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Abstract 

This t h e s i s  &fines a partially ordered set (P,') where 

- e a c h  -- 

~ l a y  or may not possess and n s denotes t h a t  0 -  1 

YT (T possesses rrl -e T possesses no) .  In this way a "complexity" 

preorder7 4 on the class  T of all such theories  i s  obtained by 

lett ing To 4 TI denote that 'fn (To possessest' TI possesses n). 

Same density results c o n e e m  fP.5) and (T,+) are given after 

sane basic properties are  examined, In particular Keislerc's f-inite . 
ewer property and Shelah's independence property are found quite 

useful. 
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Keis le r  (1%7) eraploys u l t r a  wers to  de f ine  an order ing  a on 
C 

4 -P" 
the class T of dtl complete theories T which provides a measure of 

property i n  ' T then T i s  not  Q-minimum and i f  T i s  not a-minimum 

then T i s  not n,-categorical. H e  a l s o  de f ines  the v e r s a t i l i t y  prop- 

- -- -- - - - - - - -- - -- - -- -- - - 
e r t y  and s b s  that i f  some f o f ~ l t ~ l a  q(x ,y)  of T admits t h e  versa- . 

t i l i t y  proper ty  iit T then  T isa-iaaxirwrm. 

S h e M  11971) defines the order,  strict order and independenoe 

- - 
p r o p e r t i e s  and sbws that T is unstable i f f  same formula cp(x,y) of  

- 1 -  

T admits t he  o rde r  proper ty  i n  T i f f  some fol~nula Jl(x,wf of T 

admits the strict order  o r  independence property i n  T . Furthermore 

- - 
he  shas that i f  solc f&a plx,g) of T admits  t h e  order property 

- - 
i n  T then soee formula $if z,w) of T admits  t h e  finite cover 

- - 
property in T . Be also shows t k t  if some formula tp(x,y) of T 

admits the finite cover, order ,  or independence property in T then 

soere formula $fz,Gf of T adaits the f i n i t e  cover, order, o r  

independeqce property (respectively) i n  T . This r e g u l t  makes it 

easier to decide whether any formla of T adetits' any one of ' these  

- - 
formula g(x,y) of T admits the finite cover property in T . 



- - 
Lachlan (1975) shows that if some formufa cpfx,y) of T 

= & n i t s  the strict order property ?n T then some f o k a  +(z,G) of 

T admits the strict order property i n  T . 
midently the above properties are useful in providing a 

=asare of complexity for such theories, 

Thrs thesis const ructs  a poset of properties of complete - 

t b r i e s  (9,~) which is used to define an ordering r on T which 

provides another measure of complexity for such theories. 
- -- - - - - - -- - 

" In $0 some preliminaries are. m e r e d .  
4 

, In $1 basic definitions are given. In 1.0 properties of 

fomlas  are defined which include the above properties in a natural 

I 
way. In 1.1 P is obtained by identifying any pair of properties'of 

f o e a s  if they are addtted by the same conrplete theories. Zn 1.2 

5 is obtained by identifying any property of cumplebs theqias w i t h .  , 

the class of all complete theories admitting it. Here (P,I) is s?mm 

to be a lower seplihttice. In 1 . 3  * is  o b d n e d  by identifying any 

- 
-fete theory with the set of all pruperties of ccQaplete theories 

fn 1.4 an arcbetypal property of caqlete theories is defined to be 

any property of acrplete theories for which the class of dl q l e t e  

- * 
theories adm%tting it contains a -lest m a z b e r .  Such properties of 

theories for which the class of all coaplete theories admitting it 

contains any disjoint SP. of complete I5emies iff it oon&ns one of 
-J 

Che complete theories biag sured. Such properties of q l e t e  



.P 

tf;eor&s are shown to be join-irreducible (and vice versa). ~rosa ' this  
I . -  , 

it fplaows easily that the meet df jqin-irreducible ph3-e~ of . - .- 3 .  . 
clol~pfete theozies-is again join-irreducible. 4 k 5  * 

- *  * 

In $2 posa basic examples are provided which yiql% ieorma- 

. P . - . < 

tion a b u t  ( 3  a& (Tl+) . a- 2. Q y  thi rninipqm and maximum 6 . - 
I . - .  

4 . - 
properties of ample- theories are defined -.it: is s h  #a &he - - - T-- 

-5% - 
4 C " B 

theory of atondess -lean algebras does t admit the lat ter.  From : T % a,B, 

this it follows easily that Q and r are different orderinqs. 

Puthermore the saxbum property of formulas i s  1-dimensional in  the ' 

f 

it in T . From t h i s  it follows easily that the &mum property of 

colpplete theories is prime. In 2.1 the f ini te  cover and partition 

properties of amplete theories are defined and it i s  shown that each 
2, 

( d o  f ini te  sets) into ( P , S  and t o  show that (P,c) is not a 

' lattice. Furthersore the partition property of formulas is 1-dimensional 

and from this it follows e a s i l y  that the partition property Of aomplete '* 

theories i s  prim. lri 2.2 the order, s t r i c t  order and indepedenoe 

% 

properties of c-lete theories are defined and t b  latter are shown 

to b archetypal. In 2.3 the strong independence and v e r k t i l i t y  

properties of -fete theories are defined and the fower i s  s h o ~  

about the relative positions ' i n  ( P , 9  of the above properties of . 

coeplete tbr ies .  In 2.5 regnlztr and Whitliran theories are defined 



- 
0 

4 

0 

u 

and are used to show that' certain conqlete theories o m i t  certain 

p&,pmiBS of ooqlete theories. In 2.6 the order and line ". 
t % a  

pzoperties of &lete theories are defined and the forprr is sham 
z 

to be archetypal a l e  t h ~  latter is to be quite weak. Io 2.; - 

. A 

gorse remarks are given aboat tke relatiye pos2tkons in fP,i) of the 

properties of-cosplete theories are defined and it is  shQwn that if a 
u* *=? . 9 - &  

countable colplete the& &sits  every independeqt property of m q l e t e  
- _IT--- 

- - --- - - 

theories then it amaits every property of complete theories. t 

, 
z B B  - 

In 53 sume density resul t s  about (P,s) aze given which imply 
I 

that muah of ( 5  is dense. However it is sbDvn that prime arche- 

typal properties of wrapfete theories provide gaps i n  (T,4) so it 

follows that (T ,4 )  is not dense. 

In 54 scme open questions are raised. 
< 

- - 

'r 3 



$0 Preliminaries 

In this p a p r  complete theories have inf in i te  models. 

Standard notatfan is employed. If i s  a formula , T i s  a complete 

theory and A,& are structures of a language L then 9 is a sentence 

if no variables occur free in 9 . cp(xg,.  . . ,x 1 denotes that at most 
n-1 

9 (79) , T /- $ denotes that $ i s  a theorem of T , A T denotes 
I 

that A i s  a mdel of T , T = denotes ttiet T i s  the theory of 

denotes that A i s  an  eleraen- substructure of 8 . Let 

BnT (0 TI denote the Lindenbaa dgebra of (open or quantifier-free) n 
c, 

formulas ' 3 ( x d . - . , x  1 of T and l e t  S T = SB T denote the 
n-1 n n 

corresponding Stone space of T g Obviously T is quantifier-eliminable 

iff B T = 0 T (n < w) . A complete formula of T is  any atom 
n n 

p(Xo,. . . ,X 1 of BnT . By Ryll-Nardzewski (1959) i f  T is 
n-f 

* 
countable then T is %-categorical i f f  each formula 0 (30, .  . . ,x ) 

n-1 

of T is. a f i n i t e  &is junction of h p l e t e  formulas . lp . (rot - . . , x ) 
I n-1 

- 0 -  
x y = (x0*  .."X 

- U -  
Ih-f~YO~---~Errrl f and l e t  z = x y denote that  

- - 
r(;) ==fa  U r € F j  'and r(3 ff r(F) = +  . Ruthermorelet  x c  y 

deaote that  frfa c r i T 1 ~ 1 n  2.5 the distinction between x and 



f 

set of o r d i n a l s  smdller than it and each cardinal  i s  an initial ordinal.  

If A,B a r e  s e t s  then A b 3 denotes (A-B) U (B-A) , / A [  denotes the  

- B -- ~.acmlal+ty * .  - o r  A, Y (A? denotes t h e  power set of A, A- denotes the 

B set of functions from B i n f o  A ( o r  / A  1 if convenient) and whenever 

0 1 
A C 3 l e t  A ( A  ) denote A (B-A) and let the cocardinal i ty  of A 

i n  B be I B - A I  . A preorder ( 5  is  &y set (or  class-) T 

together with a r e f l e x i v e  t r a n s i t i v e  binary r e l a t i o n  5 on T . Let 

( T ~ = , S ( = I  denote t h e  poset  (partial order)  obtained from (T,s) by - - - 
the congruence f on (7,s) defined by s 5 t i f f  s L t and 

Suppose (T,5) i s  a poset. If s,t € T l e t  (s,t) = {r € T l s  < 

* 
f the  o the r  i n t e r v a l s  a r e  defined s i m i l a r l y ) .  Any S c T is dense i n  

i T r 3  if s , t  E T and s < t implies (s,t) fl S 

denote meets ( jo ins )  i n  f T , 3  . Any t € T is A-irreducible 

(v-irreducible)  i n  (7,s) i f  t = r A s (t  = r v S) implie- t = r 
5 

o r  t = s . A l a t t i c e  i s  any poset  (T,r)  where s A t and s V t 

exist whenever s, t € T . 
We1 theory can be found i n  Sacks (1972), Shoenfield (1973) 

or Chang and K e i s l e r  (1973). 
i 

- - -- -- -- - - - - - - - -- - - 

Kef sler' s order can be fotmd i n  Keisler (1967). 

2- - - - - - 
-- 

Stable  theor ies  can be found i n  o r  Shelah (1978). 

The following well-known automorphism test f o r  quan t i f i e r -  

el imination i s  useful. If T i s  a countable complete theory then 

a 



(1) ?I is  quant i f ie r -e l iminable  

- - 
(2) For every countable A T and a ,  b C IA~"') such t h a t  

0 - 0 - 
t (a) = t (b) t he re  e x i s t s  > A and f E ~ u t ( 8 )  such A A 

are equivalent .  To prove t h i s  assume t h a t  T i s  a countable complete 
-- 
- - 

theory. I f  (1) ~ l d s ,  A T i s  countable, a ,  b € I A l  1 and 

ti (a) = ti (z) l e t  8 b A be countable and X-homogeneous. TO 
0 

- - 
const ruct  f C Aut(B) such t h a t  f ( a )  = b use t h e  H~homogeneity o f  

8 i n  a back and f o r t h  argument a f t e r  noting t h a t  (8,;) and (8,b) 

are elementari ly equivalent  ( s ince  T i s  quantif ier-el iminable,  

t i  (a) = t: (b) and A ( 8) . ~ h u s  (2) holds. ~f (2)  holds it follows 

e a s i l y  t h a t  each u l t r a f i l t e r  on 0 T extends uniquely t o  an  u l t r a -  
n 

f i l t e r  on B T . By Makinson (1969) 0 T = B T . ~ h k s  (1) holds. 
n n n 

+ 

The following.wel1-known p a r t i a l  isomorphism t e s t  i s  also 

useful .  I f  T is  a countable cons i s t en t  theory with only i n f i n i t e  

0 
such t h a t  tA (i) = ti(%) sand a c I A J  t h e r e  e x i s t k  



To prove t h i s  assume t h a t  T is a countable cons i s t en t  theory with 

only i n f i n i t e  m d e l s .  I f  (1) holds then T i s  %-categorical (use a 

back and f o r t h  argument). T is complete (use  the*o.sp- aught t e s t )  6 

and T is quantif  i e r -e l iminabe  (use t h e  automrphism t e s t )  . Thus 

(2) holds- ' 

The next  r e s u l t  i s  u s e d t ~ ~ s h o ~ - - - i n  corn-ories 

+ omit the  v e r s a t i l i t y  proper ty  of complete theor ies .  Let T be a 

complete quantif ier-el iminable theory i n  a f i n i t e  language without 
- - 

functions. Then the re  exists a polynomial f such t h a t  T I  5 2 
T(n) 

n 
.I 

(n < w) . To prove this assume t h a t  T is a complete quan t i f i e r -  
P 

-, eliminable theory i n  a language consis t ing  of  constants  c .  (i < m) 
1 

and predicates,  P of a r i t y  1 i f  < m . A basic. formula is  
i j 

any formula of t h e  form 
-- 

Thus *here a r e  m2 + m + 1 basic formulas. An n-arrangement i s  any 

formula which s t a t e s  which 

s a t i s f y  each bas ic  formula. Thus the re  a r e  
1 

m' 
n 

m 
n 

m 2 mn 
n 2 n  n n  n m n  n+l mn mn ... 2 

2n...2 n 2 ... 2 2 ... 2 ... 2 ... 2 5 2 2 2 2 
w -. - 

m rn m m 
I ,  

P 

n-acrangements where 

m f f ( x )  = 1-+  (1 + 2m)x + dx2 + ... + mx . But each u l t r a f i l t e r  i n  SnT 

- - - - -- - - pp --- - -- -- - 

The following r e s u l t  concerns t h e  d e f i n a b i l i t y  of  complete 

theor ies  within o t h e r  complete theor ies  and is  used to compare t h e  

complexity between such theor ies .  Although t h e  following d e f i n i t i o n  



admits obvious generalizations it is  suf f ic ien t  f o r  t he  purposes of t h i s  

thesis.  I•’ Ao,A1 a r e  s t ructures  f o r  languages (without functions) 

L L then A. i s  defi-le i n  i f  l A o l  = Inl I n  f o r  some n < o o r  1 

and i f  f o r  every constant c of there ex i s t s  a sequence of 

- - 
constants c (of length n) of L1 such t h a t  cA = c and i f  - A. 

f o r  every predicate P of L there e x i s t s  a formula P of 
0 L1 

- - 
such t h a t  PA = PA . By changkng the  fo&ulas P ( i f  necessary) it 

0 1 
% -- -- - -- -- - ---- 

may be assumed t h a t  i n f i n i t e l y  many of the variables of 
- - 

L1 do not 

- 
occur i n  any of t he  formulas P . For each var iable  x of L l e t  

0 
- 
x be a d i s t i n c t  sequence (of length n) of d i s t i n c t  var iables  of 

L1 t 

- 
w&h do not occur i n  any of t he  formulas P and f o r  each formula 

cp of L l e t  be the  formula of L obtained from cp by the 
9 1 

following rules: I f  cp is s = t where s , t  a re  terms of L,, 

- - - 
then cp i s  s =  t .  I f  q i s  P ( s  or.. . ,s where P i s a  

m-1 

predicate of and so, ... Is a re  terms of L then $ i s  

\ , m-1 0 - - 7 - - -  
, I  p(sOI ...,. s ) . I•’ cp is ~ W , $ V X  o r  3x$ then is  Tq.  $VX 

m-1 c 

o r  3 3  (respectively).  I t  is  easy t o  show t h a t  i f  cp i s  a sentence 

of Lo then ,AO /= q i f f  Al 5 . Suppose TO.T1 a r e  complete 

thee-s i n  LO,L1 . I f  some model of T i s  definable i n  some model 
0 

of T1 then T i s  definable i n  
0 

TI . I f  every f i n i t e  reduct of T 
0 

- - - - 
cp (x,y) is a formula of T there e x i s t s  a formula $ (zrw) of TI. 

/ 0 



- - 
0 (x, y )  -definable subsets  of 1 A,/ a ('I f o r  some, A 

0 To t h e r e  e x i s t  

- - - - - - 
q(z,w)-definable subsets  JI (z,bo),  . . . ,$A (z,bll-& ) of 1 ~ " '  f o r  

A.l 1 

some A1 kT1 which have t h e  same mnempty Boolean combinations i n  

- - 
(A l  1 a ('I a s  the  corresponding cp (x , y) -definable subsets  have i n  

A - - - - - - - - - 

A . t h e r e  if l' 0' T 1 ' a r e  countable?To i s  def inable  

i n  T1 and T1 i s  %-categorical then by Ryll-Nardzewski (1959) it 

fol lows e a s i l y  that  categorical. -- - - -  

C 

The next  r e s u l t  of t h i s  chapter  conc%rns d i s j o i n t  sums of 

t h e o r i e s  and is  used t o  cha rac te r i ze  prime p r o p e r t i e s  of  complete . 
t heor ie s .  I f  La(a < 8) a r e  languages without funct ions  t h e i r  

d i s j o i n t  sum i s  t h e  language C La obtained by.  adding unary 
a< f3 

pred ica tes  Pa(a < 8) t o  t h e i r  d i s j o i n t  union. I f  i s  a 

s t r u c t u r e  f o r  L ((3 < @) t h e i r  d i s j o i n t  sum is the  s t r u c t u r e  a 

L' A f o r  I La obtained by i n t e r p r e t i n g  
~1 pa a s  lAal  (a .< 8) 

a<@ a<B 

i n  t h e i r  d i s j o i n t  union; I f  cp i s  a formula o f  L then cp i s  a 

the  formula of  Z La obtained by replacing each subformula 
a<B 

3 of cp with I y ( $ ~ % ( y ) )  . Note t h a t  i f  cp i s ' a  S e n 4 e  of  

P 
La then An (. rp i f f  E A; krp a .  If. T i s a  theory i n  

a<B 
La 

r a 
then T i s  t h e  theory i n  1 L_ whose axioms are t h e  formulas 

I 'a where c is 
3x Pa(x )?  Pa(c) ,  P(x (,?...?X 1 + A P (X and,tcp 

- -  / n-1 i < n  " L1: -. 

any constant  of La, P i s  any p red ica te  .of La and rp i s  t h e  



universal closure of any axiom of T . If Ta i s  a theory i n  

La (a  < 6) then L T a  i s  t h e  theory i n  C La wbse  axioms a r e  
a<B a<B 

i 
Furthermore i f  B < w then the formuli V x V P (x) i s  a l so  an 

a T  -- . I/ , 

axiom of c Ta . Note t h a t  Aa Ta (a < 6) i f f  1 A /= 1 Ta . 
a<B a 

a<B . a<B 

For each a < 6 and let  P ) denote the formula ? I _ P  (x(i)) 
-- -- -- 6- - - -- i<a (XI a- - 

and l e t  TP (;) denote the  formula A P i  ) . Let EQ a .-. i < R  (z) 
denote the theory of equali ty on an i n f i n i t e  se t .  Then it i s  easy t o  

1 - 
f 

prove tha t  i f  cp (TI is  a formula of '  TI there ex is t  formulas 
a<@ 

- 
. . . . of cer ta in  T (i , j a )  and open formulas qin (xin) of 

1 3  1 3  a, 

.* - 
EQ (i c n) such tha t  Z Ta /- 9 (;) + V A cpi (xi ) where 

a<$ i<n j5n 

for quantifier-elimination it then follows eas i ly  tha t  T i s  
a 

complete and quantif ier-eliminable (a<B) i f f  Z Ta i s  complete 
a<$ 



and quantif ier-eliminable. 

