of EQV and n < w le‘t <

(¢ (;,;) , n) be a sentence of EQV which asserts that cp(;,;) admits

fcp(n). By Lemma 4 EQV } (p(x,¥),n) <> V (Si'Ti) for some
. . ’ . i<m .

ST, Cw (i <m. If S =¢ for some i <m then o(x,y) admits
n-. Otherwise ¢(x,y) omits n . Obviously 'cp(;,;) omits n- for
.sufficieritly large n < ® (otherwise cp(;,;) admits fcp in

EQV(¢)). For each n < w such that. w(;,;) omits n let

S(e(x,y),n) € v be defined by choosj.ng some 8i € Si fo;: each
i <m such that §; ﬂ T, = ¢ . Suppose S Cw and |S| <N -
Then for sufficiently large n < w S(cp(;,;) ,n) may be defined
so that S(¢(;,;) ,n) N's=¢ . To show this note that for every

T C‘Sicp(;,i) omits fcp in EQV(T) (since |T| < NO)' Thus for

sufficiently large n < w it follows that for every T € S

EQV(T) F e (x,¥) ,n) (since |s] < R - But for such n < w it

follows that s, ¢ s for each i <m such that s, n T, =¢ so.

define S(qJ(;,_K—\) ,n}) by choosing some 8i € Si - S foreach i <m
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such that Si N Ti =4 . Le? @i(xi,yi)(l < w) be the formulas
of EQV and let wi(E;,Gg) (i < w) be the formulas of EQV obtained
by letting wi(E;,;i) be the parametrized disjunction of the formulas

¢j(;5'§5) (j <i) for every i <w . Let S ='{ni|i < w}  where

< < < 400 < ar a 1 s <
Mo TP T R w_are chosen as follows: Choose n, < SO =

Z W ; . < ... < <
that wo(zo,wo) omits nO If n, n._q w have been

chosen so that wj(Eg,Gs) omits -qj (j < i) and so that

,...,n._l} = ¢ (j < i) choose

S(wj(zj,wj),nj) N {no""fnj- 1

1'nj+1

n. > n, so that w.(;l,;l) omits m, and so that
1 i-1 i 1 1 i

ni f jgis(w.(zj,wj)(gj) and.so that S(¢i(zi'wi)'ni) n {no,-..,ni%1]'=¢.

It follows easily that if i <w , a €S and EQV(a) } (wi(;;,;;),ni)

then n, € a (since S(¢.(z,,w,),n,) N8 C {n,}). From this it
i A TS R i

follows that if a, 8C S and |a| = |B] = N, then EQV(a) admits

fcp(B) 4iff |B - a] < N_ (since EQV(a) admits fcp(B) iff,\pi(Ei,;i)

0
admits fcp(g) in EQV(e) for sufficiently large i < w). Hence §.

is a thin set for fcp .-

Theorem 5

The poset of subsets of w(modulo finite sets) may be embedded into

(PP,<) in such a way that finite joins are preserved.

Proof

Let S be a thin set for fcp and let S be the poset
of subsets of S (modulo finite sets). It suffices to show that §

may be embedded into (PP,<) in such a way that finite joins are

[
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preserved.’ For each o C S let £(a) = [?EETET].(where fla) = [o1
i£>»1a| <N and note.th;:\ £(8) = f(w) iff [B - af < N,

(¢, B €S) since S is thin f fcp . Furthermore

£(a) V £(B) = £(@ U B) (3, B CS). Thus f induces an embedding

f,: : S > (PP,<) which preserves finite joins.

Corollary 3 7 .
) N
PPl =20 .
Lemma 6
If o Cw and |a| = NO then - [fcp(a)] £ PP,
Proof
Suppose a C w, |a] = RO and [fcp(a)} € PP. fThen
[fcp(a)] = [p] where p is some principal property of formulas.

Let wi(;£’§£) (i < w) be the formulas of EQV. For each i <w

and n. < ... < n, < w there exists n. > n, such that
0 j-1 - ] j-1

w(xi,yi) omits -p in EQV (B) whenever B8 {) (nj_l,nj) =¢ . To

prove this note that _@i(§£,§;) omits p in EQV ({nO""’nj-l})

since EQV ({n }) omits [fcp] and [fep]l < [fcp(a)] = [p].

0’ "" ,nj_l

Hence ¢i(;£,§;) omi ts p(k) in EQV ({po,...,nj_l}) for some k < w.

By the compactness theorem there exists nj > nj__1 such that

wi(x ,yi) omits p(k) in EQV(B) whenever 8 (nj-linj)v= $.

But then wifxi,yi) omits p in EQV(8) whenever B8 fl (nj_l,nj) =9¢
since p 1is principal. From this it fdllows easily that

n. <n, < ..., < n 4 < n, < ... <w in a may be chosen so that for




Theorem 6

each 1 < w wi(§;,§£) omits p in EQV(B) whenever B I (ni_l,ni) = ¢, -

Let B = {n, | i <w)Ca. Then for each i < w ¢,(x,,y.) omits p
_ . i . i 7ii ’
in EQV(B) so EQV(B) omits [p]l. But EQV(B) admits [fcp(a)]l = [p]

and this is a contradiction.

el

B

The poset of subsets of w (modulo finite sets) may be embedded into

(P - PP, 5).

Proof ™
Let S be a thin set for fcp and let S be the poset
of sﬁbsets of S (modulo finite sets). It suffices to show that S
may be embedded into (P - PP,<). PFor each a C S let
, :

£(a) = [fcp (w - @)] (where £(a) = [fcp] if [w - a] <R} and

note that £(B) < f(a) iff [B - af <N (¢, B CS). By Lemma 6

- f(a) € P - PP (e« € S). Thus f induces an embedding

fl : § > (P-PP,5).

Corollary 4

N
[p-ppl=29°.

Lemma 7

If w(;) is a formula of EQV there exist formulas ai(;), Bi(;);

EQV | P (x) > i\(ln (czi (%) A,. Bi(;) A Y, (x) A 6i) and each

ai(;) states which variables occurring in x are equal, each

Bi(;) states which variables occurring in x are equivalent, each




Y5 (x) states that each variable occurring in x is either contained
in an equivalence class of,somg given finite cardinality or is not
contained in an equivalence class of /any cardinality among a given
finite number of finite cardinalities and egf;h 6, is (s;,1;) for

some S,,T. Cw .
i’71

Proof
Similar to the proof of Lemma 4.

- Ifpix;y) i a Eo;m}a of EQV let ploi{x,y)) < w. be the
smallest cardinality greater than all the cardinalities occurring' in
the formula \(l (ai(;,;) A Bi(;’;) A Yi(;';) A 5i) of EQV given
by Lemma 7. ;fn ABEEQV and m<w let A C B denote that B

may be obtained from A by adding equivalence classes of cardinalities

>mto A .

Lemma 8
If o¢(x,y) is a formula of EQV and A C B __ are models of EQV then
. - plp(x,y})
plo(x,y), TA) C plo(x,y), ThB).
Proof
Suppose o(x,y) is a formula of BEQV and A ¢ B ~  are

PED)

models of EQV. Let the formila w (ai(;,;) A Bi (x,y) A Yi(;';) A 61)
’ i<n

7fof—f—EQ¥”be43i¥ér§—P3LLema_L_Thus;

o EVFo(ey) < v (a.G,¥) ABGGY) AY () AS). Let

i<n

aO""';m-l € ]A{“y). If b€ M{Z(X) it follows easily that

2
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Ak ‘P(g';i) iff B k @{gf;i) (i <m). Similarly if b € ]BIZ(X) and

-

- L(x) . i = . s i

c € M[ (X). is obtained from b by replacing distinct, equivalent or
inequivalent constants occurring in b which are not contained in |A]
with distinct, equivalent or inequivalent constants (respectively)

contained in equivalgnce classes of A of cardinality > p((p(;,;))

which contain no constant occurring in a_, "";m—l it follows

easily that A += cp(g,;i) iff B F (p(g,;i) (i < m). Hence the

»{x,y) -definable subsets ,tpk(;,,;i) (1 <m of IA[Z(X) have the

same nonempty Boolean combinations in lA]&(X) as the corresponding

9(x,y) -definable subsets q’B{;';i) (i <m) of-" |B|8(x) have in

lBJJ(x) . From this it follows that p(e(x,y), ThA)C p(¢(x,y), ThB).

Lemma 9

If §,7Cw and |S - T| <R then EQV(S) 4 EQV(T).

* v

0
Proof

Suppose S,T Cw and |S - T]' <H0 . Let o¢(x,y) be a
formmla of EQV. It suffices to prove that p((p(;,;) . EQV{8))
< p(¥(%,w), EQV(T)) for some formula ¢(z,w) of EQV . By
Lemma 8 p(@(x,y), BOV(S)) C plp(x,¥), EQV(SU(T-p(p(x,¥)))). But

EQV(SU(T-p(p(x;¥)))) = EQV(T) since |(SU(T-p(e(x,¥))) A T | <K so

%@a,m,ﬁm}'mjusuy:ocw&.?nm in EQV(T) for some

formula ¥(z,w) of EQV. Hence pl(p(x,y), EQV(S)) <€ p(¥(z,w), EQV(T)).

Theorem 7

The poset of subsgets of w (modulo finite sets)may be

embedded into (Tls’ 41:).
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Proof .

ILet S be a thin set for fcp and let S be the poset of

" subsets of S (modulo finite sets). It suffices to show that S may
be embedded into (‘TI:, 41:)} Por each a C S 1let £(a) = EQV(a)

and note that £(8) + £(a) iff |8« af <K (a,8 € S) by Lemma 9

e EQWS, plo(x, ¥y ~S) b (e (x, ¥} ¥} > v (S.,T.). Clearly it may be

and the fact that S 1is thin for fcp . Thus £ induces an embedding

- .

f}s : S » ﬂs' <l§).

Corol 5 i NS - L
: Ry

Tler ol =27 - | -

Lemma 10 Q\

If cp(;,;) is a formula of EQV," ¢ is an open formula of BA and
s < p(cp(;,j_r)) there exist finite 'Si c m?P(cp(;,;) {i < w) such that
the following holds: If T N ple(x,y)) = S then o(x,y) admits ¢

in EQV’(T) iff 3ids, ¢ 1.

Proof

Suppose q:(;,;) is a formula of EQV, ¥ is an open formmla
of BA and S < plo{x,y)). Let (gp{x,¥).,¥) be a senténce of EQV
‘which asserts that w{;,;) admits' ¥ . By Lemma 4 there exist

sentences (Si'Ti) of BQV (i < n} such that

] o bl i ke s b s g

. i7i
i<n .o

assumed that { U {Si 53 Ti}i 1 p(gi;,;)'} =T;WW
i<n i .

be assumed that T, = 4 (i < w). Thus if T-Sw—and

7 N plelx,y)) = S then olx,y) adwits ¢ in EQV(T) iff Bic.si cm.

o
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¢

lemma 11° ~
Suppose SO' S1 Tw, ‘Soi = lsll = RO and T EvP . If (1) EQV(S)‘
admitg ® whenever S,c Sy U 51 and |s N SOI = |sn Sli = RO'
then (2) either EQV(S)) admits = or EQV(sl) admits w .
Proot
Suppose S, S1 T w , lscl = lsll = KO , TE€P, (1)~holds

and (2) fails. Let ¥ = [p] and let wi(E;,Eg) (i < w) be the

formulas of EQV. To obtain a contradiction it suffices to prove that

each ¢i(;;';i) omits g in EQV(S) for some S < s, U S, such that

! I = =N i X .,y
's f1 Syi |s. 0 Sl} . Note that if p(wc(xo,yo)) < n there

¢}

, P _{ c -
exist infinite S2 SO’ 53 Sl such that (32 U 53) On

(SO U Sl)'ﬂ n ,ang‘sgch‘ghat ¢0(x0.¥0? omits ,? i#, EQV(T{

whenever T C 52 Us

3 and T n =v150 u Si) Nn . To prove this

first note by Lemma 10 that for each i there exist finite

Sij T w - p(¢0(xo)yc))(3 < ni) su;h that t?e following holds: If

2

TCwg and T 0 p(wo(xo,yo)) ='(SO U,si) n p(@o(xo,yo)) then mo(xo,yo)

-y

admits o(i) in BOV{T) iff 33(5ij cT. 1f ¢0(§6,§6) omits ¢ in -

2 =5 5,55

m—.

EQV(SO U Sl) simply let S (use Lemma 9).  Hence

assume that @0(;6,§5} admits p ;n EQV(SO U Sl)} For notational

‘,/T*s\\\g

" - = ¢
convenience assume that wo(xc,yo) admits each p(i) in BQV(SO U Sl)'

Note that Sij < S0 ¥ 51 Vzlp;les sij n SO + $ - and -

-



A i . \‘_,___'
S'j 1 Si”* ¢ (1 < ni) for sufficiently large i < w because other-
i

wise it follows easily that (2) holds. For such i < w let

]

fo(zi = min (max(?ij N SO))
3 <m,
iy } i3 - s0 u sl
1
J .
| {Q{}f;fr min ‘(max(Sij n,sl)?
i< ny
e b
Slj SO 3 S1
and note that lim fo(i) = lim fl(i) = y because otherwise it follows
- i+ ivw
easily that (2] bholds. If B, < m < ... €@ let
= I < 3 7
Typ = max(S; s N Sg) i myy ) S <myprdny
S,.. €8 U )
i3 oY Sy Sy n s, ¢ n}
Tper = {nax(sij Nsy) [jmy,<i<m, .3<n .,
> 5.. C 4
S5 S S U Sy s S5 ns, ¢ n}
. .

I<s 2L

S, =85, -~ L T
JA
1ey 2441



- above argument may be repeated with S

T n(¢i(xi,yi)) = (s.. U

48.

and note that (S_ U s} 1 n = (S0 U Sl) N n and w(;6,§6) omits p

in BQV(T} whenever T C 52 U S3 and TNn-= (S0 U Sl) N'n . -Thus

= N (this is

choose m_<m < ... <w so that |S

0 1 2‘

possible since fim fo(i) = lim ﬁl}i) = ). Note that EQV(T) admits

1<w 1<

v whenever T CS_U S, and |TN SZ} = |t N S3| = N but neither

2 3 o

EQV{Sz) admits =% nor EQV(S3) admits m (use Lemma 9). Hence the

o’ Sl replaced by 52, S3

(respectively) and 90(26'§6) replaced by @l(ii,§i). Continuing this

way w times yields infinite w 2 S0 > S2 ... and infinite

= > e _.,_. _-,— < ... < ’
w Sl > 53 and n(@o(xO yo)) < n(<pl(x1 yl) w such that

the following holds: For each i < w S_, 1 (n(e }) .

