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ABSTRACT

The notion of a relational frame is extended to include structures wfth
‘relations of anyvfinitevarity. For eaéh natural number n, the class'offn+1—
ary,relétional frames is sthh to determine the Togic Gn’ which is definéd
using an n-ary modal bperator. For each n, avtruthicondition for the unary
modal operator is defined on n-ary frames. Two ways of syntactically defin-
ing the resulting unary logic are pfesented. Several extensions of the Gn
logics, using both,fdrmulae with n-ary operators and formulae with the unary
dperator,'are presented. Soundness ané completeness With respect to claéses
of n-ary re]ationa] frames is proved for each extension. It is proved that’
the formula op - ;p 1§ not determined by any class of n-ary relational frames

where n is greater than two.
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- INTRODUCTION

Inrfhe‘laéf'two decades the usé of binary‘relatiﬁnal frames to pro-
vide'a semantics for moda1 1ogic has received a great deal of attention, '
and thiéthas produced a multitude éf 1ntérest1ng formal results. This
essay will ﬁreéent the basic theory of a‘genera1ized reTationa]vsehantit;"
fof moda1rTog1c. The generalization is achieved in a very simple way: the
notion of a relational fraﬁé 1§ extended to include ;iructUres with re-
Tations.of any finite arity. Since this reqﬁires only a modest intellect-
ual 1eap} it is surprising that it hégrnot-been done before. A possible
explanation of this puzzle is that such a Simp1e generalization does not
seem to promise many interesting formal resu]t;. It might be thought that
it would y1e1d only rather tedious.genera]izatfons of results already
7 obtained for binary frames. One df the purposes of this essay is to show
that this is not the case. |

The generalized notion of a relational frame described in section 11
is due to R.E. Jennings of Sihan Fraser University ahd P.K. Schotch of
Dalhousie University, and was first formulated in 1975. When 'the search
began for the logic determined by these frames it was 1mméd1ate1y ap-
parent that this generalization waé non-trivial. In fact, several of
the completeness results included in sect{on IV were obtained before it
was knownjwhich logic was being extendedavit was not until 1977 that
Jennings and Schotch obtained a completeness theorem for fhe logic des~
cribed in section III. | |

The endeavours described above were concerned only with the unary



" modal operator m But these generalized relational frames also allow fer
the definitiqh of a truth condition for an'nQery modal operator’(where the
arity of the frame is n + 1.) The completeness theorem for the n-ary oper-
ator was simp]e by comparison w1thvthat'for the unary operator, and was

‘made even s1mp1er by the contr1but1on of R.I. Go]db]att Gonb]att had

1nvest1gated a binary modal operator w1th 1ts truth cond1t1on def1ned on

ternary frames This binary operator turned out to be our C? Theorem 3
below is essentially a generalization of the completeness theorem that
Goldblatt provides in [1].

In éection IV the characteristic generalized frame conditions for
several traditional formulae aré preSented.AIn the binary case, these
formulae distinguish themse]vee by heving rather simple frame conditions,

such as transitivity or symmetryf In the n-ary case some of these form-

ulae retain this distinction, in that they are characterized by a straight-

forward n-ary frame condition for each n. But for other fonhu]ae this
distinction vanishes; For example, in sectien V it is shown that [D] has
no eharacteristic n-ary frame condition where n is greater than two.
Section IV dqes contain some sur-prises*a despite the fact that it exam-
ines only some ofvthe well-known formulae (and none of the more exotic
formulae) that are in the 11terature. This should indicate that more sur-
prises are to be expected as research in this area cohtinues.
Above we contrastedtthe'simp]iéity of the relational semantics of

the n-ary modal operator w1th the complexities 1nvo1ved with the unary
_operator This situation is reversed in the case of ne1ghbourhood seman-

tics. In [4] Segerberg gives a neighbourhood semant1cs for E, C, and K.

.
‘F-}e-'/*,{»wm-‘*?x;i‘iA;‘i""aﬂ‘):h‘qtifi'té%if.'@"gww%:}lm:Mfl'—ﬁ’-% e e B R
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Each of these’logics hés a correlated 109j; defined with the n-ary oper- - °
ator. These can be conveniently designated askEn{DCn, and G . (Thebsignif-“‘
jcance of ‘this lastkname is éxp]ained in section II.) The generalization
of the notion of a neighbourhood frame that is required to deal withrthe
n-éry operator 1; as simple as that required for re]ationa]vframes: the‘
neighboUrhogd_function maps points onto sets of ordered n-tuples of sets,
rathervthan onto sets of sets. Completeness results are easily obtained
for En‘and Cn,’which indicates that the genera]izationvis correct. How-
éver, no completeness result has been forthcoming for Gn (the correlate of
K). By contrast, the neighbourhood semantics for the unary operator is
quite trivial, whether one uses generalized neighbourhood frameSVOr fhe
stanaard frames found in [4]:‘Se§erberg also provides a definition of
binary relational frames on neighbourhood frames. Aftempts to. duplicate
this achievment for n-ary reiationa] frames have so far féi]ed, both with
the generalized and the'standard'neighbourhood'frameé. Once again, pro-
cedures which are stréightforwakd in the binary case prove to bé quite the
opposite in the n-ary case. |

The problems described.above, and the ones described in the sections
that follow, should be enough.to prove that generalized relational frames
are objects worthy of deta11ed stUdy. It is hoped that this essay will piay

a part in inspiring _such research.



(1) SYNTAX : .