The f i n a l  r e s u l t s  of t h i s  chapter concern generic s t ructures  

f countable languages but the  proofs of these r e s u l t s  a r e  omitt.ed k - 
. since they a r e  similar to, the  proofs found i n  Woodrow (1977) which 

concerns generic s t r u c t u r e s ~ o f  f i n i t e  languages. Let L be a 

language consisting of f i n i t e l y  many predicates P' of each a r i t y  
i j 

i < w . A s t ructure  A of L is good i f  

T ~ A  P. . (xO,. . . ,X ) + A xk # xi for each P . A c l a s s  of 
1 I i-1 - i j - - X&zi 

good s t ructures  of L i s  good. Let C be a +'ss of f i n i t e  s t ructures  

of L closed under isowrphism and l e t  a countable s t ructure  

(HP) If f : A -+ 8 i s  an embedding of A into 8 

and 8 € E then A € C 

holds then C admits the hereditary property. 

I f  

(JEP) If A,8 E Z then there  e x i s t  embeddings 

f : A + C  and g : 8 + C  f o r e m e  C E Z  

holds then C admits the jo in t  embedding property. 

(AP) If f i  : A + 8 (ic2) are embeddings and 
i 

'i 
: B + C ( i t 2 )  for some C € Z such tha t  ' 

i 

-holds then 1 admits the amalgamation property. 



(BP) I f  t h e r e  e x i s t s  a function f : w + w such t h a t  

A c g € Z then 

holds then C admits t h e  d k l g  property. 

- I f  A c M and < U, implies t h a t  A c 8 c M f o r  some 8 € Z 

then M i s  2 - f in i t e .  I f  A € Z implies t h a t  t h e r e  e x i s t s  an 

embedding f : A + M then M i s  C-universal. ~f A , B  € B , A,B c M 

and f : A -F B is an i 6 G r p h i s m  h p l i e s p t h a t  f =-gTA f o r  %me 

isomorphism g : M -t M then M i s  1-homogeneous. F i n a l l y  i f  M 

i s  1 - f i n i t e ,  C-universal and 1-homogeneous then M i s  1-generic. 
I 

Let 1 be a c l a s s  of f i n i t e  s t r u c t u r e s  of L closed under>somorphism. i 

Then ./ 

(1) I f  M and N a r e  Z-generic then t h e r e  q i s t s  , 
/ 

/ 
and isomrphism f : M -+ N 

I 

(2) I f  C i s  countable and admits JEP and AP then , 
/ 

M i s  C-generic f o r  some M 

( 3 )  I f  M i s  C-generic and C i s  good and admits 

BP then )II i s  N -categorical  
0 

(4 )  I f  M is C-generic and 1 is  good and admits 

HP then  A4 i s  quant i f ie r -e l iminable  

quantif  ier-el iminable f o r  some M 

hold. I n  2.3 (5) i s  used t o  s b w  t h a t  c e r t a i n  complete t h e o r i e s  admit 

t h e  v e r s a t i l i t y  proper ty  of  complete t h e o r i e s  but  omit t h e  p a r t i t i o n  

property o f  complete theor ie s .  



$1 Basic Defini t ions-  

I.. 0 Proper t i e s  o f  F o q u l a s  

' 

A proper ty  - of formulas i s  any sequence p = (p (i) 1 i<w) 

of  open formulas of BA (theory of Boolean algebra i n  t h e  language 

L = (O,l ,cInrU] in te rp re ted  i n  t h e  usual sensey. Note t h a t  each 

open formula of BA may be viewed a s  a. f i n i t e  d i s j u n c t i o n  of f i n i t e  

- - 
Venn diagrams. I f  Q ( X , Y )  i s  a formula of a complete theory T and 

- -- 
$(;I is  an dpen formula - of  BA - then -- cp (x, y) admits  $z) i n  T - i f  - 

- - 
f o r  some A b T and dor . . .  ,a e (z) -1 C I A ~ ~ " )  (where P ( ~ A I ~ ( ' ) )  . 

i s  viewed a s  the  p w e r  set Boolean algebra of  ( ~ l ' " ) )  . Otherwise 

some f i n i t e  Venn diagram o f  Ji (z) is  admitted by some 
- 

fo r  some A /= T (note t h a t  s ince  T i s  complete any A 1 T may 

- - 
be chosen). I f  cp (x, y) i s  a formula of  a complete theory  T and 

- - 
P is  a proper ty  of formulas then ~ ( x r y )  admits  p i n '  T i f  t he re  

- - 6 s t r i c t l y  increas ing sequence CY f ww such that cp ( x ,  y) 

- - 
admits p ( a ( i )  ) i n  T f o r  every i < w . Otherwise cp (x,y) omits  

p i n  T . If T i s  a complete theory and p is  a property o f  

- - 
- f o K m - u l a 5 - t k e ~ ~ ~ p i + h p ~ e ~ ~ ~  2 

- - 
such t h a t  ce(xr y )  admits p - i n  T . Otherwise T omits  p . A -- 

p r i n c i p a l  property of formuias is any property o f  formulas p such 

- - 
t h a t  t h e  &l.lowing fiolds: I f  cp(x, y) i s  a formula of  a complete 

- - - - 
theory T a& cp(x,y) admits p i n  T then rp(x ,y)  admits  p ( i )  



i n  T f o r  every  i < u . A I-dimensional p rope r ty  o f  formulas i s  any 

property of formulas p such t h a t  t h e  fol lowing Mlds: I f  T is  a 

- 
complete theory a d  T admi t s  p then  some formulas tp(x,y) o f  T 

admits  p i n  T . The principal part of any p rope r ty  o f  formulas  p 

is  t h e  p rope r ty  of f o n d a s  c = ( h  p ( i ) l i < w )  where it may be assumed 
I t 1  

by changing v a r i a b l e s  [if necessary)  that f o r  each i < w no v a r i a b l e  

occu r s  i n  mre t b n  o n e  conjunct  of A p ( i )  . The a- th  part of any . . 
_ -  3<1-- - - - ---- -: 

- 

proper ty  of  forwitas P {where a € @ is a s t r i c t l y  i nc reas ing  

sequence) is the pro-Perty o f  f0rIIRIlas p fa)  = ( p  (a (i) ) f icw) . The 

intersection of any p rowt ies  of formulas 
pot p1 i s  the proper ty  

of formulas pO?ol = (go ( i )  Vpl ( i l l  i c w )  . The union of any  p r o p e r t i e s  

*where it m y  k as- by changing variables (if necessary)  that for 

each i < w no variable occurs i n  more t han  one m n j u n c t  of 

po [i)npl fi) - using the above d e f i n i t i o n s  the fo1Lo)ring 1- may be 

ea sif y p o v d .  

r f  o ( x , ; )  is a formula of a complete theory  T and p.po.pl are 

p r o p e r t i e s  o f  forauLas then the fol lowing hold: 



- - d 

cp ( x r y )  admits p i n  T 

- - 
cp (x, y) adFLts for every 

* - - 
. g ( x , y )  admits for some . s t r i c t l y  increasing sequence 

Po a.d P1 i n  T (if p 0 or p1 is principal admits 

the converse holdsf 

- - 
If 9 ( x ,  y )  is a formula of a complete t-ry T l e t  

some property o f  formulas enumerating those open 
- - 

which r;fx,,y) admits i n  

a complete theory T and 

n), Tf be the property of 

which the parametsized disjunction 



, 1.1 Properties of Complete Theories 

If PO,P1 are properties of formulas then p is 
0 

* 
equivalent to Pl f a t t e n  p - pl) i f  p p are admitted by the 

0 0' 1 

complete #*wries. C l e a r l y  - is an equivalence relation. A 

Prop- of - ==P lete theories is any equivalence class of .- , If p 

is a property of fo-as l e t  fpf be the &uivalence class of - 
- - 

containing p . If cp(x,y) is a formula of a coztplete theory T and, 

t 
cmits n in T . If T is a W e t e  theory and T is a property 

of complete theories then T admits 7r i f  T adaLits p for some 

p C -rr . otherwise  T omits n , A principal property of complete - 
tbEaories is any property of cam~lete theories contairting a principal. 

*- - 

property of forrufas. A 1-diaensr 
\ 

'ma1 property of complete theories ' 

is any property of w l e t e  theories containing a l-dinsensional 

property of formulas, U s i n g  the above definitionst&e following le- 

say be easily proved. 

If T is a ccsplete mry and p,p , p  are properties of formulas 
0 1 

then the folZowin~ bofd, 

- W 
T admits f ~ ( a j f  for sole strictly increasing F e  a € w 



T admits 

Ct 

T adtaits 

T admits is principal the 



1.2 Ordering Properties df Coqlete Theories 

Let P be the s e t  of properties of complete theories and 
A 

let be the sabset of P consisting of principal properties of 

-let@ theories, If E x f P let a' 5 n mean that  every 
0' 1 0 1 

every complete thmry ( i n  the language of on? binary predicate) 

acbitting n amaits r; 
1 0 -  

Obviously (P,5) and (PP,') are posets. 
/ 

The poset ( P , 5  is  a lower semilattice wkich i s  distributive in the . 

r 
follovinq sense: If n, E ~ , \ ? T ~  $ P and n  V n  exists  then 

0 1 

( T A T )  v ( 7 ~ ~ 7 1  ex i s t sand  A n v n )  = f v ~ n )  v ( T A T )  . 
0 1 0 1 0 1 

If 3 .  n n 6 P and n v n n v n  exists then n v (n A n l )  
0' 1 0' 1 0 

exists and ~r v mO h " r e f  1 = fz v TI I h f n  V n Ti . me poset cPP,~] 
0 1 

i s  a distributive sublattice of (P,c)  . 

Proof - 

(11 If T is a q l e t e  t f i eo ry  then T admits n iff 

so (21 characterizes n t s  in f ? , ~ )  . %us EP,c} i s  a lower 



i s  a lower semilattice. If 

.ir = [Po U p ] then Lemma 2 
1 

0 
is  principal or  p1 i s  principal and 

shows that 

(3)  If T is  a complete theory then T admits n i f f  T 

admits 7f and F 
f 0 1 

- - -- - - - - PA-- - -- 

and from (3) it may be proved that for every FcT PAP- 

(4)  T = V T i f f  T sa t is f ies  (3) 
il 0 1 

so ( 4 )  charackerizes joins i n  (P,S) . Obviously i f  F sat isf ies (3) 

then T = T  V I T  Thus suppose T = V IT 
0 1 -  

If I T ~ C  PP or 
0 l *  

r € ?T then 2 shows that  F sat isf ies (3) since .it may be ' 

1 ,  

assumed that po i s  principal or P1 
i s  principal. Thus suppose 

n f PP and r PP . Then by L e a  2 [ p o ( a ) l  > To and 
0 I. 

Ipl ( 6 )  I >  IT^ whenever a, B € ww are s t r i c t ly  increasing sequences 

- - 
(hence [pO ( a )  U p1 ( 6 )  1 2 TO v lil = n since 

complete theory 

.+ 
.- 

admits IPo(a)l 

which a W t s  IT and T then L e m  2 shows that T 
0 1 

and [ P  [ @ ) I  for some s t r i c t ly  increasing sequences 
1 

\ Hence 'IF sat is f ies  ( 3 ) .  From the above it follows that , i f  T E PP 
0 

lat t ice.  The distributivity of (P,5) and (?P,5) follow from (2) 

and ( 4 ) .  



If  T is a complete theory l e t  I(T) = {IT t PP I T admits n). 

From (2) and (4) i;n the  above proof it follows tha t  7 (T) i s  a prime 

ideal  of (?P15) . - , 

Theorem 2 

---- 
I f  Ta(a < 8) a r e  complete theor ies~wi th 'Ql t  functions) then 

- 
! 

Suppose Ta(a < 8) a r e  complete theor ies  (without functions) 

i n  the  languages La(a c 8) and suppose T = C Ttr is t h e i r  d i s j o i n t  
WB 

sum i n  the language E La obtained by adding unary predicates 
CMB 

Pa(a c B) t o  t h e  d i s j o i n t  union of the  l-~~(a < 6) . It 

suff ices  to show t h a t  L I (T,) C I (T) and I (T) c C I ( T ~ )  . 
ck=B 

~0 show t h a t  E I (Ta) c I (T) it suf f i c e s  t o  show t h a t  1 (T,) C 1 (TI 

=B 
f o r  every tr c B . Supplse n € T(Ttr) f o r  some a c B . Then 

- - - - 
cp(x,y) admits R i n  Ttr f o r  some formula cp(x,y) of Ta . 

- - n - 
I t  suff ices  t o  show tha t  some formula cp(xry z) of T admits 

- - 
n i n  T . But l e t t i n g  @ ( x , Y  ") be the formula 

- - - - n - 
formula of B?i which cp(x.y) admits i n  Ta . Thus $(x,y z) 

admits IT i n  T . ID s k w  t h a t  I (T) C 1 I (T,) it suf f ices  
WB 



t o  s h o w  t h a t  f o r  every a C I (T)  t h e r e  e x i s t  IT < I(Ta ) (i. j < n ) -  
t i j  

d 

j f' - - 
such t h a t  a 5 v V IT . Suppose E I (T) . Then cp (x,y) admits \ 

i j  
j<n i<n - - 

T i n  T f o r  s o w  formula q(x ,y)  of T . It i s  easy t o  prove t h a t  

- - 
t h e r e  e x i s t  forrmlas cp (xi j  .yij) o f  T i n '  and open formulas 

b 

i j  a, 
-- 

qin(xintyin) of EQ (i < n) such t h a t  

- - 
For no ta t iona l  convenience assume t h a t  r ( x i  j) $ r ( x i  jl whenever 

0 1 

- 
i < i c n and j i n .  L e t  x = (xO ,..., ) . For each 

0 1 

- - 
i, j<n l e t  = [p. . I  where P i j  = P(q. . ( x  ..Y. . I I  . For each 

i j  11 1 3  i 13 Ta . )  
3  - - - 

i < n l e t  IT = [pin] where - 
i n  Pin - P ((Pin (xin ,yin) I EQ) 

Obviously a € 7 (T i n  . It s u f f i c e s  t o  show t h a t  
i j  

O L i  j 

T r v V IT . Thus suppose T' is a complete theory which admits 
i j  jcn i t n  

- - 
admits v v n t he re  exist fornnilas $ij(zij,w ) of TI ( i . j cn )  

i j  . i j 
j<n i<n 

s u c h t h a t  $ . . ( i j I i j  admits p i n  T i  . Obviously f '  
1 3  i j  



- 
admits T (i c n) so t h e r e  e x i s t  formulas I) ( z  ,w ) of  T' (i < n j  

i n  i n  i n  i n  

- - 
(namely t h e  formulas 9 in(xinl~in) (i c n) sudh t h a t  $in(gin.win) 

i n  T i < n) . By changing o r  adding va r iab les  admi t~ i 
'in 

- 
sequences of va r iab les  z ( j  5 n)  such t h a t  

j 
- 

r ( Z  ) n r(;. ) = $I ( j o <  jl 5 n)  . For each k c  8(;) l e t  xk be 
1, 3, 

a d i s t i n c t  sequence of va r iab les  of length n and l e t  @ 

= - n ... n - 
x = x  X fi(G)-l Also le t  R .  (xO,. . . .X ( j  < n)  be 

0 - 3 n-1 

formulas of  T' such t h a t  T' t 3x 0...3x R.(xO ,..., x ) ( j  c n) . 
n-1 7 . n-1 

and T '  3x0. . . 3xn-l A YR.  (xO,. . . .X ) . F u r t h e n a r e  l e t  
7 n-1 j<n 