2i i-1%-17¥50

nle, (x,y))) 8, 5, 00 (e, (x; 1y, 1))y nle, (x;,y,))) +6 .

U

n % v = ] % v
(S,142 USpie3) Anloylxy ) = (5, U S2i+1! N nle; (x;,y,)) and

wi(§£,§;) omits p in EQV(T) whenever T C S_. .. U nd

2i+2 ° 52543 2
o3 Szi+1) n p(mi(xi,yi)y. Letting

it follows easily that

= b {n <
S (.ﬂ Szi) 3] (. 52i+1) S0 Y S1
1< 1<w
o ‘e =1 1 =& X v {SY.
1S Soi st Sli x5 and each @i(xi,yi) omits p 1§ EQV{(S)
= Theorem 8

{P,<) is not a lattice.
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»

Proof
et S be a thin set for fcp and let [a - Bvl = 'B - al =NO

for some a, B C S . It suffices to show that [fcp(a)] V [ch(B)]

does not exist. Suppose not. Then [fcp(a)]l v [fcp(B)] == fi)?/ :

N 7mﬂMﬁMJ = [fcp(a)l Vv [fcp(B)]1 whehever

ycaUB and |y Nal = |y n B| = ?f'o (since EQV(Y) admits both
[fcp(a)] anci ‘[fcp(B)]) yét both EQV(a) and EQV(B) omit 'n’(since
EQV(a) omits 'if@(égﬁ%»;nd EQV(B) omits [fcp(a)]). By Lemma 11 this
is a contradiction. 7

et pp be a property eof fprmulas such that if cp(;,§) ié a

formila. of a complete theory T then ¢ (x,y) admits pp in T iff

for arbitrarily’large n < w there exists A}= T and n cp(;,;) -definable

-gubsets of IAIZ(X) which partition IAIQ(X) . In fact let pp(n) be
(xoU ...an_l=_l) A ('A xi%O) A (- A xiﬂxj=0) for every
i<n i<3<n )

n < w . Note that Example 9 and the results which follow it remain

true if fcp is replaced by pp . In particular [pp] f PP . 7

Theorem 9 i
pp 1is l-dimensional.

Proof.

Suppose' cp(;,;) is a formula of a complete theory T which —

i
b i

o *f**admits—ppﬁ'n—f.—ft—snfﬁces—toﬂhwﬁﬁtﬂem—fe;mla—#e_ f) of

T admits pp in T . For notational convenience assume that

;=xonxl. Thuscp(xonxlyg) admits pp in T . By the compact-

ness theorem there exists A F T such that for arbitrarily large

O PP SHDUURUSHIS PPN F



‘”’”7”""*“ﬂf””f*hfn}7“i8*defined*thehequivaienC84ciaSSES‘Of‘ﬁg“are*WfZT;}“d inable.

Wﬁ,”AA_Hence44$Lz+;imadmits pp in T

n < w there exist ‘n w(xo n xlr;)—definable subsets Ani (i < n) of

|A] x |A| which partition JA] x |A] . For such n < w

let g(n) = max {|s] n £, (A ;) + ¢} where £, 0: [Al x [A] = |A]
, i€s

is the i-th projection of |A} x |A| onto |A| (i < 2). Thus either

" (1) suplg(n) | n<w}=w or (2) sup{g(n) | n<w} =m<w for

some m < w , If (1) holds let ¢(z,w) " be @(XO n xl,Sa
e — ‘7n—— '. . /
where z = x1 .~ and. W= xo Y .. Since fl'f -1
0o (a.)

-

preserves disjointness and unions whenever a, ¢ |A| it follows

easily that w(z,;b admits pp in T . If (2) 'holds let ¢(z,;5

- n -
’Yl)) A (Vxl .V q>(x0 xl,yl)) where 4z = x,

be (A 3x o(x n X
. 1 0 1
i<m v i<m

-5 - n ' n—
and w = yo e v

1 ° It suffices to prove that ¥(z,w) admits

pp in T . PFor each n < w such that 'g(n) - is defined let ~ be

»

the equivalence relation on IA| defined as follows:

a a

o € £,(a 1)) (ao, a' € |A]). For

. . .
iff Vl(ao € fo(A ) - a o

1]
0 ni 0

B¢

z

such n < w 1let h(n) < w be the number of equivalence classes of
~ - Evidently n < m h(h)r for every n < w such that h(n) is

defined. Thus sup{h(n)|n<w} = w. But for each n < w such that

Corollggz 6

[ppl 1is prime.
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Proof

J

 similar to the proof of Corollary 2.
Example 10
Let L be a language consisting of a unary predicate P and a

binary predicate E "and let IND be the theory in 'L whose

axioms’are
E(x,y) ~ P(x) ATP(y)

3x03x1-(x0 + x; A Plxy) AP(x))

(AP AC A X + %) >3y A (E(xg,y) ATE(x o9)) (0 < w
i<2n i,j<n i<n

(A AP AL Ay $ Yo.i) * 3% A (EGy) AIEGGY L)) (0 < w)
i<2n , i,j<n i<n

It may be proved that IND is complete, No—ca£egorica1 and ‘
quantifiér—eliminablerﬁy using theréartialrisomoréhism fest. It
may be also proved that IND omits [pp]. Suppose not. Then by
Theorem 9 some formula vw(x,§) of IND admits pp in IND.. Let

A E IND. Then for arbitrarily large n < w there exist n

¢(x,y) -definable subsets of |A| which partition [A]. $ince IND
is No—categoricai }t follows easily by Ryll-Nardzewski (1959)_that

(1) Por every n < w there exist n infinite, disjoint,

__@{x,y) -definable subsets of |A]

holds. But there exist complete'formulés wi(x,§) (i < n) of IND

such that IND F @(x,;)~++ A wi(x:;) since IND is No—categoricaI,
i<n-, -

Hence wi(x,§5 satisfies (1) for some i <n . Assume that



IND !—-mi(x:;) + P(x) (a similar argument holds if IND ]-.-q)i(x,y) +P(x)) .

Since IND is quantifier-eliminable every wi(x,§)—definable subset of

|A| is ¥(z,w)-definable where ¥(z,w) is the formula

A (E(zw) ATE(ZW ) A z %w
i<m

+1

ombi A'\P(wi) A1P(wm+i) A P(w2m .))

of IND for some m < w . Hence ¥(z,w) satisfies (1]. By tite
compactness theorem it may be assumed that there exist

Ei € ]A|3m (i < w) such that the V(z,w)-definable subsets WA(Z:E;) of

[A| (i < w) are infinite and disjoint. Since IND is N, -categorical

it may be assumed by Ramsey's theorem that tA(;i 'ai ) = tA(Ei f Ei )
S 0] 1 -T2 3

L

whenever i0 < il < w and i2 < i3,( w . Since wA(z,Eb) and#;/”’

wA(z,Ei) are disjoint it follows easily that theré eg;sf/
. R - — 7 -
\‘Jfﬁ k <m<=<{ < 2m1 such that either ao(k) = a (&) or al(k) = a0(8).

Assume that ;6(k) = Ei(&)'(a similar argﬁment halds if ;i(k) = 26(8)).

Ten a,(0) = a,(5) and a (k) = 3,(5). Hence 3(k) = 3,8 so

wA(z,;i) is empty and this is a contradiction.
Note,that the proof in Example 10 shows that for each formula
©(x,y) of IND there exists pl(p(x,y)) < w such that if A [ IND then

(1) if A is a finite o(x,y)~definable subset of [A| then

-

e Jal < plotxyn—and () if A e are

-~ -~ _infinite disjoint ¢(x,y)=definable subsets of |A| then n < p (¢(x,y)).

The following set-theoretical result may be used to show that

certain complete theories omit [pp] (see Example 13) . ‘Let X be a

set, F a set of subsets of X and F the Boolean closure of F in

-
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- ) e G

s

. . T :
P(X). The cogglexitzzgf/éaChA A € F is the smallest number of members

of F needed ;o*éénerate A . If there exists a partition FO""’Fn-l
- /// ) ‘
of F _~such that
- //’

(s) If a¢€fF, B € Fj and ‘A C B then i > j

P - T :
(W) 1If A, BCF are finite and ¢ + NAcnNB

then ACB for some A €A, B€B

hold then F admits the stratified-Whitman property. If there exists
n < w such that for arbitrarily large m < w there exists a partition
of X into m members of F of compléxity < n then ‘F admits the -

partition property.

Theorem 10
If ,F admits the stratified-Whitman propefty then F does not admit

the partition property.

Proof

Suppose F admitsrthe stratified-Whitman property; “Then
there exists a partition FO,;..,Fn_l of F such that (S) and (W)
hold. By the following results it will follow that F does not admit
the partition property. A basic set is any nonempty set of the form

NA - UB where A, BC F are finité.’ Evidently

(1) A basic set has a unique irredundant form

B

holds. 1Indeed let ﬂAO - UB0 = ﬂAl - UB1 be irredundant forms of a
basic set. It suffices to prove that AO =,A1 and BO = B1 . To

prove that AO = A, it suffices to prove that AO c A1 since the

1



other cgse admits a similar argument. Let Aj € AO . It suffices to

prove that Aj € Al . Since ‘¢/+ ﬂAl c U(B1 U {AQ}) it follows ;

. . c 7- . . -
easily by . (W) that A, C Ay for some A € Al Similarly Aj A

t 3 ' = . -
for some A.0 § AO . By irredundancy Ao AO so Al AO .  Hence

~A6~€4A1477ATo~prove~that~—86~5ABiwritfsuffieesﬂte~prove~that“~36—CABiAA-~f*~—”e44—fg#

since the other case admits a similar argument. Let Bo € Bb . It

0 .1

suffices to prove that B_ € B. . Since AO = A1 "it follows easily by

irredundancy that ¢ +rﬂ(AO'QI{B0}) = ﬁ(A1 U {Bo}) C‘UB1 . It follows

easily by (W) that BO c B, for some B, € Bl . Similarly B1 c B6

1 1

ir = ! = ]
for some Bové BO . By irredundancy B0 'BO so Bo B1 . Hence

Bo € Bl . Using (1) the rank of a basic set of the irredundant form

NA - UB may be  unambiguously defined as the finite sequence

(n¢gl,...,n-1, n-2,...,n-2, ..., 0,...,0) where i, = IA n F.I (5 < n).

n~-1 ln-2 1o

i
By ordering these ranks lexicographically it follows easily that any
set of rarnks contains a least member. In what follows basic sets are

always of the irredundant form. Next -

(2) A basic set cannot be covered by finitely many basic sets of

greater rank o

holds. In fact suppose MA - UB C U (IME = UB)) are basic sets and
i<m

rank (NA - UB) < rank (ﬂAi - UBi) fi < w). Using the definition of

rank ordering, (S} and irredundancy choose Ai € Ai for each 1 <m



so that A ¢ A, (A €A). Since ¢ $NAcuUBU {a, | i <m}) it

follows easily by (W) that A C Ai for some A € A and i <m.

)

But this is a contradiction. It may be proved that

. (3) 1f hAO - UB0 c ﬂAl - UB1 are basic sets with equal rank

Fhen AO = A1
(4) 1If ﬂAO —,uBQ' ﬂAl - UB, are basic sets and .AO = A1
then (NAj - UB) N-(NA; - UB)) {4
hold. To prove (3) .assume that AO + Al . Since

rank (ﬂAO - UBO) = rank (ﬂA1 - UBl) there exists 1 < n such that
)

Ao n Fj = A1 n Fj (3 > i) yet AO n Fi . Al n Fi . Choose
A E’(Al ﬂAFi) - Ao,' Since ¢ * AO ;'U (BOfUV{Al}) ,it follows
easily by’ (Wi that AVC A for some A € Ao EA By (8) ‘A € Ao.ﬂ Fj
for some j > i . Hence VA § Ai n Fj but by irredundancy'th?s is a
contradiction. To prove (4) assﬁme that (ﬂAo - UBO) n (nAl.— UBl)»=i¢.

( Then ¢ + DAO c U(BO U Bl)v so by (W) it follows easilyvthat ACB

for some AEAO, B EBi and i < 2 But then 'nAi-UBi='¢

*”””“*4=~4~vfﬁ4siﬂee-A67=ﬂATl”4and4this\isga contradiction. Also

L

-+
i

.

»

j ~(5) The rank of a basic set partitioned into finitely many basic
sets in equal to the rank of one member of the partition and

smaller than the rank of the other members of the partition
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"holds. To prove (5) suppose that (1A - UB is a basic set partitioned
into the basic sets ﬂAi -~ UB, (1 <m). From (2) it follows that

rank (hA - UB) < rank (ﬂAi - UBi) for every i < m Since (\
ﬂAi - UBi C hA - UB . From this and (2) it follows that

_rank (NA - UB)

rank (ﬂAi - UBi) for at least one 1 < m since

NA - UB ¢ .U (ﬂAi - UBi). From (3) it follbws that Ai = A for
i<m

such i < m since ﬂAi - UBi c NA - UB. But from this and (4) it -

follows that rank (NA - UB) = rank (ﬂAi-4UBi) for at most one i < m

since (nAi - Uéi) n (nAj - UBj) = ¢'(i <3 <m).

Finally

»
-

(6) If NA - UB 1is a basic set then complexity (fIA - UB) = JA]'
holds. To prove (6) assume that complexity (NA - UB) =m < IAI. Then.