An n- ad1c modal 1anguag;,L is a triple <At,k,Fn> where

{p i € Nat}
j * = {J'"_>’,D
and where F_ is defined as follows: ;e 7
(i) At C Fo
(i) L e F,
(111) Va,p, a € F & B €F =a—>sean
(iv) ¥ap...q, o) € F & ... 8o €F =0 fe...q) €F

' Each‘un, and any operatdr defined with them,.is a modal operatof. Here the
familiar o operator is the modal operator o of L].
The abbreviating conventions for PC operators are as usual. The n-ary

diamond is defined:

df n‘ " o -
Where the §rity of a modal opéfator is apparent from the context, the sub-
script 'n' is o%ten,omitted. Epr examp]e,,‘un(a]:..an)' will often be -
written as 'D(a]...an)'. t
We maintain the traditional distiﬁction between a s;stem and a logic.
Many logics bear the same names as particular formulae. To avoid confusion
we enclose the name 6f‘a formula in square brackets. For exampTe, [D] de-

notes the formula op - op. Where [X] is the name of a, [X'] is the name of

ca. Where L is a logic and [X] is the name of a formula, LX or L[X] denotes



. }tﬁ" "\ ’ .
the logic generated by the system L with the addition of\[X] as an axiom.
We also make use of the notion of a sector. Waere 0 jis ‘an n-ary modal

operator, we define the set of formulae F0 as foHows:\’)

(i) At ¢ F -
£ % ’ -
11)_]_€F | : ‘
(111) Va,B, a € Fd & B ¢ FO’: a—>pB € FO
(1V) Va] Sy O € Fb & ... & an € FO aO(a]...an‘) € FO

Where L is a 1og1c, the 0-sector giL (L70) is defined as L N FO' Thus

L/D=LﬂF]=LﬂF.
0

7 )
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(I1) RELATIONAL FRAMES -

A re]ationa] frame is a triple <D,f,R> y where Dtis’a noh-emptykéét:nfr
f is a fgnction'mapping each eiement of D onto a'patura] number, and R is
a function fromrD such that for all x 1n'D; R(x) € p(Df(%)). A relational
frame may'be said to be first order (for tﬁé’pestriéfed purposes‘of-this
essay) just when/f]x) = f(y) for all x, y, in D. Suppose F is a fir{iforder
re]ationg] frame where f(x) = n for all x in D. Then F can be represéﬁted

n+l A11 relational frames which

as a pair {D,R) where R is a subset of D
will be considered in this work are first ogder frames, and so théy'will
be constructed as pairs. Instead of <KsYpeeYp> € R we will often write

ny]...y’. F wi]] be said to be an n+l-ary relational frame if f(x) =n

for all x in D, that is, if R is an n+]- ary relation.
A mode] M on an n+l-ary re]at1ona] frame™ F is a pa1r {F, V) where v

i5 a fungtion: At - p(D). V is said to be an assignment. The appropriate

‘modal language for an nt+l-ary relational model s Ln' The -truth conditiops

for PC formulae are as usual. The truth condition for the oy, operator is

Aas foﬂTows: B , T ,
MF& m(a]..{an) 1ffKVy]..,yni XRyq...y, = 3k(15k5n): Mkyk oy
The notions of truth on a model, validity -on a frame, and validity on a
class of frames, as well as soundness aﬁqlcomp1etenes§ with réspect to
‘classes pf frames, a those which aré in commgn ugaéel ‘
Both tRR] Fa~->p8 = |-oa~>op and [RN]“}-a = |- oa pféservé validity

on relational frames of arity greater than oné. However, it is easily

shown that [K] opAog D(pAQ)iWi]] fail on any éjass of relational frames

k3 .
o



with arity greater than one. Thus’thg genera1ized notion of a re]ationé1 ' o
frame y1e1ds’a first order semantics for 1ogits weaker than K.AWe wit] now
see what these Togics are. o ‘ -
For -each natura] number n,-we define the logic G as the set of form-
ul ae 1nc1ud1ng PC and each of the n 1nstances of the schema:
[G](

(p.l e pk_-l ;pk/\q mpk+'| o 'pn) - _ ) . . ,' 6

n) A n(p]"..pk_],q,pk+1...pn) 5

and';1osed'under modus ponens, uniform substitution;‘and each of the n in- -

stances of the fo110w1ng two schemata

-

[, lFasp= | AN
I"D(Y-I Yk_'l ’a’Yk+'| . -Yn») - D(Y] -Yk_] ’B’Yk*‘] .. -Yn)
| [RNn] |—a = i_D(B'|"'Bke]’a’Bk'+'|{"'Bn) )
(The 'G' is used in recognition of Rob Goldblatt, who provides in- [1] what T

amounts to a completeness theorem for Gz;)
We will first prove é theoremiWhicﬁ révea1s some of the syntéctic
propertiestof the G Tlogics. Consider the following fu]e:
[RR'] |-ap By b8 ke vp =
' ‘ l- D(aT.".;ah) ‘—}“D(B]...(Bn) .
Lemma 1.1: If“PC c L, then L is‘cJosed underz[RRn] only if L is c]oséd

s | under [RRAJ:
" Proef: (1) f-a] ~ By ‘ .~ . Hypdthesis
(n) Fa > Bn a‘ Hypothesis
(n+1) |_D(a,'|'“fln) > D(B-lr,:az.;..’an) frsm (1) by [RRn]" ) _
(n+2) |- o(py b0pe o) > BByaBgu0gea) - from (2) by [RR I

. .

: N [ . B . h
- < LI - -
. ' . 3
- . - ’ = e
v . . -
. : - : .
-~ .o R - . . ) /
- - .')' ‘ ) T z a ' . N F -
v : . -
@ B B £y 5 . a7 N
- a N - B - o



-

(2n) F'D(B]---Bn_1,gh) - 0(81---Bn) : . from (n)-by [RRn] .
(2n+1) | olay.waay) ~ (g --8,) | from (n+1) ... (2n) by
e | . transitivity of - -

Lemma 1.2: If PC ¢ L then L is closed under [RRA] only if L is closed

under [RRn].