- $f .(; - - 
z j  'wij 

1 be  $ . . ( z  17 j tWi j  ) A A R ( ) i n  an_d l e t  
1 3  3, k 

* = n -  - - - 
qin(x zn1win), be $in(znlwin ) A ( A A 7 ~ . ( - ) )  (i c n ) .  Then l e t t i n g  

jcn xk 
3 '=k 

n - -  - n -  - * z . ~ )  be V A . \zj ,wij)  i t i s n o t d i f f i c u l t t o s h o w t h a t  
i t n  jSn 17 

It may be proved t h a t  Theorem 2 f a i l s  f o r  d i r e c t  products of 

theor ies .  I n  f a c t  Wierzejewski (1976) provides a s t r u c t u r e  A such 
. 

that T = @ admits t h e  order property of  cornplefe theor ies  y e t  



L 

1.3 Ordering Complete Theories 

Let T be the  c l a s s  of a l l  complete theories.  I f  TO,T1 € T 

l e t  T r T1 mean t h a t  every property of complete 
0 

T i s  admitted by T 
0 1 '  

Clearly T 4 T i f f  I ( T ~ )  c I ( T ~ )  . 
0 1 

T 4 T  and T r T  Clearly E i s  a congruence on ( 1 . Hence 
0 1 1 0 

3 

) i s a p o s e t .  Note t h a t i f  To € T  then T t T for  some 
- - 0 1 

N 
T (without functions) € T such t h a t  ITII 5 h n  {IT0l.2 Oh In  f a c t  
1 

- - 
suppose T~ C T . ~t S ( T ~ )  = {IT C I ( T ~ ) / I T  = [ p ( c p ( x . y ) . ~ ~ ) I  fo r  some 

- - 
formula ip(x.y) of T 1 and for  each fi € S ( T ~ )  l e t  TIT be the 

0 
3 - - 

complete theory i n  the  language of one predicate P (x,y) obtained by 
IT 

- - - 
in te rpre t ing  PIT(x,y) a s  q(x,y) i n  T 

0 .  
Lett ing T = 1 Tn. 

n€J(To) 

it follows from Theorem 2 t h a t - l ( T  ) = I ( T  ) . Thus T may be 
1 0 

viewed a s  the  s e t  of a l l  complete theories i n  a language consist ing of 

N 

2 , O  predicates of each a r i t y  (including 0) .  Note t h a t  i f  T,(a < B) 

a re  complete theories without functions then it follows from Theorem 2 

t h a t  ( 1 T,) I - - = v (T ) . In  f a c t  Theorem 2 shows t h a t  T I (TI 
W B  - WB "Ia 

Also EQ T f o r  evkry= T € T . Hence ( T I = , *  I=) i s  an upper - - 

semila t t ice  with a smallest  element (namely E Q I = )  . - 



1.4 Archetypal P roper t i e s  of Complete Theories 

I f  T € T and IT € P then .T_ i s  archetypal  f o r  IT 

(and IT i s  archetypal )  i f  the  following holds: T admits T i f f  

' 5 n . Note t h a t  i f  IT € P and IT i s  archetypal  then IT € PP 

L I T  is A-irreducible i n .  (P,T) . Hence T i s  archetypal  f o r  n 

i f f  n € PP and I ( T )  = {7T1€PP1IT'5lT) . From Theorem 2 it follows 

t h a t  i f  Ti i s  archetypal  f o r  IT (i < 2 )  then T 0 + T1 i s  
i 

archetypal  f o r  IT V n Hence if  is  archefypal (ic 2) o 1 .  i 

then IT V T i s  archetypal .  F ina l ly  note t h a t  i f  To i s  archetypal  
0 1 

- 
f o r  IT and TI admits IT0 then T 0 + T1 = T1 s ince  by Theorem 2 

0 



1.5 Prime P r o p e r t i e s  of Complete Theories 

I f  n  E P then Ir is  prime i f  t h e  following holds: To + T1 

admits n i f f  T admits o r  
0 

T1 admits n  . 
.*' 

Theorem 3 

I f  IT E P then n  i s  prime i f f  n  i s  V-irreducible i n  (P.5) .- 
PAL--- - 

Proof 

Suppose IT E P IT i s  priine and n  i s  not  V-irreducible i n  

( P . 5 )  . Then n K n V I T  f o r  some7 r C P such t h a t  no, y e n .  
0 1 0' 1 

Hence the re  e x i s t  To' T1 C T such t h a t  T admits n but  not n  
0 0 

and T1 admits n  b u t n o t  n .  Bu t  T 4 T  + T  so T + T I  0 0 1  0 

admits n 
0 

Similar ly  T + T1 admits n 
0 1 '  

Hence T + T1 admits 
0 

n  v IT = n  . Since IT is prime it follows t h a t  
0 1 0 

admits IT o r  

T1 admits IT and t h i s  i s  a cont radic t ion .  Suppose n  C P and n  

is  v-irreducible i n  (P.5) . It  s u f f i c e s  t o  s h o w  that T i s  prime. 

Thus suppose T + T1 admits n  .. It s u f f i c e s  t o  show t h a t  T 
0 0 

admits n  o r  
T1 

admits n . Let 7T = [ p ]  . Then T + T1 admits 
0 

[P(a)l f o r  some s t r i c t l y  increasing sequence a E @ . Hence 

r " - 
n t 1 (T ) and rrl E 1 (TI) . But \+If 5 [ p ( a ) ]  = IT v n  so 

0 0 0 1 

n = (n A n  ) v (IT A nl) . Since n i s  V-irreducible i n  (P.5) it 
0 



*. 
Corollary 1 

If T € P are v-irreducible i n  
0' 1 

Proof 

(P,5) then 0 A T 1 ' is  

Suppo s e To' I T 1  
€ P a r e  V-irreducible i n  ( P , 5 )  . By 

.Theorem 3 IT sl a r e  prime. I t  follows e a s i l y  t h a t  ITo A IT i s  prime. 
0' 1 1 

By Theorem 3 IT A IT i s  V-irreducible i n  (P,5) . 
0 1 



52 Basic Examples 

2.0 The Minimum and Maximum Properties of Complete Theories 

Let 0 be a property of formulas which enumerates the open 

formulas of BA. Since EQ 4 T for every T 7 it follows that EQ 

[0] i s  A-irreducible i n  (P.5) . Furthermore [OI i .rr for every n € P . 
Note that i f  T C T then T i s  archetypal for 101 i f f  T 4 EQ . 

n 
P A C  I A l  a d  E A C P A x  ( I A l  - P A )  is the graph of some bijection , 

n 
PA + ( I A 1 - PA) it i s  easy to  show that Tn is definable in  EQ. 

Hence Tn 4 EQ so Tn i s  archetypal for 101. 

Example 2 

are independent (each f i n i t e  Boolean combination of the PA i (icw) 

i s  nonempty). It i s  easy to  show that  T is locally definable in 

EQ. Hence T 4 EQ so T i ~ ~ c h e t y p a l  for [O]. Note that  T is  

superstable but not H 0 --stable. 

Example 3 

*A 
&t T = T ~ A  = ~h(lA1. eili<@ where IA 1 t KO mtd the 

E! L~ACX-AA~ _(i%3ilr-eraWanssapthat  for every 
1 

i < w each 
A 

.valence class of E, is the union of infini tely many 
p--p 

A 
&valence classes of EiSlA . It  is easy t o  show that  T is 

locally definable in  EQ. Hence T 4 EQ so T i s  archetypal for 

101. Note that  T is stable but not superstahle. 



- - 
Let  1 = 0 . Obviously €11 C PP and K I [ I ]  f o r  every 

- - 
tr C ? . Note that if rpfx,y) is a formula o f  a complete theory T 

- - 
Men cp(x,y) admits 1 i n  T i f f  f o r  a r b i t r a r i l y  l a r g e  n < w there 

- - 
exists A %nd a p a r t i t i o n  of  I A  I C ( 5  i n t o  n rp(x.y) d e f i n a b l e  

subsets stfch that the union of any m 5 n of t h e m  is a l s o  

- - 
formulas such that i f  q(x,y)  is a forntula of  a complete theory T 

- - 
then rp(x,y) admits ln i n  T i f f  f o r  a r b i t r a r i l y  l a r g e  n 5 m ; ~  w 

- 
- - - - 

there exists A T % and m cp ( x r y )  -definable subsets  o f  

- - 
such t h a t  the union of any C 5 m of them is a l s o  q(x ,y)  -definable 

but  the i n t e r s e c t i o n  

Lennna 3 

If T is a complete 

(1) I f  so= formula 

- - 
formula #(x,z) 

7.- 

/? 
( 2 )  Z ~ o L k G n u l a  

- - 
formula x (x ,w)  

of any C f m of them i s  nonenpty i f f  C C n . 

theory and 0 < n < w then t h e  following hold: 
- - 

q(x ,y)  of T admits 1 i n  T then  some 
n 

of T admits l1 i n  T 

- - 
$ ( x , z )  of T admits l1 i n  T then so= 

of T admits 1 i n  T . 
I n  particular f l l  = E l , )  (0 < n < w ) .  

Proof 

- - 
Suppose the premise of (1) holds. Le t t ing  # ( x , z )  be 

- - - 9 -, - - n - n  n -  
cp(x,y) A f g4x,yi)lwhere z = y  yo ... 

' n l ~  
it follows 

i<n-1 
- - 

e a s i l y  t h a t  Ip(x,z) admits l1 i n  T . Suppose the premise of (2) 

- - n  n n n - - where  w = z w 
0 

W W  
1 2  w it follows e a s i l y  #at x(x,w) 3 



Theorem 4 

1 i s  1-dimensional. 

P 

Proof  

i - - 
Suppose 3 ( x , y )  is a formla  o f  a complete theory T which 

admits 1 i n  T . I t  suffices to show that some formula q~(z,wf of 

T admits 1 i n  T . For notational convenience ass- that 

- n 
X x = x o  Thrts q ( x o n x ; , J )  admits 1 i n  T. B y t h e  

mqgtc-&ness theorem these exists  A T and n o n q t y ,  d i s i o i n t  

n - 
that Ai is a l s o  o ( x o  x yl-definable whenever S c o and 

if S 
1 ' 

projec t ionof  j A l  x IA l  onto ] A /  (thus f i(aoIai)  = a  whenever 
i 

"1 f / A l l -  BY the cmpctness theorems it may h 

assumed that fl fo (Ai) + 4 iff fl fo (Ai) + 4 whenever 

2 i CS 
1 

SO, S1 C to and IsO/  = Isi 1 < N o .  Thus either (1) there e x i s t s  

Since 
f l /  -1 presenes disjointness whenever a C I A1 it 

fg (ao) 
0 



follows a s i l y  tha t  +tz,w) admits 1 in T . By ~ensm 3 some 
1 

formula $(z,w) of T admits 1 in T . 
Corollary 2 

I11 is prime. 

i l l .  It suffices toshow that Ti adnits 111 for some i < 2 . 
- 

Since  E Ti admits I11 - Theorem 4 shors that some formula slx,y) 
i<2 

of r T~ a a t s  1 in P T I E ~  P A .  E T~ it is easy to 
i < 2  - 1 

i<2 ' . i < 2  i<2 

every .p(x,~)-definable subset of / E Ail i s  the union of a 
i<2 

a r i t h e t i c .  Letting ofx,y) be a formula of T wbicfi asserts that 
I 



x is a prime divisor of y it is clear that T ( x , y )  admits l1 

i n  T . Hence T admits [I]. 

t E-le 6 
2 

Let T = ThA where A is an inf in i te  Boolean algebra containing 

~nfrnr te ly  many a m .  -tting $(x,y)= a fonmila of T which 

asserts that x is an atom contained in y it is clear tha t  cp(x,y) 

Example 7 
Y 

Let  T = ThA where A is an in f in i t e  Boolean algebra containing no 

at-. Then T omits 111 Otherwise some formula cp(x ,y)  of T . Z 

admits l1 i n  T . E q  the wnpactness theorem it may be assumed 

that &ere exist nonenpty, disjoint, cp(x,y)-definable subsets Ai - -? + 

of f k f  ti*) sn& that the tmion of  any finite nmber of them is 

af so rp(+,g-definabre. Proa the well-known result that T is  
f P *  

quarrtifi@elirinable and 0 -categorical it follows easily that 

for some n < w every tp[x,?) -definable subset of fA7 is the 

of at most n n-basic subsets of f A [  where an n-basic subset of 

! A /  is any subset of IAi of the forat 

- - - - 
A = [a,bJ and A' = la' ,b11 are n-basic m e t 8  of then 

,' 



A  = A '  i f f  a* = a& , al = a *  1 and Ib o , . . . r b  n- 1 1 = ~b~,.-.,b~-13- 

- - 
If A = fa,b] aod A '  = 12' ,b' are n-basic subsets of 1A 1 let  

A I A '  meanthat a ' C a  h a  1 a; and l e t  A Z A' mean that 
0 0 

i 
A I A' and A '  5 A. Using Ramsey's theorem it may be assumed that 

a d  i l-iO, -i have the same sign. If L, A'  are n-basic 
- 

3 2 

s i@ a1 wzs A if A E A *  A ~n A! + 1 

Obvimsly A *  corers A if A' I A. It is easy to prove that i f  

- - - - 
A  = Ia.bl and A *  = [a' ,b'] are n-basic subsets of I A  1 and 

A 5 A '  t hen  A '  does m t  cover A i f f  0 $ b i  c a. - a' or  0 

9 bi C a; - al for s- i n  . Prom t h i s  it follows easily that 

if R 5 A '  5 As are n-basic &sets of f A  1 and A" covers A then 

An covers A ' ,  It is also easy to prove that i f  A, T+,i . . .# 

are n-basic subsets of ; A \  and 11 c A~ U ... U Awl then Ai 

covers A for some i < m , Prom th$s it may be proved that f o r  

- 
Indeed l e t  jo ' n . Since ii A. is p(x,y)-definable there exist 

A<.. = 
n-basit subsets Bk of ! A /  (k n) such that U A = UBk . In 

.r% t < n  

L B  for i 5 n  sothereexist i partkular Aijo t<a X 0 < i 1 5 n  

and kI) < n such t ha t  B mven and Ai l thus 
kj Aioj 1 0  



and A ) . Since B c U Ai there e x i s t  
i j 

1 0  ~n 

i T n  and j l < a  
2 Such that Ai covers 

2 1 

Choose j < n such that Ai 4 Ai 
2 and Ai is I-maximal 

2 1 2 2 2 2 
- -- - - - - - - - - - 

m n g  the A , j < n .  Cbviously A i j  5 A i j  and 
2 0 0 2 2 

1 j ' Ai j 
. If i2 L il it follows eas i ly  that A 5 A 

1 0  2 2 01, l j  

and A i s  '-maximal among the  , ( j  ' < n . Similarly i f  r ~ .  
9 j  l j ,  

i < i it follows eas i ly  t h a t  A 5 A 
2 1 .  

and A i s  
l j o  01, O j ,  

I-maximal among the  
A ~ j f  

( j  ' < n) . Letting f ( jo) = j2  concludes 

the argument. From t h i s  it f o l l w s  that f o r  some jO < n e i t h e r  

A I A  o r A  5 A  fo r  some m 5 n . Indeed choose 
Ojg mjg mj, 01, jO < n 

i 
such t h a t  o f  ( jg) is cyclic where o (j 1 = I f  ( jol l id fo r  some 

f O  

m 5 n is  the o r b i t  of j under f , It suff ices  t o  prove t ha t  i f  
J 0 

A S A  then A 5 A but i f  A 5 A then 
0j0 lf (j,) O j o  m j o  11, Of (j,) 

A 5 A  . Then A I A 
m j o  W, i f  ( j o )  1+lfi+'t j,) 

for every i < m . otherwise A I A  
i-1 Yet 

i - l f  f j,) i f  . ( j o )  I 

A -  - - - *=* ----- - 
i i+f < m , But then 

i+lf t j,) if t j,l 

k 
B 

5 A 
i i +l  

so A ( A  
if (j,) i - l f  C j 1 

' A i+l 
i - 1  i f  ( jo )  i - l f  ( jO)  

f 

s o A  E A = A  (since A is '- - 

i-&-'( jo) i 8 ( j o l  i-18 (jo) i-lf i-1 (j,) 



so  A n A .  + 4) and t h i s  i s  a contrad-iction. Hence 
i-1 1 

A = A  5 A = A  . S i m i l a r l y i f  A L A  0 
O J o  of (j,) m f m ( j o )  m j o  l j o  

Of ( jo) 

-tkeff-&-- a Lp 
- •’or&ucqp i c m o - -  

i i + l  
m-if ( jo) m - i - 1  f ( jo)  

A = A  0 5 A = A  . From this it follows t h a t  f o r  
m j ~  m f  ( jo) ofm(j0) ojo 

some jo < n e i t h e r  Aij 5 Ai+lj (i 5 21-11 o r  Ai+ljO 5 Rij (i 5 2111. 
0 0 0 

Since U A2i is cp(x,y) -definable the re  e x i s t  n-basic subsets  
E n  

Bk 

of I A l  (k < n) such that U A2i = U Bk . I n  p a r t i c u l a r  
S n  k<n 

c U Bk f o r  i 5 n s o  M e r e  exist io < i 1 5 n  and k o < n  
A2i j 

0 k<n 

such t h a t  Bk covers A '. and A2i . But 
0 

21 j 
0 0 1 0  

o r  A2iljo ' A~i I - l jO  ' B ~ o  
Bko covers 

'2i 0 * j  0 ' A2iO+1 jO ' B ~ O  

A2i + l j  
o r  . I n  e i t h e r  case Bk n ( U A2i+l 

A2i1-1 jo + 4  SO 
0 0 0 E n  

a contradic t ion since the A. (i < 2n+l) are d i s j o i n t .  
1 

~ x a s ~ + m a x i m u m  w h i l e  o the r s  gge not. I n  fact i f  
,. 