NA - UB is a.B&olean combination of m members of F and so NA - UB
may be partitioned\jntc finitely many basic sets each of Wﬁ;;;~is a
Boolean combination of < m members of F . 1In particular the rank
of each such basic set is unequal to rank (NA - UB). But by (5) this
is a contradiction. Now suppose F admité the partition property.
Then it follows easily that there exiéts n < w such that for

arbitrarily large m < w there exists a partition of X into m

1
basic sets A . (1 <m) of complexity < n . Prom|(6) it follows
4

easily that |{rank (A ) |4 <m < w} <w . To obtain a contradiction

it suffices to prove that |{rank @ .) | i <m <w}| = w. Since

complexity (Ami) <n {i<m<w it follows easily that for each

N



j < w there exists £(j) < w such that if Ami (i <m) is one of
the above partitions and j < i then X- U Ami may be partitioned
i<j

using at most £(j) basic sets. It may be assumed that £ is

strictly increasing. Let g(j) =1 if 3 =0 and g(j) = £( L g(i)).
i3

if §>0. Let ¢ <w . Choose m> I g(i) so that the partition

. g2
LA

Ami (i <m) is defined. It suffices to prove that

‘(rank (Ami) | i <m}| > 2 . By (5 exactly one of the Ami (i < p)

has smallest rank ao. Por notational convenience assume that

. Hence rank (A .} >a. (0 < i <m). But X-A may
mi 0 mO0 _

5

rank (Amo) = ao

be partitioned using at most £{(1) basic sets BOj (3 ¢ JO) and if a,

A\l

is the smallest rank of these basic sets then ay > T by (5).

Purthermore since Y Byy = “U A . it follows easily by (5) that
j€3, . 3} p<i<m ' : -
there exists exactly one of the A . such that

rank (A . N B..) = rank (B_.) and vice versa.
mi 03 03

easily that there exist at most f(l1) basic seis Ani (i € IO) such

m this it follows .

that rank (Ami} = o {and by (5) rank (Ahi) > a, for the remaining Ami)'

By replacing X with X-{A__ U ( UA_.)) this argument may be repeated
=0 iEI;‘u

! rimes. Hence 1{rank (a ;) i <m} > ¢,
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2,2 The Order, Strict Order and Independence Properties of Complete

Theories
Let op be a property of formulas such that if e(x,y) is a
formula of a complete theory T then ¢(§}§) admits op in T iff for

arbitrarily large n < w there exists A FAT and w(;};)—definable

subsets A, of QAl8(X) (i < n) 'sughgthat,higD#WAgl_ﬂAi,Aﬂg_AAiLkigﬁ

) “i<m m<i<n
for e&ery m<n . Let sop :be a property of formulas such that if

w(gl;) is a formula of a ¢ ete theory T then ¢(§)§) admits sop

in T 1iff for arbitrarily large n < w there exists A F T and

w(;};a-definable subsets Ai of IAIg(X) (i <n) such that Ai C Ai+l

" for every i < n - 1 . Finally let ip be a propérty»of formulas such

that if ¢(;};) is a formula of a complete theory T then w(;%;) admits

ip in .T iff for arbitrarily large n < w there exists A F T and

£(x) .
(x) (

@(x,y) -definable subsets A, of |A] i < n) such that N A?{l) $ 4
. i<n
for every o € 2" . oObviously [opl, [sopl, [ip] € PP . Shelah (1971)
proved that op and ip are 1-dimensional. Lachlan (1975) proved

. 4 ~ A
that sop is l-dimensional. Using these results it is easy to prove

that {opl, [sop] and [ip] are prime (see the proof of Corollary 2).

Example 11

lLet L be a language consisting of a binary predicate < . Let PO be

the theory in L whose axioms are

x t x

X<y<z+x<z
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and let DLO be the theory in L whose axioms are

PO »

X <y Vv X Yy vy «<x
x <y=+3z({x<z<y)

< z).

=

3y3dz (y <

It is well-known that DLO 1is complete, Nb—categorical and gquantifier-

eliminable. ILetting o(x,y) be x <y it is clear that o¢(x,%)

3

admits sop im- DLO.) Hence DLO-—admits fsopl. - - o o o

Lemma 12

If A%‘m, BEPo and A CB then ThA <.ThB .

Proof

Suppose A EDLOAB E PO and A CB . Let o¢(x,y) be a

formula of ThA . It suffices to piove that o ,j'iﬂf
— —_—{ - o ' _ 0 —

ole(x,y), ThAC p(p(x,y 2z), ThB) for some formula ¢(x,y~n z) of ThB.

Since ThA is quantifier-eliminable there exist atomic formulas (or *

their negations]) wij(§)§} of ThA (i, j < ny such that

ThA | oix,y) < v A @i.(§;§3.. If x occurs in x and y occurs
i<n j<n ‘ /

in ;I it may be assumed that no Qij(;;;a is of the form y < x or

Yy fx {(since ThA} x<yvx=yVvy<x). Let x(x) be a formula of

x is (not necessarily strictly) increasing. Obviously

: t(x g ‘
x4 = Al (x) < xg < IB} () gince AEDLO and ACB . Let

4Gy Z) be the formula (( VA .. (u¥) A x(@) V(XD A zp = 2))
| in jén | -
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of 'I'hB It suff1ces to prove, that p(p(x,y), ThA) € p(¥(x,y Al z), ThB).

Let ;k € Mlg(y) (x < m)- and a € 2™ . It suffices to prove that

- . ?— & (k) . . :
A£=3x A(VY. A q)j( an® e

- ‘ . k<m 1<n j<n

a(k),”

| BE3x ((A (Vv A ?;50:2)) ) A xG)) .
_ o kw1 1<n 3<n At
Sup?ose Bk Ix ((A (v A (‘Ph (x, ak))u(k)) A x(x)) It suffices to - .
k<m  i<n j<n , . ’ -
prove ‘that Ak 3x ALY A N (x a.k)) (k) since the other
k<m -i<n j<n .,

implication is obvious. Choose b = (bo,.. ..;b,

| S a0 oz o
B# A (v A q’J(b.ak” . let a=a

k<m i<n j<n
Since AFE DLO and Bk x(b) it follows that there exists

;{:= (é cp = ) € IA[”(;) sucl;t that
, 0’ Tl (x) -1 e :

By TR T T

. bi<akHci<,ak ] . (}

for every i, 3 < £(x) and k < £'. But since no mii(;.;).vis‘sf the

! -

=




S 6l.

- - ) = — ., alk)
form y <x or y f x it follows that A F ATV A wij(c,ak})

k<m i<n j<n
Hence AR 3x & (v + o (;;;k))a(k).
. R ij
k<m i<n j<n

Theorem 11

DLO is archetypal for [sop].

Proof
—_ .

By the compactness theorem it is easy to prove that a complete

theory T -admits —[sopl- iff there exists- AEDLO, BEPO and CE T

such thatr ACB and B is definable in C . From this and Lemma 12

it follows easily that DLO is archetypal for ([sop].

3

Example 12

Let L be a language consisting of a unary predicate P and,a,binary
vredicate E and for each n < » let IND{n) be the theory in L -

whose axioms are

Ei{x,y) = P{x}) ~ ©Ply)

3X0...3x A (x, # x. A P{x.)) 4 {m <
m-1 . . i 3 i
i<j<m ‘
- . (m <
Jy ...3y A {y. % v. ATP(y.))
1] \m-l'i<j i 3 i

&+ 3
(A Plx) A (A ox, + xmj) 3y A (B YIMEX . .y) (@ <

/

w)

w)

n)

i<Zm i,3%m i<m
. N -

\\\\

A

I - i
(' A 1P(yi)} # €_ f y; ¥ ywj)-*_x.!\ (E(x,yi)/\'fz(xg%gi .?) (m
i<Zm i,j<m i<m

Note that 'IND{w) 1is IND so IND(w) is complete, HO

n)

-categorical and
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quantifier-eliminable. Letting ¢(x,y) be E(x,y) it is clear that

7(x,y) admits ip in IND(w). Hence IND(w) admits [ip]. .

Lemma 13

If A F IND(w), B IND(O} and A CB then ThA ¢ ThB .

Proof

i

Suppose® A k IND(w), Bk IND(O) and A CB . Let o(x,y) be
"a formula of ThA. It suffices to prove that

slsix;7), ThA) € pi{d{x,y, ThB)} for some formula Yix;y) of ThB. Since

ThA is quantifier-eliminable there exists an open formula ¢(x,y) of

ThA such that ThA } o(x,y) +> ¥(x,y). - It suffices to prove that
o (9(X,¥), ThA) € p(u(x,y), ThB) since plo(x,y), ThA)= p(y(x,y), ThA).

A

- Let ;i € ;A}“Y) {1 <n) and a €27 . It suffiges to prove that

Ak 3x A ,M;,;i)“‘“

i<n

R and
- ; ! 4
BE3X A 9(xan* |
i<n
2{i) . It suffices to proire that

Suppose 8%3; 2 pix,a,)
i<n 1.

Ak £ i)(;,;i}au} since the other implication is obvious. Choose

J’»I!
it so that B & & @(E}E;)a(l)  Leta=323 .0

b ¢ | . -
18| 5 0 " %yl ¢

]

t s - ¢ X,
ince A E IND{x) it follows easily that there exists c € EA! (x) such

-



o o o o3.
that ti(é'” a) = tg(g-ﬂ a). .In particular A E oA w(E}E;)a(l) .
i<n
e ' —_ iy
Hence " A F Ix A w(x,a.)a(l) .
i<n S - -
Theorem 12 . : P

- IND(w) 1is archetypal for [ip].

5

[

Proof

By the compactness theorem it is easy to prove that a complete

“theory T admits [ip] iff there exists A | IND(w), B E IND(0) and

CET such that ACB and B is definable in C . From this and
Lemma 13 if follows easiiy that IND(w) is archetypal for [ip].
Shelah (1371) proved that [op] - [sop] A [ip]l. But both
{sopl' and [ip] are A-irreducible (since both are‘thhetypal)so it
follows easily that Shelah's result is optimal in the sense that if

fop] =1 A= and [opl] + ﬂo, Ll

- ,
0 1 then ,[op] < LI {sop] and

1

[opl < LY < [ip] for some i < 2 .

/




2.3 The StrOnj Indepéndence and Versatility Properties of Complete
" Theories |
Let sip be a property of formulas such that if- cp(;,;) is a
formula of a complete theory T then (p(;,;) admits sip in T iff

for arbitrarily large n < w there exist Af T and o(x,y)-definable
‘ L, . |

. gub - 5 ch—that
1]

for every io <‘in <n and Jj <n and such that

' NA .+
BN . 5en @13
for every a € a” . Obviously [sip] € PP.

Theorem 13 / '
If T is'a complete theory then the following hold:

(1) If cpk(;,;) (k < n) are formulas of T and v <pk(;,;) admits
: o k<n

sip in T then cpk(;,;) admits sip in T for somev k <n.
(2)- If‘wk(;k’;) (k < n) are formulas of T, 1_'('%() ) r(%{l) =¢ (k <k' < n)

.and k/\n (pk(;k,;) admits sip : in T then ’(pk(;:-k,;) admits sip in

T for some k <n .

Proof
Suppose the premise of (1) holds. . For notational convenience

- assume that n =2 and £(x) = £(y) = 1. Thus cpo(x.Y) v Q’l(x:Y) admits

<
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sip in T . By the compactness theorem there exist Ak T and

@O(x,y) Y @l(x,y)—definable subsets Aij of ]Al (i,j<w) such that

L n Ai . = ¢ for every ~i0 < il < w and j < w and such that
0’ 17
Aa(')' + ¢ for every o € w” . For each i, j <w let
jew )3
A, =22 UA.. where A, is o, (x,y)-definable (k < 2). By usinc
i3 = i3 7 i3 ij Py XY Ces B TS

the compactness- and Ramsey theorems it may be assumed that for some

k <2 n Az(j)j + ¢ for every a € W’ . But then @kﬂx,y) admits
j<w )

sip in T .

Suppose the premise of (2) holds. For notational convenience
assume that n = 2 and 8(§6) = 8(x,) = 8(;)'= 1. Thus
wo(xo,y) A w(xl,y) admit% sip in T . By the compactness Egkorem

there exists A % T and Qo(io,y) A wl(xl,y)-definable subsets Aij of

Al x |A] (i, J < ©) such that A, 3 n A, j = ¢ for every i, < i, <w
0 1 ‘
and j < w and such that fl Ad(')' # ¢ for every a € w’ . For
jew 9033
each i, j <w 1let A = Ao. x Al where Ak is ¢ (x, ,y}-definable
RS B S T S i3 k %k

(k < 2). By using the compactness and Ramsey theorems it may be assumed

PP FI

et stk

that some k < 2 AF . 0 Af .= ¢ forevery i_ < i <@ and j <w .
103 113 - 0 1

But then @k(xk,y) admits sip in T .

Corollary 7 ' ‘ 7 -

[sip} 1is prime.
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Proof

Suppose Tj(j < 2) are complete theories and £ T. admits
j<2

[sip]. It ‘suffices to prcveithat Tj ‘admits [sip] for some j < 2 .

Since I T, admits [sip] some formula o¢(x,y) of I T, admits

' y<2 7 j<2
sipin f T, . It is easy to prove that there exist formulas
j<2

©..(X,.,¥..) of T, (i <n, j < 2) such that

i3 13 1) J

z ﬁ#"('“3 * (%..,7..) where x = x, U x,. (i <n)

T p(x,y) «— Vv A p¥*. (x..,v7..) where x = X, X, i<n,
j<2 b i<n j<2 i i3"“13 io il
vy=7 UJ  (i<n) and of.(x...y..) is
i0 il 137713713

Pj o _ _ .
9.7 (X,.,¥..) AP.(x,.) AP.(y..) (i <n, j<2). By Theorem 13
QlJ 1] le J 1] J le ) ¥

@?.(;:.,511) admits sip in T 7T. for some i <n, Jj <2 . But
i3 71374145 j<2 ‘

then ‘bij<§1 ,Y..) admits sip in Tj . Hence Tj admits [sip].

Exgggle 13

Let L be a language consisting of a unary predicate P , binary
- predicates E, ~ and a ternary predicate D and let SIND be the

theory in L whose axioms are

— Elx,y) +~ P} ARy

-

Yo ™~ Yy —>'1P{y0) A'lP(yl)

¢

y . :
DlxgrX, ¥y > 3y, (g ™ ¥p A E(xg vyl A E(x),7;))



Yo & yl_A Yl’” Y2 - Yo ™ Y,

67.