Proof: (1) Fa ~ B V ' S | ' Hypothesis
(@) Fvy =7, o pe

(k=-1) Frveq > vy | ' PC .
(k) I-Yk+"l_’ Yk+-] 7 ) . ' * PC

(n) Yo ™ Yy | | PC

%

(n+1) | D‘(Y-l Y10 T Y] .Yn) - D(Y-l .. 'Yk-'l_’B’Ykﬂ .. 'Yn>).
' from (1) ... (n)
by [RR']

Lemma 1.3: If PC ¢ L then L is closed under [RRn] only if L is closed

under [RR]. - ° o e
‘ Proof:’(l) Fa-~>p | S Hypothesis
(2) F o (a...a) > o (B,a...q) i from (1) by ‘[RR 1
(3) F o (feareea) 0 (Bsfrceeea) from (1) by [RR ]
(041) Fo (Bepoa) > o (BooB) from (1) by [RR ]
(n+2) Fogla...a) » Dn(B---B) - from (2) ... (n+1)

~ by transitivity of —



(n+3) | oo - op o : from (n+2) by definition
of o in L |
n

Lemma 1.4: L is closed under [RN_ 1 only if L is closed under [RN].

Proof: (1) |- « Hypothesis
(2) |- Dn(a;.;a) : , - from (1) by [RN.T

(3);]- oa : from (2) by defihitionc

| of oinL -

Lenma 1.5: If L includes PC and is closed under [RR;], then

(1) |7 o (aq.-a)) = olaqve..va,)

(i1) h_ D(a]A...Aan) - mn(cc-l...ccn)
~ Proof of (1')::

() |- Ay > aqVe..va ) PC
0 (n) |- a, > d-lv...rvan . S L 'x | “PC
(n+1) |- Dn(cc-l...ccn) - gn((a]v.?. .vccn)...(cc:l‘v.;.hc\/c‘cn)-) '

from (]) ... (n) b} [RRr]1]

| (Mg) - C]n(a]...an) - D(CC.I\Z.‘..VCCn) from -(n+1) by definition
- . of o in L‘nf
Proof of -({i):- o : v o R .
1) - QAL AT > ar,. \ o . : PC
(n) .} cc.l/\.../\cc‘ > a, PC
(n+1) |- Dn((a]/\ AQ (cc-l/\ Aqn)‘) - th(a'I an)

from (.1) (n) by [QR;]]
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(n+2) |-'m(a]A...Aan) -~ O (a]...a )" 'froh (n+1) by definitidn
‘ | of o in Ln
Thus we have the following theorem:
THEOREMv1: If PC c L, then:
(i) L is closed under'[RRn] iff L is closed under [RR&]
(ii) L is closed under [RR] if L is c]oseg'undér [RR ]
(i) L is closed under [RN] if L is closed under [RN ]
| |1 o, 1"'an) ~+ ofa ]v..IVan) if L is closed under [RR ]
r (v) FL D(a1A...Aah) - Dn(a]...an) if L is closed un@er [RRn]

It follows from Theorem 1 that the o-sector of Gn is c1o$ed under
[RR]‘aﬁd [RNj. The fQ]]OWjﬁg thedrem shows that [K] is not a member of the
u-sectdr of Gn where n > 1. | )

THEOREM 2: Gn is sound with respect to tHe class of n+l-ary relational
frames. |
Proof: trivial 7
Thus where n > 1, .[K] € G /o since (K] wil]“fai] on somé n+l-ary re-
_lational frame. o
7 The canonical domain DL and the canonical assighment VL are defined -
as usual. The canonical relation RL is defined:
xRLy].‘..yr.1 iff vq] ‘s D(a] ..a ) € x'= Fk({l<k=): a €Yy

n

Where L = Gn, the following theorem shows that all .and on]y G theorems
. 1

are true on the canonical model ML = <DL L VL> R and therefore const1-

tutes the Fundamental Theorem for relational semantics.

THEOREM 3: M k= a iff a e x (L =G )



a = D(B];..Bn) follows from the def1n1t1on of RL

(=) assume that of ) § x. Let K0 A7 ... be an enumeration. "

O k-
of Fn. Construct y1 e yn as. follows:

0. ‘ - ; N
y =y, UAA } iff ¥y, y, |- A - =y = oly,B,...B.) £ x |
PRI PR 1T % AR T
= otherwise
k =
Let yy = Uy, ...y, ...}
17 0y
Let .Y-l = {"B.I}
0 .
Yo o o= ys U LAY AFf ¥y,80...8, 10 Vs b A > -y &
L i k> o 1 i-1 jk 1 ‘k s
u(§]...61_],y,81+]...5n) € x = 3j(1=j=i-1): 6j € Y;
= y; otherwise ' ’
' k
Let y, = Ufy, ...y. ...}
i ig i

Lemma 3.1: ¥i{1=i=n), yifl L
Proof: The proof is by induction on i.
(i=1) assufe y | | .~ Wy En y1kI1 L

But y;, =y, . U {A.} for some j=k-1 or y, = {aB.}
W Thy o T v

g = By} then | =gy~ L g T-6y
D(T,BZ...Bn) - D(B].l.Bn) But D(T,BZ...Eﬂ) € X ([RNn]) '
D(B]...en) € x, contrary to hypothesis
ARZEER? U‘{Aj} for some jsk-1

k k-1
'.y IA—»_I_
]k-l 1 q

o
N
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. c D(T;BZ...Bn)'k X by construction of y], Contrary to [RNh]

(induction step) Assume that yill L ..'3y1k S_ 7 yikll I

Buty, =y, "

Tk k-1

(for y1 = {-B;} we argue as above)
k

.._y I A—»_]_
k- 1 o
SR EERP R G(‘51 5i-1° T-’Biﬂj“ﬁ‘n) € Xx=
5y ¢ y] OF ... OF 8, € ¥ (by construction of~y1)
But D(B]...Bi_],T}gi+]“".Bn) % X ([RNn])

33(1=3=i-1): By,

U {Aj}'for some j<k-1

J
s yj is 1ncons1stent, contrary to the 1nducy1on hypothes1s

Lemma32 VY36~| .i_]: _y-l'L "'Y&"é] E.y'l &"'&-‘-i_] E-y'i_]=

D((S-I.... - -I,Y B_H_.I f X

Proof The proof is by induction on i.
(1=12 Assume that y]|1 e 3y1k'§_ e y]kFL vy A o e