A , 8  are i n f i n i t e  Boolean algebras then T ~ A  - T ~ B  i f f  e i t h e r  both 

A,B conta in  only f i n i t e l y  many atoms o r  both A,8 conta in  i n f i n i t e l y  
/ 

m y  atoms s ince  it may be  shown that i f  A conta ins  only f i g i t e l y  



many atoms and 8 contains no atoms then A i s  essen t ia l ly  

definable i n  8 (and vice versa) .  But a l l  theories of i n f i n i t e  

Boolean algebras a r e  4-maximum since it may be shown' t h a t  they 

admit the  v e r s a t i l i t y  property. Thus T 0 4  TI does not imply t h a t  . 
T 0 4 T 1 .  
- - - - - - -- - - - --- - -- - P - 

Example 8 

Let T = T ~ A  = ~ h ( l 8 I  U sB, 0, 1, fl, U, c ,  E) where SB is  the  
- 

Stone space of an i n f i n i t e  atordtess Boolean algebra 

8 = ( 1 ~ 1 ,  0, 1, n, U, C) and E c 181 x SB is defined by E(b,c) 

i f f  b c (b € I B I ,  c € s B ) .  Letting q(x,y) be E(y,x) it is  

c l ea r  t h a t  cp(x,y) admits i n  T . Hence T admits 111 . Note 

- t h a t  T i s  No-categorical (use a back an4 for th  argument). 

Example 8 s h o w s  t h a t  some countable complete N -categorical 
0 

theor ies  may be +maximum even though countable complete non- 

N -categorical theor ies  cannot be definable i n  them. Thus T 
0 0 T1 

does not imply t h a t  T is definable i n  
0 T1 



' ,' 

2.1 The F in i te  Cover and Pa r t i t i on  Properties of Complete Theories 
- - 

Let fcp be a property of formulas such t h a t  i f  q(x,y) is  

- - 
a formulaw of a complete theory T . then cp (x, y) admits f cp i n  T 

i f f  f o r  a r b i t r a r i l y  large n w there e x i s t s  A 1 T and 

- - 
i s  I A ~ " ~ )  but  the union of any n - 1-4 them is  not I A I " ~ ) .  ~n f a c t  

let fcp(n) be (xoU.. .Ux n-1 = 1)  h ( ~ X ~ U . . . U X ~ - ~ U X ~ + ~  U.. .Uxn-, + 1) 
3 i<n  

f o r  every n < w . &elah (1971) proved tha t  fcp is 1-dimensional. 

Using t h i s  r e s u l t  it is easy t o  prove t h a t  [fcpl is  prime (see the  

proof of Corollary 2 ) .  ~ e i s l e r  (1967) proved t h a t  i f  T i s  a 

countable complete theory which admits tfcp] then T i s  not 

Example 9 4 F 

L e t  L be a language consist ing of a binary predicate ru and l e t  EQV 

be the theory i n  L whose axioms 

let 

are 

EQV(S,T) be the theory i n  L whose axioms are 



If S c w let EQV(S) be EQV(S,w-S). Note that EQV(S) is 

complete whenever S c o . Furthermore if I S  1 < U  then EQV(S) c EQ 

(so EQV(S) omits ifcpl). But if = N o  and cp(x,y) is 

x =  y V x + y  then p ( x . y )  admits fcp in EQVG) (so EQV(S) 

If cp is a sentence of EQV there exist sentences (Sir~i) of 

EQV (i < w) such that EQV 1 cp ++ V (siITi) - 
i <n 



both X, 3~ € X and t h i s  i s  a contradiction. 

I f  s C w and ( s I  = No then S i s  t h in  for  fcp i f  the 
r' 

folluwing holds: I f  a. 6 C S and 1.1 = (61 = N o  then EQV(a) 

admits fcp('f3) i f f  I 6 - o 1 < No. Note t h a t  i n f i n i t e  subsets of th in  

-< 

Lexaa 5 

Thin s e t s  f o r  fcp ex is t .  

Proof 
- - 

For each formula q(x,y) of EQV and n < w l e t  

- - - - 
(p (x,  y) , n) be a sentence of EQV which asser t s  t h a t  q (x. y) admits 

- - 
fcp(n) .  By Lemma 4 EQV 1 ( ~ ( x r y ) , n )  * V (sirTi) f o r  some 

i em 

- - - - 
n . Otherwise cp(x,y) omits n . Obviously q(xry) oarits n fo r  

- - 
sufficieil t ly large n < w (otherwise cp(x,y) admits fcp i n  

- - 
S(q(x,y) ,n) C w be defined by choosing some ti € Si for  each 

i < m  s u c h t h a t  Si 0 Ti = ( . Suppose S c w  and I S (  < N o  . 
- - 

Then fo r  suf f ic ien t ly  large n < w S(q(x,y),n) may be defined 
- - 

so  tha t  S(cp(x,y),n) S = 4 . To show t h i s  note t h a t  fo r  every 
- - 

T c S cp(x,y) omits fcp i n  EQV(T) (since ] T I  < No). Thus fo r  

suf f ic ien t ly  la rge  n < w it follows tha t  f o r  every T c S 

follows tha t  Si 4 S fo r  each i < m such tha t  Si n Ti = ( so 

- - 
define S (g (x. ) ,n) by choosing some Li F Si - S fo r  each i < m 7 



- - 
such t h a t  Si n Ti = 4 . L e t  (pi (xi, yi) (i < w) be t h e  formulas 

- - 
of EQV and le t  Jli(ziIwi) ( i  < w) be t h e  formulas of EQV obtained 

- - 
by l e t t i n g  $. (zirwi) be t h e  parametrized dis junct ion of  t h e  formulas 

1 

t h a t  $O (zO .wO) 

chosen s o  t h a t  

... < w are chosen a s  follows: Choose n 
- -- - - - - - 9 

omits n 
0 -  

If n < ... < n 
0 

< w have 
i-1 

- - 
$ . ( z  ,w.) omits n ( j  < i) a n d s o  t h a t  

3 j 3  j 

fl {no ..... nj-lInj+l, .- .rn 1 = 4 (j < i) i-1 
choose 

- - 
n > n  s o  t h a t  Jli (zirw. ) omits 'n and s o  t h a t  i i-1 1 i 

- - - 
n u s ( $ .  (; .w ) rn j )  and- so t h a t  Ini) n {no. - - .n i-1 I = + .  
i 

j <i ~ j j  
d 

- - 
I t  follows e a s i l y  t h a t  i f  i < w . a c S and E Q V ( ~ )  (lyi(zirwi) .nil 

- - % 

then n € a ( s ince  S (Jli (zi ,wi) .nil 0 S c ini}).  From t h i s  it 
i 

follows t h a t  i f  a. B C S and la I = I BI = N o  then E Q V ( ~ )  admits 

admits fcp(9) i n  EQV(a) f o r  s u f f i c i e n t l y  l a r g e  i < w) . Hence S 

is a t h i n  set f o r  f cp  . 

Theorem 5 

The poset of subsets  of ~ ( m o d u l o  f i n i t e  sets) may be embedded i n t o  

( W . 3  i n  such a way that f i n i t e  jo ins  are preserved. 

Let S be a t h i n  set f o r  f c p  and l e t  S be t h e  poset  

of subsets  of S (-0 f i n i t e  sets) .  It  s u f f i c e s  t o  show t h a t  S 

may be embedded i n t o  CPP,5) i n  such a way t h a t  f i n i t e  jo ins  are 



preserved. For each a c S l e t  f Cal = i fcp (a) 1 (where f 

i f  la1 < N o )  and note t h a t  C •’(a) i f f  I $  - a1 < 
h i 

/ 
(a ,  6 C S) s ince  S is  f c p  . Furthermore 

\ 
• ’ (a)  V f(B) = f ( a  U B )  (a,  B C S ) .  Thus f induces an embedding 

Corollary 3 

Proof 

Suppose a C o, la] = No and [fcp(a)  1 € PP. Then 

[fcp(a)  1 = [pl where p i s  some pr inc ipa l  property of formulas. 

- - 
Let qi(xi,yi) (i < w) be t h e  formulas of EQV. For each i < w 

and n < ... < n < w t h e r e  exists n > n 
0 such t h a t  

j-1 j j-1 

- - 
p(x ,yi) omits p i n  EQV (8 )  whenever B fI (nj-l,nj) = @ . To i 

- - 
prove t h i s  note that cpi(xi,yi) omits p i n  EQV ({no,. . . ,n  1) 

j -1 

- - 
Hence qi(xi,y.) omits p(k) i n  EQV ({no ,..., n 1 )  f o r  some k < w. 

1 j-1 

By the compactness theorem there exists n > n 
j j-1 

such t h a t  

- - 
cut then 0. (x. ,y.)  omits p i n  EQV(B) whenever B n (nj-l,nj) = 4 

1, 1 1 

s ince  p is  pr incipal .  From t h i s  it follows e a s i l y  that 

n < n < ... < n 
0 1 

< n < ... < w i n  a may be chosen s o  that f o r  
i-1 i 



- - 
each i < w rpi (xi ,yi) omits p in  EQVCB) whenever B n (ni-l .nil = $. 

- - 
l e t  B = Ini I i < 01 C a . Then for each i < o r p .  (xi.yi) omits p 

1 

i n  EQV(B) so EQV(.B) omits [pl. But EQV(B) admits [fcp(a) I = Ip l  

and th i s  i s  a contradiction. ' 

I 

A-  mleor- 6 - - _ A- - - - - - - -- - - - -- - - -- -- - -- 

The poset of subsets of w (modulo f in i t e  sets) may be embedded into 

( P  - PP, 5). 

Let S be a thin se t  for fcp and l e t  S be the poset 

of subsets of S (modulo f i n i t e  se t s ) .  It suffices to show that  S 

may be enbedded into (P - PP,5) .  For each a  c S l e t  
r 

•’(a) = [fcp (w - a ) ]  (where f ( a )  = [fcpl if I w  - a1 < N o )  

note that  f(B) 5 f ( a )  i f f  16 - a1 <'u0 (a. B c S). By Lemma 6 

f (a) € P - PP (a c S) . Thus f induces an embedding 

f =: S -. (?-W,S) .  I - 
Corollary 4 

I jP - PP 

Lemma 7 

- - 
~f f;) i s  a formula of W V  there exist  formulas ai (x) . Bi (XI ; 

- 
a .  (;I states which variables occurring i n  x are equal, each 
1 

- 
Bi (;) states which variables occurring i n  x are equivalent. each 



yi (3 states that each v ~ i a b l e  occurring i n  
- 
x i s  e i t h e r  contained 

i n  an equivalence c l a s s  of .some given f i n i t e  c a r d i n a l i t y  o r  i s  not 

contained i n  an equivalence class of any cardinality among a given 

f i n i f e  number of finite c a r d i n a l i t i e s  and each 6i i s  (Si,Ti) f o r  

Similar  t o  t h e  proof of Lemma 4. 

- - - - 
Ef- rpfx,yl -is a fv+pzt,x2ae5 ISQV let pf+-(x,y)) he the 

smallest c a r d i n a l i t y  greater than a l l  t h e  c a r d i n a l i t i e s  occurring i n  

- - - - - - 
the formula v (a i (xfy)  A 0 .  ( x , y )  A yi(x,y) A 6i) of EQV given 

1 i cn 
by Lemm 7. I f  A.8 C E Q V  and m o le t  A ;  8 denote t h a t  8 

may be  obtained from A by adding equivalence c l a s s e s  of  c a r d i n a l i t i e s  

- - - c ( A { " ~ ' .  rf 6 F 111 a0, ..., a m-1 C'x' it f o l l a s  easily that 



- - - - - 
A q(b,ail i f f  8 q(b,ai) L i  < m) . Similarly if b C I B I " ~ )  and 

- - w 
c t I A / ' ( ~ )  i s  obtained from b by replacing d i s t i nc t ,  equivalent o r  

- 
inequivalent constants occurring i n  b which a r e  not contained i n  [ A ]  

w i t h  distinct, equivalent o r  inequivalent constants (respectively) 
- - 

contained i n  equivalence classes  of A of cardinal i ty  E p(cp(x,y)) 
- - - - - - -- - - - - 
which contain no constant occurring i n  ao, ..., a it follows 

m- 1 

- - - - 
q(x.y)-definable subsets q B ( x , a . ) ( i  m) of 18 

1 

Hence the 

' have the 

the corresponding 

'(') have i n  

- - - - 
1 8 / ' ' ~ )  . From this it follows t h a t  p(@(x,y)' ,  ~ h A ) c  p ($(x,y) , IhB) . 

I f  S.T C o and I S  - T I  < No then EQV(Sv(S) 4 EQV(T). 
k 

Proof 
. . 

- - 
Suppose S,T c o and IS  - T I ,  < N O  . L e t  cp(x,y) 3x a 

- - 
formula of EQV. It suffices t o  prove t h a t  p(cp(x1y), EQVCS)) 

- - - - 
~ ( 4 u l ~ ~ ~ ~ ~ l s ~ 1 + ~ p ( x , y ) ) ) ) )  i n  EW(T) f o r  some 

Theorem 7 

The poset of subsets of (J (BIDdulo f i n i t e  sets)may be 

*ded i n t o  ( T I - ,  - - el=) .  - 



Proof 
I 

Let S be a thin set for fcp and l e t  S be the poset of 

subsets of S (modulo finite sets)  . I t  suffices to show that S may 

and the fact tha t  S i s  thin for fcp . Thus f induces an embedding 

- - - -  
s c p(cp(x,y) ) #ere exist  finite S, c w-pfqlx,y) (i < w )  such that  

1 

in EQV'(T) i f f  3i4si C T) . 

- - 
S q p s e  rp(x,y) is a formula of EQV, $ i s  an open formula 

- - 
.which asserts that cpfx,yl a a t s '  fr . By Lenaaa 4 there exist 

sentences (S . ,T . I  of EQV Ii < d such that 
L r. 



Suppose So, S1 C u , Iso/ = [slI = no and IT 

adnitts a whenever 5 c U s1 and I S  fl so 

then (21 either EQVLS 1 admits a or  EQV(S1) a M t s  A . 
0 

Suppose SO, Sz C w . (sol = = N o  . H < 7' , (1)  ho lds  

- - 
each cpi(xi.yi) omits E in EQV(S1 for some S c S U S1 such that 

0 

- - 
/ S  n SJ = 1spn s1l = x 

0 - kote that  if p(cp ( x  ,y ) )  n there 
0 0 0  

exist infinite s2 C sQT .s3 c s 
1 

such that (s2  u s3) n n = 
- - 

' ( S o  U S 1 fl n and such that pO (xO,yO) Omits P in =(TI 
1 

whenever T c S U S3 and T ll n = (SO U S1) fl n . To prow this 
2 - 

first note by Lenma 10 that for each i there elEist finite 

- - 
Sij C o - p(p ( x  ))(j < nil such that the f o l l a i n g  holds: If 

0 O ? ~ O  

c s o 5, iqk~ s n s, + k- and 
'ij 0 %  A i j 



'i j 
0 si"j 4 fi < nil for sufficiently w because other- 

wise it follm easily that ( 2 )  holds, For such i < w l e t  

and note that lip fg(i) = l b  fl(i) = o because otherrise it foll0Ws 
i+w i-co 

easily that (21 holds. If aa m < . . . < w let  0 1 



and note t h a t  (S2 Li S3) 

3 
i n  EQV(T) whenever T S2 U S and T fl n = (So U S1) I? n . Thus 

choose m < rn . u so t h a t  Is21 = I s3 /  = H~ ( t h i s  is 
0 1 

poss ib le  s ince  b f l ) ( i )  = lim f (i) = o) . Note t h a t  EQV(T) admits 
=G 

L - -  - - --- - pL- 

l <t) 

nwhenever T C S 2  U S and I T ~ S ~ ~  = / T O  Sgl = H  but  nei ther  
3 0 

EQv(S~) admits a nor EQV(S3) admits n (use Iama 9 ) .  Hence the  

above arguraent may be  repeated wi th  So,  S1 replaced by 
s2r S3 - - - - 

( respect ively)  and (;7 fx  ,y f replaced by cp ( x  ,y 1 . Continuing t h i s ,  
0 0 0  1 1 1  

way w times y i e l d s  i n f i n i t e  w 3 SO 3 S2 2 ... and i n f i n i t e  

- - 
g i ( x  .yi) omits p i n  EQV(T) whenever T c S2i+i u S2i+3 and 

i 

S = U I  3 i ) ~ ~ ~  '2i+l 1 So U S1 it fo l lovs  e a s i l y  that 
i Q u  i<u 

i P , 3  i s  n o t  a lattice. 