T 7~A:uuyl;zih%rﬂﬂ, - AJLg_iyggggmA*yuikgaiA - (n < w)
i<j<n
ooy A Ly tyy ARG (n < w
i<j<n
, ) 1 .
YO ~y A Yo + Yy +13x(E(x,yo) A E(x,yl))
(n < w)

A (y. ¥+ y. ATIP(y.)) > 3x A E(x,y,)
. i j i . i
i<j<n i<n

P(x) A 'lP(yO > dy (yo Y, A E(x,yl))

‘A (x, 4 x. APX))
i 3j i

i<j<m
3
E, N A (v Yy, ATRPIy, )AL A Dx ,x .,y ))AC A D(x; 2y (¥, )))
0 n-1 g KL x i,3<m 3" *x i, 5<m k
i%3 i3
"(m, n <.w

is an equivalence relation on m)

To prove that SIND is consistent it suffices to build a model for it.

Por each n <w and f : n-»>w let Pe be a distinct prime number

—_— -

and let £ : w + © be defined by

r
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|

AL
[¥H

et
1}

[, f(i) if i <n

the multiplicity of Pe in the prime

1]

‘factor'ization of i if i2n .
Let F={f | f:n~+wland let A = (|A], Pgr Egr ~pr Dy) be

defined by

Al = FU (0 x w
P}(a)*—f'aéf
Es(ab) +>b €a €F

bo X bl «—r 31330331(1,30,31 < w A b0 = (:L,JO) A bl = (1,31))

DA(aO,al,b) < ag,a; € F A3idj(i,3<w A b = (i,3) A ao(i)' = al(i)) .

Then A SIND. It pay be proved that SIND is complete,
Ro—gategorical and q&mtifier-elimiriable by using the partial
isomorphism test. Letting o{x,y} be E(x,y) it is clear that\
of{x,y} admits sip in SIND . Hence SIND admits [sip]. It may
be proved that SIND omits {p‘p'] . Suppose not. Then by Theorem 9
some fomu."La p(x,y) of SIND ladmits pp in SIND . Let A SIND .
Then for arbitrarily large n < w there exist n ¢(x,y)-definable

subsets of !A| which partition |A|. But then either

{1} PFor arbitrarily large n < w there exist

'n <p(x,;) A P{x)~definable subsets of PA which partition PA

or



(2) For arbitrarily large n < w there exist
n ¢(x,y)-definable dhbsets of |A]| - P, which partition‘
|A} - Pa
holds. .Suppose (1) holds. Since )SIND is quantifier—eiiminable

there exist m < w such that every w(x,?) A P(x)-definable subset

of PA is a Boclean combination of at most m P{x)-definable,

x = y-definable or E(x,y)-definable subsets of PA . But the set
of such subsets has the stratified-Whitman property sc by Theorem 10
it does not admit the partition property and this is a contradiction.
Suppose (2) holds. Since SIND is quantifier-eliminable it may be

assumed that there exists m < w such that every
@(x,¥) A IP(x)~definable subset of |A} - Py 1is x = y-definable,

A (x # ¥ A X~ yi)-definable or wJJE(x,; n z)-definable (for some
i<m ST

R oo .
on m) where V_ _(x,y z) 1is

=

S Cm and equivalence relation

AQIPX) Ax+dy, A LAE(z,x)) A (ATE(z,, %)) A ( A Dz, ,2z,,%)})
i<m L o j<m K, 4<m
j€3 3¢a x=¢

1]

A( A ‘lD(zk,z,,x))) whenever J Cm and is an equivalence
k,2<m 7
ki

relation on m . Let J = {(J,E)!J Cm and is an equivalence

in

relation on m}. Clearly each x = y-definable subset of ]A[-PA
")

is a subset of cardinality 1 of some equivalence class and each

A (x4 y; A x’w'yi)-definable subset of tA}-PA is a subset of

i<m

cocardinality < m of some equivalence clasg. It is easy to prove
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" oA — : ’ :
. that each ¥ (x,y A z) -definable subset of [A[—PA either intersects

1]

J,

with cardinality 1 infinitely many equivalence classes (and does not

intersect the remaining infinitely many other equivalence classes) or

intersécts with cocardinality < m infinitely many equivalence classes

(and does not intersect the remaining infinitely many other equivalence

classes). Furthermore ig; is easy to prove that each subset of IA’—PA

of the form A upg
. .8

i<d i

n

(x,;i gi) either contains every equivalence

| LR 1]

class not intersecting U (r(a.) U r(gj:) ) or does not contain
i<t
infinitely many equivalence classes not intersecting A (r(;i) U r(l—p-i)) .
, ’ : i<¢

t

For each (J,3) € J it follows easily by Ramsey's theorem that there

exist at most £(J,Z) < w nonempty, disjoint, ¢

I _(x,y f z)-definable

subsets of IA!,—PA. Hence there exist at most ¢ = . {3,23)
(7,2) €]

nonempty, disjoint subsets of [A[- " each of which is

#

)

i#J :(x,; n';)—ciefinable for some (J,=) € J. PFProm this it follows that

. i<m

frm& k <w there exist at most k A (x = Y; AXx ~ yi)-definable

subsets of fAi-PA in any o{(x,y} A1P(x)-definable partition of

lAl-p A since such subsets must be contained in different equivalence

classes. Similar reasoning shows that for sufficiently large n < w

every o(x,y) AP(x)-definable partition of IAI-PA into n sets

must contain > m x = y-definable subsets of [Ai-PA which belong to

+

~



the same equivalence class. But this is a contradiction since the
remaining part of such equivalence classes cannot be partitidned

using only finitely many A (x + ¥, A x ~ yi)—definable or
: i<m

P ={x,; n z)-definable sets. . ,

A weak ideal of a set J is a set I of subsets of J

such that ¢ $+ I' <1 ¢ T 1Implies I' €1 . Let vp be a property

-of formmlas such that if cp,(;,;) is a formula of a complete theory T

“then w(x,y) admits vp in T iff for arbitrarily large n <w
and every weak ideal I of n there exists AE T and - —

zp(;,;)-definable subsets Ai of M!L(X) (i < n) such that

(A N B, 3 A (A i A, = ¢). Obviously {[vp] € PP.
1€l jex *t 1¢P(n)-T iex *
Example 14 =

Let T =ThA where A is an infinite Boolean algebra. If A contains
an atomless element and o{x,y) is 0 % x Cy it is clear that @(x,y)
admits vp in T . If A contains no atomless element then A

contains infinitely many atoms so T admits [l] (see Example 6). : o

1

I either case T admits " {vp]. .7 ,
Example 15 a0
et L be a language consisting of a predicate P , binary

predicate § and n—azy'predxcates\:t)/(l <n <w} and let T be

2{x,y)} - p{x} A TPy}




T
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Rn(yof...;yn_l) -+ _ @ (1P(yi) A Yy * yj) (1 <n < w)
1<3<n

. < 3 )
Rn(yol--.,Yi_llyi;---lyh_l) -+ R(yol---,yi,Yi_l,_---.yn_l) (1 =i<n<w

‘ -

Rn(yo'f"'yn-Z'yn-l) - Rn-l(YO""'Yn-Z)

A QUy) Ay F Y Rlygeeoy, ) (B<n <w)
1<3<n

Letting I be the class of finite models of T itu{g’clear that I is

v

good and admits HP, JEP and AP . Hence by §0 ‘M is I-generic,

0

N_-categorical and quantifier-eliminable for some M . Let VP = ThM.

Since M is I-generic it follows easily that

© (1) If by,....b . € [M[~py then. M Qu(x,b) ¢ -
. ] i<n .
Ciee Mo
1 n OI"'I n-1

"holds. Since M is I-generic it .follows easily from (1) that

(2) 1£/ 1 is a weak ideal of n there exist -
. 1 -

byre--sb 1 € M‘PM such that ifQIQM(x,pi) )

iff T €T

nolds. Letting p(x,y} be Q{x,y) it is clear from (2) that ¢(x,y)

admits vp in VP ~ Hence VP admits [vp] . It may be proved that

v
!
ot



vP omits [ppl. Suppose not. Then by Theorem 9 some formula ¢(x,§)
of VP admits pp in VP . Then for arbitrarily large n < w there
exist n ¢(x,y)-definable subsets of }Ml'which partition |M] . But

then either —

(3) Por arbitrarily large n < w there-exist

§ = et et o T Sl 4 1 Rt B <

n w(xfie A P(x)—definable subsets of PM which partition PM

- ‘ (4) For arbitrarily lafge n < w there exist
n o(x,¥) A VP(x)-definable subsets of |M|-P, which

partition |[M|-P M ,

holds. Suppose (3)*golds. Since VP is quantifier-eliminable there

.- exists m < w such that every ‘¢(x,§§-A P(x)-definable~su$set of %H

-~

P
u%

is a Boolean combination of at most m P(x)-definable,

Q(x,y)-definable or x = y-definable subsets of PM . Since M is

I~generic it follows easily that the set of such subsets admits the

stratified-Whitman proéerty so by Theorem 10 it does not admit the -
éartition property and this is a contradiction. .Suppose . (4) holds.
Since VP is quantifiet-eliminablgVthere exist {,m<w such that

every @(x,?) A 1P (x) ~definable subset of 'Ml—PM is a Boolean o y

combination of at most =m P{x)-definable, Rz(x,yo)-definable, ren s

Ra(x,yo,...,y&_z)-definable, 0(y,x)-definable or x = y—qetlhabié
subsets of }Mf—PM . Since M is Z-generic it follows easily that

the set of such Subsets admits the stratified-Whitman property so by vi
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\‘..'[:»"‘

Theorem 10 it does not admit the partition propexty and this is a
coftradiction, ' ) K -~

The following result may be used to show that certain

complete theories omit fvpl.

" Theorem 14

~—

If T is a compléte quantifier-eliminable theory in a finite language

without functions then T omits (vp].

-

Suppose T is a complete, quantifier-eliminable theory in a ®
finite language without functions. Suppose that T admits ~[§§]. Then
some formula ¢(x,y) of T admits vp in -T. Note that for every

- . e | o
n < there exist at least 2 °  weak ideals of 2n. In fact if T .

is.a>§e§ of subsets {of cardinality n) of 2n let I be the weak ideal’

of 2n generated by I and observe that ] - I is cne-one. Since

2n
Xy » : i i i (n) . Q.‘
®{x,y} admits vp in T it follows easily 2 < ‘sznz(y)Ti (n <‘m). :
But by 80 there exists a polynomial f such that -
— £t2n(y)) _ 2n - o -
£82n&(y)'ri =32 7' (o <. Hence () s £(2m2(y) (0 <w) yet

this is clearly impossible.
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2.4 Re;narkv :
The above exa;nples of properﬁies of complete theories afe -
ordered in (P,<) in the ﬁo],lowin@,,manne::
-9
S tvpl
Isopl v lip]
B [sip] - 7 o
{' - [sop} A lipl - !
i AR {ppl . A
e .
o , Lo L .
By Keisler (1967) [0] 4 ffepiia-”. By, shelan (agm Ifcpl < fop] < Isopl,
{ipl. To shau that {?c:p} = ip?l nbte that if q;(x.y) ad-its pp m ‘1'
then'W(x.Y)achits tepinr.rosxwuthat (fcp]'l'lppl note

;that IND a_a-its " {£cpl but omits {pp}'-. ' To show, that‘ {pp) < [sopl

| Sl e R — A= A= =,
pqtethat._if{wfx,y} aa!its‘oopi.n"rgadﬁx,yoﬂyl ﬂ‘ Y, ¥ z} is i

@) Az A T A SETY A zma) V. OREYY) Azer)

[ 0 |
N - f— - f— n - N . ) L T
thtm s(x, Yo K yl Y, ¥, .z} admits. pp in T . To show that
. * RN - ‘ i - 5 )

1 § PP yet [sop} € PP. By Shelah (19<7i)7 A

* »

¢ im}} {sop] note that

-
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fsop} i fipl and fipl $ [sop] so {sopl,jip]_—# [sop] Vv {ipl. To
show that [sopl v {ip] # [1] note that Il} is ;/-ifieducible {since
it is prime). To show that {ip]‘ < [sip] note that if cp(;,;) admi‘ts
sip in T then ¢(x,y) admits ip to T . To show that [ip] # [sip]
note that IND admi;s [ipl yvet by Theorem 13 it-; is easy to prove that

IND omits [sip]. To show that [sip] < [vp] note that if cp(;,.f)

admits vp in T then (;;(;,;} admits sip in T . To show that

{sip] + ivp] note that SIND admits tsip] yet by Theorem 14 SIND omits e

[993

" {vpl. To show that {vp] = [1] note that the theory of infinite atomless - .
- Boolean algebraé adm:i.}s fvpl but omits- {1]. To show that [vpl'}f‘i[pp]
) note that VP admits ({vpl but omits [ppl. o N
Ea «v . ) . fia o
s * - R z . v -
- - o N ; - & ‘75‘{r Sy
L T o .
Y Lot [ - £ - : =
- & ’ e : x
. e ¥ - s ¥
5 . g .
:l ! 2. -
fa K Tl ' ,‘ H 2 " - é_« .
. " ’ e - . ‘; ' )
‘7 . - S,
- b 3 g\s ;
ﬂ' x
. : R .
L &



L 8 " °  ~ 2.5 Regular and Whitman Theories

Let A be a structure of a language L . If A C lAln

and B ¢ |A| then A is B-definable if A = cpA(;,B) for some formula

p(x,y) of L. If AC !Mn is B-definable for some B C IAI then

A is definable. If for every definable A T |A|® there exists a

*

unique mimimal B < |Al Such that A is B-definable them A isa
n-regular. Thus A is n-regular iff for every definable A ¢ [A|”
) the follow1ng holds: If A is B-definable and C-definable then A

is z,vBﬂc—def,inable- If for every n < w A is n—regular then A s

T +
re ar. A complete theory T is n-regular if every model of - T is

g ' ;,n-—reqular.
o P o . . s
' s - ',3:’) ' L
-, v Egle 16 - : -

Y . - .o

e Let 7= ‘I‘M 'l’h(s‘.u#}m where A is the standard modl of infinite.