But Y1 =¥y U {A:} for some j<k-1 or y] = {qg]}

k k-1

Ify] =) U{A}then _y.l h_A >y

k k-1
a(y,BZ...Bn £ x by construct1on of 2

Assume y]k = {“B]} S |1 By >y R |1 v > 5] T |
Ll olvag,..eB,) > D(B]...Bﬁj But o (B -- f X - )
m(y,BZ...Bn ¢ X ' '

(induction step) Assume that Yilp v & 5 € yy & 8 851 €-Yi

.dys ©oy. y1k|1 vy Assumer Yi T Y

W= 71 k k-1
But &5, ¢y, & ... 8 6.7 §¥;_q (Lemma 3.1)

U {Aj} for some j<k-1

. D(G]...éi_],y,81+]...8n) f x by construction of ¥4

Assume that yik = {ﬂ[31} |'L “B.l - Y -L ';" 81



I-L D(S]...éi_],y,ﬁiﬂ...ﬁn) - 0(5]...51_] ,51....;3n) ,([RRn])
But yﬁ—l'T_ I & 6y €y 8.8 859 € Yio

" D(S]...Gi_],ﬁ%...ﬁa) ¢ x (induction hypothesis)
SoafByeebs 15vaBiyq---By) £x

 Lemma 3.3: Vv, y €y; or -y € Yi ‘

Proof: The proof is by induction on i.

(i=1) Ass‘umev:-lyz Y ¥ ¥y & Ay ¥y'l

F

AL the ordering of Fn

. In: y]_[1 ¥ - M &’u(ﬂ;ﬁz.;:én) € x and

Let v = Aj and -y = A

EDS y]kl1 Ay & a5 & u(&,@z.‘.sn) € x‘ (construction of y])
But y]j < ¥ & y]k Sy, y]}L NAS = YA~y |
S y]ll =(nad) L u(nAG,Bz...Bn)_f x (Lemma 3.2)
But D(n,ﬁz...ﬁn) A 9(6,52...Bn)’€ X
" D(ﬂA@,BZ...Bn) € X by‘[Gn], which is absurd
Ly €yqor =y € ¥y '
(induction step) Assume 3y:-v ¢ yi &y ¢ y}
Let v = Aj and a~y = Ak in the ordering of Fn
. ?rr],q;],..;(pi_]: Y5 l-L v > an & D((p]...cpi_],n,ﬁiﬂ...ﬁn) € x &
vg(l=g=i-1), %q *“yg’ and
30,41].’..%_]: y1k|'L v > a9 & D(\y]...\pi_] ,0,@1.”../,5”) e X &
vg(l=g=i-1), 2 ¢ Yq (by construction of yi)

L (@]vw]) £ yp & i & (@1_]v¢1_]) ¢ Yio (induction hypothesis
and Lemma 3.1)

But y, <y, and yik CY;

. Y ‘—L NAS > yA-y yi"L,“"(T]/\ls)

13
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", D(@1VW1"'@1-1VW1-1’”A@’91+1“~'5n) f x (construction of'yi)
But vg(1=g=i-1), [{ g @gYWg & 1 Vg 7 9gV¥g
Loolopiy ey gV omeBa gy By A alopviy e gV a9,
B1+]"‘Bn) € x (i-1 applications of [RRn]) ‘
. D(@]v@]...@1_1v¢1_1,nAﬁ ’Bi+1"‘6n),€ x by [Gn], which is absurd
\ L‘y €y1 orqy‘eyi
Lemma 3.4: xRLy].;.yn
Pro;f: By Lemmas 3.1 and 3.3, 91...yn are L-maximal consistent
Ly €D & .. &y €D “
Assume D(Y]g..Yn) € X andlyn : Yy .ﬂlﬂyn €y

n ‘
S ynll Y, vy fyqoor ..oy £ Y1 (Lemma 3.2)
Sy €Yy 0T L or iy g €y

Loalryeer,) € X =y €ypor Lory, €y

.VxRLy]na.yn .

Thus we have shown 3yqe eyt XRYpeY, & B f yp b b i ¢ Yy .
®
_ MLP; D(B]...Bn)
. ML,}:X D(B]..-.B-h) = D(B]...Bn) £ X‘
Corollary 3.1: Gn is complete with respect to the class of n+l-ary

relational frames.

Pfoof: The prdof is from Theorem 3 by the usual érgument.

s b o Jogp s e v Sl 7
JORNTSREE IO A AR ER T .
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(ITI) THE o-SECTOR OF Gn

By the definition of o, in [, a truth condition for the unary oper- .
ator on n+l-ary relational models is easily derived:

-,

MF} oa iff Vy]...yn, XRyq...y, = Ik (T1<k=n): Mhyka
Thus each class of first order relational frames of a particular arity

will determine a logic which is a subset of F]. Where the arity of the
frames is n+1, this logic will be identical with Gn/u.
“The logic Kn is definedvas'thg smallest set including PC and each

instance of'the following schema:

[KA]m Opy A ... AOp > D((p]A..pri) Voeoov (paAe..ap))

Hrtlr::-]--is the number of cbnjuncts in each disjunct) and closed

(where i =
under [RR] and [RN]. This logic was atbfirst thought"to be cémp]ete'with |
fespect fo the class of n+tl-ary relational ffames. The strategy of the
completeness prqof wa§ to prove the Fundamental Theorem_by showing, on
the assumption thatrma ¢ x, that the sét {B8: of € x} can be partitioned
into n sets, each consistent with -a. When apparent counter;examp1es

were found, Jennings and Schotch produced an expanded axiom set by
defining several infinite serjes of axioms, all similar to the [Kn]m

series given above. This axiom set is given in [3] and will not be

reproducéd here.

e

These axioms have been called aggregation prihcip]es. The strong-
est aggregation principle is [K], where g collects all of its propo-
sitional letters into a single conjunction. As n .increases, these aggre-

gation principles become weaker.;Where n-1, Knlis said to be quasi-
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‘aggregative.