Proof * 

\ ut S be a t h in  s e t  f o r  fcp and l e t  la - % I  = 1 %  - a1 = N  0 

[fcp(a) I and [fcp(B) I )  ye t  both EQV(a) and EQV(B) omit IT (since 

%& 
EQV(a) omits [ f c p ( B ~ l ~ d  EQV(f3) omits [fcp(a) I ) .  By ienana 11 this 

# 
. i s  a contradiction. 

- - 
L e t  pp be a property of formulas such t h a t  i f  cp(x,y) is a 

- - 
formula, of a complete theory T then cp(x,y) admits pp i n  T i f f  

- - 
f o r  a r b i t r a r i l y  ' l a rge  n < w there  e x i s t s  A T and n cp (x,y) -definable 

- 
--subsets of IAIL(') which pa r t i t i on  I A I C ( x )  . I n  f a c t  l e t  pp(n) be 

(xo U . . . Uxn- l  =I) - n ( A  x i + O ) A (  A i j  f l  x = 0) f o r  every 
i < n  i< j<n 

n < w . ~ o t e  t h a t  Example 9 and the r e s u l t s  which follow it remain 

t rue  i f  fcp i s  replaced by pp . I n  par t icu la r  [ppl { W . - 
Theorem 9 

Proof. 

- ppp a(- t P p p  in T . It r t * ~ - L -  

T admits pp i n  T . For notational convenience assume that 

nsss theorem there exists A T such that f o r  a r b i t r a r i l y  large 



n 
n < w there exist n g(xo r ,?) -definable subsets 

-1 Ani (i < n) of 

(1) sup(g(n) I n < w)  = w or (2) supIg(n) I n < wl = m < w for 

/ - 
where z = x rl- 

and w = x y . Since f 
1 0 

preserves disjointness and unions whenever a C A it follows 
0 

easily that ~l(z,w) admits pp in T . If (2) holds let $(z,G) 

--- - n n - 
and w = Yo - 

ym-1 

pp in T . For each n 

the equivalence relation 

n - 
(Vx v V(X x ,y)) where z = x  

i<m 0 1 1  0 

It suffices to prove that $ (z ,w) admits 

such that g(n) +s defined let .v be 
.5' 

n 

a a iff Vi(ao C f (A . )  ++a' f f (A . ) )  (aof a; C /All. For 
O n  0 0 I-I~ 0 0 nl 

t 

such n < w let h(n) < w be the number of equivalence classes of 

- . Evidently n 5 m h(n) for every n < w such that h(n) is n 

defined. Thus sup{h(s) ln<o) = w .  But for each n < w such that 

Corollary 6 

[ppl is prime. 



- 
f 

Proof 
/ 

Similar to the proof of Corollary 2. 

Example 10 

Let L be a language consisting of a unary predicate P and a 

binary predicate E and l e t  IND be the theory in L whose - -- - -- - --LA--- A 

axioms are 

It may be proved that IND is complete, H -c&tegorical and 0 

quantifier-eliminable by using the part ial  isomorphism tes t .  I t  

may be also proved that IND omits [pp'l. Suppose not- Then by 

Theorem 9 some formula cp (x,y) of IND admits pp i n  IND. Let 

A IND.  Then for arbitrari ly large n < w there exist n 

q~ (x,y) -definable sabsets of I A f which partition / A I  . since IND 

A 

i s  -categorical it follows easily by ~yll-~ardzewski (1959) that 0 

(1) For every n < w there exist  n inf in i te ,  disjoint,  

- 
such that IND cp{r,Y) -++ A cpi (x, y )  since IND is No-categorical. 

i<n- 

- 
Hence cp. (x,y) sa t i s f i es  (1) for some i < n . AssZ.~~ that  

1 



IND lPi(x,y) + P (x) ( a  s imi la r  argument holds i f  IND 1 ~ J ~ L X .  yl + 1~ (x) ) . I 

Since IND i s  quantif ier-el iminable every cpi (x.7) d e f i n a b l e  subset of 

- 
1A1 is  @(z.w) -definable where $(z.;) is the formula 

,. 
A (B(2.w.) 1 A ~ E ( z . w ~ )  A Z W2m+i A 7 P ( w i )  A yP(wei) A P ( ~ Z m + i ) )  

i < m  
- - - - - - - 

of I N D  f o r  some m <. w . Hence $(z,w) s a t i s f i e s  7lT.q-fHS- 

compactness theorem it  may be assumed t h a t  the re  e x i s t  

a C I A 1 3m (i < o) such that the $ (z ,;) -definable subsets  )A ( z  .di) of 
i - - 

/' 

I A  ( (i < w) a r e  i n f i n i t e  and d i s j o i n t .  Since I N D  i s  U -ca tegor ica l  / 
/ 

0 /' 

- - n -  ,' 
it may be assumed by Ramsey's theorem t h a t  tA(ai % ) = tA(ai a ) ,, ,, i 

2 
i 

0 1 3 ,- 
- 

whenever i < i < w and i < i < w . Since I / J ~ ( Z  ,ao) and 0 1 2 3 

- 
$A(zIal) a r e  d i s j o i n t  it follows e a s i l y  th'at the re  e x i s t  

- - - - 
Assume t h a t  a. (k) = a ( 8 )  ( a  s imi la r  a r m e n t  holds i f  al (k) = a. (8) . 1 

- 
$A(zIal) is empty and this is a contradict ion.  

Note t h a t  t h e  proof i n  Example 10 shows t h a t  f o r  each formula 

.(x,T) of TND the re  e x i s t s  p ( ~  (x,y) ) < o such t h a t  i f  A IND then 

(1) i f  A i s  a f i n i t e  @(x.T) -definable subset  of ( A 1  then 

- 

f~it~ p f ~ t ~ i F ~  -and-t2)-i-+s7. . a* --- 

- - 
- 

. . .  
rdlnatcp&e& q (n: y) - d a f i 2 l n h l e s u b e ! t s ~ 1 A [  then n < 2 (Q (x  ,Y) . 

- 

??'he following se t - theore t i ca l  result may be used t o  show t h a t  

c e r t a i n  complete theor ies  d t  [ppl (see ~ - l e  13) . L e t  X be a 
- 

set. F a set of subsets of x and the Boolean c losure  of F i n  



+ - - - - - - - -- - b2 
6 \ 

, 
'* 

- 
The complexity of each A € F is the smallest number of members , 

needed to  generate A . I f  there exists a partition FO I . . . , F n- 1 
/ ' 

&ch that  

(S) If A € Fir B C F and A c B t h e n  i > j 
j + 

then A C B for some A € A ,  B € 8 

hold then F admits the stratified-Whitman property. I f  there exists 

n < w such that for arbitrari ly large m < w there exists a partition 
- 

of X into m members of F of < n then F admits the 

partition property. 

Theorem 10 

If F admits the stratified-Whitman property then F does not admit 

the partition property. 

Proof 

Suppose F admits the stratified-Whitman property; Then 

there exists a partition FO,. . . rF 
n-1 

of F such that  (S) and (W) 

hold. By the following results it w i l l  follow that  F does not admit 

the partition property. A -- basic s e t  is  any nonempty se t  of the form 

flA - UB where A, 8 C f are f ini te . '  Evidently 
- - - - - - - - -- - -- - p- 

pppp- 

(11 A basic set has a unique irredundant form 

holds. Indeed l e t  m, 
basic set.  I t  suffices 

prwe that A = A it 

- UBo = M1 - be irredundant forms of a 

to prove that  A. = A1 and Bo = B1 . To 

suffices to  prove that  AO c since the 



o the r  c p e  admits a s i m i l a r  argument. Let A. C A. . I t  s u f f i c e s  t o  
* 

prove that C A1 . Since ) ) nAl c U ( B  U { A ~ I )  it fol lows a 
1 

e a s i l y  by . (W) t h a t  A C A. f o r  some A1 C Al . Simi la r ly  A;) c A 
1 1 

f o r  some A;) C A. . By irredundancy A;) = A. SO A1 - - A. . Hence 

* 0 - ~ + p r o ~ e - ~ a t - 8 ~ ~ = 8 ~  %sttf$%ees -tie p r o v e - e & & d 3 - - -  0 1 - 

s ince  t h e  o ther  case  admits a s i m i l a r  argument. Le t  BO C BO . It 

s u f f i c e s  t o  prove t h a t  B C B1 . Since A. = A1 it fol lows e a s i l y  by 

irredundancy t h a t  $ $ n ( A o  U { B ~ I )  = T)(Al U { B ~ I )  C UB1 . It  follows 

e a s i l y  by (3 t h a t  Bo C B f o r  some B C B1 . Simi la r ly  B c B '  
1 1 1 0  

f o r  some B;) C B0 . By irredundancy Bo = B; s o  Bo = B1 . Hence 

Bo C B1 . Using (1) t h e  r&k of  a b a s i c  s e t  of t h e  irredundant  form 

n A  - U 8  may be  unanbigucrusly defined a s  the  f i n i t e  sequence 

j n s l , .  . . ,n-1, n-2,. . . ,n-2, . . . , 0, .  . . ,0) where i = IA n F .  I (j < n) . -- w 1 

By order ing  these  ranks lexicographica l ly  it follows e a s i l y  that any 

set of ranks conta ins  a l e a s t  member. I n  what follows b a s i c  sets a r e  

always of  t h e  irredundant  form. Next 1 

(2) A b a s i c  set cannot be covered by f i n i t e l y  many b a s i c  sets of 

greater rank 

\ 
\ rank (m - m) c rank (nAi - UBi) (i < w ) .  Using the d e f i n i t i o n  of  
L 

ran* ordering,  (S) and irredundancy choose A. C Ai f o r  each i < a 
1 



follows e a s i l y  by (W) t h a t  A c Ai f o r  some A C A and i < m . 
But t h i s  i s  a contradict ion.  It may be proved t h a t  

(3) I f  - UBo c nAl - UB1 a r e  bas ic  s e t s  with equal rank 

* 
then A. = A1 

(4)  I f  nAo - UBo, MA, - Usl a r e  bas ic  s e t s  and A. = A1 

then (nA0 - ) n (nA1 - us,) $ ( 

hold. To prove 

rank (nA, - Uso 

(3) .assume bhat A. C A1 . since 

) = rank (nA1 - UB ) the re  e x i s t s  i < n such t h a t  
1 

1 

A. Mj = A, fl Fj (j > i) yet  A. ", 1 $ Al Mi . moose 

q C .  (A, n Fi) - A. . s ince  ( + A. c U (B 0 U { A ~ ) )  it follows 

e a s i l y  by (W) t h a t  A C 5 f o r  some A C A. , By (s) A C A. fI Fj 

f o r  some j > i . Hence A C A fl Fj but by irredundancy t h i s  is a 
1 

contradict ion.  TO prove (4) assume t h a t  (nAo - UBO) n (MI - UB1) = 4. 

Then ( f nA, c U(Bo U Bl) s o  by (w) it follows e a s i l y  t h a t  A c B 

fo r some A C A o , ~ C B i  and i E 2 .  B u t t h e n  n A i - U B  i . .  = 4  

- +ke - A =  .&L-A t h i s  is a contradict ion.  =SO 
0 

s e t s  i n  equal t o  t h e  rank of one member of t h e  p a r t i t i o n  and 

smaller than the rank of t h e  o ther  members of t h e  p a r t i t i o n  
I 



holds. To prove (5) suppose t h a t  nA - Us is  a basic  set par t i t ioned 

in to  the  basic s e t s  nAi - U%. (i < m) . From (2) it follows t h a t  
1 

f 

rank ( n A  - Us) 5 rank (nAi - UBi) for  every i c m since ( 

n A i  - UB. c n A  - UB . From t h i s  and (2)  it follows t h a t  
1 

rana (nA - UB) = rank (Mi - UBi) --for a t  l e a s t  one i < m since 
-- - - -- - - -- A - - 

n A  - UB c U (nAi  - UB. ) . mom ( 3 )  it follows t h a t  Ai = A for  
1 

i <m 

such i < m since CIA - Us. c n A  - UB. But from this and (4)  it - 
i 1 - 

follows t h a t  rank r n A  - UB) = rank (nA. - UB.) fo r  a t  most one i < m 
1 1 

since (nAi - UE.) fl ( n A j  - UBj)  = 4 (i < j < m ) -  
1 

Final ly  - 
(6) I f  n A  - U3 is  a basic s e t  then complexity ( n A  - UB) 2 J A l  

holds. To prov (6) assume that complexity ( n A  - UB) = m < / A /  . Then 
* 

lean combination of m members of F and so n A  - UB 
d-- t o  f i n i t e l y  man2 basic s e t s  each of ich is a 

\ 

Boolean combination of 5 m members of F . In  par t i cu la r  t he  rank 

of each such basic  s e t  is  unequal t o  rank ( n A  - UB). ~ u t  by (51 t h i s  

i s  a contradiction. Now suppose F admits the  pa r t i t i on  property. 

Then it follows ea s i l y  t h a t  there e x i s t s  n < w such t h a t  f o r  

a r b i t r a r i l y  large m < w there  e x i s t s  a pa r t i t i on  of X i n t o  m 

basic  sets Ami f i < n;f of complexity < n . Prmj (6) it follows 
i 

-- - --- I easily t h a t  Crank (A . I  ] i < m < wlj < o . To o&ain a contradiction 
rm, 

it sgf f ices  t o  prove that ! i r e  (Ad) / i < m < o)l = 0 .  Since 

cmplexi ty  ( A  f < n (i < m < w) it follows eas i ly  that f o r  each m i  



j < w there exists f (j) < w such that i f  Ad (i < m) is one of 

the above partitions and j < i then X- U Ah may be partitioned 
i< j 

using at m o s t  f l j l  basic sets.  It may be assumed that  f is  
, 

s t r i c t l y  increasing. L e t  g ( j 1  = 1 i f  j = 0 and g ( j )  = f( C g c i ) ) .  
i< j 

if j > 0 . Let 4 < w . Choose m > C g(i) so that the partition 

Ami fi < m) i s  defined. It  suffices to prove that 

1 (rank (Arm) I i < mil C . By (5)  exactly one of the A (i < m) 
--- 

mi 
- 

has smallest rank ao. For notational convenience assume that 

rdnk (ATDO) = a* . Hence rank (A . )  > a. (0 < i < m) . But X-A may m l  mO 

be par t i t ionedusingat  ]=st f{l) basic sets  B ( j  C JO)  and i f  a 
0 j 1 

1 

is the smallest rank of these basic se ts  then a 1 0  > a by ( 5 ) .  

Purthenmre since ii B = U A& it follows easily by (5) that 
'3 O<i<m j6JO . 

for q h  B there exists exaictly one of the A such that  
oj Isi 

rank (Ad fl Boj1 = rank (B ) and vice versa. m this it follows 
02 

t' sasily that there exist a t  =st f (11 basic se s Aai (i C 10) such 

that rank (Ami) = a1 {and by (51 rank (Ami) > a1 for the remaining Ad). 

By replacing X with X-flL* il ( i: A . ) )  th i s  argument may be repeated 
i g ~ *  



2.2  The Order, S t r i c t  Order and Independence Properties of Complete 

Theories 

- - 
L e t  op be a property of formulas such t h a t  i f  cp Cx,y) is a 

- - \ formula of a complete theory T then cp(x.y) admits 'op i n  T i f f  f o r  

- - 
a r b i t r a r i l y  l a rge  n < w there  e x i s t s  A k. T and cp (x,y) -definable 

c B  < d  
- -  subsets A. of I A l  z u d r _ t b s l ~ ~ _ ~ ~ _  A&LLL+I Bi)+ ( -- 

i < m  &i<n -. 
f o r  every rn < n - ~ e t  s e a property of formulas such t h a t  i f  

- - - - 
q(x,y)  is a formula of a c t e  theory T then cp (x,y) admits sop 

i n  T i f f  f o r  a r b i t r a r i l y  large n < w there  e x i s t s  A T and \ 
- - 

cp (x,y) -definable subsets Ai of A i < ' n  such t h a t  A c + 
f o r  every i < n - 1 . Final ly  l e t  i p  be a property of formulas such 

- - - - 
that i f  cp(x,y) is a formnla of a complete theory T then cp(wy) admits 

ip i n  .T i f f  f o r  a r b i t r a r i l y  iarge n < w there  e l d s t s  A T and 

f o r  every a E 2" . Obviously fop], [sop], [ ip l  C PP . shelah (1971) ' 

proved t h a t  op and i p  are 1-dimensional. Lachlan (1975) proved 
f i  

tha t  sop is 1 - A i s i o n a l .  Using these r e s u l t s  it is easy t o  prove 

t h a t  fop3 fsopf and rip] are prime (see the .  proof of Corof l a ry  2 )  . 
Example 11 

bet L be a language mns i s t i ng  of a binary predicate < . Let PO be 



and let D L 0  be the theory in L whose axioms are 

It is well-known that DLO is complete, H -categorical and quantifier- 
0 

eliminable, Letting tp(x,y) & x < y it is clear that 

a- sop im EX+ a-ts fsop3. 

LelTEBa 12 

Proof 

- - 
S W s e  A D L O , \ ~  b PO and A c 8 . Let tp(x,y) be a 

formula of Tld  . It suffices to prove that 

- - 
their negations1 a, ( x , y f  of ThA fi,  j < n). such that 

i j 

- - 
A qij (x'Y). 