Va7

L. digczete lz:nea; Qrders \nth a least eleément. Then A is regular (since

. a . b
r - - I
B ;\

. ',,ea;ch ;:u,a‘ € Mfi 1s Q—deﬁnable) but it is easy to pere that every other

h [ - moéel'-.of Twi:!;'ir‘i:egglar. Hence elementary equivalence does not ’
. . -_ N w L Y] — - A o ! i 3
B presarve regulmty I . ' ",
A Tbeoreu 15 T ’ .
B "’ . - S - - . - - .
: 7 ou;:pose T is a countable, co-plete, Ho-categdrlcal theory. If T is
N 7 ,I—regularfthen '1‘, is ' n-regular for every n < & . v
oL Proof |
O SR Snpwse 'r is a camtable, oonplete, N -categoxzcal

l—regular and n—reqular theory. It sufflces (;Q\prove that '1‘ is

X,
€n+l}.-re’qn;ar.‘~ Suppose A BT and A C lAlﬁﬂ is B-definable and

C-definable. It suffices to prove that A is BC-definable. For



AN
\
v >, \

N, ~ ,
each a € |A|" let a(@) = {b € |A| | (a,b) € A} ¢ |A| and note that

A(;) is a U B—definngl"e and -; U'\:C-definfable.vi 'Since T is l-regular ™
. 1t "follows’ ea51ly that for eacb a, € lAl there exists a unique minimal

e

Sia) < |A] §15301nt frm a s;xch ;hat A(a} is a U S(a)—deflnable and

‘ N 3 ncte that S(al _JLH LsmcewALaLuls%a#UuBJdeﬁnable;and

a U C-d_eflnable.J S:ang T .'LS N_O-categorxcal 1t fol]npws by

B %

Ryll—Nardzewskl (1959) 'I:ha:t for each a E [A«I i th?re exlsts a_unique

. j‘ R -7 g . g ., ”
I finlte set” F(a) of complete formulas - cp{x,y) of % such that
';U R {pA(x;a U S(a}).A Wr:.te a,fvr_b 1f S(a) = S(b) -~ and
cp(x,y) EF(a) o e vl L .

B
- B [

P T A(a}

VF{;}/= P(b? !md note th¢t ‘since. '1' ns Ro—categorlcal v 1s an

L _' ) ‘ a;u;x;alence relatlon on M! ‘with onlye fim.tely m‘any equivalence .

N ;cla:sgeg Dﬂ_,!‘v [A]:f(l <. ) . Obv1ously’;;:£x | D ;. B-deflnable andh E
?;1 L C-defin;bie'.‘ Slr;ce 3 T:Is n-regﬁlar it fo]elcws that for eacl'r D, o 7
T ' there ex¥sts a unxqge mm.mal E,. C Mf su;h that . D is E; —defm.able. -
., In pa.r.:tlcular each E, -,LB e ‘51nc;:a each Di’ ‘1s B-deflnable'and ) .
; . , q-dgflna%jle. But‘ smdeA each ) Ei C'ljB Nc : 1t fg%lows‘eagilg_ that l}‘ - ( |
\} 4 is BN C—defj:nai)ié.l T ’ L

7 R - T R -

,If T is a countable, complete, N -categorical, l-regular

. . 0.
s theo.&ébm T xsgﬂl_.)ﬂmlete theory T admits ‘the excharige

~ . S . .
- : _‘,' % - - i
property™i¥- Gea R S
- B 4 > - " - T~ X * j

. ] . - . . .
_ R . - N

n.

,czf;rzf Ai}{a} Ai-'p-,’éin& ata %&ép

E . e

B | "tAm 1} {a})

tAﬁ&U{a} for some a'#a

L
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holds. A complete theory T admits the splitting property if

(sp) 1f AU f{a}U{a'}cAfkr ¢, U{ah = ¢, U {a'},
at+a', o(x,A) is a complete formula of Th(A,A) and
- . ‘
‘B C ¢A(x,k) is 2 U {a}-definable and- A U {a'}-definable

then B=¢ or B = @A(x,A)b h . ~_

.Shppose T 1is a countable,” compiete; N

holds.
Theorem 16

0
admits EP and SP then T is regular.

-

Proof

Suppose T is a countable, complete, N_-categorical theory

o]
which admits EP and SP. It suffices to prove that: T is le:egulér.
Suppose A’ F T and AC |A| is B-definable and c—deflnable.,'It |
suffices to prove that A ‘is B Nl C—drfinable. Suppose not. 7Then there
exists some c € C-(B 1 C) and it may be assumed that A is not
D-deflnable where' b =c-{c}. By EP tA(B Ub U {e} = tA(B upb U {c }
for some c' + c. Let A = QA(X,B) = WA(x,C) = #A(X,D U {c}) for some
fornulas ‘¢(x,y) 'and $(x,z) of T . Then A = mA(ij) = ﬁA(x DU {c })
since tAkB U b U_{éi)'= e q p U {c }). In particular

A a'#A(x,D U {ch = ;A(x,D Yy {ec'h, tA(D U'{c});= FA(D U {e'} and c # c"'.

categorxcal -theorys--If T L

Since T is & ,-categorical and A is not D-definable it follows by

Y

Ryll—nardzewskl (1959) that ¢ # x4(x,D) N A ¥ xA(x,D) for some

complete formula x{x;D} of Th(A,D). But xA(x,Di ﬂ AC xA(x,D) is
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D U {c}-definable and D U {c'}-definable and by SP this is a
contradiction.

Example 17

Let L be a language consisting of a binary predicate < and let PO

be the theory in L whose axioms are

x % x

Xx<y<z>x<z.

&
Letting I be the class of finite mod?ls of PO it is clear that I

is good and admits HP, JEP and AP .{AHence by §0 M is ZI-generic,

N -categorical and quantifierQeliminable for some M . Let GPO = ThM .

0
It is easy to prove that GPO admits EP and SP. Hence GPO is regular.

2

It is easy to prove that DLO and IND admit EP and SP soO

by Theorem 16 it follows that DLO and IND are regular.

If T .is a countable, complete, .No—categorical, quantifier-

eliminable theor& such that

{A) Iﬁ A, BC AVF T ,,Q(x,§}‘ and - w(x,25 are afomic formulas of
T and ¢ + wA(x,A) ='$A(x,B) thenr A =B

(W) If A, B, < AET (i<m 3§ <m), o,(x,,)(i <m) and

v (x,y ) (3 < n) are.atomic formulas of T and

A

¢.% n mA(x A)Y C U ¥, (B, ) then.¢§(x,a.) = wf(x;sgr
©i<m j<n .2l

for Loug i<m'j<n

hold then T is an atomic-Whitman theory.
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Theorem 17

.

If T is an atomic-Whitman theory then T is regular., °
Proof

Suppose T is an atomic—Whitmén theory. It suffices to prove

that—P-—is l=-regular. Suppose M F T. It suffices to prove that M

«is l-regular. Any nonempty set of the form [} wf(x,Ai) - U wH(x,B.)‘

i<m j<n
_where A, By CH (<m <m) and g Coy;) G <m ang o
. ‘

*

wj(x,Eg)(j < n) are atomic formulas of T is basic and the

representation [} wy(x,Ai) - U ¢M(x B ) is irredundant if
i<m * j<n ‘
@M c @M ’ implies i =i. . If U (NA,-UB)) is a.
io(x,Ai ) il(x,Ai ) 0 1 i i

0 1 1<m

" finite union of basic sets the representation - U~{ﬂAi,—mUBi)”is ‘
) i<m .

irredundant if each representation ﬂAi - UBi is irredundant. It‘%éy

be proved that ‘
,, o DA . — |
(1) 1I£ U mA - UB,) = U (IC, - UD,) are irredundant
i<m ot j<n J ’

representations of the same set then Ai =ﬁ05 for some

i<m j<n

B

holds. To prove (1) let A Cj denote that

Y

Ve(c € C + JA(R € A ARAC C)) ‘and note thatc}?%,ls tran51t1ve.

Purthermore by 1rredun&ancy Ai'f Cj = Ai implies A “ﬁ*f“‘ﬁence it

suffices to prove that vViBj(Ai = Cj) and VjBi(Cj = Ai). Suppose

TViBj(Ai < Cj) (the other case admits a similar argument). Then
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3i¥33c, (c, €C. AYA(R €A, »A ¢ c.)). But -
i3 J i 3
n-1

~ b +;ﬂAi c(UB) Uc,U~..lUcC so by (W) 3A3j(_A €A Anc cj)

and this is a cont;adiction. Suppose M is not l-regular. Then for

some definable S C A there exist distinct minimal 2, B C A such.

that * S is a A-definable and B-definable. In particular S is not

A 1 B-definable. Since T is No-categorical it may be assumed by

kS

RylI-Nardzewski (1959) that this counterexample is A-minimal-in the-

s

sense that if S' C S is A-definable then there exists a unique minimal

+

- C A such that S' is C-definable. Let § = QA(X,A) = wA(x;B) for

some formulas @(x,?} and w(x,;) of T . Since T is quantifier-

eliminable o4(x,a) = U (DA, - UB,) for some basic sets NA - UB,
;A i<m i i v i i

-defined by formulas of the form x({(x,A"') where x(x;E}* is-an atomic

formula of T and A' ¢ A (and the represeﬁtation U (ﬂAi - UBi) may
i<m

be assumed irredundant). Similarly wA(x,BY =‘ﬁ§,(ﬂC. - Uvj) for some
. _ - j (n - -

basic sets lﬂCj'— UDj defined by formulas of the form x(x,B') /;ﬁere

g 0

'X(x,E} is an atomic formula of T and B' € B (and the répreséptation .

U «(nc. - uvj) may be assumed irredundant). In particulai
i<n- . ‘ '

$4s=U (A -UB) = U (ncj-- uvji $ M . Since the counter-

i<m J<n

example is A-minimal it follows that P U Q =‘{xM(x,C)|w(x,;3 "atomic |
- o , , ’

and C C AN B} where P = {x,(x,0)|x(x,2) atomic, C<aNB and

S



|
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|

|

|

|
®
®

-
and S C';{M(x,c)} and Q= {XM(xr,C) i;(’(x,-z_) atomic, C CANB .

’ $ ]
and Xy(x,C) ¢ M - S}. In particular ¥, (¢ $ NA;-UB; <5 c NP -UQ.

Prom this it may be proved that

(2) Yi(NA, c NP
1

holds’. To prove (2) it suffices to prove that Vi(Ai =P. Sﬁppose
‘lVi(A}i' < P). Then 3Jidp(P € P A ’ﬁf(ii*?}(; +a¢P)). But 7’77(/ B
¢#ﬂAiC“(UBi)UP so by (W) 3A(AEAiAACP) and this is a }

contradic'tion; From (2) it may be proved that

(3) Bi(DAi = NP

1ds "To prové (3) supposﬂré 731(ﬂA1 =ﬂP) . T’he;xby (2) it follows
t Vi(PA, c NP). since U (NA, - UB,) = U (NC, - UD,) are
i 1 1 J J .

- ‘ i<m j<n

rredundant representations of the same set it follows by (1) that

- 'Ai = Cj for some i < m, j < n. Since Ai contains sets of- thé form

. ) AT
x“(x,‘A')r ‘where x(x,z} is an atomic formula of T and ‘A'*' CA and -
. 7 . . —. e . é
Cj contains sets of the form xu(x,B') where x(x,z) is an atomic ,
. . , ) £

“«

formula of T and B' CB it follows by (A) that ﬁ\j_,F C»j con ﬁ nE" ¥

, L A : : - ' ) —
sets of the form x“(x,c) where X(x,z) is an-atomic formula of T

and 'CC AN B . Inparticular A, € PU Q. But since




,
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¢ 4 DA, - UB, < s it follows that A, CP so MP cMA; and this is

+

t? o ‘a contradiction. For notational convenience assume that ﬂAo = NP,

-

since ¢4 U (A, - UB) = U (T, - UD,) < NP - UQ it follows that
, i<m * Jn ) '

, AP~ U~ U (PA ~UB) =D

3 3

son | jen i N
For eac.h f:m> ii‘;}m (Ai U Bi) such that £(i) € Ai ] Bi (i <m let ' \\

T, = {£(d) |£¢i) € B.} and U = {£(i) [£(1) € A.} and let
I= {fln(Tf Uupm -uw o9 4 $}. similarly for each
g:n-> U(C.U D) such that g(3) € C;U Dy (G<m) let

j<n

vy = fg(3)1g(3) ¢ 0.} and ¥ = {g(3) {gth e_cj} and let

J = {cj{n(ngP) - U(wg U2y +# ¢}. Since A, NB, =4¢ (i<m and

C; N D, =¢ (i <m it follows that .
.\ :

(nP -ud - U (ﬂAi - UBi) U (T

U Py 4U(UfUQ)) and
i<m f?l ) ) )

bd

P - - ne. - ub, v up - .
(n uQ U(C] Uﬂ)) U(ﬂ(gU ) U(WgUQ))

In particular
i<n geJ :

1

U ((V UP) -U(W_ U Q). Por each £ € I
g€ g g ,

U na

‘ UP - UL U Q)
e o f £

choose a minimal T; c Tf ur lrsuchi that TE < Tf Y P and for each

g € J choose a minimal Vt';CVgUP such” that VéEVgUVP. Then o o

3



U Ty - U, U Q) = U (W - UW_ U Q) are irredusidant _
£€I gt 9 E - L

representations of the same set
UM, UP - Ul U Q) = U W UP) -UW, UQ) soit follovs

by (1) that T, = V! for some f£.€1I,9€J. since’ T; contains

sets of the form x“(i,h‘) where x(x,;) is an atomic formﬁla ef T and

A' ¢ A and U{} contains sets of the form Xu(?‘iB') where x(x,;) is

an atomic formula of T and B’ C B it follows by (A) that T = U& . j
¢ .

contains sets of the form XM(X’C) where x(x,—z—)' is an atomic formula

‘of T and CCAfIB . I.npartic{xlar T;:_C,PUQ; But since

ﬂT% - U(Uf UQ 4+ ¢ 7 it follows that. T;;_»C P so P= Té so ;
PETfU,f7 so PETf. l-aut':then'ff:—(ﬁ since )
¥B(B € T_ > 3i(B €B,) .and Vi(h + M, - UB, cP - UY. But if

—

Tgc_-:é then £(0) € l.lf so 0P c Ué uag since ﬂAO iP. But then

[l

$ since . ,

AT UP - U U

T, UP - U UQ =NP- Ul UY CAP-NP=¢ and this iz a

<

. ___ _contradiction

7 . It is easy to prove-that VP is ah\atcaic—ﬁhiman theory

so by Theorem 17 VP is regulax:
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2.6 The Partial Order and Line Properties of Complete Theories

Let pop be a property of formulas such that if (p(;,;) is}
" - . — L] » ]
a formula of a complete theory T then ¢(x,y) admits pop in T

iff for every finite partial order (A,<) there exists Ak T and

a, € !Aiuy) (i < |A]) such that (A,<) is isomorphic to

oy (x,a) |1 < |a]},©). obviously Ipop] € PP.