Jennings and Schotch have succeeded in showinb that their axiomati-
zation is complete. However; it is still not known whether Gn/g is
finitely axiomatizable. Some attempts have been made to prove complete-
ness byrmethod§bsimi1ar to- those used 1in Thgorem 3, but so far these have
not been succéngulf ‘ i

We now present another way of characterizing Gn/g syntactically using
on]y the’monadjc modg] language Ly- The function T: F] - F1 1s‘def1ned
as fo]]oWs:

(i) T(a)
(1) (D) = | .

qif a € At

(111) Ta ~ ) = T(a) - T(p)
(iv) T(oa) = ool(a)
. The range ahd domain of T is extended to subsets of Fl in the obvious
way:

JT(L) = {B € Fii 3a e Lt T(a) = B} (for L g_F1)

In Segerberg [4%] we find the following formula: '
[A]tn] opy v ka1 - pz) Voeea v D(D]A...Apn'+ pn+1)

The desired syfitactic characterization of Gn/m is provided by the
following fact:
THEOREM 4: T(G /b) = KD'Alt!/go.
Proof: Let C be the class of bjnary relational frames such that:

"¥X,y, XRy = 1 = cardR(y) < n

It can be shown that C determines KD'A]ta.

Let C* be the class of all n+l-ary relational frames.
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1° C*|= a & C|= T(a). ' ’ - - v

Proof: For the "oh]y if" direction, assume that CF T(a)

Lemma 4.1: va € F

So3F e C FR O T(a)
. there is an Mon F, ‘X 1n D of M such that Mblx T(a)
Let R' ¢ Dn+] = {<x,y]...yn>:3w: xRw & wRy{for each -i=n}
| Let F' = <D,R'> and M' = {F',V> Obviously F'loecx
Then: vp, W'k 8= ME T(B) | |
Proof: The proof is by induction on the length of 8. We give only

the induction step for 8 = ov..

Assume that Mb{x T(B) .. Mb‘x boT(y) ,
| . dy: xRy & Mbly oT () 4,
. Vz, yRz = Mb‘z T(y) But-cardR(y) = 1 since F € C '
J.o3z: yRz & Mblz T(vy) |
" xR'z...z & M b‘z v by the induction hypothesis and defini,ticon of R'
S M b‘x ay .Lovp, M |=X B = M|=X T(B)
S F'BF o But F' e Cx L CRF q
L CE a=CF T(a)
For the "if" direction, assume that C*} «
W OF e O FR « |
. there is an Mon F, an x in D of M such that Mblxcc
Let D' = DUR
Define R' < D'XD' as follows:
(i) DoYqeenY > € R =.xR'<x,y]...yn>R'y1. for each i=n
(ii) <x,y]...yn>R'z = zR'z

Then F' = {D',R" € C. Let #' = (F', V>
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Then: ¥p, M }=X\T(B) = M}:x B o ' .
Proof: The proof is by induction on the length of B. We give only
the induction step for B = ov. '
‘Assume Mb!x B .. Mbéx gy‘ )
c Yy ny1...ynE§<1\4b€y1 Y & ...A& M[#yny' .
. fo<x,y]...yh>R'yi & M %{ T(y) (for each i=n) by the induction

1 : s
hypothesis and definition of R' :

But F' € C- ", cardR'(<x,y1...yn>) <n

oM r*'<x,)’1-. Yo o-T(y) . M ‘Fx omT(y)

MR ooT(y) S MR T(oy)
VB, M Fx T(B), = MFX B
" F'B T(a) But F' € C .. C¥ T(a)
. CkE T(a) = C*E «
This proves the lemma. To prove the theorem, first suppose that a ¢ T(Gn/m).
" a=T(B) for some B»E_Gn/o . -
. C*k B since G is sound with .respe_ct to C*.
o CE T(B) by the lemma. But T(B) = a |
. a € KD'A]tr'] since KD'A]tr" is comp]éte_ with respect to C.
", T(Gn/m) < KD'ATt) /oo
Next suppose that a € KD“"A]tr']/mo L.CE® since KD'Al tr" is sound with respect
to-CA.
: ¥ . T
But o = T(p) for some g ¢ F,. .\ C*F B by the lemma.
S.oB o€ Gn/ci since Gn is ¢omplete with respect to C*.

L oa € T(Gn/u) L. KDIA]tH/DO_E.T(Gh/D)
Thus T(Gn/m) = KD'A]tA/DO



(IV) SOME . EXTENSTONS OF"'THEwGn AND Kn LOGICS
In section III it was mentioned that Jenn1ngs and Schotch had suc-*

ceeded in axiomatizing the o-sector of G by produc1ng a comp]eteness

theorem for K But it is obv1ous that not every formula valid on the c]ascﬁ,‘

of ntl-ary relational frames is a theorem of K , Since some members of F
will be valid on this class, and_Kn E-FT' In this section we‘w11J need to
make explicit the weaker notion of completeness used 1mp1mcit1y in the re-
marks mentiomed above. Where C is a’c]aés of $eiationa1 frames and L is

a logic, we say that L is complete mod Fq with'respett to C iff every mem-

ber of Fn which is valid on C is a theorem of L. Thus in [3] it is shown

that Kn is complete mod F] with respect to the class of n+l-ary relational

e

frames. Where L and C are as above, we say that C determines _I:_mod‘Fn iff

L is sound and eomp1ete mod,Fn,with respect to C.
The classes of frames to be .examined in this section are defined by the
following conditions on n+l-ary relations:

R is reflexive iff ¥x, XRX...X

R is symmetric iff VXsYpee oY XRYqooy = FK(1=k=n): y, Rx...x

R is quasi—transitiye iff Vx,y].:‘y 22yee-2

XRy;...y, & W(1=ksn), y,Rzy...z0 = Fj(15j=n): szJ...z;]]

R is euc11d1an iff Vxéy]...yn,z].f.zn, ny]...yn & XRZJ"'Zn =
K(1=k=n): ykRZ]"'Zn

Classes of ntl-ary frames satisfying these conditions determine exten-
sions of the Gn logics which are given by the following formulae:

[T,1 0lpy...p,) = pyVeeovp,



&

S o

[Bn? o(m(p]d...p]n)...u(p. co.p
Py V...VPyVL.Vp o VLLWVP s
]-l -In ‘n]& ‘nn

:[4n] m(p]]..;p]h),A v A D(pn S Py )16.