- k ~(zr?) v If x occurs in x and y occurs 
i<n j<n 

- - - 
in y it may be assumed that no rp fx,y) is of the form y < x or 

i j 

- - 
x is (not necessarilv strictly) increasing. O W  -- iausly 



It suffices to proee, that 
U 

- 
Let % C  

- - 
suppose B b  3; ( (  n ( v A ~ X ,  A .  1t suffices to 

k<m i<n  jcn 

0 - 
implication is obvious. Choose b = (b *,,.. . 

- 
# that  

- - - - ft ~b ( v n oijtb,4,)~DfL< fpt a = a  o 
k<m i cn  j<n 

/= xlbL) it follow that t b r e  exists 
. . 

Since A DLO and 

such t h a t  
3 

a 

Zor every i, 

I 



Theorem 11 

MXZ is archetypal for [sop]. 
- 

Proof 
r 

By the compactness theorem it is easy to prove that a complete 

such that A c 8 and 8 is definable in C . E ' r a n  this and Le- 12 

it follows easily that DL0 is archetypal for [sop]. 

Example 12 

Let L be a language cansisthg of a unary predicate P and a binary 

preaicate E and for each n < w let m I n l  be the theory in L . 

whose axioms are 



9 (x, y) admits ip in IND [wl . Hence IND (0) admits lip] . 

s 

a fo-a of T ~ A .  ~t suffices to  prove t h a t  

- - 
T ~ A  is quantifier-eliainable there exists an open formula $ ( x , y )  of 

- - - - 
'PhA such that ~ f x , y f  ++ +(x,y) .  It suffices t o  prove that 

- - 
~ u p p s e  B L; 3; r $(x,ai) IC suffices to  gjroie that 

i <n 

- - - - - - I t  n 
b i ! B / ' ( ~ '  so that B k I, p ( b , a , ~ ~ ' ~ '  . b t  a = a, ... apt--, , . 



- 

that 
o - n -  o - n -  - - 

tA ( c a) = % (b a) . = In partichlar A A (c, ail a (.i) 

i<n 
i - - 

Hence -.A f= 3x A +(x,a. 1 a (i) 
-il , .w i <n 

- 

Theorem 1 2  

IND(U) is archetypal for [ipl . , 

Proof 

By the compactness theorem it is easy to  prove that a complete 

- - - -  

thG?y T a&ts [ip] i f f  there e x i s t s  A F ImG), 8 b IND(O) &d 

C /= T such that A c 8 and 8 is definable i n  C . From this  and 

Leuma 13 it follcws easily that IND(w) is archetypal for [ipl.  

Shelah (1971) proved that lop] = [sop] A lip]. But both 

IsopL and [ipl are A-irreducible (since both are ahe typa1 ) so  it 

follows easily that Shelah's result i s  optimal i n  the sense that i f  

lip1 for so& i < 2 . 



2 . 3  The Strong Independence and Versatil i ty Properties of Complete 

%eories 

- - 
Let s i p  be a property of formulas such that  i f  qCx,y) is a 

- - 
formula of a complete theory T then cp(x,y) admits s i p  i n  T i f f  

- - 
for  arbitrarkly large n < w there exis t  A T and q(x,y)-definable 

for every i < i c n and j < n and such that 
0 n 

n 
for every a € n . Gbviously [sip] € PP. 

I 

Theorem13 ) 

If  T i s ' a  complete theory then the following hold: 

- - 
(1) If qk(x,y) (k < n) are formulas of T and v , admits 

k<n 
- - 

s ip  i n  T then cp (x,yl admits s i p  i n  T for  some k < n . 
k 

- - - - 
and A qk(5.y)  a d d t s  sip i n  T then qk(\,y) admits s ip  i n  - 

k n 

for some 

Proof 

Suppse the p r d s e  of (11 holds. For notational convenience 



Lf 

s i p  i n  T . By the  compactness theorem there  ex i s t  A b T and 
I 

I 

pO (x, y) V p1 (x, y )  -definable subsets 
Ai j 

of ] A ]  (i, j < w )  such tha t  

Ai j n Ai = ( f o r  every i < i < w and j c o and such t h a t  
0 1 

0 1 

W 

A a ~ j )  j 
fo r  every a C w . For each i t  j < w l e t  

j <w 

1 k - O U Aij  where Aij  
A i j  - A i j  

is  qk ( x .  y) -definable (k < 2) . By using 
4 

t he  compactness and Ramsey theorems it may be assumed t h a t  fo r  some 

k 
k < 2 "a(j,, . 4 f o r  every a € w w . But then cp -(x, y) admits 

j<w 
. k  

s i p  i n  T . 
Suppose the  premise of (2)  holds. For notational convenience 

assume t h a t  n = 2 and C(Go) = 8 ( ;  ) = 8 ( 7 )  = 1. Thus 
1 

qO ( x O , y )  A qdxl, y) admits s i p  i n  T . By the compactness * 

there  e x i s t s  A T and (lO.y) A 'pl (xl .y) -definable subsets Aij of 

/ A /  x IAl (i, j < a) such that A f l  ni = ( f o r  every i < i < w 
i j 0 1 

0 1 

and j < w and such t h a t  f l  A .  
a ( j >  j 

fo r  every a E ww .   or 
j <w 

k I 

each i, j < w l e t  A =Aij 
i j 

O x A: where A i s  9; ((r*, y) -definable 
i j f 

(k < 2 ) .  By using t he  caapactness and Raatsey theorems it may be assumed 
i 

- - - - - 

0 A: 
= $ for every i < i < o and j 4 w .' 

0 1 

1 
Chat - < %j 

4 
1 

i 
ir 3 

1 

B u t  then pk(xk,y) a m t s  sip in T . i 
Corollary 7 

[sip] is prime. 



Proof 

Suppose T . Cj < 2) a r e  complete theor ies  and C T admits 
I j <2 j 

[sip].  ~ t ~ s u f f i c e s  t o  prove t h a t  T admits [s ip]  f o r  some j < 2 . 
j 

- - 
S i ~ c e  r: T admits [sip] some foxmula cp(x,y) of C T admits 

j <2 
j j <2 j 

s i p  i n  Z T . It is easy t o  prove that there  e x i s t  formulas 
j <2 j 

- - - - U - 
L T iv ;(X,Y) V A ip* . (xi ,yij) where x = x x ( i < n ) ,  

f X "  r3 i 0  il 
j <2 i<n j < 2  

- - U - - - 
(i < n) and o*. (xij.Yij ) is  Y = yi0 Y i  1 1 3  

- - 
q* . Lxij ,yijl admits s ip  in b T for some i < TI, j < 2 . But 

13  j < 2  j 

t e n  * ( , admits n i p  i n  T . Hence T admits [sip].  
j j 

Example 13 

L e t  L be a language consist ing of a unary predicate P , binary 

predicates E t  and a ternary predicate D and l e t  SIND be the 

theory i n  L whose adoms are 



(m, n < w 

: i s  an equivalence re la t ion  on m) 

To prove t h a t  SIXD is consistent it suffices to build a e e l  for it. . 
For each n < w and f : n + w let  pf be a d is t inct  prime nusber 

and let f : rn -+ w be defined by 
.. 

I ,  

I 



= the mult ip l i c i ty  of p in  the prime 
f 

Then A SIND, It pay be proved that SIHD is complete, 

H -categorical and 
0 A t i f i e r - e l i m i n a b l e  by using the partial 

is-rwsm test. Letting rp(x,y)  be E(x,y) it is c lear  that 

p(x ,y f  adntits s ip  in SIND . Hence SIND admits [sip].  It may 
d 

be proved that SIND oarits [&I. Suppose not-. Then by Thebrem 9 

- 
some fornula cpfx,y) of SIND admits pp i n  SIND . Let A SIND . 
h e n  for arbitrari ly  large n < at there exist n gfx,;;)-definable 

subsets of ! A  f w h i c h  partition f A 1 . But then either 
4 

f l l  For arbitrarily Large n < .w there exist 

n @(x,F) A Pfd definable subsets of PA which partit ion PA 



- 
-- 

(2) For a r b i t r a r i l y  l a rge  n < o t h e r e  e x i s t  

n rp(x,y)-definable *sets of / A (  - P A  which p a r t i t i o n  

holds.  suppose f l) holds. Since SIND /s quant i f  ier-eliminable 

- 
t h e r e  e x i s t  m < w such t h a t  every cp(x,y) A P ( x )  -definable subset  

of P A  i s  a Boolean combination of a t  most m P  (x) -definable, 
- -- 

A 
---- -- 

x = y-definable or E ( x ,  y) -definable subsets  of PA . B u t  the  set 

of  such subsets  has t h e  stratified-Whitman property so by Theorem 10 

it does not admit t h e  pazt&ion property and this is -a contr=Gct ion.  

Suppose (2') holds. Since SIND is quantif ier-el iminable it may be 

assumed t h a t  there e x i s t s  m < w such t h a t  every 

rp f x,y) A 7P (XI -definable subset  

3 C m and equivalence r e l a t i o n  

of I A  I - PA is x = y-definable, 

- 0 -  
or &3,E(x,y z )  -definable ( f o r  some 

I - 

- t-l 
5 o n m )  where qJ,a(x,y z )  i s  

r e l a t i o n  on a , Let J = C (J,-1 I J c m and 5 is  an equivalence 

r e l a t i o n  on a). Clear ly  each x = y-definable subset of I A 1 -PA 

is a subset of f l xd i ra l i ty  1 of sane equivalence class and each 
- 

A L X  + yi A x - yi) - d e f i a l e  &set of 1 ~ J - p ~  is a ~&set of 
- -- - - i <m 

cocardinal i ty  5 m of sooe equivalence class. It is easy to prove 



- - -  - - -- 

* - n -  
that each rfi fx,y z) -definable 

J, -= 

w i t h  cardinality 1 infinitely many 

intersect the remaining infinitely 

subset of I A  l-pA either intersects 

equivalence classes land does not 

m y  other equiMlence classes) or- 

intersects with cocai-dinality 5 m infinitely many equivalence classes 

(and'does not intersect the remaining infinitely many other equivalence a 

classes). Furthermore i) is easy to prove that each subset of IA(-PA 

A - n -  
of the form h VJi,? (x1ai b.) either contains every equivalence 

i 4 1 
1 

class not intersecting u (r (Ti) u r (bi) I or d w s  not contain 
id 

infinitely many equivalence classes not intersecting A (r(ai) u r(bi)). 
i<t 

For each (J, 3 C 3 it follows easily by Ramsey's theorem that there 

- R -  exist a t  m o s t  ~ ( J , E )  < w nonempty, disjoint, $ J ~ .  , ( x , y  zf  -definable 
I - 

subsets of / A  I -pA  H e n c e  there exist a t  mst C = I 4 (J, E l  
( J , E )  

nonempty. &is joint subsets of I A  I -PA each o f  which i s  
i 

L 

- R -  9J ,fx,y z )  -definable for some (J,3 e 3. Prom t h i s  it foil- at 
t - 

k < w there exist a t  most  k A (x  = y. A x -  yi)-definable 
i < a n  L 

must contain subeats of / A  I -P* which belong to 
7 

\ 



t&= 3- @valeace class. But this i s  a contradiction since the 

r d n i n g  part of such equivalence classes cannot be partitioned 

- 0 -  .IJ, = (x, y Z )  -definable sets. O - 

A weak ideal of a set 3 is a set 1 of  subsets of J -- 
such that 4 I' C I f T *lies I C I . Let vp be a property 

every weak i W  f of n there exists A T and 

- - 
9 Cx. yf  -def inable subsets Ai of A c n such that 

~ e t  T = TIA w w e  A is an infinite Boolean algebra. If A contains 

an atontfess elexrent aad rgfx,y) is 0, + x c y it is clear that q ( x . y )  

admits vp in T . If A contains no atartless elearent then A 

contains infinitely m y  at- so T admits [I1 (see Exantple 6 ) .  

In either case T bddM fvpf. I I 
1 

Ut L be a language consisting of a unafy predicate P . binary 



... 2 . 
f l  . . . '  4- Lettirig 2 be the'clas's of finite.models of T it ., s clear that E is  

g d  and.atfmits HP, 3EP and AP . Hence by 50 . M  is 1-generic, 
. . 

No-categorical and quantifier-eliminable for sane M . Let VP = TM(. 

Since M is  -1-generic it follows easily that 

* hblds. Since M is C-generic it follows easily from (1) that 

a veak ideal of n there exist 

. . 
holds. 

adsdts [vp] - It may be proved that 



- 
VP omits [ppf. Suppose not. Then by Theorem 9 some formula cp(x,y) 

.% 

of VP admits pp in VP . Then for arbitrarily large n < ; there 

exist n cp (x,;;) -definable subsets of I M f  which partition. 1 ~ 1  . But 
then either 

- 

n p (<) h P(x) -definable subsets of Py which partition Ph( 4 

9 

( 4 )  For arbitrarily large n < o there exist 

n (x.7) A 7P (x) -definable subsets of (M 1 -pM which 

partition I M I - P ~  

holds. - Suppose 13)+0lds.  Since VO is quantifier-eliminable there 

is a Boolean combination of at most m P (x) -definable, 

Q ( x ,  y) -definable or x = y-definable subsets of PM . Since M is 

E-generic it follcrws easily that the'set of such subsets admits the 

stratified-Whitwm property so by Theorem 10 it does not admit the 

partition property and this is a contradiction. Suppose (4)  holds. 

Since VP is quantifier-elirnin;rhle there exist 4,mVlt such that 

subsets of IY(-pII . Since bf is E-generic it foll- easily that 

the set of such subsets admits the stratified-Whi- property so by 



Theorem 10 it does not admit the part i t ion pxopexty and this is a 

co&adiction, - 
The following result may be used t o  show that  certain 

complete theories mit fvpf . 

T W e m  19 

I f  1 is a compf&te quantifier-eldinable theory i n  a f i n i t e  language 

Proof 

Suppose T is a w p l e t e ,  quant i f ier-e lhihable  theory i n  a ". 

f i n i t e  language without fundtions. Suppose that T admits . [vpl. Then 

- - 
some formula cp (x,  y) of T admits vp i n  - T. Note that for every 

iZ,n, 
n < w there e x i s t  a t  least  2 weak ideals  o f  2n.. In fact i f  f . 

- 

- 
is a se t  of  subsets {of cardinality n) of 2n let  1 be the weak ideal  

- 
of 2n generated by f & &serve that 7 + I is one-one. Since 

- - 
p(x,y) a h i t s  vp in T it follows easily 2 (2,") 

k n 4 t ~ )  T I  fn < w ) .  

But by 40 there exists a polynoraial f such that  ' 

isznscFpi 5: 2 
f ~ n t  i n - E-e 9 it2n~{Fj) ((n < w) yet 





•’sop1 $ lip3 and fip3 $ bop3 so fsopJ, lip1 •’sop1 v I ip l .  To 

s h  that fsopl V f ipf  +' 111 note that I l l .  i s  V-i&educible (since 
- - 

it is prime). To show that [ip] 5 [sip] note that i f  cp(x,yf admits 
- - 

sip in T then 9 k y l  &ts i p  t o  T . TO shoy that  rip] [sip] 

note that Im amnits lip3 yet by Theorem 1 3  it is easy t o  Prove that 

- - 
admits vp i n  T than gfx,y) admits sip i n  T . To show that 

note that VP admits fvpf b u t  omits [ppf. 





- 
A fa) is a U B-definkl'e and a U' c-definble.  Since T is 1-regular 4 

* '  .. - - 

. .- 
' s Acd)= ,U ' o A ! x S  < G-I. snwtife, .a -5 ir s tz = s ti;, 

> < -  
and 

, 9 ( * . 3 € ~ 4 ; ~ '  v- * C .  . = I -  . , _  * '  . 

y .  -52- 1 .  

@v&ence relation on ' I A 1" ' with o n ~ ~ ~ f i n i ' t & ~ ~  myy equivalence 
. . - .  , **.<,,*. * .  

5 .  
m 

. . 
,, cl&ses D4 c I A J ~ . ( ~  , c - ,d. & v ~ ~ u s l y  each Di . is ' ~-dsf i~&ble , -. and a 

3 * 



holds. A complete theciry T admits the splitting property if 

(SP) If A U {a} U { a * }  C A T, tA(A u {a}) = tA(A U {a*). 

a a', g(x,A) is a complete formula of T ~ ( A , A )  and 
-. 

B C p A ( x I k )  is A U {a}-definable and, A U {a'}-definable 

then B = 4 or B = qA(x,A) k- 

holds. 

admits EP and SP then T is r q u h r -  
, 

P r o o f  .- 

Swpse T is a countable, complete, No-categorical theory 

vhich admits EP and SP. It suffices to prove that T is 1-regular. 
9 

Suppose A T and A c f A1 is B-definable and C-def inable. It 
- 

suffices to prove that A is B fl C-d finable. Suppose nut. Then there 

exists some c C C- IB fl C) and it may be assumed that A is not 

Mefinable where D = C-(c). By BP t A ( B  U D U {c j  = t A ( B  U D U {c') 

fm sae c1  $ c. Let A = Q ~ I x , B )  = OA(~.C) = $ J ~ ( I , D  U {c)) for some 
1 

S i n c e  T is )lo-categorical and A is nut Pdefinable it follows by 



D U {cbdefinable and D il ic '  )-definable and .by this is a 

contradiction. 