1f Ak Gro, BP0 and ACB then ThA « ThB . °

Proof

Similar to the proof of Lemma 13,

eo: 18 - a
Theorem ) 4 ;

o2

GPO is a,rche,typalﬁfor 7[pc'>p] - S —k

proo <

Similar to the proof of Theorem 12. / >

‘Let P{G.’(O) = ThA = m(c.o,1,+;-), where‘ A ({s the stan(ﬁtd
model of algebraically closed fields of characteristic 0 and let

RCP = ThB = Th(R,0,1,+,+,<) where B is the standard model of redl ’

closed fields. Let &p = plp(x,y), ACF(O}: where o¢(x,y) is the
. , . /— . .

formila yx, +y, X = Yz of ACF(0). Hote that

ploi{x,y), RCF) € o(p(x,y), ACP(0)). For 1 <m<n <w let S(mn)

denote a finite Venn diagram corresponding to the set of }ines of

R x R incident to a pair of distinct points of n % n less than

distance ‘—. apart {see the remarks preceeding Lemma 15 in §3). Each
»
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"

‘e

L € S{m,n) corresponding to a line (horizontal line, vertical line)

of R X R is a line (horizontal line, vertical» line) of S(m,n).  Each .

a € S{m,n) corresponding to an intersection of a pair of distinct lines
of S(m,n) is a vertex of S(m,n}. Each a € S(m,n) corresponding to

an 1ntersect10n 3! a pair of horlzontal and vertJ.cal lines of S(m,n)

Wﬁ%&ﬂ%ﬂwmm

proger vertex of - S(m,n} " -corresponds to the intersection of at least: ¢ .

lines of S(m,n). It may be proved that S(m,n) 'is m-incident and

. follows easiiy that

rank S{m,n) = lZmzn. Note thati if a formula (p(';,;) of a complete

theory T admits 83 in T then - ¢(x,y) admits each S{m,n) in T .

- Theorem 19

If T 1is a regular theory then T omits [&p].

Suppose plx,y) (L(X = £(¥) =p) is a'fof@;;éf*?reguxar

theory T . It suffices to prove that :(p(;,;) Ymits S(m,n) in '1‘ ) 2

for some 1 <m<n<uw. Let AET. Since T is p-regular it

(1) 1f a, € JAIP (i < 2p) and @,(x.3)) ﬂ,¢A(I,;j1 -

"A‘;';k’ n "’A(;';ﬁ i<je<2’Px <t < 2°P} then

—_ V4 -—— _— "
. g.{x,a) ¥o,{x,a.} is a —-definable for some 1 < 229
A v ‘/{ N ] F Y - 14 - -

S

holds. Since T is Kojcategorical it follows by Ryll-Nardzewski

{1959) that
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. v‘_ . - . 7' ] Co- ;i »
(> s, Tl =q forsome g<w ‘ . _ o

2p

“ (3 1f a € AP, v U <K are formulas of T,

ke

A

¥, (52 4 (1 <Xk and . 7 S N

wi(;,Z) n w‘;(I,E) =¢ (1 <3 <k) then k g

hold. Suppose @(x,y) admits s(2%®,n) in T for some n > 12229y 3q.

Then there exi;ﬁs a set S of cp(;,;) -definable subsets

(pA(;,gi)—(l/(/ratﬂ( s(2°P,n)) of |A|P which admits s(2*®,n) in A .
gbviously the sets cpA(;,;i) (i < rank S(Zzp,n)) a.re~the lines of S .

L/

Let as (i < nz) be thé proper vertices of S . For each

N
i < rank S(22P,n) Jet £{i) denote the number of. aj which are
| 3,-definable. By (3 £14) < q (i< rank $(2°°,m)). For each 3§ <n’
let g{j) denote the number of i such that aj is ;i~definab1e.
By (1) g(i) = 1 (i <n’). But Lf(i) =1 g(j) so )
i < rank 5(22p,n) j < n2
{
12(2°P)3ng > rank s(2%,n) q 2 If(1) = R S
. i < rank 5(2%F,m '
. 2 2p, 3 ' . e -
I g{j) zn so 12(2 )" g >n and this is a contradiction. ..
jen? /, . o ’ E
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- 2.7 Remark -

4

The above examples of properties of complete theories are

ordered in (P,<) ‘in the folléwing manner:

&

[ERRREH PO SR R RN I

To show that [sop] E [pop] note.that x < y admits sop in GPO and

GPO is archetypal for [popl. To show that [sip] =< {popl. note that

x <yq M x $ ¥y Ax EI: ¥y admits sip in GPO and GPO is archetypal

- for  [popl. Hence '{gbp] v {ip} = [pop]l. To show that

{sop] v [ipl $ [pop] note that [sop] V [ip]: 3 [sip]. To show that
fpop]l + [sip] note that [vpl # [ppl. To show that [pop] % {vpl note

that “Tvpl % '[pp].k’ To show that [pop] ¥ [vp]
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note that GPO admits [pop] but by Theorem 14 GPO omits [vp]“. To
show that [pop] #-[1] “note that [pop] # [vp]. To show that |
[#pl 3 [fcp] note th;at ACF(0) admits [£p] but by Keisler_#_967)

' ACF(0). omits [fcp]. Hence [Zp] # {1]. ‘Ta show that [£p] % [pop]
note th_at‘ GPO adéaits [pop] but by Theorem 19 GPO omits [fp] since

GPO is regular In particular [£p] 4 [0]. To show that [£p] $ Ivpl

note that VP admits.  [vp] but by Theorem 19 VP omitF [2p]

since VP is regular : ' . ‘ M

It may be proved that if A E apo then A admits no

def1na.ble 1nfinite hnear order. Suppose not. Then there exist
'fomullas cp(x,y) and lb(x,y) (L(x) = £(y) = n) of GPO such that
- ) :

’cpA (x,y) is an equivalence relation on [A]® with infinitely many
equj.valence class and. ¥ A(;’-;) is a preorder on IAIn which induces

a linéar °"order on the equivalence classes of “P‘A(;'ﬂ;;) . S;‘.nce @ A’(;,;) '
"has iﬁfiiritély many 'equivalexfce”olasseS”an&'”GPGf'fi;s' No-categorl-cal
it follows by Ryll-Nardzewski (1959) that g4 (a,b) for some

77;, b € JAI® such that tA(;) = tAﬁ(g).‘ Choose c € lAIn such that
HG”5=HG”35HGHE=Héna_ﬁmﬁ65,ﬁf

daA(;E) and #A(g,g) iff \pA(b,c). Hence cpA(c,a) and'(pA(c,b) s:.ncer

'OA(x,YS mduces a linear order on the equ,ivalence classes" of tpA(x,y)

But then (pA(; b) and this is a contradictiori. Thus- GPO admits no.

deimablemmwuneaurdﬂn._z@ this it follows that the property

of adnltting a deflnable 1nf1nite linear order cannot be viewed as a

property of complete theorz.es gince DLO admits a definable infinite"

- Loy




linear order and DLO » GPO (Sincé DLO is a;chetypél'for [éop] $nd
GPO admits [sopl). ‘

Schmerl (1979)'ptovéd that if A F'PO is countable and ThA
is éuantifier-eiiminablerthen A is an énti—chain, countably many

copies of the rationals with the usual order, countably many copies

3
91. }
: ,‘l

of the rationals with the weak order, or a generic partial order. 1In

particular it follows easily that ThA is definable in EQ, DLO or

GPO. ‘Since EQ is archetypal for 101, DLO isarchetypal--for -[sopl and

GPO is archetypal for [pop] it follows that ThA = EQ, ThA = DLO or

ThA = GPO. But EQ <« DLO ¢ GPO so it follows that the class of

» . -

2

quantifier-eliminable theories of partial orders with the order < is

K

a linear order with three elements.

A . o ‘V

I T
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2.8 Independent and Countable Properties of Complete Theories

A sequence of finite Venn diagrams S;(i < w) is independent

if rank (Si) > i (i «w) and IND (Si) =i (i < w) (see the remarks
preceeding Lemma 15 in'§3). If % € P then = is independent if

' there exists an independent sequence of finite Venn diagrams Si (i < w

»

%KsnnhAthatM;hg following holds: If 9(x,y) is a formula of a coqple%e'
theory T then o¢(x,y) admits 7 in T iff o¢(x,¥) admits each s,

in T . Obviously [ip] is independent and if 7 is independent

then 7= [ip] and % € PP .
If 7 is independent then = 3 [pp]l A [sip].

Proof
 Suppose ¥ is independent. - It suffices td prove that some

- o ‘complete theory ~T admits 7 but omits [pp} A [sip]. Let S, (i <w)

:be an independent sequence_of’finite Venn diagrams associated with = .

For each i <uw let f51.= {yij|j<lsi'}. Let' L be a language -

cbnsisting of cohﬁt;nts aii*(i < m““é < |Si|{ and

bij i < w, j.< rank (Si?i, unary predicaté P and binary p:ééicatés.

Q0 and R and let T be the theory in L whose axioms are

VQ(x,y) + P(x) AP(y) A _R(x,y£

LT




R(x,y) A R{y,z) =+ R(x,z)

A ta, A Rla;gag,) A Pla; )

j<k<ls, |

93.

(i < w)

A (b ¥ by ARG b) ATRD ) (L < w)

j<k<rank(si)

P(x) > 3y0...3yn?1 teren

R
: i<j<n
aij(k)
A Q(aij,bik)

k<rank(Si)

Mx(P(x) A Rx,a,) A (A Q(x,b, )

k<rank(si)

(x, +‘xj A A

a(k)

we

ALyt s A (A QGx,y.))) (n < w)

1<n

A Qlx,¥))) (0 < w
i<n

(i <w, j< lsiI)

))

) rank(Si)
(i <w, @« €2

-8.)
1

s P

A (x % x, A P(X) AR(X,X,))

k<l<n ©
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k
IR A R.x) A LA Q(xk,y)“ N

k<n

4

(n<ow, B€2

Aty ty Ay $b A Ply) AR(y.b)
k<z<n i F 3
5<rank(Si)
-
N - P
Ix(p(x) A R(x.yo) A (A Q(x'bij)a(J)) A (A Q(X'Yk)B(k)))

j<rank(s;) k<n

(i<w a €5, n<w, B € 2™

Ay fyz ARGy A Ry ¥p) A €A TIR(ypeD, )]

x<t<n ten - -
’ 3

-3

(PG A R(xyy) A (A Q(x,yk)s‘k’)) )

kj<n

(n.<w, B €27
s
- ~

Since 'IND(S,) < IND(S; ) (i < it-follows easily that T is
) :

consistent. To prove that T is completé and quantifier—eliminable :

note that each finite reduct of - T is complete and quantifier-eliminable

by the partial isomorphism test. Letting g)(x,}_) be

(Q{x,y) A Y, - yl) v {(IP(x) A Y, = y3) it follows easily that ¢(x,y)

-
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admits each 84 in T . Hence @(x,y) admits # in T so T admits
m . To prove that T omits [ppl]l A Isip] it suffices to prove that

-

(1) T omits [pp] N | -

(2) T omits [sip] - -

hold. To ‘prove (1) suppose T admits [pp]. Then by Theorem 9 some

formula w(x,?} of T admits pp in T . Since T is quantifier-

eliminable there exists an open formula w(x,§} of T such that

T F olx,y) +> ¢f§.§3. In particular ¢(x,y) admits pp in T .
By replacing constants with véiiahles (if necessary) it may be assuﬁed
that ¢(x,y) contains no ¢§nstants. Let AE T and let T' = ThA'
where A' is the reduct of A to 1L minus the constants. Then W(x;;3
admits pp in T' so o »
(3) For arbitrarily large n < w there exist n y(x,y)-definable .
subsets of |A'| which partition |[A'] |

holds. For each i <w let T, = ThA{ where Ai F IND(i) is obtained

by restricting A' to the R-equivalence class of A' containing the

constants aiJ(J jsl|) 3nd biJ(J < rank (Si)) ?Qr each

a € [Af[z(y)»let I(a) = {i <w | x(a) n lA;l'= ¢}. Since Y(x,y) is .

open and contains no constanfs it follows easily that

(4). A"k (B(by) «* P(b.)) > ($(by.3) ++ (b, ,a)) -
] B T U , I ;
Y ¥ B
(a € IA ’ P 10,1,1 € I‘a)’ bO € IA;.OI' bl € lA;.ll)

-



O
[o
)

-

holds. From (3) and (4) it follows easily that for some open formula

"X(x,;) of T which contains no constants

(5) Por arbitrarily large n < w there exist £(n) < and

. ) - 3 3 v ' »
n X(x,y}-definable subsets Ani (i <n of lAf(nll which

T ;*ih’ﬂ%**form’ ~n < w . But-for-every -n < w it may be proved that

Vforrnr;qia '] v x(x,;i) where z = Yo Ypo1° Choose '

so mb(y) <| U A .| <R, . Notethat U & . isa
ni ] ni

partition |A % (n) I

holds. If sup {f(n) | n < w} < w then clearly X(x,y) admits PP,

,\. _

Tn omits [pp] (see Example 10) and this is a contradiction. Thus
suppose sup {f(n) | n < w} =w . Por each n < w such that f(n) is

defined let g(n) = |{i < nf {Aml > Ly} . 1f

sup {g(n) | n<w} =m<w for some m < © 1let )(m(x,_z_) be the

= ... N =
Smee

1<m

n>m+ m&(;) such that £(n) is deéfined. For notational convenience

assume that ‘Ani' > £(y) iff -i < g(n) (i < n). Since g(n) =m

it follows that IA.ISl(;)(mSi<n) son-m=<| U A.l < N
‘ ni ‘ e D1 0
m<i<n
)

m<i<n 0 m<i<n i
xm(x,;)—definable subset of IA' | ana ] u a_.| > 4(z). But
‘ f(n) m<i<n nit

since x (x,2z) . is an open formula of T which contains no constants-

it immmwﬁﬁg&fzy—deﬁnablem of

1AL

f(n)' and this is a contradiction.

and |A| < £(Z) then |a] 2 X,

Thus suppose sup {gm | n < w} = w. By the COmactneBS'éleofem it
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L 4

follows that there exist AL:) F IHD(w)Y and infinitely many disjoint
x'(x,;) -definable subsets Ai(i < w) of lAu such that
[Ai‘ > 6(;) (i < w). Since x(x,;) is an open formula of T which

‘contains no constants it is easy to prove that |Ai| >R (< w).