D(D(p]]...p.' ). (p .
(5, ol (py A= Apy ). By Ao

a(o(p]]...pni)...o(p]n...p ?

THEQREM 5: GnTn is determined by the class of reflexive n+i-ary relational

frames. . ) : &

Proof: The proof is trivial and is omi tted.

THEGREM 6: Gan is determined by the class of symmetric n+l-ary relational

frames.

Proof: Soundness is tﬁiv1a1§ For cbmp1eteness, we show that the canomical

relation R (L =g ﬁ'w) is symmetric.

Assume 3x,y]. . xRLy1 Y & Yk (1=k=n) NykRLx
. VYk(1=k=n), 3ak]...akn: D(ak1...akn) €y, & ak1 € X &..& akn £ x
But xRLy].z.yn 37 o(o(a]]...a1n) D(an1' ann)) € x .
@, V...va, v...va_ v...va_ € x ([B 1) )
11 1n " N n

, ++ x is inconsistent, which is absurd
:. RL is symmetric
'THEOREM 7: Gn4n is determined by the class of quasi-transitive n+l-ary

relational frames.

Proof: Soundness is trivial. For completeness, we show that the canonical

F

relation R (L = Gn4n) is quasi-transitive.

Assume 3x,y1...yn,z} zl...z?...zﬂ:

xRLy1...yn & Vk(1=k=n) ykRLz z & Vk(1=k=n) ,'waLz

20.



. o - » k k
. Yk{(1=k=n), 3o, ...a o(a ..q, ) € X &a ¢ z7 &...8 a ¢z,
| k] kn k-I kn k-I 1 kn n
G(D(a] S0y )...D(an ;..an )) € x ([4n])
, 1 n 1 -'n '
But XRLYp-- oy, o Fk(1=k=n): D(ak]...akn) €Y
But ykRLz$...zﬁ S 33(1&j=n): @ A € z?,ﬁwhich is absurd

, . | NN
. RL is quasi-transitive

THEQREM- 8: Gn5n 1s:detenn1ned by the class of euclidian n+l-ary relational
frames.
Proof: Soundness is trivial. For comp]eteness,\we show that the canonical
‘relation R (L = Gn5n) is euclidian.
Assume 3XsYq Yt XR Yy & XRLZI"'Zn & vk(1=<k=n), ~Y\ R 2y-0. 20
a ) ey, & '
. .n 1 kn k
qk] ¢ Z; &'... & ak?ﬂt z,

n .
" a4 A...AQ € z, & ... & nay A ARG € z

" vk{1sk=n), Bak]...ak s ol ..

1 ol no Mo |

But xRLz].../zn S ((ﬂa]]A...Aﬂan])...(ﬂa]nA...Aﬂann)) € X

. D(O(ﬂa]]i..ﬂa]n).f. (ﬂanj...ﬂann)) € X ([5n])

But xRLy]...yn o 3k(1=k=n): O(HGk]...ﬂakn) € Yy

. wu(ak ceedy ) € Yo Y is inconsistent, which is absurd

1 n : : ' ’ '
e RL is euclidian
The following formulae will be familiar:
[Cén] 'lDJ_ " .
A , |

[Tlop~p

[B] ocp ~ p o | |

[5] op + cop

(D] op + op

147 op > oop

21
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The next two lemmas reveal some notable properties of [T] aﬁd {B]."
Lemma 9']:-GnT is determined'by the class of reflexive ﬁ%]-ary re]atioﬁaj
ﬁm@& ‘ 3‘

- Proof: We show that R (L = GnT) is reflexive. e

—

Assume that o (aj-..a ) € x .. olagv...va

n

n) ¢ x (Theorem 1(iv))

L oaqve..ve € X ([T]) .. *&(1=k=n): a € X

I‘xRLx.L,x

Lemma 9.2: GnB is determined by the t]ass of‘symmet}ic ntl-ary relational

- frames.

‘Proof: We show that R (L.= GnB) is symmetfic.
Assume that xRLyi...yn & vk(1=k=n), mykRLx...x
" vk(1=k=n), 3a

-y ‘o (ak ceeqp ) € yk'& ;ak A...Aﬂakn € X

_ K7k kT Ry 1

f 1a]1A...A1a1nA...Aﬂan]A...Ajann € % ' | ¥
c. Do(wa]1A...Aﬂa]nA...Aﬂan]A...Afann) e x ([B]) 3 - -
But xRLy].:.yn -

. 3k(1=k=n): 1D(G1]V...Va] vi..Van1v...yann) € yk,' _ O
But uh(dk]”'fkn) € Yy .Z'D(ak]V.QiVakn) € Yy (T?eorem 1(iv))

. a(F11v...va]nv...qu]v...vaknv...van]v..;Van ) e»yk ([RR] and PC)

n
LYy is inconsistent, which is absurd '

" RL is symmetric
Thus we have the following result:
THEOREM 9: If G c L, then
URLE
L [Bliff | (8]

(Here, and in the following, we use the name‘of:a formula to abbreviate the



formula; for example, ;'L [T]' means ' 1 op +vp'.)

Before moving on to extensions qf the Kniéystems,'we will exaﬁine one
more exfension of the Gn systems,_the,signifitance of which wi]]lbecome ap-
‘parent later. It is obvious how seriality should be défined for an n-ary |
relation.

THEOREM;]O;'GnCon is detefmined'by the class of serial n+l-ary relational

frames.
R : I'q
~Proof: We show that R (L = G Con) is serial.
By definition of RL’ ala ]"..an) € x'1ff LA xRLy]...yn“é

?]e Y1 or ... or %16 yn v
Lol § x IFF Fypeoy t xRy & L¢ yp & ... 81 ¢y,
But ﬂul_g x . By]...yﬁ: xRLy]...yn , -
. RL is serial (
(This elegant proof is due to B.F. Chellas. It replaces a much longer proof,

contained in an earlier draft of this essay, which parallels the proof of
7 : o '

Theorem 3.)