Let L be a language consisting of a binary predicate < and l e t  PO 

pp 

be the theory i n  L whose axioms are 

x i 
x <  

Letting C be the 

is  good and admits 

H -categorical and 
0 

y <  Z ' X <  2 .  
I 

4 

class of f i n i t e  mod Is of PO it is clear that Z 7 
EfP, JEP and AP .( Hence by 10 i s  Z-generic, 

quantifier-eliminable for some M . Let GPO = T ~ M  . 
I t  is easy t o  prove that GPO admits EP and SP. Hence GPO i s  regular. 

f 

It i s  easy t o  prove that  DID and IND a W t  EP and SP so 

by Tfieorem 16 it follows that  DLO and IND are regular. - 
If T. is a countable, coq le te ,  N 0 -categorical, quantifier- 

eliminable theory such that . . 

hold then T is an i f d c - ~ h i t ~ a a n  theory. 



Theorem 17  

I f  T is  an atomic-Whitman theory then T i s  regular. 

Proof - 
Suppose T is an atomic-Whitma theory. It suffices to  prove 

0 

, 
-- Urn-- - w s p  f.4 k T. It suffices to prove that  M 

M M 
4s 1-regular. Any nonempty se t  of the form fl ( P ~ ( x , A ~ )  - U 9 .  ( x , ~ . ) .  

i < m  j <n 3 3 

) j < ) are atenic formulas of T is basic and 
'j' 3 

M M 
representation f l  cp. 1 (xIAi) - U $ . (x,B. is irredundant if 

i <m j <n 7 3 

f i n i t e  d o n  of basic se ts  the representation U (nAi - UBi) i s  
i <m 

irredundant i f  each repre&ntation "Ai - "8 i is  irredundant. i t x y  

be proved that 3"" 
(1) ~ f -  U (nAi - UBi) = U ( n C j  - U Q . )  are i r r e d u n h t  

j <n 3 ,' 
i < ~ t  

representations of the same se t  then Ai = C for some . j 
4 

A i c m ,  j < n  

holds. Td pmve (I) l e t  Ai 5 C j denote that * 

7V3j (Ai 5 C.) (the other case a W t s  a similas argument). Then 
I 



and this is a contradiction. Suppose M i s  not 1-regular. Then for 

some definable S C A there exist distinct m i d l  A , .  B c A such 

that S is a A-definable and B-definable. In particular S is not 

A fl B-definable. Since T i s  W -categorical it may be assumed by 
0 

t e 
sense that i f  S' c S is ~ - d e f i & l e  then there-exists a unique minimal + . C c A such that S T  is C-definable. Let S = qA(xIA) = q A ( x ; ~ )  for 

some formulas i(x,y) and $(x,y) of T . Since T i s  quantifier- 

eliminable A = . U . (nAi - U23.1 for some basic se ts  fiA - UBi 
1 i i < m  

defined by formufas of the form xtx,A'I where x(K,Z) is  an atomic 

formula of T and A' c A (and the representation U (nAi - UBi) may 

/ 
i <m 

be assumed irrdundant) . ~imilki~ q A ( x , ~ )  =& (nC  - Up. 1 for some 
j <n 3 

* 
basic sets  n C j  - m. defined by formulas of the {om x (x,B1 1 $ere 

7 
$' 4 

'x&,Z) i s  an atomic formula of T and B' C B (and the represeptation 

example i s  A-minimal it fc l la r s  that f' U 2 = { X ~ ( X , C )  I$(x,g) ' atomic, 
1 



and S c xD((x,C) and 2 = ( x ~ ( x , c )  IX,(x,;) atomic, C c A fl B 
$ 

From t h i s  it m y  be proved that 

holds". TO .prove (2) it suf •’ices to prove that V i  ( A .  1 5 P) . Suppose 

) $ mi C (UBi) U P so by (W) ~ A ( A  C Ai A A C P) and this is a 

contradiction. From ( 2 )  it m y  be proved that 
J 

(3) 3i(nAi = flP) 

hqlds . R, prove (3) s-e 3 3i (nAi = nP) . Then by ( 2 )  it follows 

kzxedundant representations of the s- set it Eollows by (1) that 

A i = C j  for some i c a, j C n. Since Ai contains sets of- thb form .+ "- 

9 
x i *  where x (x .3  is an ator ic  follvla of T and - A *  c A and 

% 
sets of the form xI((x,C) where x ( x r a  is  an atomic formula of T 

- 
and ,C c A f l  B . In particular Ai c P U 2 . B u t  since 



4 $ nAi - UB. c s it follows t h a t  Ai c P so c Mi and this is 

l +  * 

a contradiction. Fox notational convenience assume that = n ~ ,  
-- 

s ince  + f U (nAi - $Xi) = U rnr - UP.) c nP - u2 it f o i i ~ ~ s  that 
i <m j <n $ 

+ + @ f '  Urtl ir - - - ) C W  - 
*i 

i<m j <n 3 + 
For each f : m - r  il ( A .  U %.) such that f ( i )  t Ai U Bi (i m) l e t  

1 1 
i <m 

c C. f and let 
' 3 

- - 

J = (Glfl(VgUP) - U@ 1 4 1 .  s i n c e  A i 

it follows -that 

P such that T i  5 Tf U P and for each 

c V U P such-that V *  5 V U P . Then 
9 g 9 

g f J choose a minimal V' 
9 



representations of the samz . set - . 
0 

) So if follows 

by (I) that T = V f  for s e  f . C  I, g t J . Since'  f; contains 
. . 

- 
pets of the form A Ybere ~ ( r , z )  is an atomic formula of T and 

an atamic fo-a of T and 8' C B it follows by ( A )  that 7; = V '  < Q 
- 

conta ins  sets of the form x ~ ( x . C )  where y (x, z )  ' is an a t d c  formula 

+ of T and C C A fl B . 1st particnlar c p U 2 . But since 

P 5 Tf U, P SO P 5 Tf . But  then Tg = ) s ince  



Similar to the proof of Lemna 13. 

Theorem 18 
L - - -. 

80 is archetypal' for [pop]. 



87. 
-- -- - 

L c s (m,n) corresponding t o  a l i n e  (horizontal l ine ,  ve r t i ca l  l ine)  

R x R is  a - Line (borizoihal m, ve r t i ca l  line1 of S Cm,nl . Each 

a € SCm,n) corresponding t o  an,intersection of a p a i r  of d i s t i n c t  l i ne s  - ' 

of S (m,n) is  a vertex of S Cm, ni . Each a € S (m, n> corresponding t o  

an intersection h a pair of horizontal and vertical lines of ~ b , n )  
+ 

~ 4 ~ - n - ) ~ " - - - s S " - ~ ~ -  - . . 

proger vertex of S(m,nl corresponds t o  the intergection of ., at  l e a s t  8 

l i ne s  of S (m,n) , It may be proved t h a t  S(m,n) is m-incident and 
- - - - - - - - - - - -- - - =--- - - - -- -- - - - ----pp - - - - - - - 

rank S(m,n) I 12m n, Note that i f  a fornula cp(xly) of a complete 
- - 

theory T admits $3 i n  T then cp(r,y) admits e a c h  S(a.n)  i n  'T . 

If T is  a regular theory then T! omits [$PI. 

- - 
theory T . It suffices to prove Chat q(r,y) b i t s  S(a,n) i n  T. . 1 
fo r  - 1 < a < n < o , L e t  A b - ~ .  Since T is p - m a r  it 

fol lovs  eas i ly  that  



a -- yi a 4 i < k and 

- - 
Cibviously the sets qA(xrai) (i < rank S(22prn)) arethe l i n e s  of S . 

2 c/ 
 jet a.. (i < n ) be the proper vertices of S . For each 

1 

i < rank ~ ( 2 ~ ' , n )  let fCif &note the number of. a j which are 

- 
let g ( j )  denote the n- of i such that a j ia ai-definable. 

- - 
2 

By fl) j Z 1 j n 1. Etut  Cfli) = C g ( j )  SO 
2 

i < rank S ( 2  2p,n) j < n  

2 p 3  2P sc 1 2 ( 2  nq 3 rank S(2 en) Q ?  Ef(i) 

i < r e  s(2*P,n) 

a? 3 I p ( j )  E n2 m 12(2 ) q n a d  this is a c o l l ~ r a d i ~ o n l  
+ 

2 
*Ek 

- 
r I I 



ordered 

The above examples of properties of complete theories are 

in (P,3 i; the following manner: 
B 

[pclpl [sip] note that Ivpl $ [ppl. To show that Ipopl $ lvpl note l 

that 'Ivpl $ [PP~. TP show that Ipopl 4 [vpl 
I 

I 

I 

+rchtYpal for Ipop3. To show that [sipl 5 [pop]. note that 

x < Yo A X $ y1 A x 4 y1 admits s i p  in GPO and GPO is archetypal 

r tpopf. Iience fsopl v 4ipf 5 fpopl. TO show that 



note that GPO admits [pop] but by Theorem 14 GPO d t s  [vp] . TO 
L. 

ACF(O) omits [fcpl . H e n c e  Cp] i l l  . - Ta show that rfh3 $ [pop] 

note tha t  GPO Ipop] but by Theorem 19 GPO omits [cpl since 

GPO is regular. In particular [tpl [O]. To show tha t  [Jpl $ Ivpl 

note that VP admits [vp] but by Theorem 19 VP omits [&PI 
4 

since VP is regular. 

- ppp- It may be proved that if A /= GPO then A admits no ----- - - -- -- 

, . 
definable i n f i n i t e  l inear  order. Suppose not. Then there exis t  

- - -  , -- 
.v formulas rp ( x , y )  and Ifrix, y )  (4 (z) = 8 (3 = nl of GPO such that 

t - - 
PA ( x . y ) .  is an equivalence relat ion on I A ~ "  w i t h  inf in i te ly  many 

- - 
eqvivalence class  and VA(x,y) is a preorder on 1111" which induces 

- - - - 
a lin&ar%rder on the equivalence classes of cpA(x&). Since cp ( x , y )  A 

C 
has inf in i te ly  many equivalence classes am3 BPO is N o - c a t e g o r k &  

- - 
it foiiovs by ~ q i i - ~ a r d z e x e l i  (1959) tha t  qqA (a, b) for  so= 

- n -  - n -  - n -  - n -  - - 
tA(c  a) = t A ( a  C )  = tA (c  b) = tA(b  c ) .  Then Q(c,a) i f f  

- - - - 
$ A ( ~ , ~ )  indixces a l inear  oxiier on the equivalence, classqs of rp A (x, y) . 

4 - - 
But then qA(a,b) and this is a contradiction. Thua GPO admits no 

-- 
&A Qi- ' FX& this it follows that the property 

- - 

of admitting a definable in f in i t e  l inear  order cannot be viewed as a 

property of colplete cries since D m  attmits a definable in f in i t e8  



linear order and DL0 4 GPO (since D q  is qchetypal for [sop] and 

GPO admits [sop]). 

SchPerl (1979) proved that if A 1 PO is countable and ThA 4 

is quantifier-elinrinable then A is an antishain, countably many 

ies of the rationals with the usual order, countably many copies 

- 

- 

of the rationals with the weak order, or a generic partial order. In 

partimlar it follows easily that ThA is definable in EQ, DL0 or 

GPO is archetypal-for fPpf it follows that T ~ A  - EQ, T ~ A  - DLO or 

follows that the class of 

quantifier-eliminable theories ofpartial orders with the order 4 is 
i * .  

linear order with three elements. 
- 

/ 
J 



2.8 Independent and camtable Properties of Coqlete Theories 

A sequence of finite Venn diagrams Si(i < ul is independent 

if r S i i and IND (Sil = i ti < w) (see the remarks 

preceding lera 15 in' 53) . If s C P thenf' n is independent if 

there exists an independent sequence of finite Venn diagrams Si (i < w) 

- - 
holds: If pIx,yl is a formla of a wmplete 

-\. - - - - 
m r y  T then ~ ( x , y )  admits n in T i f f  cp(x,Y) admits each Si 

in T . Obviously [ipl is independent and i f  .rr is independent 

Theorem 20 & 

If a is inddpendent then s 4 IppJ A Isipl 

Proof 

Suppose K is independent. ' It suffices to prove that some 

complete theory T admits n but ontits &3 A •’sip]. Lee S. (i < a) 
1 

be an independent sequence of finite Venn diagram associated with u . 
" .  

For each i < o let Si = a ,  Let' I be a language 
f 1 3  

b (i < I j < r ( s  ) unary predicate P and binary predicates 
i j 

Q and R and let T be the theory in L whose axiom are 
> * - C 



rank (Si) 
( i < w , a € 2  - Si) 



,,/ Since IND(S. ) < I N D ( s ~ + ~ )  (i < 0)  it-follows easily that T , 1 0 - 
consistent. To prove that T is complete and quantifier-eli~dle 

note that each finite reduct of T is complete and.quantifier-eliminable 

by the partial i s o m r p h i s m  test. Letting ?CX,T) be 



admits each Si i n  T . Hence qt(x,F) admits n i n  T so T admits 

n . TO prove that  T d t s  [ppl A IsipJ it suffices to  prove that 

Ill  T omi t s  lppl \ 

hold. To prove (1) snppose T amnits [pp] . Then by Theorem 9 some 

formula qt(x,Y) of T admits pp in  T . Since T is quantifier- 

eliminable there exists  an open f6hula &Cx,Fj of T such that 

+a 
By replacing constants w i t h  vari&-les (if necessary) it may be assumed 

that $(x,y) contains no constants. Let A T and l e t  T '  = T ~ A '  

where A '  is the reduct of A t o  L minus the constants. Then $ ( x , a  

admits pp in T'  so 

3 For arbitrari ly 

subsets of f A 1  

holds. For each i < w 

large n 4 w there exist  n $(x,y)-definable 

which partition IA'  I 

l e t  T = d1 where A !  /= &(i) is obtained 
i i 1 

by restricting A *  to the R-equivalence class of A '  containing the 

constants a (j < 1s. 1 ) p d  bij (J < rank (si) 1 . For each 
i j  1 

, . open ar@ contains no constants it folLows easily that 



holds. From (3) a d  (4) it follows eas i ly  that f o r  some open formula 

X(x,y) of T which contains no constants * 
* 

( 5 )  For a r b i t r a r i l y  large n < o there e x i s t  f ln) < w and 

par t i t ion  cnl t 

=n 
oadts [pp3 (see Exznaple 10) and this is  a contradiction. Thus 

suppose sup if (n) I n < LO] = o . For each n < w such t h a t  f (n) i s  

sup {g(n) I n c w1 = m c o fo r  some m C o l e t  ~ ~ ( x , ; )  be the  

n > rn + d ( y )  such that f (n) i s  defined. For notational convenience 

it follows that 1 ~ ~ 1  5 i ( $ ) ( r n ~  i c n) so n -,a5 I U Anil < No 
&i<n 

. Note t ha t  U Ad is a 
mii <n 4 

pp &--!-- 
since x ( x , z f  is an open formula5F T which corrtaim no c o r r s t 2 t P  

Thus suppose sup l g tn) 

then IA I r No and this is a contradiction. . 

w. By the compactness theorem it 



97. 

e 

follows that *re exist A: IND(w1 and i n f i n i t e l y   any d i s j o i n t  = 

A 1 > 8 (2 i a) . Since X ~ x , y )  is an open formula of T which 

contains no constants it is easy to prove t h a t  1 2 Ho ( i  < o) . 

But by remark (2) following Example 10 this is a contradiction.  IQ 

- - 
prove (2) suppose T a&ts f s ip J  . Then s o m e  formula cp(x, y) of T 

admits sip i n  T . Since T is quantifier-eliminable there  e x i s t  
- - - -- --- -- - -- -- - - --- - - - 
atomic f o d l a s  (or t h e i r  negations) gij (x,yl ( i , j<n )  of T such 

- - 
t h a t  ~ t c p ( x , y )  ++ v A*, cp G,3-. i j 

By Theorem 13 (1) it may be 
i<n  j<n 

I 

assumed t h a t  A cpO 
- - 

(x,y) admits s i p  i n  T . L e t  x = (x0,. . . , x ~ - ~ )  
j <n 

- 
and y = y o  . . y . By replacing eonstants with var iables  ( i f  

- - - - 
necessary) it atay be assumed tha t .  A cpOj(&y) contains no constants. 

j en 

L e t  A T and 1e.C T1 = T ~ A I  where A' i s  the  reduct of 4 t o  L 

- - - 
gi(xity) is the  conjunction of those cp (x,y) containing one 

0 j 

occurrences of the variables  occurring i n  

-- 0 

conjunction of those cp Cx,y) contain- 
0 j 

no occurrences of the variables  



- 
occurring in x , '5us, sip in- T' . S i n s  

10 T' < NO it f o l l a s  sasfly fnn definition of sip that  it 
1, . .- 

may be ass- that )I$+~ (TI is an atan of 0,T' . Pra this and 

Theorem 13 (1) it folluvs easily that it rdy then be assumed that 

- - 
$(x,y) is an atola of Dt+,T' since By Theorem 13 (2) 

- - 
holds. If (6) holds then L pair of )(x,y) -definable subsets of / A 1  I 

6 - - 
canrrot be disjoint .so $(x,y) omits sip in T' and this is a 

contradiction. Suppose ( 7 )  holds. By Theorem 13 ( 2 )  it may be . * 

assumed that 

L- 

hold. mom (8) and (9) it follows easily tnat if a;t '.r pf 

- - 
Q (x, y) -definable subsets of !Aa 1 is disjoint then the correspo~ding 

. . 