0

But by remark (2) following Example 10 this is a contradiction. To

prove (2) suppose T admits [sip]}. Then some formila o(X,¥) of T

admits sip in T . Since T is quantifier-eliminable there exist

atomic formulas (or their negations) (pij (x,y) (i,j<n). of T such

that T '— o(x,y) > Vv A" (Pi'(;';)“" B} Theorem 13 (1) it may be

i<n j<n 7 “
assumed that A (poj(;,;) admits sip in T . Let x = (xo,...,xg_l) :
. j<n

and ; = (yo, .o "ym-l) . - By replacing constants with variables (if

necessary} it may be assumed that A (po.(;,;) contains no copnstants.
' B j<n - .

Let AF T and Jet T' = ThA' where A' is the reduct of A to L

. (X,¥)  admits sip in T'. Let

- minus the constants. Then A q)oj

j<n
VOGLY) e Yo (k0¥ A ces Ay L (xp L,Y) A Up(E) A, (y)  where each

\pi (xi,;) is the conjunction of those q)oj (;,;) containing one

-

;7;%7%MMMrW&MMaﬁmmgmrijg

inx , w;(;rrrﬂre—conjumtrorof—ﬂmsewaé%ﬂ:entmmg—m

occurrences of the variablgs occurring in x and |IJ8 +1(;) is the

conjunction of those cpoj (;,;) lcontaini.ng no occurren‘ce‘s of the variables




o8,

occurring in X .  Thus, t(x.'—9 admits sip in. T' . Singe

,IO,,T",K xo it follows easily from tj¢ definition of sip that it

may be assumed that *&4-1(;) is an atom of OmT' . Prom this and

Theorem 13 (1) it follows easily that it may then be assumed that

- o ' : '
¥(x,y) is an atom of 0, T' since |06+mT | < RO)' By Theorem 13 (2)

it may theh be assumed that

(6) Vigj('r' F oGy »IRG v,
or

(7 ViV3(T'R vy > R(xi’.sf'j“i)“

holds. If (6) holds then a pair of ¥(x,y)-definable subsets of [A'|

cannot be disjoint so ¢(;,;) omits sip in T' and this is a
contradiction. Suppose (7) holds. By Theorem 13 (2) it may be

assumed that
(8) ViVi(r' F $GLF) > Rlx,,¥,))

() Vivi(T' F v 7+ x; v

- hold From (8) and (9) it follows easily that if a pair of

$(X,Y) -definable subsets of |A'| is disjoint then the corresponding



pair of 00(1:0.1!) Ao Ady L (x, oY) def‘fmable subsets. of IA[ is. e i
disjoint. But then it follows easily from the -definition of sip that E

— —_— . . " - - X o
) to(xo,y) A .o A w&'ﬁl(xz-l‘y) admits Vsip in T'. Fron Theorem 13 (2)

?

it may be assumed that #Otxo,&;) admits sip in T'. It may also bé‘ .

Clin iy b b L

is an atom of O T' since #(;:—,;) is an atom .

of Oy ,T' - From this and the defﬂﬂttvma@s\i;\:» it follows easily that,

vpo(xo,;) admits sip in T" where T" = ThA" for some substructure

A" of. A' obtained by restricting A' to some R-equivalerice class
of A'. But it may be proved that there do not exist infinitely many,
disjoint, infinite, ﬂao(xo,;)-d inable subsets of |A"| (see

. Example 10) so it follows that &o(xo,ﬁ omits sip in T" and this
. : i:':f :
. is.a contradiction: 7

(S . - R =

If =« €P then ® is countable if the following holds: If L

T° is a countable éomplgte theory which admits ‘every 7' < 7 then T

atﬁits T .

Theorem 21

If = 2= [pp] then ¥ is countable.

Proof
Suppose 7 > [pp] and T is a countable complete theory which
. .- _omits =® ., It suffices to prove that T omits some 7' <7 . Let ’

¢.(x.,y.) (i < w) be the formulas of T . Since T omits ™ 7each'
X i P -

cpi(xi,yi). omits ¥ in T . In particular each q)i(xi,yi) ‘omits {13 ) '

*

- in T . By Lemma 15 it follows that each cpl (§i7;i) omits Si inT




for some finite Venn da.agram S such that rank (S ) 2 i and S .

»nm(s) =i . Let 1' bethemdepémientprgeztyof conplete

: theories associated vith the mdependent se*tfce of finit.e Venn

ey
diagrans s (1 <m). men Tonits " since ea.ch (pi(xiqi

.-
o

@

Mmmm Txv where xti= oy A a . obviously

" <% . But x' 4% since v = [pp] yet % [pp] hy Theorw 20. -
: At ST % .
Hence ¥' < ¥ . ¥ = ’ w7

/—\ R - - .
’ < . X N

P /) ce
Cordllary 8

l{‘wePli isindependent}}>llo.- s
5 -

Proof
Let T=L T . . where each T is a countable
x independent

*

‘ complete theory which admits ¥ but omits fppl A I,éiEL;, In particular

“each 11‘1 omits [1]1. Since [1] is prime it follows easily that T

omits [1]. 'Since [1] = [pp] it follows by Theorem 21 that {1} is
countable. But then |T} >R, since T admits every ¥ € P such
that ¥ is independent so it follows that® |[{x € P|» is independent} |>No .

<&




' 83 pensity Results .

H

The following result shows that PP is not a dense subset

e

b ’ . . » . .V . - - . ‘, _ R “?m“

Tb?eofen‘ 22

If m PP then (L, MV BRI NPP=G. . o E

o ' .~ o SR

. Syppose ¥ €PP. 1f (m, mv [PP1) 1) P‘P+ 4} then - = ;

" < mh 5::71,; v [pp] for sone ¥ € PP . 1In particular ﬂ' _ [p'] v‘ :
‘!’her% Q' ig some principal propei:ty of fomulas_' Let T be a e

, countable compiete theory which adni;:s ¥ but ‘bﬂitis‘nvx' ’ axﬂ i;t . e
“’i(;i’;ii (i < w) be the formulas of T + EQV. Since p' is S

principal and T+EQV(Q) < T whenever |a} < N, it follows by the’

3
i

b e B D BB s e b gt

. compactness theoem that for each i < w and By < -ee < nj-—l < . PR

there exists n, > N, ,Y.) omits p' in THEQV(a) -

[o%
b
t

Fgegtad] \J

whenever a f (nj_

1’ nj) = ¢ (see the proof of Lemma 6). From this.

werine bbb o] vl -

it follows easily t,hat By < By < een < n'i;l»< n, < ... < w -may be
chosen sothat for’ each 9 i,< w @,i-(;i';}.) 7 cu‘nitsr‘ p" in T+B;QJ(C!) 7
whenever a (1 (-, m) =3¢ . Let a = {ni‘!i< w} VThe'n for mh 1
i<w cpi(:i';i) omits p° in TEQV(a) h so T+EQV(q) omits )

[p'] =¥ . But THEQV(O) admts xv [ppl 27 Since T admits LS -

and EQV{x)  admits [pp] and wis‘fs—rwnti;dicﬁuu.

{
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-

By lettimj 71: =7 {o] in Theorem 22 it follows that
({01, {ppl} N PP = ¢ . In particular ([fcpl, [ppl) N PP = ¢
although ({fcpl, ippl) % ¢ since {fcpl < [ppl A [sip]l < [pp}
{note that IND admits {fcp] but omits both [pp]v aAnd [sipl-

while SIND. admits [sip] but omits [pp]}. Theorem 22 also shows - o

that if ([pp) £ ¥ € PP then [[pp), ™ V [ppl]] N PP = ¢ . In fact if

Ippl =7 <7 v {pp} forsénx:’)GPP then 7 v [pp] € PP since . -
7v-{ppl=Fv 7' —and 7, 7' £V But. 7 v [pp] € (%, T v_[pp}] ‘ : !
since {pp] ¥ ™ and this is a contradiction. From this remark it

follows that. [{ppl., [ip] v [ppl] n PP =¢ si;xce {ppl $ [ip]A € PP

(note that IND admits (ip] but omits. [pp]).

The néxt result shows that PP is a fairly dense subset of P.

1

Thedrem 23 < . ~
- S P -»f - .o - I - - . L e
I Ty < M, T ¢ PP and m € PP then (m , M) N PP o . .
‘Proof

‘Sllxppose TT,O <» T T, ¢ PP and ;rrl.é PP . Let Ty = [,pO]

where p  is some property of formulas. Since T, < T it follows

- - ®
that ‘51 $ [po(ao)l for some strictly increasing sequernce ao € .

= S . o< ﬂ < . . .
Let T =T, A [pG(ao)] so Wi =W =W, Obviously 7 € PP since

————————

_ ® , fpfa 3} €PP. But w 47T since m_¢ PP and T % 7., since
1 rgg . _ . G' - U ¥ . L ]




A

~

NI
et
(]
w

Theorem 23 shows that if [0} < ™ € PP then

(‘[0],‘ Trl) ﬂ PP+ $ . 1In fazct‘lef: Ty =T A [pp]l so [0] :n‘o =7 -

since [0] is archetypal it is.A-irreducible so -~ [0] # m, - Hence o
m, € ({01, [ppll so T ¢ PP and m, tm . Thus (my, m) N PP £ ¢

so {[0], Trl) n PP+ ¢ . Theorem 23 also shows that if ) < [1l] and

m¢PP then (m, (LNPP # ¢ .
The following result shows that. ([[0], [ppl] N PP, <)

is dense. 1 B

x

Theorem 24

If 7 <n,'ﬂ

0 1 OEPP,TTEPP and ﬂoiﬂllA[PP]'th‘en,

.

('rro, 'rrl). ﬂ PP+¢ .

) 2

" Proof

Suppose T <TT,1T0€7PP,TT € PP and ‘rroiTrl/\ [pp] -

0 1 1

.3 ' < N— <\1 d
Obviously To =T A (TrO' [PPV(G)]) =T A (ﬂo v [ppl) = ™, an

A (no v [ppla)]) € PP for every strictly increasing sequencé o € w¥.

" Hence it suffices to prove that Ts <'L’rrl A ('ﬂ'o vV [pp(@)]) < m,A (Trov [ppl)

" for some strictly increasing sequence a € w® . Let

cpi(;i,;i) (i < w) be the formulas of a countable complete theory whi?( )

admits Tro but omits Tl’l' A [E]. For each i < W let Si = {§ < w’

, - L(x,) S
for some A kT there exists a partition of [A] ' into :

J @ (;i,;i)-definahle sets} . Since T omits [pp] it follows easily

that o - 5| =% Ti<w . Let ¥, (z,,w,) (i<w be the formulas -

of THEQV ard let ‘frl = {pll where pl is some principal property
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of formulas. Since pl n 55 is principal and T+EQV (0) « T whenever

la,f< NO it follows by the compactness theorem that,fdtreach i<w.

- .

and n. < ... < n.

t ox i >, Az, oW,
0 5-1 < W there exists an >N such that ‘wl(zi,wl)

omits Py N pp in T+EQV (0} whenever a (nj_l, nj) = ¢ (see the

T
4

proof of Lemma 6). From this it follows easily that

' . L < e ma \ that’
n, < n, <. <n, <n, < | < W y be chosen so tha

4

-~

"*n*i*”e *m:s;i;\("i* z*m)*’arﬁ ~so—that—for—each i < w *'wi;(:z:i*' ;Il omits. .

Py ﬂ 5S in T+EQV(Q) whenever a N (ni_l, ni) =¢ . Let
o =,{ni,1 < w} . Then’for each i< W wi(zi,wi) omits ,pl N pp in

THEQV(Q) so THEQV(D) omits T A (T V [pp]) -~ However T+EQV(a)
admits ﬁl'A (ﬂo v [pp(a)]) since T admits T and EQV(a) admits

[pp(@)] . Hence ﬂl A (ﬂo V‘[pp(a)]) < ml /\'(1TO v jEEﬁ) . Qn:the‘

pp@) in TT | -
: T 4

(since n, E‘B-Si) so T omits [pp(a)] . Since T omits 'ﬂl it

other hand for each i<w mi(;;,§i) omits

-

follows that T omits T, A (no v [pp(0)]) . 'However T -admits

1

M, so My< M A (Mg v [pp(W)]) i f L - ~

The next result siows that ([f{ipl, {111 N PP, =) is dense,ﬂ

S

: ' \ ’
However4somegpfelimiﬂary—zemarksAare¥rquired.
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For convenience a finite Venn diagram will be viewed as a set

b+ sc ¢ such that S C 2" for some, 0 < i< w (view S as the

set of non&mpty Boolean cominations oféﬂ finite Venn diagram). Let n

be the rank of § . If 0=m=n then S is m~independent if for

) : 7 .

there exists

, . ( ligreeeri
each i < ... < i . <n and 0 €-2 ot
m .

J 0 -t |
B €2 suchthat o C B €S . Thus S is m-independent iff every

Boolean combination of m members of S is nonempty. Let

i

ind(S) = max {m = n | § is m-independent} be the independence of =S -

For each O <m< W let _lm be a property of formulas such that if -
w(§?§) is a formula Qf'a complete theory T then w(;}gb admits 1"

T

in T iff forsevery m 5 n < & and m-independent ¢ % sc 2" there

exist A F T and n ¢lx,y)-definable subsets of IAIQ(X) which o N
admit S in A . ’ s

Lemma 15

m™ = [l (v<m<w .