Ourvcompleteness results for tHe_Kn extensions are obtained in the usual
manner; it is shown that the canonical frame is a member of the class of
frames in question. Since theée Kn(éxtensions are included in F], canonical

frames different from those used for the G extensions are available. Let

= (DL RL VB As usual, L is the set of L-maximal cons1stent sets and VL

is an assignment such that x ¢ VL(p) iff p e x. Ri is defined as follows:
xRLy].:.yn iff Va, oc € x = a €y, 0r...oracy,
Where Kn c L, it can be shown that

vMI'_t=X‘ ¢ iff ae€x
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for all q ¢ F]. The proof of this fheorem‘is included in [3] and will not

. -be reproduced here.
. We can now give comp]eteness.resulfs for soﬁe-extensions of the Kn

logics. | '

THEOREM 11: KnT;;S determined (mod F]) by the class of reflexive n+l-ary
re]ationa]'fkames.. : ) L

~Proof: The proof is trivial. | | |

THEOREM T2:.KnB is determined (mod F]) by‘the class of symmetric n+l-ary
relational frames.

Prdbf: We show that the canonical velation Rﬁ (L = KnB) is symmetric.

| Assume that 3x,y,...y.: xRﬂyl.,.yn & vk(1<k=n), mykRix...x

c ELTRPRL A vk (1=k=n), oa € ¥ & o ¢-xr

n

", 1(¢]v...van) € x . moﬁ(a]v...van) ¢ x ([B])

But xR/ 3k (1=ks=n): wm(a]v...van) € Yk

Yy
But oa, € yk R u(a]v..,vakv...vqn) € yk (PC and [RR])
’:‘yk is inconsistent, which is absurd
'.Riissymmtﬁc .v
THEQOREM 13: K 5 is determined (mod F]) by the class of euclidian n+1—ary
re]at1ona1 frames.
Proof: We show that the canonical relation Rﬂ (L = Kn5) is euclidian.
. Assume that 3x,y]...y ,z]...zn: xRLy],..yn & xRﬂz]...zn and
vk (1<k=n) mykRLz
c 3aqeeeaps vk(1=k=n), oa, € Y & oy ¢ zq & ... & oy ¢ z,
", 1(a]v...van) € 2 & ... & w(a]v...van) €z

But xRLz] S OW(Q]V...VQ ) € X
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.. DO“(Q]V-'-VO_

n)‘e X ([5]) But xRiy]...y

n
'- 3k(]5|L<n): ﬂD(a-IV---Van) G_Yk But DCLkE‘ yk

" oleqv...vayv.iva ) €y (PC and [RR])

n
. Yi is 1ncons?stent, which is absurd
" RL is euclidian

The straighpforward genera]fzations of relational %rame conditions
“that can;be.made for [T], [B], and [5] are not so easily obtained for [D]
and [4];'In faét, it can be shown that [D] is not determined by any'c1ass
of first*ordek‘n—ahy-re]atidna] frames where n > 2. (See section V.) Thus,
a]thdugh [Dp] and [Con] are equivalent in K (i.e. GT or K]) Theorem 10 shows
that they are not equivalent in Gn where n > 1, and hence that they are not
equivalent 1ﬁ K, where n > 1. One should suspect, then, that [Con] ought to
be regarded as the syntaéiic‘representative of seriality in relational frame
theory. Such a view is sdpported further by the next result:- |
THEOREM 14: KnCon is determined (mod F]) by the c]éss of serial n+l-ary

r%iationa] frames.
Proof: This‘is easily shown by a simple adaptation of the proof of Theorem
10. - | |

It is stilT not known whether Kn4 is determined by a class of n-ary
re]ationgl frames where n > 2. However, an interesting result isAavai1ab1e.
Where m = 1, the following schema yields the traditional [4] axiom:

) (41, up]‘A N m?m-» alapyA.. Aap)
The result is this:

THEQREM 15: Kn[4]n is determined (mod F]) by the class of quasi-transitive

ntl-ary relational frames.



Proof:

~ Assume 3x,y]...yn,z]...zn...z]...z»:
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(Soundness)
Assume that M is a model on a quasi-transitive n+1-ary'frane and that
MP; D(DP]A...AGP )

°, EVZPRRVAE Mbg, oPyA-+-AcP, & ... & Mb& Py A- - -ATP, & nyT...yn

n
. n
vk, 33 Mb‘ ap (1=k=n)
| ka & k' K
vk(1sksn), 3zy...z.: y Rzj...z & Ml#k P; i & 8P P,
zv

#...zﬁ (frame cond1t1$n

."MP& Dpjk a Mb& Dp1A"'ADpn

But 3k(1<ksn): xRz n

(Completeness)
We show that the canonical relation R' (L = K [4] ) is quasi-

transitive.

1 1 n n

N ,
t <k< lk k '<< Lk k
xRLy]...yn & vk(1=k=n), ykRL ] & vk (1<ksn), ~x Zy...2

AR S A L R A
" DG]A...Auan € X -K-D(Da]A...AEan) € X ([4jn)
But xRLy] o 3k(1=k=n): oaqAs-sAdg, € Y,

. oqy € yk But ykRL T zk |

°, HJ(JEJSH): QAT € ZE’ which is apsurd L

- \
. . . . 3
. Ri is quasi-transitive

It is easily seen that

for any n, m such that m > n; one merely substitutes Ph for p

L[4, = | (4, (PCcL)

n+1 *°° P It

can also be shown that

T3, 4 h [y (ke L)

s o

for-any j, m = n by the following result:

i b -
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Corollary 15.1: If m = n, then Kn[4]m is determined (mdd F]) by the class
of quasi-transitivé'n+T-any re]atfona] frames.
‘Proof: This is easily shown by an adaptation of the prooffof Theorem 15.
Thus [4] is equivalent td each [4]n in K. Howevér; our next result
sﬁows that.this is not true for any Wéaker Kﬁ 1o§ic.
THEOREN 16: f 4 [4], where n > 1. |

Proof: First we note that any n-ary frame ‘s equivalent mod F1 to an n+l-ary

frame. Let F = <D,R> be an n-ary frame. Define R* as follows:

R*

]

{<x1.,.xn,xn>; Xy X> € R}

Let F* = <D,R*>. It is easily shown that F and F* are equivalent
mod F].
Lemma 16.1: %%4 [4]2
Proof: Let F = <(D,R> be a ternary frame where
D= {X:yy:¥5124 ,22,23}
R

n

EXYya¥p™s Vyo21p2p7s VpsZpazgns <Xo27s237)

The structure of F can be illustrated as in Figure 1.