- - 
pair of q fx , y )  . . . A I X $ - ~  0 0 

,y) -definable subsets of f 4 ' I is - k 
disjoint. But then it follows easily from the definition of sip that 

a 

? 

it ray beassumed that )ol~g,~) a'mds sip in T'. It may also be - 

of 0-T' . From this and the de sip it follows easily that: . *  

- 
#o Ix0ry) admits sip in T" mere T" = T ~ A "  for some substructure 

A" of2 A '  obtained by restricting A '  to some R-equivalerlce class 

of A ' ,  But it may be proved tbere do f not exht infinitely many, 

disjoint, infinite, (x0 ,y) -d subsets of A" f (see 

=ample 10) so it follows that #o(~o,~) omits sip in T" and this 
2 

s d 
is a contradiction: - 

C 

If a € P then R is -table if the follo*ring &Ids: If - 

T is a countable complete theory which admits 'every n' < u then T 

Theorem 21 

~f F 2 [pp] then a is countable. 

Proof 

Suppose a 2 [pp] and T is a countable complete theory which 

C 
pp r*sl i+ .c:Uf isuf  fi prove that T omits solse n' < a .  L e t  

- - 
x , . )  i < a) be the formulas of T . Since T orits a each 
1 1 1  

- - - - 
cp ( X  ,y omits u in T . In pqrticular each qi[xi,yi) i i i  

- - - in T . By Lemsra 15 it follows that each qi Cxil yil d t s  S i in T 



'+ - B' - 
. - LOO. 

f 2 - 

Proof 

Let T = E  fJ. where each T is a csYlantable 

s independent 

each Tx  omits 111 .  Since i l l  is priae it fo l lm easily that T 

d t s  1 .  'Since f l l  2 [ppf it follcrwa by ' lheota 21 that C11 is 

eoustab~e. ~ u t  tben 1 ~ 1  > Y* since T m~ . ( P  . such - 



The following result shows that is not a dense subset . + 

, v % 0 

- - * 
qi bit yi) (i c w) be the formdas of T + EQV. Since $3' is 2 - 1 

S, 

corpactness theo- twt for each i.~ u and n 0 < . * -  < *$-& -z ? . 

vbenever a n (nj-lr nj ) 3 9 [see the proof of LePa 6). Pros this E - 
- +, _ 



By l e t t i n g  T = f0J i n  Theorem 22 it f@llows that 
./ 

although Ilfcpl , fppf 1 4 since ffcpl < fppl h [sip] < fppl 

(mte that IHD admits [fcpl but omits both [pp] and [sip] 

while SIND. a t s  [sipl but omits [pp] ) . Theorem 22 also shows 

tht if fppf $ F f PP t m  [[ppj, n v [ppll n PP = @ . In fact if 
P- 

since fppf $ H and this is a contradiction. Prom this remark it 

follows that. [ [ppl , f ipl  v *lppl J !7 PP = @ since Ippl lip1 € PP 

{note that IRD admits tip] but omits, [pp]) . 
The n&xt result ,sWws that PP i s  a fa i r ly  dense subset of P. 

t vfiere Po i s  EQDE prbperty o f  formulas. Since n < nl it follows 0 



Theorem 23 sbvs  t h a t  i f  101 c ITl C f l  then 

( [ o l .  nl) 0 4 . rn f a c t  l e t  r = nl A [pp] SO [o] Z I T  
2 - 0 0 -  1 '  

sfnce  [O] i s  archetypal  it is. A-irreducible so - 101 + no . Hence 

so ( I01 . nl) rI w f 4 . +Theorem 23 a l s o  shows t h a t  i f  IT< (11 and 

Theorem 24 

I f  n c n IT C f l ,  n C f l  and To 4 nl A [=I then 
0 1' 0 

n o  n f l ) ~  . 
. 

Prewf 
t 

Suppose n c n n C PP, nl C PP and no $ nl A [GI 
0 1' 0 

- 
Obviously n < IT A ( n o w  [pp (a) ] ) 5 rl n (n v [pp] ) 5' nl and 

0 -  1 0 

ir A (no v [pp(a) 1 ) t f o r  every s t r i c t l y  increasing sequence a C wW . 
1 

Hence it s u f f i c e s  t o  prove t h a t  no < k1 A (n v [pp (a) 1 ) <. ITl " T o  V [GI ) 0 

A 
f o r  s o m e  s t r i c t l y  increas ing sequence a €.OW . Let 

- - 
. x i y i  i c ) be the f o r m u l ~ s  of a countable complete theory whi 
1 

admits no but omits nl A [El. Pcr each i r W l e t  Si = {j < ~1 

fer some  A T there e x i s t s  

- - 
j qi(xi ,yi)-defimhle sets) . 

of T+EQV and l e t  5 = [pl] 

a c , r  
a p a r t i t i o n  of I A I  i n t o  

- 
Since T omits [pp] it follows e a s i l y  

- - 
L e t  qi(zi.wi) (i < W )  be t h e  formulas . 

where p1 i s  some pr inc ipa l  property 



p 1 n i s  principal and T+EQV(a) r T of formulas. Since 

follows by the compactness theorem t h a t  for -each 
,- 

c w there ex i s t s  n 7 n such that 
j j-1 and n < ... < n 

0 j -1 

omits p1 fl i n  WEQV (a)  whenever a n (n -I, n . )  = 4 (see the  
3 - 

i 
i - 

eas i ly  t ha t  / 

n i < ... < w may be chosen so t h a t  

@ . Let 

- 
omits p1 n PP 

- - 
fo r  each i < kl vi(zi,wi) a = { n . l i  < w) . Then 

1 

- 
omits a A (+O V [PPl) 

1 
mwever WEQV (a) 

A 

and EQV(a) admits 

- 
[ p] ) . onL%he 

- P 

admits ITl 

other Mnd 

Since T omits a1 it ( since 
- 

follows . However T . admits 

* "5* 

that T omits T I A  (To 
- 

i s  dense. 



-- 1 n3,- 

For convenience a f i n i t e  Venn diagram w i l l  be viewed a s  a set 

4 c S C 2eW such t h a t  S c 2n f o r  some 0 e xi < w (view S a s  t h e  

set of non&mpty Boolean cornination's of  f i n i t e  Venn diagram). Let  n 

be t h e  rank of s . If o 5 m 5 n t h  i n s i s  m-independent i f  f o r  

{i o,...,i } m-1 
each i < ... < i -- e n  and a €  2 

---'In% 
t h e r e  e x i s t s  

I 

6 C 2n such t h a t  a c f3 € S . Thus S i s  rn-independent i f f  every 

Boolean combination of m members of S i s  nonempty. Let 
I 

?.. 

i n d l S p =  IMX 7ii 5iT I-s i3 mzinaSpFniefit) be t he  ii&&idencE-of S.- - -7 

For each 0 < m e o l e t  lm be a property d f  formulas such t h a t  i f  
, 

< - - - - m 
cp(x,y) i s  a formula of a complete theory T then cp(x,y) admitg 1 

n 
i n  T i f f  for,e;ery m 5 n <  u and m-independent @ S c 2 t h e r e  

- - 
&st A T and n cp(x,y)-definable subsets  of 1 A 1 "';I vhidh + 

admit S i n  A . 
A 

Lemma 15 

Froof 

Suppo s e  

[lm]. ~t s u f f i c e s  

m 
[ l  1 some formula 

0 

' .  
t 

0 < m < w and T is a complete theory which admits 

to prove that T admits [ l ]  .' Since T admits 

cp (;,3 of T admits lm i n  T . Let t ing  

- - - - - - 
( (  h cp(x,y,)) A (p(4,ym) A Z n  = 2,) V ( (  7 A o ( x , y i ) )  A = ) 

I - -- 2-?- 
ian i<m 

- - n. . .  n - n - )  .amits 
it i s  easy to prove t h a t  $ ( x r Y o  Ym 

1 i n  T .  -/ 

Hence T admits [l] . 



L e t  L be a language consisting of constants c i j  (i, j i W) , 
/' a UWY predicate P' and binary predicates E ,  -- and le t  T be the 

/ 
/ 

theoryXin L w h o s e  axioms a r e  

/ 

X N X  1 

axioms are 



rank (Sn) ind (Sn) 
where - s .  and 6 E 2 

n n 

If So.. . . . S \ a r e  f i n i t e  Venn diagrams l e t  T (sn 1 lxm) be T (sn ] n e w )  
m-1 --,gr r 
1 

where S = 2 (n 1 m) . F i n a l l y  l e t  Tw be T ( s n I x w )  where 
nq 

I f  Sn (n < w) a r e  f i n i t e  Venn diagrams then 
+ 

(2) T (s, I XU) is  cons i s t en t  i f f  (ind (S,) I ncw) i s  increasing 

(3)  T ( ~ ~ l n c o )  is complete i f  (ind(Sn) I x w )  i s  increas ing and 



(4). J f  T ( s ~ I x w )  i s  cons i s t en t  and mw then T (Sn 1 XU) i s  

(ind (So), . . . . ind  (Sm-l) .W.U.. . . )-independent i f f  

(5) I f  IXW and T(SOI ...' %-1 ) is cons i s t en t  then 

T ( S O I - . - ~  'm- 1 ) is  archetypal  f o r  [ ipl  

hold. 

It is easy t o  prove (1) , (2) and (4) using t h e  de f in i t ions .  

To prove (3) m t e  t h a t  i f  l i m  ( ind(Sn))  = o then every pair of 
rr+w 

countable models of T (Sn 1 n e w )  have countable, isomorphic. elementary 

extensions. To prove (5) note t h a t  T(SOI*. -  ISmL1) 4 Tw 

(s ince  T (So.. . . ,S" ) is def inable  i n  TO) and TO is x c h e t y p e l  
In-1 

- 
f o r  [ ip l  (see t h e  proof of Lemna 13) . 

. Theorem 25  

c PP and no v [ipl. 4 ITl then (no. nl) n W 0 - If IT < n  0 l ' n o , n l  

P r w f  , 

' Suppose n < n n nl € W and n v {ipl  $ nl . 
0 0 1' 0' 

Let T be a countable complete theory which admits both To and [ ipl  

- h 

but omits n 
1 - Let  9; (xi, yi) (i c O); be t h e  f o r m l a s  o f  T and l e t  

1 

- - 
I/li(ziIwi) (i c 0)  be t h e  formulas of T +  TW . A l s o  l e t  Xl = [pll 

w h e r e  p, is eome pr inc ipa l  property of fonmlas .  By induction on 

n < w it may be proved t h a t  t h e r e  exist f i n i t e  V e n n  diagrams 



Ins. 

n < ) such t h a t  f o r  every n c O 
'n - 

(1) ind (Sn-l) c ind(Sn) 

Then T+T (SO... . .S ) 4 T s ince  . T admits rip] and T (so... . IS  n ) 
n 

is  archetypal  f o r  [ ip]  . Hence FYI' (SO... r S;;S omits I T  s ince  T 

- 
omits  a 1 '  I n  p a r t i c u l a r  $ ( .  w omits P1 i n  T+T(SO,....S n ) . 

Since pl is p r inc ipa l  it follows e a s i l y  by t h e  compactness theorem 
- - -  

t h a t  the re  e x i s t s  m > IND (Sn) such that-  &n (zn.wn) omits  P1 i n  

T+T(SO , . . . ~ S ~ . S ~ + ~ , S ~ + ~ ~ . . . )  whenever WT(S 0 . . . . f sn .~~+l ,~~+2 . . . . )  s 

i s  complete and i n d ( ~ n + ~ )  2 m (see t h e  proof of Lemma 6) .  Since T 

omits [ l ]  and [lm] = [ I ]  by Lemma 15 it follows t h a t  

omits  S i n  T f o r  some f i n i t e  Venn diagram S such that indLS) = m . 
Let t ing S* = S oompletes t h e  induction. Let  IT = [;I where 

n but omits b t h  n and h . ~ u r ~ e r m , r e  IT A (ao V [ip] V IT) #= ITl 
0 1 1 



since T+T(snln<w) admits TO V [ip] V but omits' IT 1 '  
\ 'r 
L 

, I T )  ~ P P + $ .  - . %  1 

Hence 

f Theorem 25  shows that if [op] < IT < [ p] and n € 

then ([opl,sr) n PP / 4 and ( ~ , ~ s o p l )  n d 1n fact  suppise 

v-irreducible) . Hence ( lop1 ,IT) n PP + $ and (n, [sopl) fl W f 4 . 
- -- - -- - -- -- - - -p - -- - - - -- 

It should be noted that ([opl , [sop] ) n PP f 4 . Fi rs t  note that 

fop1 c lop1 v [ppl < Esopl and Iopl V [ppl #  heor ore in 22 shows 

that [op] V [ppJ t ? P  since IND showsthat [op] $ [ppl) . By ' 

But DL0 admits Cop] but omits both [Rpl and [ip] (since 

. [RpJ ) [pop] and lip] $ [sop] ) and DL0 + ACF (0) admits 

( [sop] V Illpl) A [ipl but omits [ipl (since [ipl i s  prime). 

Hence [op] < ([sop1 V [%PI) A [ipl < tip1 . Theorem 25 also shows 

that i f  n <  [ l ]  and n € then (IT,[Il) 0 P P +  4 since 
a t  

IT 5 n V [ipl < [ l ]  and (IT V [ipl,  [ I ] )  fl PP f 9 (note t h a t  

R V [ipl 9 fl] since [ l ]  is' V-irreducible. 



\ 
" 

Y .  

1 Theorem 26 
Q 

4 4 
4 

r f  n < n (n < w ) ,  n € PP and IT € I" (n < W) then the following holds: 
n .  n 

n < n E TT (n  < W) for some K € P i f f  some complete theory T w n w 

admits but omits each n . n 

Proof 

a _ t - ? r - S _ x ( n c r l a f o r  some  a 19- l e t  T be  some-complete thee+- 
~n w 

I 

which admits n but  omits n . -Then T omits each T (n < w) . 
W * 

I f  some complete theory T admits n but omits each IT let 
n 

n € P be defined a s  follows: Since it may be assumed t h a t  T is  
W 

countable ( i f  necessary replace T with some f i n i t e  reduct o f ,  T 

- - 
aamitting n) l e t  qi(xi,yi) (i' < o) be the formulas of T . For each 

n < w l e t  

o n = {pn(i)  

of formulas 

n = [p,] where pn is some propertyeof formclas and l e t  
n 

W W W icu} . Fufth-re l e t  n = [p 3 where p is a property 

y .  omits enumerating the  set 8 = { p n ( i )  I v . ( ~  5 n + q  (; - 
3 j j 3  

pn( i )  i n  T 3 . For each n < w it follows eas i ly  t h a t  10 1. = 
n * o 



; mrollary 8 

' I f  a< n (n c o) , n € W, nn € P (n < o) and n is  archetypal then t 

n 

n c n  5 ( n c o )  for  some T W € P .  - - 
-- w n 

Proof 

Since [OI is  archetypal Corollary 8 shows t h a t  every count- 

properties of complete theories admits a commn nonzero property of 

- complete theories. 

It may also be noted tha t  -.if n € P i s  countable then there 

does not exis t  [a] c n 0 c IT such that  ( IO] .IT) = ( [Ol rnO1 (othewise 

a- - 
some countable complete theory admits -every IT' c IT but omits 8 )  . - - 

Since every r  E [pp] is  countable by Theorem 2 1  it follows tha t  each 

such property of complete theories$as no greatest property of complete 
* 

theories below it. 

This chapter concludes by sharing t h a t  the ordering 4 on T 
3 

/ 
i 

i s  not dense. /' 

Theorem 27 

T I ,  - 4 )  - i s  not dense. 

Proof 

Iet To be a c&lete theory which is.&rchetypal -for some 

= .  

mnzero, priae, archetypal property of colpLBte theorks n 0 . - and l e t  

T1 = C TIT where each TIT is a complete theory aCtmitting r  but 

*O 



# 
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omitting, IT C l e q l y  TI 4 TO + TI . Furthemre TI o m i t s  IC 
0 .  . . 0 

(since IT is priine and each TT omits but T + T1 admits 
0 0 

71 (since *o - 
e t s  vO) . H e n c e  T + T* + T~ . ~t suffices to 

0 1 

archetypal for no) so T + T T . T ~ U S  ( T ~ I ~ ,  (T~+T~) 1.1 = $ - '  \ 
0 1 - 



m s  teat LPP,5] is an infinite distributive 
- 

3 
/ lattica dth m linill element above 101 and no el&t 

b e l a  Ill. Is 

m e ?  Hore generally is 

true? 

Shelah (l9?5f, proved that if a complete stable theory T 

a w t s  lfcpf then T addm the E-property (that f6, there ex is ts  a 



property of complete theories s h c e  

Wo-categotical theories uhich admit 

yet by Rpf1-r- 

** 

every property of w l e t e  theories 

d t  the E - p p e r t y .  Prum this it follows that if f T  is a -lee, 

No-categorical theory which addm [fcpl then T admits [opJ. Is 

1f T is a cclplete, KO-categorical theory which admits - 
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