Pxoof L .

1 _ v
Suppose O<m< W and T is a complete theory which admits

(1™}. It suffices to prove that T admits [1] ¥ since T admits

[lm} some formula w(;}§) of T admits 1™ in T . Letting
o= N = : , o '
Yo z) be , ‘ ' -

Y

vy, "

(A oY) Aoy Azl =2) VvV (CTA 96y Az, =2
im " S

, —= N ... N =
it is easy to prove that Y(x,y, n Yo n

\

z) admits 1 in T .

Hence T admits [1] .



Let Lbe a language consisting of constants cij (i, j < w),

a unary pl;ech/cate P and binary predicates E, ~ and let T be the

7
theory in L whose axioms are z
/x ~ X .
‘““*ﬁ**~——-~—-x—"‘f~¥_i YM ‘ ) g
g X~yAy~rz>x~2 ‘
' ?
- L E(x,y) = x~ y A B(x) ATP(y) ‘
- 73(?;;)’*: 6 ) TS O 1P
€457 Cix A i3 + Cix (i<w j<k<uw /
cio+cj0 (1<J<w)v .
- ' LAy, ~ ‘ T
P) > 3yge3y 0 A (y; Fyg Ay VX ATR(Y)) (i< w)
. i<j<n ] p
Tp(y) + 3x,...3x A (x, Fx, Ax, ~yAP(x,) . j
- i<j<n 3
If T' isa theory in L and o € (w '+,
. - hY
~ o~-independent if
A . —
" | o | B(i)
! A ¢ ~% R ' ~ C, A .y :
™ A v(xi %xj A X, o xJ A P(xl)) - ('V X, clo) v 3y. ]’.‘.(x1 y) _ ‘
. i<j<m A i<n / i<m 3
. v , o - B(i)
T oA (g{% y. Ay, ~ ¥ ATR(Y)) > (v y ~ e ) VXA Elxy)
icj<m J J o i<n ' i<m
“ = ‘
1d for every n< w , finite m=<a(n) and B €2". If S (n<w
) " are finite Venn d;agféﬁs"let T(snin < w) be the theory in L - whose - 3

5 A
axioms are - R
-
/ £ 7 T . T
d
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Y .
T \‘v
A (x, dx A x ~x AR 3y A Ex,pn* D
S i i j i i ;
i<j<m i<m s
Ay vy Ay Yy ARl Ayg e, Moy $c) =
- /k<rank(s,‘ ) ‘
n . . I
- o (i . L 1)
/ Co3x(CA EGy* A (A E(x,c )by
, . i . - ni
i<m i<rank (S )
; I —
- 13 A (E(x,cni)Y(l) A P(x)) ‘
i<rank (S_) :
n
N 7 N Cr 2 A‘ry. ~ y. AYPly )y > o e
i<j<ind (S ) 3 t 3 .
- " n
(v y.~¢c, )"V 3x A E(x,y.)a(-l)
. 0 i0 . .
i<n 1<1nd(Sn)
’ \m‘ . n ‘.'rank(sn) v ind(Sn)
where n<w, €2 ,.BGSn,Y_€2' : -S and 7662 .
If ,SOI.,”’S““,]‘-\\,’{S’ flnl#é,,‘l,e,nn,,d,l?g—r?ws 1(,3*?, WT(Sn|W1\'1<m)‘(b T(Snfn<u))
where Sn = 21 (n =2 m) . Finally let Tw be T(Sn|n<u)) where
s = 21(n < w .
n o
"Lemma 16
If 'Sn(n < W) -are finite Venn diagrams then .
(1) T(Sn|n<w) is (ind(Sh) | n<w) ~independent
(2) T(S_|ncw) is consistent iff (ind(s ) |n<w) is increasing
(3) T(s_|ncw) is complete if (ind(S )|n<w) is increasing and
lim (ind(Sn))—= w ) 3
':_-‘-’> -h ‘
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(4 If T(Sn|n<w) is consistent and m<Ww then T(Sn’n<w) is

(ind(so),...,ind(Sm_l),m,w,.;.)—independent iff

ip@(sh) = rank(Sn) (n>m) 7 .

)  is consistent then

(5) If m<w and T(Syr---/S, )

T(So’f"’s ) is archetypal for [ip]

m-1

It is easy to prove (1), (2) and (4) using the definitions.

To prove (3) note that if 1lim (ind(Sn)) = () then every pair of
mw )

-

countable models of T(Sn,n<w) have countable, isomorphic, elementary

extenélops.r To prove (5)- note that T(SO""iSmil) f.Tw

(since T(S ,...,S.

L a ofina TS S S 3 e 7 . - E
o m-l) is definable in Tm) énd Tm is-archetypal 7 #

for [ip] (see the proof éf‘Lenmw.13).

Theorem'25

if . <m, 7w, . €PP and T v[ip]_#vrl the,n'('rro, TrljﬂPP+¢.

o= 1" "o’ 1 0
fProof ‘ ) R
Suppo§e< Ty < Myr Moo ﬂl‘EiPP and'vw0 v {ipl % LA
Let T be a countable complete theory which admits both' “0 and ([ip]
but 6mits Hl - >Let 'wif;;}§;§ (i < w) be the formulas of T and let
wifzi,wi) (i <w be therformnlas of T+ Tm . Also let L é [pll

where pi is some principal property of formulas. By induction on

n < @ it may be proved that there exist finite Venn diagrams
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s, (n < w) such that for every n <
(1) 1nd($n_l) < 1nd(Sn)
2y ¥ _ 0z _rw._,) ,omlﬁs Py ;n T+T(SO,...,S l’sn'Sn+l"")
‘'whenever T+T(SO,...,Sn_1,S 'Sn+l"") is complete and
i d > 3 : B .t
1nd(Sn) > 1nd(Sn)
(3) wn(xn,yn) om¥§s Sn’ in T
- " hold. To prove this assume that S ;ewwyS satisfy (1), (2)-and (3).
Then T+T(SO,...,Sn) «T since 'T;,admits [ip] and T(SO,...,Sn)
is archetypal for [ip] . Hence T+T(Sb,.rc,S;7 omits ﬂl since T
omits T, . In particular wn(zn,wn) om1t§ p, in T+T(SO,...,Sn) .
Since p14 is principal it follows easily by the compactness theorem
that there exists m > IND(S ) such that U (z ,w ) omits p_  in
, n : n"n’""n 1
» . e .
T+T(S ,...,S Sn+1'Sn+2"") whenever T+T(S ,...,S S+l S ,...) - )

is complete and’ ind(S;+l) > m (see the proof of Lemma 6). Since T

omits [1] and [lm] = [11] by Lemma 15 it follows that

¥

(x

. . m . }
ntl ) omits 1 in T . 1In partlcula£ ¢n+1(xn+1,yn+1)

¢ A+l Tn+l

-

“omits S in T for'some finite Venn diagram S such that ind(S) = m.

Letting Sn+1 S completes the induction. Let T = [;ﬁ where B

= (S_|n<w) Obviously “u M, A (m. v [ipl v m = m and
. - - ¥} =+

N T,V lipl VT EPP . But T Lm Am v ipl vm since T admits

m, but omits both "i and 1 . Furthermore- ™A ('rr(') v [ip] v m) {:'wl
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since T+T(Sn|n£w) admits T v [ip] Vv T but omits‘_ﬁl'. Hence
. | - o .
~ ) .n PP § ¢ .

-

5 ~ Theorem 25 shows that if [op] < T < [ p]' and m € PP
then ([op],T) N PP $ ¢ and (m, [sopl) N BP’;K;E? In fact supﬁoée

[op] < T < [sopl and 7 € PP. Then [opl 'V [ip] ¥

(since [op] = [sop]l A [ip]) and T V [ip] i [sop] (since [sopl is

v-irreducible). Hence ([op]l,m) N PP + ¢ and (m,[sopl) N PP + ¢ .

It should be noted that ([op], [sob]) ﬁ PP + $. . First note that
[op] < lop] V [ppl < [sop] and [op] V [pp] § PP (Theorem 22 shows

‘that‘ [op] v [pp] f PP since IND shows that [op] % [pp]l) . By

Theorem 23 ([op] V [pp), [sop]) N PP £ ¢ so ([opl, [sopl) N PP % ¢ .

It may also be noted that ([op], [ip]) h PP £ ¢ . Obviously
_([sop] V. [%p)) A [ip] € PP _and [op] = ([sopl v [&pl) ‘A [ip] = [ip] . ',

_But DLO admits [op] but omits both [p] and [ip] (since
- [%p) % [pop) and [ip) ¥ [sop]) and DLO + ACF(0) .admits

([sop]l v {&pl) A [ip] but omits -[ip] (since [ip] is prime).

Theorem 25 also shows

Hence [op] < ([sop]l V [4p]) A [ip]l < [ip]

that if T < [1] and 7 € PP then (m,[11) N PP 4 ¢ since

3 -

T <%V [ip]l < [1] -and: (7 Vv [ip], [1]) N PP % ¢ (note that

T v [ip] % [1] since [1] is v-irreducible.

. The following result is useful.




Theorem 26 - ' - ' o ' -

If T<m (a<w, T €PP and m €P (n<w then the following holds:
T < 1ru')5 L (n < w) for some LA € P iff some complete theory T

admits T but omits each Mo

Proof

Suppose T < “n (n<w), ™ €PP and 1rn €P (n<w . If

JL,<,%fi,mﬁJJngLffor,some,,,ﬂm,,€J’,, _let T ._be some complete theory .. .~ .

, .

which admits T but omits’ LA ‘Then T omits each T (n < w) .

If some complete theory T admits T but omits each Trn let

' L € P be defined as follows: Since it may be assumed that T is .

countable (if hecessary replace T with some finite reduct of T

~admitting T) let 'wi(;i,if_i) (1< w) be the férﬂﬁiias";of T . For each

n< let L [pn] where o, is some property of formulas and let

Sy s a1 w W W o,
Gn = {Dn(l) l1<w} . Furthermore let T = [p ] where p is a property
of formulas enumerating the set o = {pn(i) ]Vj(j <n —>.cpj (;j ,-fj) omits

pn(i) in T) } . Foreach n< w it follows easily that |0n|= No

. wp : .
(since T + {0l) and IO -0 I < N (since T omits T_) so
- n n 0 - » ] n ~

W

fcn—ﬂfogktﬂ?md—ﬂm—fﬁni‘rﬁreasyﬂ:crprove—that—T—omrts T

m N
so let T =T AT . Then T< T =<7 (n< w .
W W~ .n

z
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; Corollary 8 , a oo o,

If T< T (n<w, ™€ PP, moE€ P(n<w) and T is archetypal then
T<T <T (n<w for some W € P .
- "wT n , w

Proof” B

- Immediate.

Since [0] 1is archetypal Corollary 8 shows that every count-

able set of nonzero properties of complete theories has a nonzero lower

p,ropérties of COmpléte theories admits a common nonzero property of.

complete theories.

It may also be noted that if T € P is couhtable then there

does not exist [0] < TTO < T such that ([0} "",),5 A{ [0]',1T0] (othexrwise

e

~_some countable complete theory ad.m1ts every MY < T but omits W) .

— _

Since every T = [pp]' is countable by Theorem 21 it follows that each
such property of complete theories .has no greatest property of complete

: theories below it. ' E - .

3

This chapter concludes by shovring that the ordering « on T
- P - 7 ' _//,/

is not dense. ' S S /

v Theorem 27

(Tié, - |_=. ). is not dense.

" Proof

Let To be a complete theory which is/a'rchetypal -for some

nonzero, pr:une, archetypal property of complete theori¥es 1r0 ancl let

T, = % Tw where each T‘n is a complete ‘theory admlttlng T but

bound. Thus every countable set-of complete theories admitting nonzero .
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“{since T

‘% (since T. admits ,,7’6) . Hence .Tl $ T, + T

omitting, W _ . Cleagly T1 €T +,T"7. Furthermore T, omits ‘"07

0 0 1 1l

0 is prime and eac’hv_. T‘n omits 'no) but T0 + Tl admits

. It suffices to

0 0 1

prove that if T <« T and - T1 $ T- then T

+ -
1 o '1‘1 «T Suppose

4

+

archetypal for ‘HO) so T, +T «T. Thus (Tllf' (Toﬂl)'s) = ¢ . \

ey

Llrwwengwwwmc&%w
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1

- 54 6pen guestionx

This thesis shows that (PP,<) is an infinite distributive
lattic;e with no minimum element above [0] and no maximum element

below [1]. 1Is

(1) 1f x <« ‘and ¥_, W,

0 <%, or ¥, € PP then (m,, w3 PP $73

AN

true? This thesis also shows that (P,=) is an infinite lower

semilattice with no saximum element below ([1]. Is : - —
(2) If [0] <% €P then (I01, % # ¢
true? More generally is

(3) If =x <% and ¥

o < o’ \'1,”’ then (%, A'lj,f#*’ Y

T

true?
Shelah (1975). proved that if a complete stable theory T ‘
admits [fcp] then T admits the E-property (thét is, thereexists a
formula ¢(x,y,z) of T such that &(x) = £(y) and such that for
arbitrarily largek;l< @ there exists AR T and ¢ € 'lkf“;’ such
that @A(;;Y-,Z) = #{a,b) € Iﬂu;) xq}klu;)' lA}- ¢(a,b,c)} is an

equivalence relation on [M“x) with exactly n equlvalence classes) .

-
P S

4 b i that ‘

[fcpl = Ippl A [ip] since unstable complete theories admit

{op] = [sop} A [ip]. TWote that the E-property cannot be viewed as a
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property of complete theories sinee» there exist countah}.g, cowlete,

B

i”v ) No-categoh.cal theories vd'nich admit every property of ccuplete theories

-yet by Ryll‘-uardzeusk; (1‘\::: is easyto prove that such theor:i:es

omit the E-property. FProm this it follows that if 'r is a couplete,

No-i:ategorical theory whii:h admits [fcp] then T admits [op]. Is

1

(4 If T is a cogplete; X _-categorical theory which admits

0
[fcp] them T admits [sop]
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