Since pa will be true at each Z; for any a, ona canhot fail at any

z; or yi. Thué [4] holds at each Y; and Z;- Suppose that oop fails
‘at x. Then op fails at Yq and Yos and thus p fails at z4 and z3- But
XRz,,25. Therefore op fa1ls at x. But on a model where V(p ) {y],z }
and V(q) = {5523} [4]2 will fail at x. Thus bk24 [4]2

It follows from Lemma 16.1 and the preced1ng remarks that b& 4 [4]2 where

n > 1. But [4] lL [4]2 for any n > 2. Thus bk 4 [4] This proves

the theorem.
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FIGURE 1 v . N
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(V) FIRST ORDER DEFINABILITY

In Goldblatt [2] we find the following definition of first order
definability: |

A modal sentence g is first order definable iff there is a first

order sentence o* such that, for any frame F, Fl= o« iff F is a
model for a* in the first order sense. |
Here a* is a sentence of a first order language containing a single dyadic
predicate, and F is a binary re1ationa1'frame. Cur generalized notion of
a relational frame requires a more general notion of first order defina-
bility: |

a is n-adically first order definable (f.,o0.d) iff there is a

first order sentence a* such that for any n-ary frame F, Fl «

iff F is a model for a* in thevfirst order sense
where a* is a sentence of a first order,languagévcontaining a single n-adic’
predicate. | ;

a is universally f.o.d. iff a is n-adically f.o.d. for each n.

We will now show that [D] is not triadically f.o.d. For each i € Nat,
we define the ternary frame Fi =‘<D1,R1> as follows:
Dj = D6Yy--Ypi4d
XRiyj’yk where j = k-1
Ri¥ai41Y1

y:R.y.,y. for each yj

3173777
The first two frames are illustrated in Figure 2.

To héve [D] fail on one of these frames, we must have op and o-p



@

30

. FIGURE 2



ho]ding at some point. Obviously this cannot occur at any of the yi's.

Suppose that op and o=p hold at x in F]. Then p must hold at Y1 or ¥,

~ Suppose p holds at ¥q- Then -p must hold at X Therefore p must hold at
Y3 since xR]yZ,y3. But xR]y3,y], so we have a‘re1ated pair where =p fa11s"
at both,cQordinates. Thﬁs o~p fails at x. In general, if we make b true

~at yT;fwe must make it at all odd-numbered yi'svif we want o-p to hold
at x. But Y41 will always Have an odd index, and x will always be re-
lated to Yoi+1> Y7 Thus up'and o=p cannot bqth hold at x in any of the
Fi's. It is clear that the same considérations arise when -p -is true at
Yq- |

Now let G be a non-principal ultrafilter on Nat. The ultraproduct of

the Fi's over G (FG) is defined as in Goldblatt [2] except for the relation
R . | |

?RG@],@Z iff {i: f(1)R191(1)’92(1)} €6
The structure of FG is illustrated in Figure 3. Since DG will be non-den-

umerable this diagram does not fu]Ty illustrate the strutture. But this

is not important. What is important is that we can define a valuation:
where [D] will fail at ?;

i € V(p) if j is odd
5 € V(p) if j' is even

Thus each pair will have a coordinate where p holds and a coordinate where

@y«

-p holds, and so op A g~p will hold at £.
It is easily seen why FG has the structure illustrated. The exist-
ence of particular sets in fhe ultrafilter quarantees the existence of

particular points in the ul traproduct domain. To get f, one chooses a

‘t‘;,ﬂ‘éi G et Eks T 4T
b I <
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function f 1n”H1 Nat Di such that f(i) = x for all i. Since Nat ¢ G, T is %
Jjust the set containing this function. Nat also guarantees the existence é
: ‘ , i

of the p0jnts shared" by all the Fi s, that is, 91> o T35 Gyes Gy 93} %
{the first, second, third, last, second-to-last, and third-to-last points). %
' , . - 3

By examining the definition of RG it can be seen that the relation dia- g

grammed does hold between these points.

To get the points ﬁot "shared" by all the Fi‘s (é.g. 64 and 64.) we'
appeal to the fact that G is a non-principal ultrafilter. Since G wiii |
contain all cofinite sets, it.will contain Nat - {1}. To get §4, we. choose
those functions which map i ontovy4 for i > i. There will be four distinct
functions of thfs type, namely those which map 1 onto x, Yy yz, anq Y3
§4r715‘forméd in a simi]gr way, és are @5 and @5., thesé being points
which are “sharedJ by all the Fi's excepf for F,. »

We know from Los'vTheqrem Eﬁht every class of first order mode]i is.
closed under ultraproducts. Thus every first ofder sentence true on a]i )
of the Ei;s will be true on FG' Now suppose that [D] is f.o.d. by a ~
triadic first order sentence a*. Then by the definition a* holds on all

of the Fi's since [D] hojds on all of them. But then‘d*rholds on FG by .

Los' Theorem, and so [D] must hold on Fg» contrary to what we have shown.
‘Thus we have proved the following: ‘
Lemma 17.1: [D] is not triadically f.o.d.

THEOREM 17: [D] is not n-adically f.o.d. if n—> 2.

Proof: Thiskfollowé from Lemma 17.1 and the fact that every n-ary relational -

A

frame has an equivalent n+l-ary relational frame.
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